(Charles H. Bennett was one of the pioneers of Q.C. He was an undergrad at Brandeis in the early '60s. He had a friend there, an undergrad called Stephen Wiesner. By the late '60s they were grad students in physics; Wiesner @ Columbia, Bennett @ Harvard. In '69, W. went to visit B. at Harvard and told him about his cool idea for... Quantum Money (and superdense coding, and some other things...) Bear in mind: 10-15 years before inklings of quantum computing, proof of No-Closing Thm...)

(Wiesner wrote up his ideas and submitted to the prestigious IEEE Trans on Info. Theory. Rejected as nonsense. Supposedly resubmitted several times to various journals, always rejected. He got out of academics, I think, and the idea of q. money was only kept alive by Bennett telling people about it periodically. Bennett went to work at IBM and was a well known physics/C.S. researcher...)
Gilles Brassard was a French-Canadian guy who got his PhD from Cornell in 1979, studying cryptography under Hopcroft. In Oct. '79 he was swimming at a hotel beach in San Juan, P.R. A guy he'd never met swam up to him and started telling him about Wiesner's theory of quantum money.

"The most bizarre, and certainly the most magical, moment in my professional life." - Brassard.

To be fair, Brassard & Bennett were both there for the 20th F.O.C.S. conference in T.C.S. Brassard was to deliver a crypto talk, and Bennett had recognized him.

B. & B. started talking about cryptographic angles on quantum money - bear in mind, in 1979 RSA had just come out; Diffie-Hellman was a few years before. In '82, they wrote a notable paper called "Quantum Crypto"; went on to be Q.C. pioneers (e.g., they were on the Teleportation paper).

And Wiesner? His paper finally published in '83 in a journal issue for CRYPTO'81 papers. He now - by choice - works as a laborer in Jerusalem.)
(So what is (“private key”) Quantum Money?)

BANK \[\xrightarrow{\text{issues}}\] “coins”/“bills”/“tokens” \\
\[\xrightarrow{\oplus}\] multi-qubit states \\
\[\xrightarrow{\oplus}\] \(\Diamond\) (People can carry them around, trade them, etc.) \\
\[\xrightarrow{\text{wallet}}\]

(Even today, storing qubits is hard for fancy physics labs. So Q. Money is def. technologically infeasible now.)

\[\xrightarrow{\oplus}\] \[\xrightarrow{\oplus}\] duplication (“counterfeiting”) should be impossible (w.h.p.) b/c of “no cloning” (This is the potential beauty of quantum money. Any classical info can be “copied”! Even if printed in fancy ink on paper/textile/plastic.)

To test if coin \(\Diamond\) is valid/forged, must take it to bank.

(This may seem annoying, that 3rd party, bank, must be involved to verify transaction. So you might prefer to think instead of..."

"Quantum subway tokens": Transit Authority
\[\xrightarrow{\text{issue}}\] \[\xrightarrow{\text{verified}}\] \[\xrightarrow{\text{at}}\] turnstile.
Wiesner's Scheme

- "n" is a "security parameter", e.g. \(n = 256 \) (trades off security vs. efficiency)

- To create a quantum coin, Bank...
 - Picks \(\sigma \in \{0,1\}^n \) at random
 - "serial number"
 - Picks \(q \in \{0,1,+,-3\}^n \) (an random bits)
 - e.g. \((0,+,-,1,1,...,+) \)
 - Creates associated \(n \)-qubit state
 \[|\Psi\rangle = |0\rangle \otimes |+\rangle \otimes |0\rangle \otimes |1\rangle \otimes |0\rangle \otimes ... \otimes |+\rangle \]
 - \(s \left\langle |\Psi\rangle \right| \)
 - this is the coin/token
 - \((|\Psi\rangle \) in a container, with \(s \) printed on the side)

Bank maintains big list of \((s,q)\) pairs.

Or [BBBW'82]: Bank/transit authority one time picks a secret key \(k \in \{0,1\}^n \). Then \(q := AES_k(s) \)

Now no storage needed—especially nice for subway turnstiles.
Verification of (14)₅

- Bank looks at serial #₅, determines q.
 (NB: Bank cannot just look at |₅⟩ to check against q.)
- Bank measures i-th qubit in appropriate basis
 (|0⟩, |1⟩ or |+⟩, |−⟩), checks whether outcome matches q.
- If all n checks pass, ✅
 Bank: gives back the (post-measurement) |₅⟩
 Turnstile: eats token & lets you pass
- If ≥1 check fails, ⚠
 Bank: calls the police?
 Turnstile: spits token back out? [Hmm, More on this later.]

It's not totally obvious the Authority should freak out if, say, 1 out of n measurements fail.
Maybe one qubit decohered in the holder's wallet...
Well, we'll discuss later. For now, assume 1 failure = police! ☠
Non-counterfeitability

\[(s, |\psi\rangle) \rightarrow (s, |\psi\rangle), (s, |\psi\rangle)\]

(Want to rule out a malicious party doing this.)

(We know by "No Cloning Theorem" that doing \[|\psi\rangle \rightarrow |\psi\rangle \otimes |\psi\rangle\] with 100\% prob, for all \(|\psi\rangle\) is impossible. But we didn't rule out the ability to do this w/ prob 90\%. or 10\%.)

Simple attack that works w/ prob, \(\left(\frac{5}{8}\right)^n\).

- Measure each qubit of \(|\psi\rangle\) in standard basis
- Get some outcomes, e.g. \(r = 01101\ldots\)
- Make 2 (or more!) copies of \((s, |01101\ldots\rangle)\)

\[\Pr\left[\text{both copies get you thru Turnstile}\right] = ?\]

- for each \(i\), \(\frac{1}{2}\) chance \(q_i\) (true expected state of its qubit)
 \[\text{was in } \{0,1\} \Rightarrow \Pr[q_i = q_i] = 1 \Rightarrow \text{Turnstile happy w/ prob. } 1\]

- if \(q_i \in \{\pm 1\} \ldots \) \(r_i\) equally likely \(|0\rangle\) or \(|1\rangle\) \(\ldots\)
 \[\Pr[\text{turnstile measures } |r_i\rangle \text{ to be } |q_i\rangle] = \frac{1}{2}\]
 \[\Rightarrow \Pr[\text{turnstile OK with both tokens' its qubit}] = \frac{5}{8}\]
Non-counterfeitability - continued

Actually, a smarter attack succeeds at duplicating w/ prob. \((3/4)^n\)
& this proven optimal by Molina et al., Pastawski et al., 2011

Aaronson '13: extended to show same bound for trying to make k+1 coins from k, \(\& k \geq 2\)

Wiesner '83: claimed \((3/4)^n\) bound, but totally bogus reasoning... unquestioned for 25 years...!
(Now for some criticisms...)

Defect 1: Verification requires sending state to Bank over quantum channel. (Or walking it over to the bank...)

Gavinsky '11: A way to verify using just classical comm. with Bank. (eavesdroppable!)

Molina et al. version:

- You text Bank "i"
- It texts back a random "challenge string" $r \in \mathbb{E}_{0,1}$
- You measure $|r_i\rangle$ in std basis if $c_i=0$, sgn basis if $c_i=1$

Text results to Bank

- Bank considers the $\approx 50\%$ of $i \in [n]$ where c_i matches the basis of (its known) g_i. Declares "verified!" if all your measurements "correct" on these i's.
(Won't formally discuss security, but you should think it looks plausible.)

Downside: This ruins the coin.
(Well, 3 things. (i) Gavinsky showed this can't be helped if you want classical verification.
(ii) At least Bank can give you IOU to be cashed in later.
(iii) As we'll see, it's not great to let users hang on to post-verified coins anyway.)

Remark: This is very similar to Bennett & Brassard's "Quantum Key Distribution", "BB84": A way to securely transmit one-time-pads.

Actually so feasible in practice, several companies sell the service. Will be on homework!}
Defect 2: 3rd-party (Bank) verification.

Hypothetical "public-key Q. money": [Aaronson '09, Lutomirski et al. '10]

- Bank one time generates random...
 secret key K_{sec} & public key K_{pub}

 $g = AES_{K_{sec}}(s)$

- Users can verify (s, g) via some
 $Verif(s, g; K_{pub})$

(Several schemes suggested over the years, but almost all soon broken.
One scheme by Farhi ... Shor... et al., based on computational intractability of some quantum knot problem, still unbroken, but complicated & no great reason to believe it secure, so... it's a great open prob to get secure-seeming public-key quantum money!)
Issue: What to do when...

<table>
<thead>
<tr>
<th></th>
<th>Gets Bad coin</th>
<th>Gets Good coin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnstile</td>
<td>Spit it out, don't let you pass?</td>
<td>Let you thru, eat the token</td>
</tr>
<tr>
<td>Bank</td>
<td>Call the cops? (Perhaps too dramatic if wallets create noise. Maybe return coin if only a few qubits "wrong"?)</td>
<td>Say "OK" and give back the coin? Paranoia version: eat the coin, reissue a fresh one</td>
</tr>
</tbody>
</table>

 semble like a waste of resources?
Actually, we'll see the Bank must do this!
Let's see why the Authority must do this, under the assumption that on bad coins, they naively return the post-measurement bad coin... as a turnstile might...

If Bank hands rejected coin-states back to user...

You're a gaddie, with \((5, 14')\).

How you can learn \(14'\) (and \(14'_2\), ..., \(14'_6\)):

(and hence know how to duplicate \(14\) limitlessly...)

- Trash first qubit of \(14'\), replace it with \(10\) or \(11\) or \(1\) or \(1\)
- Take to Bank, ask “Is this good?”
- Repeat \(20...50\) (\(O(\log n)\)) times

When you guessed right, Bank okays it. “Wrong” wrong, Bank rejects it with prob. \(\approx \frac{1}{2}\).

(That's it. You learn \(14'\) except with prob. \(< \frac{1}{n}\) after \(O(\log n)\) trials. Repeat for all \(n\) qubits in your coin!)

(Note: your trials always have just 1 bad qubit, "wallet noise!" you could claim.)
Say Bank less naive: calls cops on bad coin, gives back coin when verified as good.

Attack by Nagaj, Sattath, Brodutch, Unruh, \(\approx 3\) years ago:
Given 1 legit coin, does \(\approx n^2\) verifs,
high prob. of no cops, & learns \(|Y\rangle\).

For each \(i \in [n]\), has scheme doing \(C\) checks,
prob. \(\leq 1/C\) of cops being called, o/w, learns \(|Y_i\rangle\).
So set \(C \gg n\), and repeat \(\forall i \in [n]\).

1 qubit attack: unknown \(|0\rangle, |1\rangle, |+\rangle,\) or \(|-\rangle\)

Want to slowly "learn" it, while evading an explosion of legal trouble.

Very similar situation to...

Elitzur–Vaidman Bomb!
Call unknown qubit $|u\rangle$.

Let C be big int, let $\varepsilon = \frac{90^\circ}{C} = \frac{\pi}{2ac}$. (one of these 4!)

"Attach" a qubit in state $|0\rangle$, so now $|0\rangle\otimes|u\rangle$.

Repeat C times:

- Rotate control qubit by ε (with 1-qubit unitary gate)
- CNOT (control onto target $|u\rangle$)
- Put 2nd qubit into coin, ask Bank to verify it. Get back post-measurement state.

(So control qubit is sneakily entangled with coin state)

(Analysis of 1st iteration of loop...
Case 1: $|u\rangle = |+\rangle$. Bank will be measuring in sign-basis.

$$|+\rangle \otimes |+\rangle = \left(\ldots \otimes \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right)\right)$$

unchanged by NOT

unchanged by CNOT

Bank gets and qubit, measures in $|\pm\rangle$, gets $|+\rangle$ w. prob. 1, returns $|+\rangle$.

:. after $C = \frac{90^\circ}{\pi}$ repetitions, state becomes $|1\rangle \otimes |+\rangle$

Case 2: $|u\rangle = |0\rangle$. Bank measuring in std. basis.

$$|0\rangle \otimes |u\rangle \rightarrow (\cos \epsilon |0\rangle + \sin \epsilon |1\rangle) \otimes |0\rangle$$

$$\xrightarrow{C\text{NOT}} \cos \epsilon |0\rangle + \sin \epsilon |1\rangle$$

Bank measures $\begin{cases} |00\rangle \text{ w. p. } (\cos \epsilon)^2 \\ |11\rangle, \text{ cops called w. p. } (\sin \epsilon)^2 \leq \frac{3}{\pi} \epsilon \end{cases}$.

After $C = \frac{\pi}{2\epsilon}$ reps: $\Pr[\text{cops}] \leq \frac{1}{2} \epsilon$, and otherwise state ends up $|00\rangle$.
Case 3: $|u\rangle = |1\rangle$, Bank measures in std. basis

(Essentially same as $|u\rangle = |0\rangle$ case.)

$\text{CNOT} \rightarrow \cos 3 |01\rangle + \sin 3 |10\rangle$

$\rightarrow \Pr[\text{cops}] = (\sin 3)^2$, else collapses back to $|01\rangle$

Case 4: $|u\rangle = |\rightarrow\rangle$, Bank measuring in sign basis

$\text{NOT} \rightarrow (\cos 3 |0\rangle + \sin 3 |1\rangle) \otimes |\rightarrow\rangle$

$\text{CNOT} \rightarrow \cos 3 |0,\rightarrow\rangle - \sin 3 |1,\rightarrow\rangle$ (because $\text{NOT} |\rightarrow\rangle = -|\rightarrow\rangle$)

$= \underbrace{(\cos 3 |0\rangle - \sin 3 |1\rangle)} \otimes |\rightarrow\rangle$

So Bank gets $|\rightarrow\rangle$ and passes it back with prob. 1. Control qubit moves to angle -3.

On next rep., control qubit rotated to angle 0. $\rightarrow |0\rangle \otimes |\rightarrow\rangle$. CNOT does nothing. Bank OK's $|\rightarrow\rangle$.

\therefore reps cycle control qubit back & forth, angle $0, -3$

$\Pr[\text{no cops}] = 1$, final state $|0\rangle \otimes |\rightarrow\rangle$ assuming C even.
Summary: \(\Pr[\text{cops}] \leq \frac{\pi^2}{9} \) always.

- If \(|u\rangle = |+\rangle \), control qubit ends at \(|1\rangle \).
- If \(|u\rangle \neq |+\rangle \), --- \(|0\rangle \).

\[
\therefore \quad \text{at end, measuring in std. basis reveals ''yes/no: is } |u\rangle = |+\rangle?''
\]

By appropriate rotations of scheme, can answer "yes/no: is \(|u\rangle = |p\rangle \)" for \(p \in \{0, 1, -\frac{1}{3}\} \).

\[
\Pr[\text{cops}] \leq 4 \cdot \frac{\pi^2}{9} = 2\pi^2\varepsilon.
\]

Repeat for all \(n \) qubits in \(|X\rangle \rightarrow 1\text{ learns } |X\rangle \) (and can now counterfeit).

\[
\Pr[\text{cops}] \leq n \cdot 2\pi^2\varepsilon = \frac{n\pi^2}{C} \leq \frac{10n}{C},
\]

\(4Cn \) total verifs. Can take, say \(C = 1000n \).

\(n = 256 \Rightarrow \text{invest } 1 \text{ million trial verifs for } 99\% \text{ chance of being able to make free money!} \)

Conclusion: bank should reissue coin, even on successful verification!