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1 Mixed States

Today, we will change the topic from quantum algorithm to quantum information theory.
To lay the foundation for the qunatum information theory, we first need to generalize the
definition of quantum states.

1.1 Motivation

Recall that, in the second lecture, we defined quantum states as vectors. Specifically, a
quantum state in the d-dimensional qudit system is a superposition of d basis states. We
can write:

|ψ〉 = α1 |1〉+ α2 |2〉+ · · ·+ αd |d〉 ,
where |α1|2 + |α2|2 + · · ·+ |αd|2 = 1.

However, using vectors to describe the state of a quantum system sometimes is not
enough. One motivation to generalize the definition of a quantum state is to model quantum
noise. When you implement a quantum system, the qunatum processes involved are naturally
“noisy”, whatever that means, and they are modeled as devices producing quantum states
|ψi〉 with probability pi. A schematic diagram of such a device is as follows.

The devise outputs


|ψ1〉 with probability p1,

|ψ2〉 with probability p2,
...

Roughly speaking, its quantum state is sometimes |ψ1〉, sometimes |ψ2〉 and so on.
One might be attempted to use a vector, for example

∑
i pi |ψi〉, to represent the state of

such a quantum device. But vectors are just not the correct notions to capture the quantum
state of such a device.

1.2 Mixed state represented by matrix

In order to come up with the right notions to describe the physical system of such a devise,
let’s measure the devise in the basis |v1〉 , |v2〉 , . . . , |vd〉. We compute

Pr [observe |vi〉] =
∑
j

pj |〈vi|ψj〉|2 =
∑
j

pj〈vi|ψj〉〈ψj|vi〉 = 〈vi|

(∑
j

pj |ψj〉 〈ψj|

)
|vi〉 (1)
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Definition 1.1. The mixed state {pi, |ψi〉} is represented by the matrix ρ =
∑

j pj |ψj〉 〈ψj|.
The state is called a pure state if pi = 1 for some i.

The matrix ρ embodies everything related to the mixed state. In (1), we have seen that
the outcome of the measurement in the basis can be expressed in terms of ρ, that is

Pr [observe |vi〉] = 〈vi| ρ |vi〉 .

In the following example, we compute the matrices representing various mixed states.

Example 1.2. The mixed state

S1 =

{
|0〉 with probability 1

|1〉 with probability 0

is represented by

|0〉 〈0| =
[
1 0
0 0

]
.

The mixed state

S2 =

{
− |0〉 with probability 1

|1〉 with probability 0

is represented by the same matrix

(− |0〉)(−〈0|) =

[
1 0
0 0

]
.

The mixed state

S3 =

{
|0〉 with probability 1/2

|1〉 with probability 1/2

is represented by
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| =

[
1
2

0
0 1

2

]
.

Though S1 and S2 in Example 1.2 look different, they are not distinguishable from an
observer, and so they share the same representing matrix. This reflects the fact that the
representing matrix contains only the observable information and does not contain redundant
information.

Analogous to the vector formulation of quantum state, we can axiomatize the matrix
formulation of mixed state as follows.

1. (Measurement) If ρ represents a mixed state and you measure in the basis |v1〉 , . . . , |vd〉,
then Pr [observe |vi〉] = 〈vi| ρ |vi〉. We have computed this probability in (1).

2. (Evolution) Suppose a mixed state S1 = {pi, |ψi〉} goes though a unitary gate U and
transforms to S2 = {pi, U |ψi〉}. If the matrix representing S1 is ρ, then the matrix
representing S2 is∑

i

pi(U |ψi〉)(U |ψi〉)† =
∑
i

piU |ψi〉 〈ψi|U † = U

(∑
i

pi |ψi〉 〈ψi|

)
U † = UρU †.
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1.3 Density matrix

The matrix presenting a mixed state has the following property.

Proposition 1.3. If ρ represents a mixed state, then tr (ρ) = 1 and ρ is positive semidefinite
(PSD).

Proof. Note that for a pure state |ψ〉 = a1 |1〉+· · ·+ad |d〉, tr (|ψ〉 〈ψ|) = |a1|2+· · ·+|ad|2 = 1.
Suppose the mixed state is {pi, |ψi〉}. On one hand, we have that tr (ρ) = tr (

∑
i pi |ψi〉 〈ψi|) =∑

i pi tr (|ψi〉 〈ψi|) =
∑

i pi = 1. On the other hand, for any |v〉, we have that 〈v| ρ |v〉 =
Pr [observe |v〉] ≥ 0, hence that ρ is PSD.

Definition 1.4. We say that a matrix ρ is a density matrix if and only if tr (ρ) = 1 and ρ
is PSD.

Proposition 1.3 simply says that a matrix representing a mixed state is a density matrix.
In fact, the converse is also true.

Proposition 1.5. If ρ is a density matrix, then it represents a mixed state.

Proof. By the spectral theorem for Hermitian matrices, we know that ρ =
∑d

i=1 λi |vi〉 〈vi|,
where λi’s are the (real) eigenvalues and |vi〉’s from an orthonormal basis. Since ρ is PSD,
we know that λi ≥ 0 for all i. The assumption tr (ρ) = 1 implies that

∑d
i=1 λi = 1. So ρ

represents the mixed state {pi, |vi〉 : i ∈ [d]}.

Remark 1.6. Even though a mixed state, say {pi, |ψi〉}, can be rather complicated, for
example, there are infinitely many nonzero pi’s, from the proof of Proposition 1.5 we see
that {pi, |ψi〉} is indistinguishable from {λi, |vi〉} as they represent the same density matrix.

We have already seen in Example 1.2 that density matrix is a succinct way to represent
a mixed state. One can actually use the density matrices to check whether two mixed states
are distinguishable. Here is an example.

Example 1.7. Suppose mixed state

S1 =

{
|0〉 with probability 3/4

|1〉 with probability 1/4

and mixed state

S2 =

{√
3
2
|0〉+ 1

2
|1〉 with probability 1/2

√
3
2
|0〉 − 1

2
|1〉 with probability 1/2

.

Both mixed states are represented by

3

4
|0〉 〈0|+ 1

4
|0〉 〈0| =

[
3/4 0
0 1/4

]
=

1

2

(√
3

2
|0〉+

1

2
|1〉

)(√
3

2
〈0|+ 1

2
〈1|

)
+

1

2

(√
3

2
|0〉 − 1

2
|1〉

)(√
3

2
〈0| − 1

2
〈1|

)
,

and hence indistinguishable.
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1.4 Density matrix in quantum algorithms

In the hidden subgroup problem (HSP) for group G, if f “hides” a subgroup H ≤ G, then
the “standard method” outputs uniformly random coset

|gH〉 =
1√
|H|

∑
h∈H

|gh〉 .

Each coset |gH〉 is output with probability 1
|G| . So the density matrix representing the mixed

state is

ρH =
∑
g∈G

1

|G|
|gH〉 〈gH| = 1

|G|
∑
g∈G

|gH〉 〈gH| .

In general, partial measurements would generate mixed states.

2 Measurements

The next step is to generalize the definition of measurements.

2.1 Simple measurements

We first review the “simple measurements” (not standard terminology). Given a pure state
|ψ〉, a “simple measurement” is as follows.

1. Pick orthonormal basis |v1〉 , . . . , |vd〉.
2. Receive outcome “i” with probability |〈vi|ψ〉|2.
3. |ψ〉 “collapses” to |vi〉.

2.2 Most general quantum measurement

The most general quantum measurement can be described using matrices. We first focus on
the measurement rules for pure states.

1. Pick d× d matrices M1, . . . ,Mm satisfying the completeness condition that

M †
1M1 + · · ·+M †

mMm = I. (2)

2. Receive outcome “i” with probability

|Mi |ψ〉|2 = 〈ψ|M †
iMi |ψ〉 . (3)

3. ψ collapses to
Mi |ψ〉
|Mi |ψ〉|

=
Mi |ψ〉√
〈ψ|M †

iMi |ψ〉
(4)
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2.3 Sanity check

We first check that the |Mi |ψ〉|2’s should sum to 1. Using the completeness condition (2),
we have that∑

i

|Mi |ψ〉|2 =
∑
i

〈ψ|M †
iMi |ψ〉 = 〈ψ|

(∑
i

M †
iMi

)
|ψ〉 = 〈ψ|ψ〉 = 1.

Secondly, we check that the general measurement extends the “simple measurement”. In
the case of simple measurement, we measure with respect to orthonormal basis |v1〉 , . . . , |vd〉.
Take Mi = |vi〉 〈vi| for all i ∈ [d]. Note that M †

iMi = |vi〉 〈vi| |vi〉 〈vi| = |vi〉 〈vi|. According
to the definition of the general quantum measurement, we check that

1. Completeness condition:

M †
1M1 + · · ·+M †

dMd = |v1〉 〈v1|+ · · ·+ |vd〉 〈vd| = I.

2. Receive “i” with probability

〈ψ|M †
iMi |ψ〉 = 〈ψ|vi〉〈ψ|vi〉 = |〈vi|ψi〉|2 .

3. ψ collapses to
Mi |ψ〉
|Mi |ψ〉|

=
|vi〉 〈vi|ψ〉
|〈vi|ψ〉|

= eiθ |vi〉 .

We further define a special kind of general measurement, called projective measurement.

2.4 Projective measurement

Recall that a projection Π is a PSD matrix such that Π2 = Π (cf. Problem 6 in Homework 2).
Equivalently, Π is a projection provided that Π =

∑k
i=1 |vi〉 〈vi|, where |vi〉’s are orthonormal

(but they do not necessarily form a basis).

Definition 2.1. A projective measurement is the case when M1 = Π1, . . . ,Mm = Πm, where
Π’s are projections such that

Π1 + · · ·+ Πm = I. (5)

Equation (5) implies the completeness condition (2). This is simply because M †
iMi =

Π†
iΠi = Π2

i = Πi. Moreover, we receive outcome “i” with probability |Π |ψ〉|2 = 〈ψ|Π†
iΠi |ψ〉 =

〈ψ|Πi |ψ〉 and the state collapses to Πi |ψ〉 / |Πi |ψ〉|.
One way to think about a projective measurement is to imagine that you pick an orthonor-

mal basis |v1〉 , . . . , |vd〉 and “bundle” those vectors into projectors: Πi =
∑

j∈Si
|vj〉 〈vj| for

all i ∈ [m], where S1, . . . , Sm form a partition of [d]. Moreover, it is easy to see that the
“simple measurement” is a projective measurement.

Example 2.2. Given state |ψ〉 = 1√
3
(|0〉+ |1〉+ |2〉). If we pick Π1 = |0〉 〈0| ,Π2 = |1〉 〈1|+

|2〉 〈2| and carry out a projective measurement on |ψ〉. Since Π1 |ψ〉 = 1√
3
|0〉 and Π2 |ψ〉 =

1√
3
(|1〉+ |2〉), we will observe “1” and get |0〉 with probability 1

3
, and we will observe “2” and

get 1√
2
(|1〉+ |2〉) with probability 2

3
.
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2.5 Measurement rules for mixed states

Now, we derive the measurement rules for mixed states.

Proposition 2.3. Given mixed state {pi, |ψi〉} represented by density matrix ρ. If we mea-
sure the mixed state with respect to M1, . . . ,Mm satisfying the completeness condition, then

1. Receive outcome “i” with probability

tr
(
M †

iMiρ
)
.

2. ρ collapses to
MiρM

†
i

tr
(
M †

iMiρ
) .

Proof. By the definition of density matrix, we have that ρ =
∑

i pi |ψi〉 〈ψi|. Note that

tr
(
M †

iMiρ
)

= tr

(
M †

iMi

∑
j

pj |ψj〉 〈ψj|

)
=
∑
j

pj tr
(
M †

iMi |ψj〉 〈ψj|
)

=
∑
j

〈ψj|M †
iMi |ψj〉 .

In the last equality, we used the simple fact that tr (|a〉 〈b|) = 〈b|a〉 Using conditional prob-
ability, it is easy to see

p′i := Pr [receive i] =
∑
j

pj Pr [receive i | measure |ψj〉] =
∑
j

pj 〈ψj|M †
iMi |ψj〉 = tr

(
M †

iMiρ
)
.

Because pure state |ψj〉 collapses to pure state

|ψ′
j〉 =

Mi |ψj〉√
〈ψj|M †

iMi |ψj〉
=:

Mi |ψj〉√
pji

,

with probability pji, the mixed state {pj, |ψj〉} collapses to
{
pjpji/p

′
i, |ψ′

j〉
}

represented by

∑
j

pjpji
p′i

(
Mi |ψj〉√

pji

)(
Mi |ψj〉√

pji

)†

=
1

p′i

∑
j

pjMi |ψj〉 〈ψj|M †
i =

MiρM
†
i

tr
(
M †

iMiρ
) .

3 Mixed state in entanglement

Suppose Alice and Bob share a pair of qudits with joint state |ψ〉 =
∑

i,j∈[d] αi,j |i〉 ⊗ |j〉.
Sadly, Bob is light-years away from Alice and got forgotten by everyone. The question is
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“How do you describe Alice’s qudit?”1.

We claim that from Alice’s perspective, her qudit is represented as a mixed state. In
other words, if she performs a measurement on her qudit, then her measurement outcomes
are consistent with her qudit being a mixed state. Which mixed state?

Suppose prior to Alice’s measurement, Bob measures his qudit (in standard basis). He
sees |j〉 with probability pj :=

∑
i |αi,j|

2 and Alice’s state becomes |ψj〉 := 1√
pj

∑
i αi,j |i〉.

Had Bob measured before Alice, Alice’s state would become a mixed state represented by

∑
j

pj |ψj〉 〈ψj| =
∑
j

pj

(
1
√
pj

∑
i1

αi1,j |i1〉

)(
1
√
pj

∑
i2

α†
i2,j
〈i2|

)
=
∑
i1,i2

|i1〉 〈i2|
∑
j

αi1,jαi2,j.

However, by relativity, Bob’s measurement information hasn’t propagated to Alice’s world
since Bob is light-years away. This means that, without loss of generality, we may always
assume Bob had measured before Alice.

Well, if you believe in relativity, then you’re forced to conclude that Alice’s state is given
by the mixed state

ρA =
∑

i1,i2∈[d]

|i1〉 〈i2|
∑
j∈[d]

αi1,jα
†
i2,j
.

Of course, you might not believe in relativity (your loss), in which case this argument
isn’t too convincing. So let’s see a quantum mechanical proof of this fact.

Before this, let me describe the standard way that ρA is defined. Suppose R and S are
d × d matrices, where we think of R as Alice’s matrix and S as Bob’s matrix. Then the
partial trace trB is defined as trB (R⊗ S) := R · tr (S).

The notation is suggestive: you take the trace of Bob’s matrix S and multiply it by R.
This shows how to define trB for d2 × d2 matrices of the form R ⊗ S. If we further specify
that trB is linear, then trB (M) is defined for any d2 × d2 matrix M . This is because any
such M can be expanded as M =

∑
iRi ⊗ Si, where the Ri’s and Si’s are d× d.

Now, I claim that ρA (as defined above) is equal to trB (|ψ〉 〈ψ|). To see this, first note
that

|ψ〉 〈ψ| =
∑

i1,j1,i2,j2

αi1,j1α
†
i2,j2
|i1〉 〈i2| ⊗ |j1〉 〈j2| .

Thus, by linearity of trB and the fact that tr (|a〉 〈b|) = 1 if a = b and 0 otherwise,

trB (|ψ〉 〈ψ|) =
∑

i1,j1,i2,j2

αi1,j1α
†
i2,j2

trB (|i1〉 〈i2| ⊗ |j1〉 〈j2|)

=
∑

i1,j1,i2,j2

αi1,j1α
†
i2,j2
|i1〉 〈i2| · tr (|j1〉 〈j2|)

=
∑
i1,i2

∑
j

αi1,jα
†
i2,j
|i1〉 〈i2| ,

1The notes below are mostly based on a Piazza post by John Wright.

7



which, after some trivial manipulations, is exactly ρA from above. So any time you see the
notation trB applied to a multi-qudit state, it just means that you’re supposed to compute
the mixed state that Alice sees. And the above argument shows how to carry out this
process in a simple manner. By the way, if we wanted to figure out which mixed state
Bob’s qudit is in, then it would be in the state trA (|ψ〉 〈ψ|), where trA is defined so that
trA (R⊗ S) = tr (R) · S.

Okay, so now let’s prove that ρA = trB (|ψ〉 〈ψ|) is the state of Alice’s qudit. This means
that if she performs a measurement on her qudit, then her measurement outcome is consistent
with her qudit being in the mixed state ρA. If Alice measures her qudit in the standard basis
|1〉 , . . . , |d〉, then she sees “i” with with probability

∑
j |αi,j|

2. This is identical to performing
the projective measurement |1〉 〈1| ⊗ I, . . . , |d〉 〈d| ⊗ I (where I is the d× d identity matrix)
on the whole state |ψ〉:

Pr [Alice observe |i〉] = |(|i〉 〈i| ⊗ I) |ψ〉|2 =

∣∣∣∣∣∑
i′,j

αi′,j(|i〉 〈i|i′〉)⊗ |j〉

∣∣∣∣∣
2

=
∑
j

|αi,j|2 .

Then we claimed that (without proof) if Alice measures her qudit in the basis |v1〉 , · · · , |vd〉,
then this is identical to performing the projective measurement |v1〉 〈v1|⊗I, · · · , |vd〉 〈vd|⊗I.
Let’s now prove this fact. If Alice measures in the basis |v1〉 , · · · , |vd〉, this means first apply-
ing the unitary U =

∑
i |i〉 〈vi| to her qudit and then measuring in the standard basis. This

is equivalent to applying the unitary U ⊗ I to the total state |ψ〉 and then performing the
projective measurement |1〉 〈1|⊗I, · · · , |d〉 〈d|⊗I. So the probability Alice observes outcome
|vi〉 is the probability she observes outcome |i〉 when measuring the state (U ⊗ I) |ψ〉. And
this probability is equal to

〈ψ| (U † ⊗ I)(|i〉 〈i| ⊗ I)(U ⊗ I) |ψ〉 = 〈ψ| (U † |i〉)(〈i|U)⊗ I |ψ〉 = 〈ψ| (|vi〉 〈vi| ⊗ I) |ψ〉 ,

which is identical to the measurement distribution of the projective measurement |v1〉 〈v1| ⊗
I, · · · , |vd〉 〈vd| ⊗ I, as claimed.

With this fact in hand, we can now prove the main result, which is that Alice’s state is
given by the mixed state ρA. In particular, if she measures in a basis |v1〉 , · · · , |vd〉, then she
should see outcome |vi〉 with probability 〈vi| ρ |vi〉. Let’s verify this. By the above fact, the
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probability that she gets outcome i when measuring is equal to

〈ψ| (|vi〉 〈vi| ⊗ I) |ψ〉 =

(∑
i1,j1

α†
i1,j1
〈i1| ⊗ 〈j1|

)
(|vi〉 〈vi| ⊗ I)

(∑
i2,j2

αi2,j2 |i2〉 ⊗ |j2〉

)
=

∑
i1,j1,i2,j2

α†
i1,j1

αi2,j2 〈i1| ⊗ 〈j1| (|vi〉 〈vi| ⊗ I) |i2〉 ⊗ |j2〉

=
∑

i1,j1,i2,j2

α†
i1,j1

αi2,j2〈i1|vi〉〈vi|i2〉〈j1|j2〉

=
∑
i1,i2,j

α†
i1,j
αi2,j〈vi|i2〉〈i1|vi〉

= 〈vi|

(∑
i1,i2,j

α†
i1,j
αi2,j |i2〉 〈i1|

)
|vi〉

= 〈vi| ρA |vi〉 ,

exactly as promised. So ρA represents Alice’s mixed state, and we’re done.
One nice thing about the partial trace definition is it allows us to prove the following

fact: suppose that Bob applies the unitary U to his qudit. Then Alice’s state should remain
unchanged. In particular, her mixed state should be the same before and after Bob applies
his unitary. To see this, her mixed state after Bob applies his unitary is given by

trB
(
(I ⊗ U) |ψ〉 〈ψ| (I ⊗ U †)

)
= trB

( ∑
i1,j1,i2,j2

αi1,j1α
†
i2,j2

(|i1〉 〈i2|)⊗
(
U |j1〉 〈j2|U †))

=
∑

i1,j1,i2,j2

αi1,j1α
†
i2,j2
|i1〉 〈i2| ⊗ tr

(
U |j1〉 〈j2|U †)

=
∑

i1,j1,i2,j2

αi1,j1α
†
i2,j2
|i1〉 〈i2| ⊗ tr (|j1〉 〈j2|)

= trB (|ψ〉 〈ψ|)
= ρA.

Here we used the fact that tr (ABC) = tr (BCA). So Bob can apply any unitary rotation
to his qudit that he wants, but from Alice’s perspective her qudit’s state never changes. We
saw this previously in lecture 3 in the special case of the quantum teleportation circuit.
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