Quantum Computation (CMU 18-859BB, Fall 2015)

Lecture 11: Quantum Query Lower Bounds Using Polynomials
October 14, 2015

Lecturer: Ryan O’Donnell Scribe: Connell Donaghy

1 Some Quantum Algorithms

Let’s review some some algorithms we’ve learned so far, and revisit their query complexity.

Recall Grover’s algorithm for unstructured search: Given access to a database of size N
and some function f : [N] — {0,1} along with a promise that f(z) = 1 for a unique z*,
find x*. Using a quantum computer, we find O(\/N) queries sufficient to find z*. Now, we
compare this result with query bounds on a classical computer. Classically, it is clear to see
that we need O(N), or more specifically N — 1 queries to find this z*. It’s provable that
even randomly with some error probability €, we still need ©(n) queries to find x*. So, now
that we’ve seen some cool quantum algorithms, is there a way to show that O(\/N) queries
is the best we can do? It'd be nice if we could show that we need Q(v/N) for the number of
queries to find this z* using a quantum computer.

Remark 1.1. Grover’s search and SAT

We’ve discussed that we can use Grover search and a reduction to solve Circuit-SAT
in O(v/2") or O(1.41") time (or gates.) Proving a lower bound for Grover’s search doesn’t
necessarily prove a lower bound for Circuit-SAT, as there could be some clever algorithm
which takes advantages of gates, and doesn’t simply attempt all input possibilities to the
circuit.

Next, recall Simon’s problem. For this problem, we are given query access to some
function f : [N] — [M], where N can be represented as a binary string {0,1}", and M can
be considered as M different “colors.” We are given the promies that f(z + s) = f(x) for
some s € {0,1}", and ignore the trivial case of s = 0. In this problem, we have seen that we
can find s using O(log N) queries quantumly, and ©(v/N) queries randomly via a birthday
attack. [Bac06]

Finally, we consider the element distinctness (ED) problem. In this problem, we are given
oracle access to some function f : {0,1}" — [M], where once again we think of the output as
colors. In this problem, we want to output “yes” if all the outputs of f are distinct, and say
no if there is some duplicate color, such that f(x) = f(y) = ¢ for some x # y. Classically,
we can sort the input and scan for duplicates in O(N log V) times. Randomly, it is possible
to solve element distinctness in ©(N) time. Quantumly, we can solve element distinctness
in ©(N3) queries. [BDHT01]

Well, what’s the difference between these different quantum speedups? Why does Simon’s
problem get an exponential speedup, whereas element distinctness and search only seem to

gain polynomial speedups? To answer these questions, let’s first develop some notation, then
revisit this remark.

2 Some New Terminology

Let’s discuss some terminology which will be useful as we proceed through the polynomial
method.
First, we classify problems as either Search Problems or Decision Problems.

e Search Problems: A problem such that the output is a string, (i.e. z* for Grover’s
algorithm as discussed in section one.)

e Decision Problems: A problem such that the output is binary (yes/no), such as the
output to the element distinctness problem.

For many problems, it is easy to construct a decision problem from a search problem.
Consider Grover’s algorithm. The search version for Grover’s algorithm is: promised some
f(z) =1 for at moste one z find and return x. Now, consider this as a decision problem.
In this version, we could simply return “yes” if x exists with f(x) = 1, or return “no” if no
such = exists. We can solve this decision version by searching for some x, and then testing
its value in O(v/N) queries.

Next, let’s recall some basic complexity theory. We say a randomized algorithm ”solves”
a decision problem if it outputs the correct answer more than % of the time (although it will
work for any probability greater than % by repeating the algorithm a constant number of
times.)

Lastly, let’s define a promise problem. A promise problem is an algorithm over some
subclass of all functions. This means, that we are given some promise that restricts f and
disallows some possible functions. Often, given a promise problem, the algorithm will take
advantage of the promise to speed up its runtime. If a problem is not a promise problem,
then it is a total problem. That is to say, the algorithm works for all inputs on any f.
Thus, for a decision problem, we need f : [N] — {0, 1}, and all possible functions f must be
valid inputs to the algorithm. Now, earlier we discussed a promise version of Grover, where
we were promised that there was some x* such that f(z*) = 1. Let’s compare this to total
decision Grover search, where we must now output yes if such an z* exists, and output no
if f(z) =0 on all inputs. In Homework 3, we solved that even this total decision version of
Crover search is solvable in O(v/N) queries.

Returning to search versus decision problems, let’s revisit Simon’s problem. We can
see that for Simon’s problem, we have a search problem, as we try to find s such that
f(z+s) = f(z) for all . Also, we are given a promise that such an s exists, and that it is
not 0. So what would the decision problem be? We simply output “yes” if s =0, and “no”
otherwise. If s = 0, then we know that we have all distinct colors, so the decision version
of Simon’s problem is actually the Element Distinctness Problem! However, we no longer
have a promise in this decision version, as we must produce a valid answer over any input
function f.

At the end of section one, we questioned why Simon’s search had such a great speedup
from a quantum computer, compared to a relatively unexciting polynomial speedup for
element distinctness. With our new terminology, we can give an answer, thanks to the
following theorem

Theorem 2.1. For a total decision problem, a quantum algorithm can NOT beat a classical
algorithm by more than a polynomial runtime. Let D(n) be the classical query complezity,
and Q(n) be the quantum query complexity. We have

D(n) < Q(n)"

Thus, our speedups due to a quantum computer are actually fairly limited on total decision
problems! [BBCT01]

Using this theorem, we see that because Grover’s algorithm and Element Distinctness are
both total decision problems, then it is impossible to get the type of exponential speedup
we get in Simon’s problem. Simon’s problem is a promise problem, so we are able to
achieve some nice speedups.

Remark 2.2. Similar to the maximum polynomial speedup for total decision problems, it
has also been proven that D(n) < R(n)? and that R(n) < Q(n)*°, where R(n) is the runtime
of a randomized algorithm. [BBC*01]

3 How to Prove Lower Bounds

This lecture along with next lecture, we’re going to go over the polynomial method for
proving lower bounds. Another method which will be addressed later in the course is the
adversary method, which is actually more powerful but a little more difficult to under-
stand.

To understand and use the polynomial method, we're going to switch up some notation.
Before, we had data as a function

[Nl = [M]

From now on, we’ll consider data as a ”string” such as
w e [MN

or

[wi [wa] [wns [wy]

Essentially, our data is now some mystery array full of mystery strings that we can index into
via w;, where 7 € 0,1,---, N. Our oracle, previously Oy, will now be denoted as O,,. The
classical version of this oracle takes in an ¢, and outputs w;. Quantumly, this means if we
apply the new oracle to some |i) and preserve reversible computing, we get |i) — (—1)" |i),
or i) |y) — |i) |y ® w;). Now, our function F', will actually be considered a property of all

of the strings w, instead of a mapping from [N] to [M] as we had previously done. Let’s
consider Grover’s total decision algorithm in this new notation. Each wj is either 0 or 1. We
want to know if there is a w; = 1 for some 7. Essentially, we are taking the logical or of all of
the w € F, or OR(wy, ws, -+ ,w,). Now, before we go on to prove a lower bound for Grover
Search (by proving a lower bound for the logical OR of N bits) we show the following:

Theorem 3.1. Let A be a quantum query algorithm making t queries to O, with w € [M]Y

‘ . Then, the amplitude of
0 otherwise

Lets denote the following notation for w;, =
any basis state is a polynomial in w; . of degree less than or equal to t.

Proof. First, let’s take a look at what this algorithm A actually looks like as a quantum
circuit.

input — i

MO Ow Z/{l Ow"'_ut Ow M
output .

ancillas { — —

In this circuit, we have n input bits, m bits where the output will be stored, and a ancilla
bits. U; denotes the ith unitary transform on the state, and each O,, is an application of our
oracle, finally followed by a measurement M. Now, we assume that our input is initially all
0’s, and we continue the proof by induction on t. For our base case, we will consider the
state of all the qubits after some unitary gate U, has been applied. Our basis state originally
is

0") @[0™) @ [0%)

Now, after we apply the first unitary transformation to this basis state, we get a state which

looks like .
XD apli bz

j=0 be{0,1}™ z€{0,1}*

Now, we can see that since oy, is always a constant coefficient, that this is a 0 degree poly-
nomial. Thus, our base case is done.

Induction Hypothesis:
After k steps, we have some state [¢), which looks like

S 5% Pa@ e

j=0 be{0,1}m z€{0,1}e

Where each Pj .(ws) is a polynomial of degree at most k.
Inductive Step Now, we want to apply O,, to this state. This application yields:

0u) =3 S S Pu@) i) bew)|e)

Jj=0 be{0,1}™ 2€{0,1}°

Which we can rewrite with 0’ = b ® w; as

Z_: Yo D | D Wik Peas(@) | 15) 1) |2)

=0 b e{0,1} ze{0,1}s \ ac{0,1}™

Now, we can see that this application results in a polynomial of degree at most k£ + 1, as
(D ac(o.1ym Wialjyea(w)) will increment the degree by at most one, as each P is of degree
at most k. Thus, by induction, the degree increases by at most once per query made, so for
a t query algorithm, the amplitude of any bases state is a polynomial in w;, ¢ of degree at
most t. O

Corollary 3.2. Acceptance (YES) of A is a real-coefficient polynomial P in w;. of degree
less than or equal to 2t

Proof. The probability of measuring some [j) |b) |2) is Pjp. P}, .. Because P, . and P}, , are
both polynomials of degree at most ¢ from theorem 3.1. Their product must also be real,

because we are taking the magnitude of each Pjj ., which is always real. O]

Y

Consider a decision problem. In this , M = 2 as the two colors we have are ”yes”
and "no.” For w € {0,1}" then P is just an approximating polynomial of deg < 2t in
Wy, Wa, -+ , Wi, -+ ,W,. In this case, we have w;; = w; and w;p = 1 —w;. Thus, P is a
multilinear polynomial of degree wt. We know that each variable is never to a degree of
more than 1, because w;,- = w;,. Thus, we describe P as

P(wy, - ,wy,) = Z cusi
SC{l,.,N} i€S

Corollary 3.3. If A solves some decision problem F : [M] — {0,1} with t queries, then
there is a degree 2t polynomial P in terms of all w; . such that Prlacceptance| = P(w). For
an error bounded algorithm, this polynomial has the property that

1
|P(w) — F(w)| < 3

Now, as we proceed, we can show a minimum number of queries for A, by showing a
minimum degree of P that satisfies all of its requirements! Let’s consider Grover’s algorithm
as an example.

4 Example: Grover’s Total search

Now, we proceed to conclude with an example of Grover decision

We have from earlier that F' = OR on N bits, and we want to show that this requires
Q(\/N) queries to compute this property F. Essentially, we want to show that any approx-
imating polynomial P for OR has deg(P) > Q(v/N).

We begin by defining some function @), of the form Q(wy, ws, - -+ , w,) to be a symmetrized
polynomial of our approximating multivariate polynomial P, and let deg P = 2¢. That is to
say,

1
Q= NI Z P(ww(1)>wﬂ2>"' ’w“(”))

71'€Sw

Since () is a sum of polynomials of degree 2¢, then deg) < deg P = d. Since P approximates
F, then we have P(0,0,---,0) € [0, 3] and P(w;,ws, -+ ,w,) € [3,1] if some w; = 1. Now,
we want to show that () also satisfies this approximation.

Theorem 4.1. If P approzimates F, then @ also does as well.

Proof. This proof falls into two cases. We can say that the input of P is either all zeroes, or
at least one non-zero term.

Case 1 If the input is all zeroes, then we have P(0,0,---,0) € |0, %] by our definition of
P. Thus, we can compute a range for () by plugging in, resulting in Q(0,0---0) =
1 (N1P(0,0,---,0)) = P(0,0,--- ,0), so clearly Q(0,0,---,0) € [0, 3]

Case 2 In this case, because our input to P is not all Os, then each permutation of the inputs
cannot be all 0s. Thus, each permutation of these inputs on P can output a different
output in [%, 1]. However, we know that the sum over all permutations must be in
[N'2, N1] by adding all of the outputs, and dividing this by N! gives us @, which is
still in [2, 1]

Thus, because Q(0,0,---,0) € [0, 3] and for all other Q(w) with some w; = 1, Q(w) € [3,1],

() also approximates F'. O

We’ve shown that @), like our polynomial P, satisfies F'. However, it is interesting to note
that @ is a multivariate polynomial, which does not change on any permutations of come
input. Now, let’s observe some interesting properties of ().

Observation 4.2. Q) is symmetric in w = (wy, ws, - -+ ,wy). That is to say, it doesn’t change
if you permute its arguments. Since w; € {0,1}, then Q(w) depends only on the numbers
of 1s in its input, or its hamming weight (denoted as |w|.) This implies, as you’ll show in
the homework, that) depends on z, with z = Zfil w;. As a consequence of this, we can
argue that Q = q(2) for some univariate polynomial q of z, with deg(q) < deg(Q). However,
we recall that q is defined only on integer values of z. q(z) = 0 if z = 0, and q(z) = 1
Vz > 1€ Z. Other values of q are undefined, and can take any arbitrary value.

Claim 4.3.
deg q(z) > Q(VN)

Proof. To prove this, we're going to need Markovs other Inequality, which states

Lemma 4.4 (Markov’s other Inequality). For some polynomial P : R — R of degree d
such that P is bounded in some box of height h and length | and univariate of some variable
z, then

h
|P'(z)] < d27

inside the box of height h and length I [Mar90]

For an example, consider a box bounded by [—1, +1] x [=1, 4+1]. By this other inequality,
we have that if [p(z)| < 1 for all |z| < 1, then by this inequality we know [p/(z)] < deg(p)?
for all |z] <1, because h =1 = 1.

As we proceed, we’ll make a convenient assumption at our conclusion, and then discuss
how the assumption was not actually necessary, so our claim holds for all ¢(z). Let’s assume
that ¢(z) € [0,1] for all z € [0, N], even though we only know the restrictions on ¢(z) for
integer inputs z. By assuming this, we can get a height of 1 on our box which has length
N. Using Markov’s inequality, we can get that |¢(z)| < degTW = % Because ¢ goes from
a value at most % at z = 0 to a value of at least % at z = 1, we must have by the Mean
Value Theorem that |¢/(z)| = 5 for some z € [0, 1] Plugging this |¢(z)| into Markov’s other
inequality, we get % < %, which solves to show t > Q(v/N).

Now, we want to show why we can discard our assumption that ¢(z) € [0,1] for all
z € [0, N]. Disregarding this assumption, we realize that we know longer have a guarantee
of h- = 1 inside of our box. Now, we'll let the height of our box be h = max.cjo,n[q(2)]-
If h = 2, the above analysis is still valid, with some constant factor going into the Q(v/N).
Now, let’s consider the case where h > 2, and our assumption was entirely invalid. In this
case, we know we have |q(z)| = h at some z = u. Because ¢(z) is bounded on integers,
q(|u]) < 1. By the definition of a floor function, we have u — |u]| < 1. Again, we can use the
Mean Value Theorem to see that |¢'(z)| > hzlj > h—12> 2% for some z with |u] <z <.

Now, we have a second relationship between |¢'(2)| and the helght of our box. We have

2(2h) _

|4 (2)] < deg(q)® "~ < 8t N

And also
d'(2)| >

2o | > 2

Thus, combining these two facts, we get % < 824 +- Regardless of the behaviour of ¢(z)
in between integer inputs for z, by this analysis and Theroem 4.1 we have shown that the
number of queries ¢ required for taking the OR of N bits is Q(v/N) . Consequently, Grover’s
search algorithm has optimal query complexity for a quantum computer. O

References

[Bac06]
[BBC*01]

[BDH*01]

[Chil3]

[Mar90]

Dave Bacon. Simon’s algorithm. CSE 599d Course Notes, 2006.

Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald
de Wolf. Quantum lower bounds by polynomials. J. ACM, 48(4):778-797, July
2001.

H. Buhrman, C. Diirr, M. Heiligman, P. Hgyer, F. Magniez, M. Santha, and R.
de Wolf. Quantum algorithms for element distinctness. Proceedings of 15th IEEE
Conference on Computational Complezity, pages 131-137, 2001.

Andrew Childs. Query complexity and the polynomial method. Quantum algo-
rithms (CO 781/CS 867/QIC 823, Winter 2013), 2013.

A.A. Markov. On a question by d. i. mendeleev. Zap. Imp. Akad. Nauk SPb.,
62:1-24, 1890.

