
Linear programming, width-1 CSPs, and robust satisfaction

Gabor Kun∗ Ryan O’Donnell† Suguru Tamaki‡ Yuichi Yoshida§ Yuan Zhou¶

June 16, 2012

Abstract

We say that an algorithm robustly decides a constraint satisfaction problem Π if it distin-
guishes at-least-(1 − ε)-satisfiable instances from less-than-(1 − r(ε))-satisfiable instances for
some function r(ε) with r(ε) → 0 as ε → 0. In this paper we show that the canonical linear
programming relaxation robustly decides Π if and only if Π has “width 1” (in the sense of Feder
and Vardi).

∗Institute for Advanced Study & DIMACS.
†Department of Computer Science, Carnegie Mellon University. Supported by NSF grant CCF-0747250 and a

Sloan fellowship. Research performed while the author was a von Neumann Fellow at the Institute for Advanced
Study.
‡School of Informatics, Kyoto University.
§School of Informatics, Kyoto University, and Preferred Infrastructure, Inc. Supported by MSRA Fellowship 2010.
¶Department of Computer Science, Carnegie Mellon University.

0

1 Introduction

Constraint satisfaction problems (CSPs) constitute a broad and important subclass of algorithmic
tasks. One approach to studying the complexity of CSPs centers around the Feder–Vardi Dichotomy
Conjecture [9] and the use of algebra [13] to classify all CSP decision problems. Another approach
to the study of CSPs involves quantifying the extent to which natural CSPs can be approximately
solved [14]; this approach has been characterized by more “analytic” methods. Recently there has
been interest in melding the two approaches (see, e.g., [18, 15, 11]); the present work takes another
step in this direction.

Almost-satisfiable instances. The algebraic approach to CSPs is mainly concerned with what
we’ll call the decision problem for CSPs: given an instance, is it completely satisfiable? The Di-
chotomy Conjecture states that for every CSP this task is either in P or is NP-hard; the Algebraic
Dichotomy Conjecture of Bulatov, Jeavons, and Krokhin [4] refines this by conjecturing a precise
algebraic characterization of the tractable CSP decision problems. However when it comes to ap-
proximability, not all tractable CSPs are “equally tractable”. E.g., for Max-Cut, not only can
one efficiently find a completely satisfying assignment when one exists, the Goemans–Williamson
algorithm [10] efficiently finds an almost-satisfying assignment whenever an almost-satisfying as-
signment exists. (Specifically, it finds a (1 − O(

√
ε))-satisfying assignment whenever a (1 − ε)-

satisfying assignment exists.) Contrast this with the kLin(mod 2) problem, k ≥ 3: again, one can
efficiently find a completely satisfying assignment whenever one exists; however H̊astad [12] has
shown that finding even a somewhat-satisfying assignment whenever an almost-satisfying assign-
ment exists is NP-hard. (Specifically, ∀ε > 0 it is hard to find a (1/2 + ε)-satisfying assignment
when a (1− ε)-satisfying assignment exists.)

Prior work on robust decidability. In 1997, Zwick [22] initiated the study of the following
very natural problem: which CSPs are efficiently robustly decidable? By this we mean that the
algorithm should find (1 − oε(1))-satisfying assignments whenever (1 − ε)-satisfying assignments
exist (formal definitions are given in Section 2). Zwick gave a linear programming (LP)-based
algorithm for finding (1 − O(1/ log(1/ε)))-satisfying assignments for Horn-kSat (for any fixed k);
he also gave a semidefinite programming (SDP)-based algorithm for finding (1−O(ε1/3))-satisfying
assignments for 2Sat (since improved to 1 − O(ε1/2) [7]). Later, Khot [17] gave an SDP-based
algorithm for finding (1− Õ(ε1/5))-satisfying assignments for the notorious Unique-Games problem
over domains D with |D| = O(1) (since improved to 1−O(ε1/2) [6]).1 On the other hand, the only
tractable CSPs for which the robust decision problem seems to be NP-hard are the ones that can
encode linear equations over groups.

Bounded width. If we wish to classify the CSPs which are efficiently robustly decidable, we seek
a property that is shared by Horn-kSat, 2Sat, and Unique-Games but not by 3Lin(mod p). From the
algebraic viewpoint on CSPs there is a very obvious candidate: the former CSPs have bounded width
while the latter does not. Briefly, a CSP is said to have bounded width if unsatisfiable instances
can always be “refuted” in a proof system that only allows for constant-sized partial assignments
to be kept “in memory” (again, more formal definitions are in Section 2). Recent independent
works of Barto–Kozik [1] and Bulatov [3] have connected this notion to algebra by showing that
bounded-width CSPs coincide with those which cannot encode linear equations over groups. Thus

1We emphasize that in this paper, we always treat the domain size |D| as a fixed constant, with ε → 0 indepen-
dently.

1

by H̊astad’s work we know that any CSP which is efficiently robustly decidable must have bounded
width (assuming P 6= NP). A very appealing recent conjecture of Guruswami and Zhou [11] is that
the converse also holds: every bounded-width CSP has an efficient robust decision algorithm.

Linear and semidefinite programming. Essentially the only known way to produce CSP
approximation algorithms is through the use of LPs and SDPs. Indeed, recent work of Raghaven-
dra [20] shows that if one believes Khot’s Unique Games Conjecture [17], then a CSP Π is efficiently
robustly decidable if and only if the basic SDP relaxation robustly decides it. However understand-
ing and solving SDPs can be difficult, and as Zwick’s Horn-kSat algorithm illustrates, sometimes
only the power of linear programming is needed for robust decision algorithms. There is also a
close connection between robust decidability by linear programming and the problem of property
testing for CSPs for satisfiability; this is described in Appendix B.

1.1 Our contribution

As a step towards the Guruswami–Zhou conjecture, we completely resolve the question of which
CSPs are robustly decidable by the basic linear programming relaxation. Somewhat informally
stated, our main theorem is the following:

Theorem 1.1. Let Π be any (finitely presented) CSP. Then the basic LP relaxation robustly decides
Π if and only if Π has width 1.

(Formal definitions of the terms in this theorem are given in Section 2, and we further discuss the
notion of “width 1” below.)

“If” part of Theorem 1.1: the basic LP robustly decides width-1 CSPs. This is formally
stated as Theorem 3.1 and is proved in Section 3. Our proof gives an efficient deterministic “LP-
rounding” algorithm for actually finding the required almost-satisfying assignments. Quantitatively,
it finds (1 − O(1/ log(1/ε)))-satisfying assignments for (1 − ε)-satisfiable instances, matching the
performance of Zwick’s Horn-kSat algorithm. As we describe below, this is best possible. Our
rounding algorithm is also simpler than Zwick’s. (An alternate proof of Theorem 1.1 is given in
Appendix D.)

Independently and concurrently, Dalmau and Krokhin have also shown that width 1 CSPs have
efficient robust decision algorithms. Their proof is different from ours; it is by a black-box reduction
to Zwick’s Horn-Sat algorithm.

“Only if” part of Theorem 1.1: the basic LP robustly decides only width-1 CSPs. In
fact we prove a stronger result, Theorem 4.1 in Section 4: the basic LP exactly decides satisfiability
only for width-1 CSPs.

Width 1: characterizations. The class of “width-1” CSPs, introduced by Feder and Vardi [9],
is a well-known and long-studied subclass of bounded-width CSPs. The canonical example is Horn-
Sat; additional examples are mentioned in Appendix A. We define “width-1” CSPs precisely in
Section 2, but briefly, they can be characterized as the CSPs for which satisfiability is correctly
decided by the (generalized) arc-consistency algorithm [19, 8]. Informally, this is also equivalent
to saying that unsatisfiable instances can be refuted while keeping just single variable assignments
“in memory”. Dalmau and Pearson [8] have also straightforwardly characterized width-1 CSPs as
those possessing a “set operation”; this will also be defined in Section 2.

2

Our Theorem 1.1 gives new characterizations of width 1; indeed, by the end of this work we
will have established the following:

Theorem 1.2. For a CSP Π, the following are equivalent:

1. Π has width 1;

2. Π has tree duality;

3. Π has a set operation;

4. Π has a “measure operation”;

5. Π has symmetric polymorphisms of every arity;

6. the basic LP relaxation decides satisfiability for Π;

7. the basic LP relaxation robustly decides satisfiability for Π;

8. satisfiability for Π is “property-testable in the bounded-degree model”.

The key to the “if” part of Theorem 1.1 is the implication (3)⇒(7). The key to the “only
if” part of Theorem 1.1 is (4)⇒(2).2 All other implications were already known or are relatively
straightforward.

The quantitative dependence on ε. As mentioned, our LP-based algorithm for width-1 CSPs
finds (1 − O(1/ log(1/ε)))-satisfying assignments to (1 − ε)-satisfiable instances. One might hope
for a better (say, polynomial) dependence on ε here. Unfortunately, this is not possible. Zwick [22]
already showed that for Horn-3Sat there are “gap instances” where the basic LP has value 1−ε but
the optimum value is only 1 − Ω(1/ log(1/ε)). Indeed Guruswami and Zhou [11] extended this by
showing there are equally bad gap instances for the basic SDP relaxation of Horn-3Sat. Assuming
the Unique Games Conjecture, Raghavendra’s work [20] in turn implies that no polynomial-time
algorithm can find (1 − o(1/ log(1/ε)))-satisfying assignments to (1 − ε)-satisfiable instances. On
a positive note, in Appendix A we show that for the special case of width-1 CSPs called “lattice
CSPs”, the basic LP relaxation can be used to find (1 − O(ε))-satisfying assignments to (1 − ε)-
satisfiable instances.

2 Preliminaries

2.1 CSP preliminaries

Definitions. Let D be a nonempty finite domain of values, and let Γ be a nonempty finite set of
relations over D, each of positive finite arity. We write such a k-ary relation as R : Dk → {0, 1}.
An instance I of the constraint satisfaction problem CSP(Γ) consists of a set V of n variables,
along with a list of m constraints. Each constraint C is a pair (S,R), where S is a tuple of some
k variables (the scope of the constraint), and R is a k-ary relation in the set Γ. We say that I ′
is a sub-instance of I if contains just a subset of the variables and constraints in I; it is induced
by the variable set V ′ ⊆ V if it includes all constraints in I involving just the variables in V ′. An
assignment for an instance of CSP(Γ) is any mapping α : V → D. The assignment satisfies a
constraint C = (S,R) if R(α(S)) = 1 (where α operates on Si component-wise). The value of the
assignment, ValI(α) ∈ [0, 1], is the fraction of constraints it satisfies. We define the optimum value
of the instance I to be Opt(I) = maxα{ValI(α)}. We say the instance is satisfiable if Opt(I) = 1.

2The essentially similar result (5)⇒(2) was announced by the first author in [18]; the proof appears here for the
first time.

3

CSP width. An important parameter of a CSP(Γ) problem is its width. This notion, dating
back to Feder and Vardi [9], can be given many equivalent definitions (in terms of, e.g., pebble
games, Datalog, logic, tree-width, proof complexity. . .). Roughly speaking, CSP(Γ) has width k if
unsatisfiable instances of CSP(Γ) can always be refuted while only keeping k partial assignments
“in memory”. More formally, given an instance I of CSP(Γ), consider the following (k, `) pebble
game with 1 ≤ k < ` integers: Alice begins by placing each of ` pebbles on variables in V . Bob
must respond with a partial assignment to the pebbled variables which satisfies all constraints in
which they participate. On each subsequent turn, Alice may move `− k of the pebbles to different
vertices. Bob must respond with a partial assignment to the newly pebbled variables which again
satisfies all constraints in which the pebbled variables participate, and which is consistent with the
assignment to the k unmoved pebbles from the previous turn. If ever Bob cannot respond, Alice
wins the game; if Bob can always play forever, he wins the game. If I is a satisfiable instance then
Bob can always win regardless of k and `; on the other hand, if I is unsatisfiable, then Alice may
or may not be able to win. We say that CSP(Γ) has width (k, `) if Alice can win the (k, `) pebble
game on all unsatisfiable instances; and, we say that CSP(Γ) has width k if it has width (k, `) for
some finite `. In particular, we say that CSP(Γ) has bounded width if it has width k for some
finite k. Bounded width CSPs can be solved in polynomial time using a simple enumeration over
Bob’s possible strategies. As examples, Horn-kSat has width 1, 2-Colorability has width 2 (but not
width 1), and 3Lin(mod 2) does not have bounded width.

Tree duality and width 1. It is well known [9] that the CSPs of width 1 can be precisely
characterized as those which have tree duality. We say that CSP(Γ) has tree duality if for every
unsatisfiable instance I there is a unsatisfiable “tree” instance T which “witnesses” this. By
“witness” we mean that there is a homomorphism from T to I; i.e., a map from T ’s variables into I’s
variables which preserves all relations. The definition of a “tree” instance is the natural one in case
all relations in Γ have arity 2; in general, we must make more careful definitions. We define a walk
in instance I of CSP(Γ) to be a sequence x1, C1 = (S1, R1), t1, u1, x2, C2 = (S2, R2), t2, u2, . . . , x`+1

where each xi is a variable in I, each Ci is a constraint in I, the indices ti and ui are distinct,
and (Si)ti = xi, (Si)ui = xi+1 for all i ∈ [`]. We say the walk proceeds from starting point x1 to
endpoint x`. We say the walk is non-backtracking if for every i ∈ [`] either Ci differs from Ci+1

or ui 6= ti+1. We say that I is connected if there is a walk from x to y for all pairs of distinct
variables x and y in I. Finally, we say that I is a tree if it is connected and it does not contain
any non-backtracking walk with the same starting point and endpoint.

2.2 Algorithmic preliminaries

Approximation algorithms. For real numbers 0 ≤ s ≤ c ≤ 1, we say an algorithm (c, s)-
approximates CSP(Γ) if it outputs an assignment with value at least s on any input instance with
value at least c. For c = s = 1 we simply say that the algorithm decides CSP(Γ); this means
the algorithm always finds a satisfying assignment given a satisfiable instance. We say that an
algorithm robustly decides CSP(Γ) if there is an error function r : [0, 1] → [0, 1] with r(ε) → 0 as
ε→ 0 such that the algorithm (1− ε, 1− r(ε))-approximates CSP(Γ) for all ε ∈ [0, 1]. In particular,
the algorithm must decide CSP(Γ).

The basic integer program. For any instance I of CSP(Γ) there is an equivalent canonical
0-1 integer program we denote by IP(I). It has variables pv(j) for each v ∈ V , j ∈ D, as well as
variables qCi(J) for each arity-k constraint Ci = (Si, Ri) and tuple J ∈ Dki . The interpretation of

4

pv(j) = 1 is that variable v is assigned value j; the interpretation of qCi(J) = 1 is that the ki-tuple
of variables Si is assigned the ki-tuple of values J . More formally, IP(I) is the following:

maximize
1

m

m∑
i=1

∑
J :Ri(J)=1

qCi(J)

subject to:
∑
j∈D

pv(j) = 1 for all v ∈ V , (1)

∑
J∈Dki :Jt=j

qCi(J) = pv(j) for all Ci and t such that (Si)t = v. (2)

The optimum value of IP(I) is precisely Opt(I). Note that the size of this integer programming
formulation is poly(n,m) (as we are assuming that D and Γ are of constant size).

The basic linear program. If we relax IP(I) by having the variables take values in the range
[0, 1] rather than {0, 1}, we obtain the basic linear programming relaxation which we denote by
LP(I). An optimal solution of LP(I) can be computed in poly(n,m) time; the optimal value,
which we denote by LPOpt(I), always satisfies Opt(I) ≤ LPOpt(I) ≤ 1. We interpret any feasible
solution to LP(I) as follows: For each v ∈ V , the quantities pv(j) form a discrete probability
distribution on D (because of (1)), denoted pv. For each ki-ary constraint Ci = (Si, Ri), the
quantities qCi(J) form a probability distribution on Dki , denoted qCi . Furthermore (because of (2)),
the marginals of the qCi distributions are “consistent” with the pv distributions, in the sense that
whenever (Si)t = v it holds that PrJ∼qCi

[Jt = j] = pv(j) for all j ∈ D. Finally, the objective value
to be optimized in LP(I) is

LPValI({pv}, {qCi}) =
1

m

m∑
i=1

Pr
J∼qCi

[Ri(J) = 1];

the optimum value of this over all feasible solutions is LPOpt(I).

2.3 Algebraic preliminaries

Polymorphisms. The Dichotomy Conjecture of Feder and Vardi [9] asserts that for each Γ, the
problem of deciding CSP(Γ) is either in P or is NP-complete. The most successful approach towards
this conjecture has been the algebraic one initiated by Jeavons and coauthors [13] in which the
problem is studied through the polymorphisms of Γ. We say f : D` → D is an `-ary polymorphism
for the k-ary relation R if R(f(x1), . . . , f(xk)) = 1 whenever R(x1

i , . . . , x
k
i) = 1 for all i ∈ [`] (here

each xj is a tuple in D`). We say that f is a polymorphism for Γ if it is a polymorphism for
each relation in Γ. We say that Γ is a core, if all of its 1-ary polymorphisms are bijections (at
a high level, this means that there are no superfluous values in D for CSP(Γ)). Finally, we call a
polymorphism f idempotent, if f(j, . . . , j) = j for all j ∈ D.

Polymorphisms and width. Recently, independent works of Barto–Kozik [1] and Bulatov [3]
managed to characterize bounded-width CSPs in terms of their polymorphisms. Specifically, they
showed that CSP(Γ) has bounded width (for Γ a core) if and only if Γ has an `-ary weak near-
unanimity (WNU) polymorphism for all ` ≥ 3. Here a polymorphism f is said to be WNU if

5

it is idempotent and has the following symmetry: f(x, x, . . . , x, y) = f(x, . . . , x, y, x) = · · · =
f(x, y, x, . . . , x) = f(y, x, x, . . . , x).

Much earlier, Dalmau and Pearson [8] gave a straightforward characterization the class of width-
1 CSPs in terms of their polymorphisms. Specifically, they showed that CSP(Γ) has width 1 if and
only if Γ is preserved by a set operation g : P(D) → D. This means that f : D` → D defined by
f(x1, . . . , x`) = g({x1, . . . , x`}) is a polymorphism for all ` ≥ 1. Note that all these polymorphisms
are symmetric, meaning invariant under all permutations of the inputs. We will use a simple lemma
about width-1 CSPs which first requires a definition.

Definition 2.1. Let J be a subset of a cartesian product B1 × · · · × Bk of nonempty sets. We
say J is subdirect, written J ⊆S B1 × · · · × Bk, if for each i ∈ [k] the projection of J to the i’th
coordinate is all of Bi.

Lemma 2.2. Say g is a set operation for CSP(Γ), R is an arity-k relation in Γ, and B1, . . . , Bk ⊆
D. Assume there is a J ⊆S B1×· · ·×Bk all of whose members satisfy R. Then R(g(B1), . . . , g(Bk)) =
1.

Proof. For each t ∈ [k] and j ∈ Bt, select some J t,j ∈ J whose t’th coordinate is j.. Think of
the ` =

∑
|Bt| ≥ 1 tuples J t,j as column vectors, and adjoin them in some order to form a k × `

matrix X. Let xt be the tth row of X. It is clear that the set of values appearing in xt is precisely
Bt. Thus if f is the `-ary polymorphism defined by g, we have f(xt) = g(Bt). But since f is a
polymorphism and each J t,j satisfies R, it follows that R(g(B1), . . . , g(Bk)) = 1.

3 Width 1 implies robust decidability by LP

The following theorem shows that a simple rounding algorithm for the basic linear program robustly
decides any width-1 CSP.

Theorem 3.1. Let Γ be a finite set of relations over the finite domain D, each relation having
arity at most K. Assume that CSP(Γ) has width 1. Then there is a poly(n,m)-time algorithm for
CSP(Γ) which when given an input I with LPVal(I) = 1 − ε outputs an assignment α : V → D
with ValI(α) ≥ 1−O(K2|D| log(2|D|))/ log(1/ε). (In particular, ValI(α) = 1 if LPVal(I) = 1.)

Proof. The first step of the algorithm is to solve the LP relaxation of the instance, determining
an optimal solution {pv : v ∈ V }, {qCi : i ∈ [m]} which obtains LPVal(I) = 1 − ε. For technical
reasons we will now assume without loss of generality that K ≥ 2 and that

2−poly(n,m) ≤ ε ≤ 1

4(2|D|)2(K−1)
. (3)

The assumption (3) is also without loss of generality. We may assume the upper bound by adjusting
the constant in the O(·) of our theorem. As for the lower bound, since linear programming is in
polynomial time, ε will be either 0 or at least 2−poly(n,m). In the former case, we replace ε with a
sufficiently small 2−O(m) so that the theorem’s claimed lower bound on ValI(α) exceeds 1 − 1/m;
then ValI(α) > 1− 1/m implies ValI(α) = 1 as required when LPVal(I) = 1.

For a particular constraint Ci, let εi =
∑

J :Ri(J)=0 qCi(J). Since LPVal(I) ≥ 1 − ε we have

avg{εi} ≤ ε. The next step is to “give up” on any constraint having εi >
√
ε. By Markov’s

inequality the fraction of such constraints is at most
√
ε, which is negligible compared to the

O(1/ log(1/ε)) error guarantee of our algorithm. For notational simplicity, we now assume that
εi ≤

√
ε for all i ∈ [m].

6

We now come to the main part of the algorithm. Since CSP(Γ) has width 1, it has a set
operation g : P(D) → D. We first describe a simple randomized “LP-rounding” algorithm based
on g:

1. Let r = (2|D|)K−1 and let b = blogr(1/2
√
ε)c. We have b ≥ 1 by (3).

2. Choose θ ∈ {r−1, r−2, . . . , r−b} uniformly at random. Note that r−b ≥ 2
√
ε.

3. Output the assignment α : V → D defined by α(v) = g(suppθ(pv)), where suppθ(pv) denotes
{j ∈ D : pv(j) ≥ θ}.

We will show for each constraint Ci = (Si, Ri) that

Pr[Ri(α(Si)) = 0] ≤ K|D|/b. (4)

It follows from linearity of expectation that the expected fraction of constraints not satisfied by α
is at most K|D|/b = O(K2|D| log(2|D|))/ log(1/ε). This would complete the proof, except for
the fact that we have given a randomized algorithm. However we can easily make the algorithm
deterministic and efficient by trying all choices for θ (of which there are at most b ≤ poly(n,m)
by (3)) and selecting the best resulting assignment.

We now give the analysis justifying (4) for each fixed constraint Ci = (Si, Ri). For simplicity
we henceforth write C = Ci, S = Si, R = Ri and suppose that R has arity k ≤ K. Let us say that
a choice of θ is bad if it falls into the interval (pSt(j)/r, pSt(j)] for some t ∈ [k] and j ∈ D. For each
choice of t and j there is at most one bad choice of θ for the associated interval; hence the overall
probability θ is bad is at most K|D|/b. Thus it suffices to show that whenever θ is not bad, C is
satisfied by α.

For each t ∈ [k] let Bt = suppθ(pSt); these sets are nonempty because θ ≤ r−1 ≤ |D|−1. Also,
let J = {J ∈ B1 × · · · ×Bk : R(j) = 1}. By Lemma 2.2, to show that C is satisfied by α, we only
need to show that J ⊆S B1 × · · · ×Bk — i.e., that for all t ∈ [k] and all j ∈ Bt there exists a tuple
J ∈ J such that Jt = j. We show this is true for t = k and the statement for other values of t
follows in the same way. For any j ∈ Bk, we have θ ≤ pSk

(j) by the definition of Bt. Since θ is
not bad, we know that θ 6∈ (pSk

(j)/r, pSk
(j)]. Therefore we have θ ≤ pSk

(j)/r. Now since all but
at most εi ≤

√
ε of the probability mass in qC is on assignments satisfying R, we conclude∑

J ′∈Dk−1:R(J ′,j)=1

qC(J ′, j) ≥ pSk
(j)−

√
ε ≥ pSk

(j)/2.

Here we used 2
√
ε ≤ r−b ≤ θ ≤ pSk

(j). Now the pigeonhole principle implies there exists some
J ′ ∈ Dk−1 with R(J, j) = 1 and qC(J, j) ≥ pSk

(j)/(2|D|k−1) ≥ pSk
(j)/r. By consistency of

marginals this certainly implies pSt′ (Jt′) ≥ pSt(j)/r ≥ θ for all t′ ∈ [k − 1]. Now for all t′ ∈ [k − 1]
we know that J ′St′

∈ Bt′ . Therefore, if we let J = (J ′, j) we have that J ∈ J and Jk = j.

4 LP-decidable implies width 1

In this section we show the “only if” part of Theorem 1.1: i.e., that if the basic LP relaxation
robustly decides CSP(Γ) then CSP(Γ) must have width 1. Now if the basic LP relaxation robustly
decides CSP(Γ) then in particular it decides CSP(Γ); thus it suffices to prove the following stronger
theorem:

Theorem 4.1. Suppose the basic linear program decides CSP(Γ), meaning that LPVal(I) = 1
implies Opt(I) = 1 for all instances I. Then CSP(Γ) has width 1.

7

Although the hypothesis of Theorem 4.1 refers to all possible instances I of CSP(Γ), it suffices
to focus on a certain “most general” instance we’ll call M(Γ). Let us make some definitions.

Definition 4.2. Given a finite set A, let 4(A) denote the set of all probability measures on A.
For ` ∈ N+, let 4`(A) ⊂ 4(A) consist of those measures ν such that Prν [a] ∈ `−1Z for all a ∈ A.

Definition 4.3. Given the set of relations Γ over domain D, for any ` ∈ N+ we define M`(Γ) to
be the following instance of CSP(Γ): The set of variables is 4`(D). For each k-ary relation R in
Γ we impose constraint R on scope S if and only if there exists a probability measure qS ∈ 4Dk

supported on the satisfying assignments for R and with t’th marginal equal to St for all t ∈ [k].

Definition 4.4. We similarly define the infinite “instance” M(Γ) with variable set 4(D).3

Note that for any finite ` ∈ N+ we have LPVal(M`(Γ)) = 1 “by construction”; in particular,
there is an LP solution of value 1 in which the “pv” distribution for variable v is simply v itself.
(One may also reasonably say that LPVal(M(Γ)) = 1, though we will not “use” this.) Thus if the
basic LP decides CSP(Γ) it follows that Opt(M`(Γ)) = 1 for all `. From this one can easily deduce
(see Appendix C):

Proposition 4.5. Suppose the basic LP decides CSP(Γ) and hence M`(Γ) is satisfiable for each
` ∈ N+. Then: 1.M(Γ) is also satisfiable. 2. CSP(Γ) has symmetric polymorphisms of every arity.

We give a satisfying assignment for M(Γ) a special name:

Definition 4.6. If β : 4(D)→ D satisfies all constraints in M(Γ) we call it a measure operation.

It’s easy to show that if CSP(Γ) is width-1 and thus has a set operation g, then the assignment
α(ν) = g(supp(ν)) is a measure operation. To complete the proof of Theorem 4.1 we will show the
converse; that CSP(Γ) having a measure operation implies it has width 1. This is the content of
the following theorem:

Theorem 4.7. Suppose CSP(Γ) has a measure operation. Then it has tree duality.

Proof. Let β : 4(D) → D be a measure operation for CSP(Γ). To show tree duality we need to
show that for any unsatisfiable instance I of CSP(Γ), there is an unsatisfiable tree instance T which
witnesses this (i.e., is homomorphic to I). Assuming as we may that I is connected, we will choose
T to be the universal cover tree of I, defined below. Although this is an infinite tree, we may
obtain from it a finite witness: if T is unsatisfiable it will have some finite unsatisfiable subtree.

Let’s now define the universal cover tree T of I. (This notion originates in algebraic topology
but we can get away with elementary definitions, not mentioning fundamental groups at all.) Pick
an arbitrary variable x0 in I to be the base point (different choices will lead to isomorphic instances).
The variables of T are in one-to-one correspondence with all non-backtracking walks in I starting
at x0. For each relation R ∈ Γ of arity k, we include an R-constraint on variables (walks) τ1, . . . , τk
if and only if there exists j ∈ [k] such that:

1. for each i 6= j, τi is an extension of τj by one step;

2. all walks τi other than τj have the same “last” constraint C = (R,S), using relation R;

3. for each i 6= j, the last step in τi — call it (xi, C = (R,S), ti, ui, yi) — has ti = j and ui = i.
In other words, S = (y1, . . . , yj−1, z, yi+1, . . . , yk), where z is the endpoint of τj .

3Here we are stretching the definition of “instance” to allow for infinitely many variables and constraints. In this
case it does not make sense to speak about “fractions of the constraints in M(Γ)” but it still makes sense to ask
whether M(Γ) is satisfiable.

8

The universal cover tree is indeed a “tree” with a natural homomorphism to I, mapping a non-
backtracking walk to its endpoint. Given any two walks σ and τ in I for which the endpoint of σ
is the starting point of τ , we can define their concatenation σ ◦ τ . After the obvious cancelations
we can make this concatenation non-backtracking in a unique way. We will actually only need
this definition for σ a non-backtracking walk from x0 to x0; in this case we can define the iterated
concatenation αc = α ◦ α ◦ · · · ◦ α (c times).

Recall our goal is to show that if I is unsatisfiable then so too is T . We will show the contra-
positive. So assume T is satisfiable; we need to prove that I is also satisfiable. Let σ1, σ2, σ3, . . . be
an enumeration of all non-backtracking walks in I which start and end at the base point x0. Our
goal will be to show that there is a satisfying assignment α for T which is σi-periodic for all i. By
σi-periodic we mean that α(τ) = α(σi ◦ τ) for all variables τ in T . Such an α immediately yields a
satisfying assignment for I.

We inductively construct α by constructing satisfying assignments α1, α2, . . . for T , where αj
is σi-periodic for all i < j. The existence of α1 follows from the assumption that T is satisfiable.
We now show how to construct αj+1 from αj . It suffices to construct an LP solution p with
LPValT (p) = 1 which is σi-periodic for all i < j + 1; we can then compose this with the measure
operation β to produce the required satisfying assignment αj+1.

For ` ∈ N+, define p` be the LP solution for T in which p`τ is the probability distribution on
D given by outputting αj(σ

c
j ◦ τ) for a uniformly random c ∈ [`]. Each p` in fact has LP-value 1,

being a convex combination of satisfying assignments (note that if R(τ1, . . . , τk) = 1 is a constraint
in T then so is R(σcj ◦ τ1, . . . , σ

c
j ◦ τk) = 1 for any c). Since 4(D) is compact and T is countable

we can pass to a subsequence (p`n)n of (p`)` for which p`nτ is convergent for all variables τ . We
may now define p to be the LP solution in which pτ = limn→∞ p

`n
τ . It is not hard to verify that

LPValT (p) = 1 since LPValT (p`n) = 1 for all n. The LP solution p is also σi-periodic for all i < j
since each p` is. Finally, note that for every ` the statistical difference of p`τ and p`αj◦τ is at most
2/`; it follows that pτ = pαj◦τ for all variables τ ; i.e., p is αj-periodic as required.

Having produced the sequence of satisfying assignments α1, α2, . . . for T in which αj is σi-
periodic for all i < j, it remains to produce a satisfying assignment α for T which is σi-periodic
for all i. We do this by passing to a subsequence (αjn)n such that for each variable τ in T the
sequence (αjn(τ))n is eventually constant. We define α(τ) to be this eventually constant value.
The assignment α indeed completely satisfies T because for each constraint C = (R,S) in T , the
subsequence of satisfying assignments (αjn)n eventually becomes unchanging when restricted to S.
Finally, for any i the assignment α is σi-periodic because the subsequence (αjn)n only fails to be
σi-periodic for finitely many n. The proof is complete.

5 Conclusions

We have shown that the basic linear programming relaxation robustly decides a CSP if and only
if the CSP has width 1. We view this as a first step towards a proof of the Guruswami–Zhou
conjecture, that a CSP is efficiently robustly decidable if and only if it has bounded width (assuming
P 6= NP).

References

[1] Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In Pro-
ceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, volume 9,
pages 595–603. 1, 2.3

9

[2] Andrei Bulatov. Combinatorial problems raised from 2-semilattices. Journal of Algebra,
298(2):321–339, 2006. D.2, D.3

[3] Andrei Bulatov. Bounded relational width. Available at
http://www.cs.sfu.ca/∼abulatov/mpapers.html, 2009. 1, 2.3

[4] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005. 1

[5] Catarina Carvalho, Vı́ctor Dalmau, and Andrei Krokhin. Two new homomorphism dualities
and lattice operations. Journal of Logic and Computation, 2010. A.1

[6] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for
Unique Games. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
pages 205–214, 2006. 1

[7] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Note on MAX 2SAT. In
Electronic Colloquium on Computational Complexity TR06-064, 2006. 1

[8] Vı́ctor Dalmau and Justin Pearson. Closure functions and width 1 problems. In Proceedings
of the 5th Annual Principles and Practice of Constraint Programming, pages 159–173, 1999.
1.1, 2.3

[9] Tomás Feder and Moshe Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998. 1, 1.1, 2.1, 2.1, 2.3

[10] Michel Goemans and David Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115–
1145, 1995. 1

[11] Venkatesan Guruswami and Yuan Zhou. Tight bounds on the approximability of almost-
satisfiable Horn SAT and Exact Hitting Set. In Proceedings of the 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1574–1589, 2011. 1, 1, 1.1, A

[12] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001. 1

[13] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. Journal of
the ACM, 44(4):527–548, 1997. 1, 2.3

[14] David Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences, 9(3):256–278, 1974. 1

[15] Peter Jonsson, Andrei Krokhin, and Fredrik Kuivinen. Hard constraint satisfaction problems
have hard gaps at location 1. Theoretical Computer Science, 410(38–40):3856–3874, 2009. 1

[16] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David Williamson. The approximability
of constraint satisfaction problems. SIAM Journal on Computing, 30(6):1863–1920, 2000. A

[17] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. 34th ACM Symposium
on Theory of Computing, pages 767–775, 2002. 1, 1

10

[18] Gábor Kun and Mario Szegedy. A new line of attack on the Dichotomy Conjecture. In
Electronic Colloquium on Computational Complexity TR09-059, 2009. 1, 2

[19] Alan Mackworth. Consistency in networks of relations. Artificial intelligence, 8(1):99–118,
1977. 1.1

[20] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 245–254,
2008. 1, 1.1

[21] Yuichi Yoshida. Optimal constant-time approximation algorithms and (unconditional) inap-
proximability results for every bounded-degree CSP. In Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing, pages 665–674, 2011. B.3

[22] Uri Zwick. Finding almost-satisfying assignments. In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, pages 551–560, 1998. 1, 1.1

A Lattice CSPs: better quantitative dependence on ε

As discussed at the end of Section 1.1, one cannot hope to improve the approximation guarantee
of 1 − O(1/ log(1/ε)) given by our LP-rounding algorithm, even in the case of Horn-3Sat. On the
other hand, for Horn-2Sat it is known [16] that on (1 − ε)-satisfiable instances one can efficiently
find (1 − O(ε))-satisfying assignments (indeed, (1 − 2ε)-satisfying [11]). One might ask what the
algebraic difference is between Horn-2Sat and Horn-3Sat. A notable difference is that the former
is a lattice CSP.

Subclasses of width-1: lattice and semilattice CSPs. A broad natural subclass of the width-
1 CSPs is the class of semilattice CSPs. These are CSPs which have a semilattice polymorphism,
meaning a binary polymorphism ∧ which is associative, commutative, and idempotent. Horn-Sat
CSPs are not just width-1 but are in fact semilattice; thus we cannot hope for improved dependence
on ε even for semilattice CSPs.4

An even further subclass is that of lattice CSPs. These are CSPs whose relations are pre-
served by two semilattice operations ∧ and ∨ which additionally satisfy the “absorption” identity:
∨(x,∧(x, y)) = ∧(x,∨(x, y)) = x. Note that ∨ and ∧ extend naturally to polymorphisms of every
arity. Good examples of lattice CSPs are “lattice retraction problems”. Here there is a fixed lattice
poset L; the CSP’s domain is L and its constraints are the poset constraint “≤” along with all
unary constraints “=a” for a ∈ L.

A.1 Robust decidability for lattice CSPs

In this section we prove a variant of our Theorem 3.1 which shows an efficient LP-based algorithm
for finding (1−O(ε))-satisfying assignments to (1− ε)-satisfiable lattice CSP instances.

We first describe the characterization of lattice CSPs we need. Carvalho, Dalmau, and Krokhin [5]
have observed that if CSP(Γ) has lattice polymorphisms then it is preserved by what they call an
absorptive block-symmetric operation. This is an operation f which takes as input tuples (of any

4There are CSPs which are width-1 but not semilattice; e.g., the CSP over domain {a, b, c, d} with all unary
relations and also the binary relations (a, b), (b, a), (c, a), (c, b), (c, d), (d, c), and (d, d).

11

positive length) of nonempty subsets of D, outputs an element of D, and has the following proper-
ties:

• (Block-symmetry.) f(B1, . . . , B`) only depends on {B1, . . . , B`}.

• (Absorption.) If B ⊇ B1 then f(B,B1, . . . , B`) = f(B1, . . . , B`).

• (Preservation.) Let R be an arity-k relation Γ and let (Bj
i)
j=1...k
i=1...` be nonempty subsets of D.

Assume that for each i ∈ [`] there is a Ji ⊆R B1
i × · · · ×Bk

i all of whose members satisfy R.
Then R(f(B1

1 , . . . , B
1
`), . . . , f(Bk

1 , . . . , B
k
`))) = 1.

Indeed, the operation f is simply f(B1, . . . , B`) =
∨
{∧Bi : i ∈ [`]}.

We now show:

Theorem A.1. Let Γ be a finite set of relations over the finite domain D, each relation having
arity at most K. Assume that CSP(Γ) has lattice polymorphisms. Then there is a poly(n,m)-time
algorithm for CSP(Γ) which when given an input I with LPVal(I) = 1− ε outputs an assignment
α : V → D with ValI(α) ≥ 1−O(K2|D|)ε.

Proof. As in Theorem 3.1, the first step of the algorithm is to solve the LP relaxation of the instance,
determining an optimal solution {pv : v ∈ V }, {qCi : i ∈ [m]} which obtains LPVal(I) = 1 − ε.
Since CSP(Γ) has lattice polymorphisms, it has some absorptive block-symmetric operation f . We
next describe a randomized LP-rounding algorithm:

1. Set r = (2K2|D|m)−1 and choose θ ∈ {1/r, 2/r, 3/r, . . . , 1} uniformly at random.

2. For each v ∈ V , define Bv = {B ⊆ D : pv(B) ≥ θ}, a nonempty family of nonempty sets.
(Here we introduce the notation pv(B) =

∑
b∈B pv(b).)

3. Output the assignment α : V → D defined by α(v) = f(Bv).

We will show for each constraint Ci = (Si, Ri) that

Pr[Ri(α(Si)) = 0] ≤ K2|D|(εi + 1/r) = K2|D|εi + 1/2m, (5)

where εi =
∑

J :Ri(J)=0 qCi(J) as in the previous proof. It then follows from linearity of expectation

that the expected fraction of constraints not satisfied by α is at most K2|D| avg{εi} + 1/2m =
K2|D|ε + 1/2m. We can therefore efficiently deterministically find an α with value at least 1 −
K2|D|ε− 1/2m by trying all O(m) possible values for θ. This is sufficient to prove the theorem: if
ε < (2K2|D|m)−1 then α’s value exceeds 1 − 1/m and hence is in fact 1; if ε ≥ (2K2|D|m)−1 then
the O(·) in the theorem statement covers the loss of 1/2m.

We now give the analysis justifying (5) for each fixed constraint Ci = (Si, Ri). For simplicity
we henceforth write C = Ci, S = Si, R = Ri and suppose that R has arity k ≤ K. It suffices to
show that R(α(S)) = 1 holds assuming

θ 6∈ (pSt(B), pSt(B) + εi] ∀t ∈ [k], ∀B ⊆ D. (6)

The reason is that the probability of (6) not holding is at most K2|D|(εi + 1/r). Note that with
assumption (6), whenever we have pSt(B) ≥ θ − εi it follows that in fact pSt(B) ≥ θ and thus
B ∈ BSt .

12

Claim A.2. For all t ∈ [k] and B ∈ BSt, there exist B1, . . . , Bk with Bu ∈ BSu such that: a) Bt ⊆ B;
b) there exists J ⊆S B1 × · · · ×Bk with R(J) = 1 for all J ∈ J .

Proof. Suppose B ∈ BSt , so pSt(B) ≥ θ. Letting J ′ = {J ∈ Dk : Jt ∈ B}, it follows from
consistency of marginals that qC(J ′) ≥ θ. Thus if J is the subset of J ′ for which R holds, it
follows that qC(J) ≥ θ − εi. For u ∈ [k], we define Bu = {Ju : J ∈ J }. Certainly Bt ⊆ B, and by
consistency of marginals we obtain from qC(J) ≥ θ−εi that pSu(Bu) ≥ θ−εi for each u ∈ [k]. Thus
it follows from assumption (6) that Bu ∈ BSu for each u, completing the proof of the claim.

For each choice of t ∈ [k] and B ∈ BSt , take the (names of the) sets B1, . . . , Bk given by the
above claim and arrange them in a height-k column. Adjoin all of these columns to form a k × `
matrix M , where ` =

∑k
t=1 |BSt |. The matrix M has the following properties: (i) each entry in

row u is a set in BSu ; (ii) for each set B ∈ BSu , some subset of it appears in the uth row of M ; (iii) for
each column (B1, . . . , Bk) of M there is a J ⊆S B1 × · · · ×Bk all of whose members satisfy R.

Suppose we now apply the absorptive block-symmetric operation f to the rows of M , with the
uth row producing ju ∈ D. By (iii), R(j1, . . . , jk) = 1. Thus the justification of (5) is complete
if we can show ju = f(BSu) = α(Su). But this follows from (i), (ii), and the absorptive property
of f .

B Connection to Property Testing

In property testing, given an instance as an oracle access, we want to test the instance satisfies
some predetermined property or ε-far from satisfying the property. Here, the definition of ε-farness
depends on each model. We want to design algorithms that run in constant time, i.e., which
depends only on ε and not on sizes of inputs. In this section, we show that, in the model so-called
bounded-degree model, the satisfiability of an instance in CSP(Γ) is testable in constant time if
and only if CSP(Γ) has width 1.

First, we define the bounded-degree model. Let I be an instance of CSP with a variable set V
and a constraint set C. We define the degree of a variable v ∈ V as the number of constraints
containing v. In the bounded-degree model, we only consider instances such that every variable
has degree at most d where d is a predetermined constant. An instance I is called ε-far from
satisfiability if we must remove at least εdn constraints in order to make it satisfiable. An instance
is represented as an oracle OI : V × [d]→ C; If we specify a variable v ∈ V and an index i ∈ [d], OI
returns the i-th constraint containing v. If no such constraint exists, OI returns a special symbol
⊥.

Definition B.1. An algorithm is called an testing algorithm for CSP(Γ) if, given an instance I
as an oracle access OI , it accepts with probability at least 2/3 when I is satisfiable, and it rejects
with probability at least 2/3 when I is ε-far from satisfiability.

It is known that the testability of CSP(Γ) is described by the integrality gap curve.

Definition B.2. The integrality gap curve for a CSP(Γ) with respect to the basic LP is defined as

SΓ(c) = inf
I∈Γ,LP(I)≥c

Opt(I).

Lemma B.3 (Theorem 1.4 of [21]). Let D be a finite domain and Γ be a finite set of relations over
D. Then, in the bounded-degree model,

13

1. if CSP(Γ) satisfies SΓ(1) = 1 and SΓ(c) is continuous at c = 1, then there exists a testing
algorithm for CSP(Γ) with O(1) queries.

2. if CSP(Γ) satisfies SΓ(1) < 1, then any testing algorithm for the CSP(Γ) requires Ω(
√
n)

queries.

Note that the notation O(·) hides constants such as ε, d, |D| and |Γ|.

Theorem B.4. Let D be a finite domain and Γ be a finite set of relations over D. Then, in the
bounded-degree model,

1. if CSP(Γ) has width 1, then there exists a testing algorithm for CSP(Γ) with O(1) queries.

2. if CSP(Γ) does not have width 1, then testing CSP(Γ) requires Ω(
√
n) queries.

Proof. We first show the former part. Let I be an instance of CSP(Γ). Form Theorem 3.1 LP(I) = 1
implies Opt(I) = 1. Thus, SΓ(1) = 1. Also, from Theorem 3.1 LP(I) = 1 − ε implies Opt(I) ≥
1−1/ log(1/ε). It follows that lim

c→1
SΓ(c) = 1, which means that SΓ(c) is continuous at c = 1. Then,

the claim holds from the former part of Lemma B.3.
Now, we show the latter part. From Theorem 4.1 there exists an instance I of CSP(Γ) such

that LP(I) = 1 and Opt(I) < 1. This indicates SΓ(1) < 1. Thus, the claim holds from the latter
part of Lemma B.3.

C Minor proof details for Section 4

Here we prove Proposition 4.5.

Proof. As we described, by construction LPVal(M`(Γ)) = 1 for each ` ∈ N+. Since the basic LP
decides CSP(Γ) it follows that there is in fact a satisfying assignment α` for M`(Γ). We use this
to show the two statements.

First we need to show that M(Γ) is satisfiable. It suffices to show that for every finite sub-
set V of variables in M(Γ) the induced sub-instance is satisfiable; the result then follows from
compactness. Suppose first that all variables in V are “rational” probability measures, meaning
that they give rational probabilities to all elements of D. Then V ⊆ 4`∗(D) for some sufficiently
large `∗ and it follows that the sub-instance induced by V is satisfiable, sinceM`∗(Γ) is satisfiable.
In general, the variables in V need not be rational. However we claim that the sub-instance they
induce is isomorphic to a (not necessarily induced) sub-instance ofM(Γ) with rational probability
measures, and thus is satisfiable as before. The justification for the claim is that the true statement
“the sub-instance induced by V is isomorphic to a sub-instance ofM(Γ)” is expressible by a linear
program with integer coefficients; thus the linear program has a feasible rational solution. This
completes the proof that the sub-instance induced by V is satisfiable, and thusM(Γ) is satisfiable.

We now moving on to the second statement of the proposition, showing that CSP(Γ) has a
symmetric polymorphism of arity ` for each ` ∈ N+. Consider the operation f : D` → D defined by
f(x) = α`(px), where px is defined to be the probability measure on D given by choosing a uniformly
random coordinate of the `-tuple x. (Note that indeed px ∈ 4`(D) so this is well-defined.) The
operation f is symmetric, and it remains to check that it is a polymorphism. To see this, let R
be any relation in Γ of arity, say, k, and fix x1, . . . , xk ∈ D` satisfying R(x1

i , . . . , x
k
i) = 1 for all

i ∈ [`]. Let S ∈ V k be the tuple with St = pxt and let qS be the probability measure on Dk

14

given by choosing (x1
i , . . . , x

k
i) for uniformly random i ∈ [`]. By virtue of this qS , the constraint

(R,S) appears in M`(Γ). Since α` satisfies this constraint we have R(α`(px1), . . . , α`(pxk)) = 1;
i.e., R(f(x1), . . . , f(xk)) = 1. Thus f is indeed a polymorphism.

D Another proof of Theorem 3.1

In this section, we present another proof of Theorem 3.1. The proof is slightly lengthy but gives
better dependency on K and |D|.

Theorem D.1. Let Γ be a finite set of relations over the finite domain D, each relation having
arity at most K. Assume that CSP(Γ) has width 1. Then there is a poly(n,m)-time algorithm for
CSP(Γ) which when given an input I with LPVal(I) = 1 − ε outputs an assignment α : V → D
with ValI(α) ≥ 1−O(K|D| log(K|D|)/ log(1/ε)). (In particular, ValI(α) = 1 if LPVal(I) = 1.)

The basic idea of the proof is as follows. We first solve the basic linear program and discard
constraints that are not well-satisfied by the LP solution. To round the LP solutions for the
remaining constraints, we simulate a propagation algorithm for CSPs of width 1, called 1-Minimality.
The algorithm iteratively restricts the domain of variables using current constraints. For CSPs of
width 1, if the algorithm cannot perform propagation anymore and there is no empty relation, the
instance is satisfiable. In our rounding, instead, we discard constraints to stop the propagation. By
carefully choosing constraints to be removed, we can obtain a large number of constraints for which
1-Minimality cannot continue propagation. Thus, the resulting instance is satisfiable, and we can
compute the desired assignment from the instance. Our algorithm can be seen as a generalization
of Zwick’s algorithm for Horn-kSat.

In the rest of the section, we give a detailed proof of Theorem D.1.

D.1 Weighted constraint satisfaction problems

We will prove Theorem D.1 for weighted CSPs defined as follows:

Definition D.2. A weighted instance of the constraint satisfaction problem is a tuple I = (V,D, C,w)
where V is a finite set of variables, D is a finite domain, C is a finite set of constraints and
w : C → [0,∞) is a weight function. The objective is to find an assignment α : V → D that
maximizes the total weight of the constraints satisfied by α.

For a CSP instance I = (V,D, C,w) and a set of constraints C′ ⊆ C, we define wI =
∑

C∈C wC

and wC′ =
∑

C∈C′ wC . Throughout the paper, we assume that any input instance I = (V,D, C,w)
of the CSP satisfies wI = 1. For an assignment α, we define ValI(α) as the total weight of the
constraints satisfied by α. Also, we define Opt(I) = maxα{ValI(α)} as the optimal value. We
modify the objective function of the basic linear program as

LPValI({pv}, {qC}) =
∑

C=(S,R)∈C

wC Pr
J∼qC

[R(J) = 1].

D.2 (k, `)-Minimality

We need a different characterization of width based on a simple propagation algorithm, called
(k, `)-Minimality [2] (see Algorithm 1). When k = `, it is also called k-Minimality. We need the
following definition to describe the behavior of (k, `)-Minimality.

15

Algorithm 1 (k, `)-Minimality

1: Input: I = (V,D, CI).
2: I0 := (V,D, C0

I ∪ C0
D) where C0

I = CI and C0
D = {(S,D`) | S ⊆ V, |S| = `}.

3: for i = 1 to ∞ do
4: J i−1 := Ii−1.
5: for each W ⊆ V, |W | = k do
6: Let Si−1

W be the set of all satisfying assignments to Ii−1
W

7: for each constraint C = (S,R) of J i−1 do
8: replace C with (S,R′) where R′ = {J ∈ R | prS∩WJ ∈ prS∩WSi−1

W }.
9: Ii = (V,D, CiI ∪ CiD) := J i−1

10: if Ii = Ii−1 then
11: return Ii

For a tuple J = (J1, . . . , Jn) and a subset W = {W1, . . . ,Wk} ⊆ [n], we define the projection
of J to W by prWJ = (JW1 , . . . , JWk

). The projection of a relation R ⊆ Dn to W is defined by
prWR = {prWJ | J ∈ R}. For a CSP instance I = (V,D, C) and a subset W ⊆ V , we define a
partial instance IW = (W,D, CW) where CW = {(S ∩W, prS∩WR) | (S,R) ∈ C}. We denote by SW
the set of all satisfying assignments to IW . When W = {v}, we write Iv and Sv instead of IW and
SW , respectively.

Definition D.3 ([2]). Let k, ` be integers with 0 < k ≤ `. An instance I = (V,D, C) is called
(k, `)-minimal if

1. for every W ⊆ V, |W | ≤ `, there exists some constraint (S,R) ∈ C such that W ⊆ S.

2. for every W ⊆ V, |W | ≤ k and two constraints (S1, R1), (S2, R2) ∈ C, we have prS1∩WR1 =
prS2∩WR2. That is, SS∩W = prS∩WR holds for every (S,R) ∈ C and W ⊆ V, |W | ≤ k.

A (k, k)-minimal instance is also called k-minimal.

(k, `)-Minimality first adds constraints of the form (S,D`) for every S ⊆ V, |S| = ` to satisfy the
first condition of the (k, `)-minimality. Then, it iteratively removes tuples from relations in each
constraint so that the modified constraints satisfy the second condition of the (k, `)-minimality. We
can see that it transforms an instance to a (k, `)-minimal instance with the same set of satisfying
assignments. It is sound in the sense that if it outputs an instance with an empty constraint, then
the instance is unsatisfiable. However, it is not complete in the sense that even if it outputs an
instance with no empty constraint, the instance may be unsatisfiable. We say that a CSP has width
(k, `) if it is also complete. A formal definition is given below.

Definition D.4. Let Γ be a constraint language. We say that CSP(Γ) has width (k, `) if the
following holds: if (k, `)-Minimality on an instance I of CSP(Γ) outputs an instance I ′ with no
empty constraint, then I is always satisfiable. Moreover, CSP(Γ) has width k if Γ has width (k, k).
Also, CSP(Γ) has bounded width if Γ has width k for some constant k.

Let us see several properties of the algorithm 1-Minimality. Let Ci = CiI ∪ CiD be the set of
constraints in Ii where CiI (resp., CiD) is the set of constraints originated from CI (resp., CD). For
a variable v ∈ V , we define Siv as the set of all satisfying assignments to Iiv. For convenience, we
define S−1

v = D.

Lemma D.5. Let i ≥ 0 and C = ({v}, R) be a constraint in CiD. Then, R = Si−1
v .

16

Proof. We prove the claim by induction on i. When i = 0, the claim is obvious since R = D = S−1
v .

Suppose that the claim holds for i− 1, and let C ′ = ({v}, R′) ∈ Ci−1
D be the constraint in Ii−1

corresponding to C. From the hypothesis, R′ = Si−2
v holds. Then, we have R = {j ∈ R′ | j ∈

Si−1
v } = Si−1

v since Si−1
v ⊆ Si−2

v .

Corollary D.6. Let I ′ = (V,D, Ci−1
I ∪ CiD) and S ′v be the set of all satisfying assignments to I ′v.

Then, S ′v = Si−1
v holds for any variable v ∈ V .

Proof. From Lemma D.5, there exists C = ({v},Si−1
v) ∈ CiD. Since C exists in I ′, we have

S ′v ⊆ Si−1
v . We show the other direction. For a constraint (S,R) ∈ Ci−1

I with v ∈ S, we have
Si−1
v ⊆ prvR. Also, the only constraint in CiD containing v in its scope is ({v},Si−1

v). Thus,
Si−1
v ⊆ S ′v.

In the following two lemmas, we show that we can obtain 1-minimal instance by discarding
constraints in the process of 1-Minimality.

Lemma D.7. Let i ≥ 0 and C′ be the set of constraints in CiI such that the corresponding constraints

in J i are updated at Line 8. Then, Ĩ = (V,D, (CiI \ C′) ∪ CiD) is 1-minimal.

Proof. We define S̃v as the set of all satisfying assignments to Ĩv. Suppose that Ĩ is not 1-minimal.
Then, there exists C = (S,R) ∈ (CiI \ C′) ∪ CiD such that S̃v (prvR for some v ∈ S. We can see
that C ∈ CiD. Indeed, if C ∈ CiI \ C′ holds, C must be contained in C′ from the construction of C′.

Then, we have C = ({v}, R) ∈ CiD and S̃v (prvR = Si−1
v from Lemma D.5. This indicates that

there exists C ′ = (S′, R′) ∈ CiI \ C′ such that prvR
′ 6= Si−1

v . However, if such C ′ exists, it should be
contained in C′ from the construction of C′.

Lemma D.8. Let i ≥ 1 and Ĩ = (V,D, C′I∪CiD) where C′I = {(S,R) ∈ Ci−1
I | R contains exactly one tuple}.

Also, suppose that Ii has no empty constraint. Then, Ĩ is a 1-minimal instance with no empty
constraint.

Proof. For each constraint C = (S,R), we need to show that prvR = S̃v holds for any v ∈ S. Since
S̃v ⊆ prvR is trivial, we show the other direction.

Suppose that C ∈ C′I . Since Ii has no empty constraint, the unique tuple in R was not removed
at Line 8 when constructing Ii. Thus, prvR = Si−1

v = Siv for any v ∈ S, and it follows that every
constraint in C′I exists in Ii. Then, we can see that Ĩ is an instance obtained from Ii by discarding

constraints. Hence, we have prvR = Siv ⊆ S̃v.
Suppose that C ∈ CiD. From Lemma D.5, we have R = Si−1

v . Consider an instance I ′ =

(V,D, Ci−1
I ∪ CiD). From Lemma D.6, we have S ′v = Si−1

v . Since Ĩ is obtained from I ′ by removing

constraints, we have prvR = Si−1
v = S ′v ⊆ S̃v

D.3 Proof of Theorem D.1

In this subsection, we prove Theorem D.1. Let Γ be a constraint language such that CSP(Γ) has
width 1. Also, let I = (V,D, CI ,w) be an instance with an LP solution pv(j) for each v ∈ V , j ∈ D
and qC(J) for each constraint C = (S,R) and tuple J ∈ R.

Our rounding algorithm is described in Algorithm 2. For a constraint C = (S,R), we define
ρ(C) =

∑
J :R(J)=1 qC(J), which means how much the constraint C is satisfied by the LP solution.

At Line 3, Apx-1-Minimality first discards constraints C ∈ CI such that ρ(C) is small. After that,
we basically follow the procedure of 1-Minimality. The difference from 1-Minimality is that we may
(eventually, always) terminate at Lines 13 or 15 before the instance becomes 1-minimal. In this

17

Algorithm 2 Apx-1-Minimality

1: Input: I = (V,D, CI ,w) and the LP solution {pv(j)}, {qC(J)} for I.

2: Let ε = 1−
∑

C∈CI wCρ(C), ε1 =
√
ε and ε2 = K|D| log(K|D|)

log(1/2ε1) .

3: I0 := (V,D, C0
I ∪ C0

D) where C0
I = {C ∈ CI | ρ(C) ≥ 1− ε1} and C0

D = {({v}, D) | v ∈ V } .
4: for i = 1 to ∞ do
5: J i−1 := Ii−1.
6: for v ∈ V do
7: Si−1

v be the set of all satisfying assignments to Ii−1
v .

8: for each constraint C = (S,R) in J i−1 s.t. v ∈ S do
9: replace C with (S,R′) where R′ = {J ∈ R | prvJ ∈ Si−1

v }.
10: Ii = (V,D, CiI ∪ CiD,w) := J i−1

11: Let DiI ⊆ C
i−1
I be such that the corresponding constraints in J i−1 were updated at Line 9.

12: if wDi
I
< ε2wI0 then

13: return Ĩ = (V,D, (CiI \ DiI) ∪ CiD,w).
14: if

∑i
j=1 wDj

I
≥ K|D|wI0 then

15: return Ĩ = (V,D, C′I∪CiD,w) where C′I = {(S,R) ∈ Ci−1
I | R contains exactly one tuple})

case, we force the instance to be 1-minimal by discarding constraints. Then, we can prove that the
original instance has a satisfying assignment.

For notational simplicity, though the LP solution {qC(J)} are indexed by constraints in I,
we regard that they are also indexed by constraints in Ii. The following holds from Markov’s
inequality.

Proposition D.9. We have wI0 ≥ 1− ε1.

Lemma D.10. Apx-1-Minimality terminates after at most K|D|
ε2

iterations.

Proof. Suppose that Apx-1-Minimality never reaches Line 13. Then, wDi
I
≥ ε2wI0 for every i.

However, after K|D|
ε2

steps,
∑i

j=1 wDj
I

becomes at least K|D|, and it must terminate at Line 15.

We define a sequence ci = ((K|D|)i+1−1)/(K|D|−1). Note that c0 = 1 and ci+1 = K|D|ci+1.

Lemma D.11. For every i ≥ 0 and a constraint C = (S,R) ∈ CiI in Ii, we have ρ(C) ≥ 1− ciε1.

Proof. We prove the lemma by induction on i. The case i = 0 is trivial since we discard all
constraints violating the condition at Line 3.

Suppose that the lemma holds for i− 1. Now, fix a constraint C = (S,R) ∈ Ci−1
I and consider

the i-th iteration. The process of removing tuples from C can be regarded as follows. Fix a variable
v ∈ S and a value j ∈ D. if j 6∈ Si−1

v , then we remove from C tuples J ∈ R such that prvJ = j.
For each such j, there exists some constraint C ′ = (S′, R′) ∈ Ci−1 such that v ∈ S′ and j 6∈ prvR

′.
From the hypothesis, we have pv(j) ≤ 1− ρ(C ′) ≤ ci−1ε1. Thus, by removing such tuples J , ρ(C)
decreases at most by ci−1ε1. Since we have at most k|D| choices for v and j, ρ(C) decreases at
most by K|D|ci−1ε1 in total. Thus, in Ii, ρ(C) is at least 1− ci−1ε1 −K|D|ci−1ε1 = 1− ciε1.

Lemma D.12. For every i ≤ K|D|
ε2

+ 1, Ii has no empty constraint.

Proof. Since 1− ciε1 > 0 for i ≤ K|D|
ε2

+ 1 from Lemma D.11, we have ρ(C) > 0 for every constraint

C ∈ CiI . In particular, there is no empty constraint.

18

Lemma D.13. Suppose that Apx-1-Minimality returns an instance Ĩ at Line 13. Then, Ĩ is a
1-minimal instance with no empty constraint and wĨ ≥ 1− ε1 − ε2.

Proof. Suppose that we reach Line 13 in the t-th step. From Lemma D.7, Ĩ is 1-minimal. From
Lemma D.12, It has no empty constraint, and it follows that Ĩ also has no empty constraint. From
Proposition D.9 and wDt

I
< ε2wI0 , we have wĨ ≥ (1− ε2)wI0 ≥ 1− ε1 − ε2.

Lemma D.14. Suppose that Apx-1-Minimality returns an instance Ĩ at Line 15. Then, Ĩ is a
1-minimal instance with no empty constraint and wĨ ≥ 1− ε1.

Proof. Suppose that we reach Line 15 in the t-th iteration. First, we note that t ≤ K|D|
ε2

from

Lemma D.10. If we do not return at Line 15 and continue process, the instance It+1 will have no
empty constraint from Lemma D.12.

Fix a constraint C = (S,R) in I0. Abusing notations, we use the same C to denote the
corresponding constraint in Ii for i ≤ t. We associate a set SC = {({v}, prvR) | v ∈ S} with C and
consider how |SC | decreases. In the beginning, |SC | ≤ K|D| clearly holds. Suppose that DiI contains
C for some i. Then, |SC | decreases at least by one. Thus, if #{i ∈ [t] | C ∈ DiI} ≥ K|D| − 1, |SC |
contains at most one element. It follows that C contains exactly one tuple in It since It+1 has no
empty constraint.

We have
∑t

i=1 |DiI | ≥ K|D|wI0 . Thus, every constraint in CtI contains exactly one tuple. Then,

from Lemma D.8, Ĩ is 1-minimal and has no empty constraint. Also, wĨ ≥ wI0 ≥ 1− ε1.

Proof of Theorem D.1. Suppose that Apx-1-Minimality terminates at Line 13 in the t-th iteration.
Let D′I be the set of constraints in I0 corresponding to DtI . We consider an instance I ′ = (V,D, C0

I \
D′I ,w). Note that wI′ ≥ 1− ε1 − ε2 ≥ 1−O(K|D| log(K|D|)

log (1/2ε)) from Lemma D.13. We will show that

I ′ has a satisfying assignment α. Then, it is clear that ValI(α) ≥ 1−O(K|D| log(K|D|)
log (1/2ε)).

Let I ′′ be the instance obtained from I ′ by applying 1-Minimality. Suppose, for contradiction,
that I ′′ has an empty constraint. Note that the empty constraint is originated from C0

I \ D′I .
Then, since I0 contains all the constraints in I ′, Ĩ also must have an empty constraint, which is a
contradiction. Thus, I ′′ has no empty constraint, and it follows that I ′ has a satisfying assignment
since I ′ is an instance of a CSP of width 1.

From the same argument and Lemma D.14, when Apx-1-Minimality terminates at Line 15, we
can obtain an assignment α such that ValI(α) ≥ 1−O(K|D| log(K|D|)

log (1/2ε)).

19

	Introduction
	Our contribution

	Preliminaries
	CSP preliminaries
	Algorithmic preliminaries
	Algebraic preliminaries

	Width 1 implies robust decidability by LP
	LP-decidable implies width 1
	Conclusions
	Lattice CSPs: better quantitative dependence on
	Robust decidability for lattice CSPs

	Connection to Property Testing
	Minor proof details for Section 4
	Another proof of Theorem 3.1
	Weighted constraint satisfaction problems
	(k,)-Minimality
	Proof of Theorem D.1

