
Computational Applications Of Noise Sensitivity

by

Ryan William O’Donnell

B.Sc., Mathematics and Computer Science, University of Toronto (1999)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2003

c©Ryan William O’Donnell, 2003. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

Author .
Department of Mathematics

May 2, 2003

Certified by. .
Madhu Sudan

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Rodolfo Ruben Rosales

Chair, Applied Mathematics Committee

Accepted by .
Pavel Etingof

Chair, Department Committee on Graduate Students

Computational Applications Of Noise Sensitivity

by

Ryan William O’Donnell

Submitted to the Department of Mathematics
on May 2, 2003, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis is concerned with the study of the noise sensitivity of boolean functions and
its applications in theoretical computer science. Noise sensitivity is defined as follows: Let
f be a boolean function and let ε ∈ (0, 1

2) be a parameter. Suppose a uniformly random
string x is picked, and y is formed by flipping each bit of x independently with probability
ε. Then the noise sensitivity of f at ε is defined to be the probability that f(x) and f(y)
differ.

In this thesis we investigate the noise sensitivity of various classes of boolean functions,
including majorities and recursive majorities, boolean threshold functions, and monotone
functions. Following this we give new complexity-theoretic and algorithmic applications of
noise sensitivity:

• Regarding computational hardness amplification, we prove a general direct product
theorem that tightly characterizes the hardness of a composite function g⊗f in terms
of an assumed hardness of f and the noise sensitivity of g. The theorem lets us prove
a new result about the hardness on average of NP: If NP is (1 − poly(n))-hard for
circuits of polynomial size, then it is in fact (1

2 + o(1))-hard for circuits of polynomial
size.

• In the field of computational learning theory, we show that any class whose functions
have low noise sensitivity is efficiently learnable. Using our noise sensitivity estimates
for functions of boolean halfspaces we obtain new polynomial and quasipolynomial
time algorithms for learning intersections, thresholds, and other functions of halfs-
paces. From noise sensitivity considerations we also give a polynomial time algorithm
for learning polynomial-sized DNFs under the “Random Walk” model; we also give
the first algorithm that learns the class of “junta” functions with efficiency better
than that of the brute force algorithm.

• Finally, we introduce a new collective coin-flipping problem whose study is equivalent
to the study of “higher moments” of the noise sensitivity problem. We prove several
results about this extension, and find optimal or near-optimal choices for the coin-
flipping function for all asymptotic limits of the parameters. Our techniques include
a novel application of the reverse Bonami-Beckner inequality.

Thesis Supervisor: Madhu Sudan
Title: Associate Professor of Electrical Engineering and Computer Science

Acknowledgments

I would like to express many thanks to my advisor, Madhu Sudan. Madhu provided me

with endless assistance and with superb insights and suggestions throughout my time at

MIT. He is everything one could ask for in an advisor.

I would like to thank my main collaborators and good friends, Adam Klivans, Elchanan

Mossel, and Rocco Servedio. Fine fellows, all, and their technical ideas have informed nearly

all aspects of my research and this thesis.

I would like to thank my girlfriend Zeynep Tolon for her encouragement and support

over the years. Zeynep is a great person and a great source of inspiration.

Finally, I would like to thank my coauthors — Nader Bshouty, Adam Klivans, Elchanan

Mossel, Oded Regev, Rocco Servedio, and Benny Sudakov — for their contributions to this

thesis.

In addition. . .

In connection with the work on the noise sensitivity of monotone functions, Elchanan and

I would like to thank Gil Kalai for encouraging us to write up the result, and Yuval Peres for

interesting discussions. In connection with the work on hardness amplification, I would like

to thank Madhu Sudan for the idea of using the majority function to amplify hardness within

NP, Russell Impagliazzo for showing me his independent proof of a 1 − 1/poly → 1 − Ω(1)

amplification for NP, and Michael Rosenblum for a helpful discussion. In connection with

the work on the noise sensitivity of halfspaces, Adam, Rocco, and I would like to thank

Yuval Peres for sharing his proof of the O(
√

ε) upper bound with us. In connection with

the work on learning juntas, Elchanan, Rocco, and I would like to thank Adam Kalai and

Yishay Mansour for telling us about their prior results; I would also like to thank Oded

Regev for letting me include his proof of Theorem 5.5.12 in this thesis. In connection with

the work on cosmic coin flipping from [MO02a], Elchanan and I would like to thank Oded

Schramm and Nati Srebro for many helpful ideas and suggestions.

This thesis is dedicated to my parents, Eric and Judy O’Donnell.

Bibliogrpahic note

Much of this research has been published already, and most of it was performed jointly

with other researchers. The work on the noise sensitivity of monotone functions from Sec-

tions 3.6, 3.7, 3.8, and 3.9 is joint work with Elchanan Mossel [MO02b]. The work on the

noise sensitivity of halfpsaces and on learning functions of halfspaces from Sections 3.5,

3.10, 3.11, 3.12, 5.3, and most of Section 5.2 is joint work with Adam Klivans and Rocco

Servedio [KOS02]. The work on hardness amplification from Chapter 4, along with pre-

liminary versions of Sections 3.4, 3.7, and 3.9, appeared in [O’D02]. The work on learning

DNF from random walks from Section 5.4 is joint work with Nader Bshouty, Elchanan

Mossel, and Rocco Servedio [BMOS03]. The work on learning juntas from Section 5.5 is

joint work with Elchanan Mossel and Rocco Servedio [MOS03]. The work on the cosmic

coin flipping problem from Chapter 6, except for the upper bound on the parties’ success

rate in Section 6.9, is joint work with Elchanan Mossel [MO02a]. The upper bound from

Section 6.9 along with the isoperimetric inequality from Section 7.1 is part of ongoing work

with Elchanan Mossel, Oded Regev, and Benny Sudakov [MORS03].

8

Contents

1 Introduction 15

1.1 A brief history of noise sensitivity in computer science 16

1.1.1 Kahn, Kalai, and Linial . 16

1.1.2 H̊astad . 17

1.1.3 Benjamini, Kalai, and Schramm . 18

1.1.4 Other relevant works . 18

1.2 Current complexity-theoretic motivations — juntas 19

1.3 New applications, and the outline of this thesis 20

2 Definitions And Preliminaries 23

2.1 Noise sensitivity definitions . 23

2.2 Functions we consider . 25

2.3 Fourier analysis on {+1,−1}n . 27

2.4 The hypercontractivity theorem and its consequences 31

3 The Noise Sensitivity Of Specific Functions 37

3.1 PARITY . 37

3.2 Dictator functions . 39

3.3 AND and OR . 40

3.4 Majority . 42

3.5 The Fourier spectrum of majority . 46

3.6 Noise sensitivity of monotone functions . 51

3.7 Iterating majority and other functions . 55

3.8 Talagrand’s random CNF . 59

3.9 Tribes functions . 63

9

3.10 Threshold functions . 67

3.11 Read-once intersections of halfspaces . 74

3.12 Read-once majorities of halfspaces . 76

3.12.1 Proof of Lemma 3.12.2 . 80

4 Hardness Amplification 83

4.1 Motivation: the hardness of NP . 86

4.2 Intuition for the direct product theorem . 87

4.3 The hardness theorem . 89

4.4 Proof of Lemma 4.3.2 . 93

4.5 Hardness amplification within NP . 95

4.6 A corresponding easiness theorem . 99

5 Learning Theory 103

5.1 PAC learning preliminaries . 104

5.1.1 Uniform-distribution learning via Fourier coefficients 105

5.2 Learning noise-stable functions . 106

5.3 Learning intersections and other functions of halfspaces 108

5.4 Learning DNF from random walks . 110

5.4.1 The Random Walk learning model 111

5.4.2 A Noise Sensitivity learning model 114

5.4.3 Performing the Bounded Sieve in the Noise Sensitivity model 115

5.4.4 Proof of Theorem 5.4.5 . 116

5.5 Learning juntas . 119

5.5.1 History of the problem . 120

5.5.2 Representing boolean functions as polynomials 122

5.5.3 Learning tools for the junta problem 123

5.5.4 Learning using new structural properties of boolean functions 126

5.5.5 Variants of the junta learning problem 129

6 Coin Flipping From A Cosmic Source 131

6.1 Coin flipping from a cosmic source . 131

6.2 Definitions and notation . 133

10

6.3 Outline of results . 134

6.4 k = 2, 3 . 138

6.5 All parties should use the same function . 139

6.6 The protocol should be left-monotone . 141

6.7 Fixed ε, n; k → ∞ . 144

6.8 Fixed k, n; ε → 0 or ε → 1
2 . 146

6.9 Fixed ε; k → ∞ with n unbounded . 149

6.10 Computer-assisted analysis; n = 5 . 153

7 Discussion And Open Problems 155

7.1 Isoperimetry via the reverse Bonami-Beckner inequality 155

7.2 Open problems . 157

7.2.1 Fourier analysis . 157

7.2.2 The reverse Bonami-Beckner inequality 157

7.2.3 Noise sensitivity of halfspaces . 158

7.2.4 Hardness amplification . 158

7.2.5 Learning juntas . 158

7.2.6 The cosmic coin problem . 159

11

12

List of Figures

3-1 Noise sensitivity graphs of PARITY . 38

3-2 Fourier spectrum graph of PARITYn . 39

3-3 Noise sensitivity graph of πi
n . 40

3-4 Fourier spectrum graph of πi
n . 41

3-5 Noise sensitivity graphs of AND (equivalently, OR) 42

3-6 Fourier spectrum graph of AND7 . 43

3-7 Noise sensitivity graphs of MAJ . 47

3-8 Fourier spectrum graph of MAJ45 . 49

3-9 Noise sensitivity graphs of TRIBES . 65

3-10 Fourier spectrum graph of TRIBES44 . 67

13

14

Chapter 1

Introduction

The subject of this thesis is the noise sensitivity of boolean functions. To motivate the

concept, imagine an idealized election in which there are n voters and only two parties,

called +1 and −1. For simplicity, suppose each voter independently casts a vote for +1 or

−1 uniformly at random. An election scheme is a boolean function on n bits mapping the

voters’ votes to a winning party.

There are several properties we would want an election scheme f : {+1,−1}n → {+1,−1}
to have; for example, it should be balanced (equally often +1 and −1), and it should exhibit

some degree of symmetry among the n voters. What will concern us in this example is the

scheme’s robustness to errors in the recording of the votes. Suppose that, independently

for each voter, there is an ε chance that the vote is misrecorded (+1 is changed to −1 and

vice versa). What is the probability that this affects the outcome of the election, as defined

by f? That is, what is the probability that f applied to the recorded votes differs from f

applied to the true votes?

This probability is precisely what we mean by the noise sensitivity of f at ε. Let us

make a formal definition.

Definition 1.0.1 Let f : {+1,−1}n → {+1,−1} be a boolean function, let x be a uniformly

random string from {+1,−1}n, and let y be derived from x by flipping each bit independently

with probability ε. Then the noise sensitivity of f at ε is defined to be:

NSε(f) = P[f(x) 6= f(y)].

15

In this thesis we will calculate and estimate the noise sensitivity of various boolean

functions. We will also give applications of the study of noise sensitivity to problems in

theoretical computer science.

1.1 A brief history of noise sensitivity in computer science

We begin by outlining the historical development of the noise sensitivity concept in theo-

retical computer science.

1.1.1 Kahn, Kalai, and Linial

The noise sensitivity of boolean functions was first studied in 1988 by Kahn, Kalai, and

Linial [KKL88], although they did not use the phrase “noise sensitivity,” nor did they study

precisely the quantity in Definition 1.0.1. The most outstanding contribution of this paper

was probably its demonstration of the power of using Fourier analysis and other analytic

techniques in solving combinatorial problems about the boolean hypercube. In particular,

Kahn et al. gave an ingenious application of the Bonami-Beckner inequality [Bon68, Bon70,

Bec75] from classical harmonic analysis; this inequality proved extremely powerful in future

analyses of noise sensitivity and Fourier coefficients [BKK+92, Tal94, Raz95, FK96, BK97b,

Fri98, FK98, BKS99, Bou99, Bou01, BJ02, KS02].

The main result proved in Kahn et al.’s work was a theorem stating that any balanced

boolean function has a variable with “influence” Ω(log n
n). (For definitions of “influence” and

other terms see Chapter 2.) They also considered problems of packings in the hypercube

with extremal distance distribution properties, and, most relevantly for us, mixing times for

random walks on the hypercube in which the initial distribution is uniform over a given set.

This last problem can be stated thus: Given a boolean function f : {+1,−1}n → {+1,−1},
consider A = f−1(−1), a subset of the hypercube. Suppose we take a standard random

walk on the hypercube in which the initial distribution is uniform over A. What can be said

about the speed with which the walk converges to the stationary (uniform) distribution in

L2 distance?

This question is very similar in nature to the question of noise sensitivity. One part of

Kahn et al.’s problem amounts to determining the probability that a random walk of length

εn, starting from A, ends up outside A; this is almost the same as asking the probability that

16

a randomly chosen point in A, when it has each bit flipped independently with probability

ε, ends up outside A. This latter quantity is precisely the noise sensitivity of f (up to a

factor of |f−1(−1)|/2n). Kahn et al. already gave a formula for their noise sensitivity-like

quantity in terms of Fourier coefficients (cf. Proposition 2.3.1), and showed that bounds on

Fourier tails implied bounds on mixing time (cf. Proposition 2.3.2). Interestingly, Kahn et

al. wrote that studying the mixing times of such random walks (and thus, implicitly, noise

sensitivity) was the original motivation for their paper.

1.1.2 H̊astad

The next major development in the study of noise sensitivity came independently in 1997

with H̊astad’s work [H̊as97] on the NP-hardness of approximation problems (see also [H̊as01]).

This breakthrough paper gave several new optimal inapproximability results for problems

such as MAX-3SAT, MAX-3LIN, and Set Splitting. These results were applications of a

new technique H̊astad developed for designing and analyzing probabilistically checkable

proofs (PCPs); the technique, which we now briefly describe, involves noise sensitivity in

an essential way.

A crucial step in designing efficient PCPs is to encode certain information in an error

correcting code called the “long code” (introduced in [BGS98]). The long code over a set

of n objects has as its message space the set of all functions f : {+1,−1}n → {+1,−1};
the encoding of a particular object i ∈ [n] is the “dictator” (projection) function x 7→ xi.

Typically one has oracle access to a function f which is supposed to be a dictator function,

and one wants to verify the fact that f depends on only one variable by making an extremely

small number of queries to the oracle. H̊astad showed that it suffices for applications to come

up with a test which only checks that there is some small set of variables which significantly

control the value of f . H̊astad then gave such a test; although he did not phrase it in these

terms, essentially his test works by performing one sample of the noise sensitivity of the

unknown function. Roughly speaking, one chooses x and y as in Definition 1.0.1, queries f

at these two points, and accepts if f(x) = f(y). As did Kahn, Kalai, and Linial, H̊astad

analyzed his test by deriving and working with a formula for noise sensitivity in terms of

Fourier coefficients (cf. Proposition 2.3.1).

In addition to deriving extremely important results via noise sensitivity, H̊astad’s work

pointed the way to some of the more exciting current developments in noise sensitivity.

17

These include more PCP-based results, as well as tighter relationships between having low

noise sensitivity and having the property of depending on only a small number of variables.

We will discuss the latter more in Section 1.2.

1.1.3 Benjamini, Kalai, and Schramm

In 1998, Benjamini, Kalai, and Schramm [BKS99] gave the first comprehensive study of

the noise sensitivity of boolean functions. In addition to introducing the quantity (which

they too did not explicitly call “noise sensitivity”) and the basic formulas, they gave several

interesting new definitions and theorems. They defined a balanced family of functions {fn}
to be “asymptotically noise sensitive” if NS.1(fn) → 1

2 as n → ∞ (this turns out not to

depend on the value .1), and they defined it to be “asymptotically noise stable” if NSε(fn)

can be upper-bounded by a function of ε alone which goes to 0 as ε → 0.

Benjamini et al. gave equivalent conditions that function families be asymptotically noise

sensitive or noise stable in terms of Fourier coefficients. They also gave a deep theorem

showing that if II(fn) → 0 then {fn} is asymptotically noise sensitive (see Definition 2.3.6

for the definition of II(f)). Using this theorem, Benjamini et al. showed that a certain family

of functions defined by a bond percolation scenario is asymptotically noise sensitive. The

authors also related asymptotic noise sensitivity and stability to correlations with weighted

majority functions (i.e., boolean halfspaces), and showed that the class of weighted majority

functions is asymptotically noise stable (cf. the results in Section 3.10 of this thesis). Finally,

the authors also made some speculative conjectures connecting the noise stability of a

function to the size and depth of the AC
0 and TC

0 circuits needed to compute it.

1.1.4 Other relevant works

We now briefly describe some other papers of relevance. Ben-Or and Linial [BL90] intro-

duced the problem of collective coin-flipping in the perfect information model; we study a

related problem in Chapter 6. They also studied the influence of variables on boolean func-

tions, influencing and motivating the work of Kahn, Kalai, and Linial. Bourgain, Kahn,

Kalai, Katznelson, and Linial [BKK+92] generalized some of the results in [KKL88], ex-

tending their theorem on the existence of a variable with influence Ω(log n
n) to functions

on general product spaces, f : Xn → {+1,−1} (see also [Fri02]). Bshouty, Jackson, and

Tamon [BJT99b] related noise sensitivity to computational learning theory under noise.

18

Schramm and Tsirelson [ST99] studied noise sensitivity on trees, as opposed to the boolean

hypercube. Some works of Talagrand (e.g., [Tal96]) and Tsirelson (e.g., [Tsi99]) also have

some relevance.

1.2 Current complexity-theoretic motivations — juntas

H̊astad’s work demonstrated the importance of a certain relaxation in long code-based

probabilistically checkable proofs: instead of having to test whether a codeword function

is close to a dictator function, it is often enough to test whether it is close to a function

dependent on only a small number of coordinates. A function over many variables which

depends on only a small number of them is known as a junta:

Definition 1.2.1 A boolean function f : {+1,−1}n → {+1,−1} is called a k-junta if it

only depends on some k of its n inputs. f is called a (γ, k)-junta, or is said to be γ-close

to a k-junta, if there is a k-junta f ′ : {+1,−1}n → {+1,−1} such that f and f ′ differ on

at most γ2n inputs.

The terms “junta” and “dictator function” come from the theory of social choice (see,

e.g., [Kal02]), and can be understood in terms of the election example described at the

beginning of this chapter — a junta is a choice function that is controlled by a small number

of voters. The same considerations explain why a 1-junta is called a dictator function.

Coming up with simple tests that determine whether a boolean function is close to being

a junta has proved to be a very important problem for hardness of approximation results.

H̊astad’s analysis showed that a function with low noise sensitivity must have some small set

of coordinates which exhibit a reasonably significant amount of influence over the function.

H̊astad asked whether in fact having low noise sensitivity implied being close to a junta. In

1998 Friedgut [Fri98] showed that having low average sensitivity (see Definition 2.3.4 and

Theorem 2.4.6) was a sufficient condition for being close to a junta. This result played an

important role in the breakthrough paper of Dinur and Safra [DS02] which showed that

the vertex cover problem is NP-hard to approximate to within a factor of 1.36. Friedgut’s

characterization was not necessary, however, as functions which are close to juntas may

have very large average sensitivity. Finally, in 2001 Bourgain [Bou01] showed that indeed

any function with sufficiently low noise sensitivity must be close to a junta. Bourgain’s

main theorem can be rephrased in terms of a corollary:

19

Theorem 1.2.2 Let f : {+1,−1}n → {+1,−1} be a boolean function, and let δ = NSε(f).

If δ ≤ ε
1
2
+Ω(1), then f is a (O(δ), O(δ−3)16δ−4

)-junta.

The characterization is also necessary in a limited sense of the parameters; it is easy to

show (using, say, Proposition 3.1.2) that any (O(δ), O(δ−3)16δ−4
)-junta must have noise

sensitivity at most O(δ) at ε = o(δ416−δ−4
).

Bourgain’s theorem may prove very useful for future PCP-based hardness of approxi-

mation results. A paper of Khot [Kho02] shows how Bourgain’s theorem along with Khot’s

“Unique Games” conjecture can be used to show that it is NP-hard to distinguish between

instances of 2-Linear Equations Mod 2 in which either a 1 − ε fraction of the equations

is satisfiable or at most a 1 − ε
1
2
+δ fraction is satisfiable. (Khot attributes the result as

being “essentially” due to H̊astad.) We also note that Kindler and Safra [KS02] extended

Bourgain’s theorem (with weaker parameters) to the case of biased product measures on

{+1,−1}n; such generalizations were essential for the hardness result of Dinur and Safra.

Finally, we note that finding tests for juntas in the domains of property testing algo-

rithms [PRS01, FKR+02, CG02] and learning theory [GTT99] (see also Section 5.5) is an

active research area.

1.3 New applications, and the outline of this thesis

In this thesis we give several new complexity-theoretic and algorithmic applications of noise

sensitivity.

We begin in Chapter 2 by giving some basic facts about noise sensitivity, introducing the

families of boolean functions we consider in the thesis, discussing the relationship between

noise sensitivity and Fourier analysis, and introducing the Bonami-Beckner inequality.

In Chapter 3 we analyze and estimate the noise sensitivity of several families of boolean

functions, including majority functions, recursive majorities, boolean threshold functions,

tribes functions, and read-once intersections and majorities of boolean halfspaces. We also

give an essentially complete picture of the maximal noise sensitivity of monotone functions

for all ranges of ε.

In Chapter 4 we study the problem of hardness amplification. Hardness amplification

asks the following question: Suppose a boolean function f on n inputs cannot be correctly

computed on more than (1−ε)2n inputs by circuits of a given size. Let g be another boolean

20

function on m inputs, and consider the function h given by applying f to m independent

strings of length n, and applying g to the resulting m outputs. How hard is h to compute,

in terms of ε and properties of g, for circuits of comparable size? We give a near-tight

answer to this question in terms of the noise sensitivity of g at ε. Using our answer and

the analysis of the noise sensitivity of monotone functions, we show the following theorem

regarding the hardness of NP: If NP is (1 − poly(n))-hard for circuits of polynomial size,

then it is in fact (1
2 + n−

1
2
+o(1))-hard for circuits of polynomial size.

In Chapter 5 we turn our attention to computational learning theory. We first show how

known techniques can be combined to prove that functions with low noise sensitivity can be

efficiently learned under the uniform distribution. Using our noise sensitivity estimates for

functions of boolean halfspaces we obtain the first known polynomial and quasipolynomial

time algorithms for learning intersections, thresholds, and other functions of halfspaces.

We next show that the notorious class of functions with polynomial-sized DNF formulas

can be learned efficiently under the “Random Walk” model; the proof uses estimations

of noise sensitivity-type quantities. Finally, we attack the same problem under the usual

uniform distribution model by considering the class of junta functions, which as described

in Section 1.2 are intimately involved in the study of noise sensitivity. We make the first

known substantial progress over the trivial algorithm for learning juntas.

In Chapter 6 we introduce a new problem called the “cosmic coin-flipping problem,”

whose study is equivalent to the study of “higher moments” of the noise sensitivity problem.

In the cosmic coin-flipping problem, a number of non-communicating parties wish to agree

on a uniformly random bit. The parties have access to the same uniformly random “cosmic”

string, but each sees only an ε-noisy version of it. Each party applies a boolean function

to the bits it sees; we wish to find the functions that maximize the probability that all

parties agree on their outputs. We prove several results about this extension of the noise

sensitivity problem, and find optimal and near-optimal choices for the functions for all

asymptotic limits of the parameters. One of our results uses the reverse Bonami-Beckner

inequality, a technique which does not appear to have been previously exploited in the study

of boolean functions.

Finally, in Chapter 7 we present some conjectures and open problems suggested by the

work in this thesis.

21

22

Chapter 2

Definitions And Preliminaries

2.1 Noise sensitivity definitions

Throughout this thesis we shall write bits as +1 and −1 rather than the usual 0 and 1; this

simplifies notation greatly, mainly because it means the parity of some bits is equal to their

product. We view +1 as being “false” and −1 as being “true,” and we sometimes write F

and T in place of these quantities for clarity.

We shall also view the boolean hypercube {+1,−1}n as a probability space under the

uniform probability measure P. Unless otherwise indicated, E shall denote expectation over

the uniform distribution.

Consider two different ways of making a bit x0 ∈ {+1,−1} noisy:

Definition 2.1.1 We define flipping a bit x0 ∈ {+1,−1} as replacing x0 with −x0. We

define updating x0 as replacing x0 with a uniform random bit.

Note that the probabilistic experiments of updating a bit and flipping it with probability 1
2

are identical. Let us introduce some notation for flipping a bit of a string:

Definition 2.1.2 Given x ∈ {+1,−1} and j ∈ [n], we define σjx to be x with its jth bit

flipped.

We now describe a noise operator which acts on strings:

Definition 2.1.3 Given x ∈ {+1,−1}n and 0 ≤ ε ≤ 1, we define Nε(x) to be the random

variable taking values in {+1,−1}n given by flipping each bit of x independently with prob-

23

ability ε. For ε ≤ 1
2 , Nε(x) is equivalently defined by updating each bit in x independently

with probability 2ε.

As special cases, note that N0(x) is the constant random variable x, N 1
2
(x) is a uniform

random string independent of x, and N1(x) is constantly the string with Hamming distance

n from x. We will almost always consider only ε ≤ 1
2 .

In the study of noise sensitivity, we consider choosing a uniformly random string x and

letting y being an ε-noisy version of x. We will sometimes use the following facts:

Fact 2.1.4 Let x ∈ {+1,−1}n be chosen uniformly at random and let y = Nε(x). Then

• (x, y) has the same probability distribution as (y, x); and,

• the random variables xiyi are mutually independent for i ∈ [n], and E[xiyi] = 1 − 2ε.

We now repeat Definition 1.0.1 using our new notation:

Definition 2.1.5 Given a boolean function f : {+1,−1}n → {+1,−1} and 0 ≤ ε ≤ 1, the

noise sensitivity of f at ε is

NSε(f) = P
x, y=Nε(x)

[f(x) 6= f(y)].

Since f(x) 6= f(y) ⇒ f(x)f(y) = −1, and f(x) = f(y) ⇒ f(x)f(y) = +1, we have the

following:

Fact 2.1.6

NSε(f) =
1

2
− 1

2
E

x, y=Nε(x)
[f(x)f(y)].

Since (x, y) and (y, x) have the same probability distribution, we have, for example,

NSε(f) = 2P[f(x) = T, f(Nε(x)) = F]. Consequently,

Fact 2.1.7

NSε(f) = 2P[f(x) = T]P[f(Nε(x)) = F | f(x) = T]

= 2P[f(x) = F]P[f(Nε(x)) = T | f(x) = F].

24

The noise sensitivity of any function at 0 is 0. Since x and N 1
2
(x) are independent,

the noise sensitivity of f at 1
2 depends only on the fraction of points on which f is −1; by

Fact 2.1.6, NS 1
2
(x) = 1

2 − 1
2E[f(x)]2. This quantity arises frequently:

Fact 2.1.8 If f : {+1,−1}n → {+1,−1} is a boolean function,

Var[f] = 1 − E[f(x)]2 = 2 NS 1
2
(x) = 4P[f = T]P[f = F].

For fixed f , we have some general facts about NSε(f) as a function of ε on [0, 1
2]:

Proposition 2.1.9 For any f : {+1,−1}n → {+1,−1}, NSε(f) is a continuous, increasing,

log-concave function of ε on [0, 1
2] which is 0 at ε = 0 and 1

2Var[f] at ε = 1
2 . If f is

nonconstant then NSε(f) is strictly increasing in ε.

The fact that Nε(f) is continuous, increasing, and log-concave will follow immediately from

Proposition 2.3.1.

Finally, we remark that adding irrelevant input variables to a function does not change

its noise sensitivity.

2.2 Functions we consider

In this section we describe the sorts of functions whose noise sensitivity we will analyze.

We begin with some very basic functions:

Definition 2.2.1

• PARITYn : {+1,−1}n → {+1,−1} is the parity function, (x1, . . . , xn) 7→∏n
i=1 xi.

• πi
n : {+1,−1}n → {+1,−1} is the function (x1, . . . , xn) 7→ xi. In the context of the

study of boolean functions it is traditional to call the functions {±πi
n : i ∈ [n]} the

dictator functions rather than the more usual “projection functions.”

• ANDn : {+1,−1}n → {+1,−1} is the logical AND function, which is T (−1) if and

only if all input bits are T (−1).

• ORn : {+1,−1}n → {+1,−1} is the logical OR function, which is T (−1) unless all

input bits are F (+1).

25

• For n odd, MAJn : {+1,−1}n → {+1,−1} is the majority function, definable as

MAJn(x1, . . . , xn) = sgn(
∑n

i=1 xi). We emphasize that this function is defined only

for n odd.

We sometimes drop the subscript n from these function names for clarity.

Aside from PARITY, all of the functions defined above are examples of threshold func-

tions:

Definition 2.2.2 A boolean function f : {+1,−1}n → {+1,−1} is said to be a (weighted)

threshold function or a (boolean) halfspace if there are numbers w1, . . . , wn ∈ R, θ ∈ R

such that

f(x1, . . . , xn) = sgn

((
n∑

i=1

wixi

)
− θ

)
.

The numbers wi are called the weights and the number θ is called the threshold.

We will take sgn(0) to be undefined; consequently we will only admit threshold functions

with the property that
∑

wixi 6= θ for every choice of x ∈ {+1,−1}n. It is easily seen

that this is without loss of generality, since the weights can be perturbed slightly to prevent

equality.

We now describe some properties that boolean functions may possess.

Definition 2.2.3 A boolean function f : {+1,−1}n → {+1,−1} is said to be balanced

if it is equally often +1 or −1 (i.e., if E[f] = 0). It is said to be antisymmetric if

f(−x1, . . . ,−xn) = −f(x1, . . . , xn) for all x ∈ {+1,−1}n.

Note that antisymmetric functions are necessarily balanced, and that any threshold function

with threshold 0 is antisymmetric.

Definition 2.2.4 A boolean function f : {+1,−1}n → {+1,−1} is said to be monotone if

f(x) ≤ f(y) whenever x ≤ y in the sense that xi ≤ yi for all i ∈ [n]. Equivalently, f is

monotone if changing input bits from +1 to −1 can only change the value of f from +1 to

−1.

Note that any threshold function in which all weights are nonnegative is monotone. This

includes, e.g., πi for all i, AND, OR, and MAJ. Functions which become monotone when

the sense of +1 and −1 is switched for some input coordinates are called unate:

26

Definition 2.2.5 A boolean function f : {+1,−1}n → {+1,−1} is said to be unate if there

are signs s1, . . . , sn ∈ {+1,−1} such that the function (x1, . . . , xn) 7→ f(s1x1, . . . , snxn) is

monotone.

All threshold functions are unate.

Finally, we consider a simple operator which allows us to combine functions:

Definition 2.2.6 If f : {+1,−1}m → {+1,−1} and g : {+1,−1}n → {+1,−1} are boolean

functions, we define f ⊗ g : {+1,−1}mn → {+1,−1} by

f ⊗ g(x1, . . . , xmn) = f(g(x1, . . . , xn), g(xn+1, . . . , x2n), . . . , g(x(m−1)n+1, . . . , xmn)).

We also recursively define g⊗
k
: {+1,−1}nk → {+1,−1} by g⊗

1
= g, g⊗

k
= g ⊗ (g⊗

k−1
).

Note that the classes of monotone functions and unate functions are both closed under

⊗. We call a function of the form ORm ⊗ ANDn a read-once DNF and a function of the

form ANDm ⊗ORn a read-once CNF. We call a function of the form MAJ
⊗k

n a recursive, or

iterated, majority of n (of depth k).

We end this section with two simple but useful facts; the first follows immediately from

definitions, the second from the union bound.

Proposition 2.2.7 Suppose f : {+1,−1}m → {+1,−1}, g : {+1,−1}n → {+1,−1}, and g

is a balanced function. Then NSε(f ⊗ g) = NSNSε(g)(f).

Proposition 2.2.8 Suppose f : {+1,−1}m → {+1,−1} and gi : {+1,−1}ni → {+1,−1}
for i = 1 . . .m. Then NSε(f(g1, . . . , gm)) ≤∑m

i=1 NSε(gi).

2.3 Fourier analysis on {+1,−1}n

It is often very helpful to relate the noise sensitivity of boolean functions to their Fourier

coefficients. In this section we recall briefly the necessary notions from harmonic analysis

on the hypercube. For a fuller treatment, see, e.g., [Šte02].

27

The probability space {+1,−1}n naturally gives rise to an inner product space on all

functions f : {+1,−1}n → R, with

〈f, g〉 = E[fg] = 2−n
∑

x∈{+1,−1}n
f(x)g(x).

For a set S ⊆ [n] we define χS : {+1,−1}n → {+1,−1} to be the parity function χS(x) =
∏

i∈S xi. We also write simply xS for χS(x). Note that E[χS] = 0 for S 6= ∅; further,

χSχS′ = χS∆S′ , where ∆ denotes symmetric difference. It follows that (χS)S⊆[n] is an

orthonormal basis for the space of functions f : {+1,−1}n → R. We define the S Fourier

coefficient of f to be the correlation of f with the parity function on S, f̂(S) = 〈χS , f〉.
We have the Fourier expansion of f , f(x) =

∑
S⊆[n] f̂(S)xS By Parseval’s identity, for any

boolean function f : {+1,−1}n → {+1,−1} we have
∑

S⊆[n] f̂(S)2 = 1.

Because the basis (χS)S⊆[n] has very nice properties with respect to the noise operator,

we can get a formula for noise sensitivity in terms of Fourier coefficients:

Proposition 2.3.1

NSε(f) =
1

2
− 1

2

∑

S⊆[n]

(1 − 2ε)|S|f̂(S)2.

Proof: Let x be chosen uniformly at random, and let y = Nε(x). Now write f ’s Fourier

expansion in Definition 2.1.6:

NSε(f) =
1

2
− 1

2
E[f(x)f(y)]

=
1

2
− 1

2
E

∑

S⊆[n]

f̂(S)xS

∑

T⊆[n]

f̂(T)yT

=
1

2
− 1

2

∑

S,T⊆[n]

f̂(S)f̂(T)E[xSyT].

If S 6= T then E[xSyT] = 0. To see this, suppose, say, i ∈ S \ T ; then E[xSyT] =

E[xi]E[xS\{i}yT] by independence (see Fact 2.1.4) and E[xi] = 0. On the other hand, if

S = T then E[xSyT] = E[xSyS] =
∏

i∈S E[xiyi] again by independence, and the result

follows as E[xiyi] = 1 − 2ε by Fact 2.1.4. 2

It is now immediate that NSε(f) is a continuous, increasing, log-concave function of ε

on [0, 1
2] since each summand f̂(S)2(1 − 2ε)|S| is continuous, decreasing, and log-convex.

28

Further, if f is not constant then there is at least one S 6= ∅ such that f̂(S) > 0 and hence

NSε(f) is strictly increasing for ε ∈ [0, 1
2], as claimed in Proposition 2.1.9.

The formula in Proposition 2.3.1 provides an essential tool for studying and applying

noise sensitivity; as noted in Chapter 1, it was discovered — in slightly different versions

each time — by each of Kahn et al., H̊astad, and Benjamini et al. The formula shows that

the sensitivity of f to noise is closely related to how much of the `2 weight of f ’s Fourier

coefficients is concentrated on sets S of large size. Since the weights f̂(S)2 are nonnegative

and must sum to 1, we see that the more mass on coefficients with large |S|, the more

noise sensitive f is. Indeed, all the authors mentioned noticed that upper bounds on noise

sensitivity of f imply upper bounds on the tail of f ’s Fourier spectrum; thus the following

result can be considered folklore:

Proposition 2.3.2 For any f : {+1,−1}n → {+1,−1}, ε ∈ (0, 1
2],

∑

|S|≥1/ε

f̂(S)2 <
2

1 − e−2
NSε(f).

Proof: Starting from Proposition 2.3.1, we have

2NSε(f) = 1 −
∑

S⊆[n]

(1 − 2ε)|S|f̂(S)2

=
∑

S⊆[n]

f̂(S)2 −
∑

S⊆[n]

(1 − 2ε)|S|f̂(S)2

=
∑

S⊆[n]

[1 − (1 − 2ε)|S|]f̂(S)2

≥
∑

|S|≥1/ε

[1 − (1 − 2ε)|S|]f̂(S)2

≥
∑

|S|≥1/ε

[1 − (1 − 2ε)1/ε]f̂(S)2

>
∑

|S|≥1/ε

(1 − e−2)f̂(S)2,

and the proof is complete. 2

By considering parity functions, one sees that 2
1−e−2 is the sharpest possible constant

that does not depend on n or ε. We will sometimes use the above result in the following

alternate form which tells us just “how far up we need to go” to get all but δ of the Fourier

29

spectrum:

Corollary 2.3.3 Let f : {+1,−1}n → {+1,−1} be any boolean function, and suppose

m : [0, 1
2] → [0, 1] be a strictly increasing continuous function such that NSε(f) ≤ m(ε).

Then
∑

|S|≥k

f̂(S)2 ≤ δ for k =
1

m−1(δ/2.32)
.

Proof: Immediate from Proposition 2.3.2, using 2
1−e−2 < 2.32. 2

We now consider a few more quantities derivable from a function’s Fourier coefficients.

Ben-Or and Linial [BL90] introduced notation for the influence of a variable on a boolean

function (the quantity is known as the Banzhaf power index [Ban65] in the theory of choice);

Kahn et al. [KKL88] introduced the notion of average sensitivity.

Definition 2.3.4 Given f : {+1,−1}n → {+1,−1} and j ∈ [n], define

Ij(f) = P
x∈{+1,−1}n

[f(x) 6= f(σjx)],

called the influence of j on f . Also define

I(f) =
n∑

j=1

Ij(f),

called the average sensitivity of f .

Note that if f is monotone then Ij(f) is precisely f̂({j}). The name “average sensitivity”

comes from the fact that I(f) is the expected number of indices in a uniformly randomly

chosen x whose flipping causes the value of f to flip. Kahn et al. related I(f) to the Fourier

coefficients of f (monotone or not):

Proposition 2.3.5

I(f) =
∑

S⊆[n]

|S|f̂(S)2.

Benjamini et al. [BKS99], influenced by Talagrand [Tal96], introduced the following

quantity:

Definition 2.3.6

II(f) =
n∑

j=1

Ij(f)2.

30

Since we are interested in asymptotic analysis of noise sensitivity, for a given function

f it is natural to look at the behavior of the derivatives of NSε(f) (with respect to ε) near

0 and 1
2 ; these quantities are related to I, II, and f ’s Fourier coefficients of degree 1:

Proposition 2.3.7 For any boolean function f , NS
′
ε(f) is a decreasing function of ε on

[0, 1
2], with

NS
′
0(f) =

∑

S⊆[n]

|S|f̂(S)2 = I(f)

=
∑

|S|=1

f̂(S) (if f is monotone),

NS
′
1
2
(f) =

∑

|S|=1

f̂(S)2

= II(f) (if f is monotone).

Proof: NS
′
ε(f) is decreasing as a function of ε because NSε(f) is concave (Proposition 2.1.9).

The formulas for NS
′
0(f) and NS

′
1
2

(f) follow by differentiating the formula in Proposi-

tion 2.3.1, and using Proposition 2.3.5 and the fact that Ij(f) = f̂({j}) if f is a monotone

function. 2

2.4 The hypercontractivity theorem and its consequences

Let us introduce a functional operator closely connected to noise sensitivity:

Definition 2.4.1 For each ρ ∈ [−1, 1], the Bonami-Beckner operator Tρ is a linear operator

that maps the space of functions {+1,−1}n → R into itself via

Tρ(f) =
∑

S⊆[n]

ρ|S|f̂(S)χS ,

or equivalently,

Tρ(f)(x) = E
y=N 1

2− 1
2 ρ

(x)
[f(y)].

Note that the name “Bonami-Beckner operator” is not used consistently in the computer

science literature. Also note that we usually only consider Tρ for ρ ∈ [0, 1]. The equivalence

between the two definitions given follows easily from the considerations in Proposition 2.3.1.

31

Let us list some simple properties of the Bonami-Beckner operator:

Fact 2.4.2 Let f : {+1,−1}n → R.

• T0(f) = E[f], T1(f) = f , and T−1(f)(x) = f(−x). Also E[Tρ(f)] = E[f].

• For all ρ 6= 0, Tρ is a 1-1 operator on the space of functions {+1,−1}n → R. (Proof:

use the first definition of Tρ.)

• For all ρ 6= 0, Tρ is a self-adjoint operator on the space of functions {+1,−1}n → R;

i.e., 〈Tρf, g〉 = 〈f, Tρg〉. (Proof: use the second definition and the first point of

Fact 2.1.4.)

• For all |ρ| < 1, Tρ is a positivity-improving operator — i.e., if f ≥ 0 and f 6= 0 then

Tρ(f) > 0. If |ρ| = 1 then Tρ is positivity-preserving (i.e., Tρ(f) ≥ 0 in the same

circumstances). (Proof: use the second definition of Tρ.)

• For every p ≥ 1, Tρ is a contraction in Lp({+1,−1}n): ||Tρf ||p ≤ ||f ||p. For every

p ≤ 1, Tρ is an expansion in L+
p ({+1,−1}n): ||Tρf ||p ≥ ||f ||p for f ≥ 0.1 (Proof: use

the second definition of Tρ and Jensen’s inequality.)

• If f is a boolean function — i.e., has range {+1,−1} — and ε ∈ [0, 1
2], then

NSε(f) = 1
2 − 1

2 ||T√1−2ε(f)||22.

The last fact above provides the connection between the Bonami-Beckner operator and

noise sensitivity; studying the noise sensitivity of f is equivalent to studying the 2-norm of

the Bonami-Beckner operator applied to f .

In the remainder of this subsection we discuss a very powerful theorem concerned with

norms and the Bonami-Beckner operator. As we saw in Fact 2.4.2, for p ≥ 1, Tρ is a

contractive map in Lp. In fact, the Bonami-Beckner operator is a hypercontractive map;

i.e., it contracts as an operator from Lq to Lp for some q > p. The following theorem

was first proved by Bonami [Bon68], in a form equivalent to the second statement of the

theorem:

1The case p = 0 is a removable singularity; by ||f ||0 we mean the geometric mean of |f |’s values.

32

Theorem 2.4.3 Let f : {+1,−1}n → R and q ≥ p ≥ 1. Then

||Tρ(f)||q ≤ ||f ||p for all 0 ≤ ρ ≤
(

p − 1

q − 1

) 1
2

.

Equivalently, if f has f̂(S) = 0 for all |S| > d, then

||f ||q ≤
(

q − 1

p − 1

) d
2

||f ||p for all q ≥ p ≥ 1.

Theorem 2.4.3 is frequently only stated and used in the case q = 2.

Some words about the history of Theorem 2.4.3 are in order. Theorem 2.4.3 is usually

referred to in the computer science literature as the Bonami-Beckner inequality (or even just

Beckner’s inequality). It was first proved by Bonami in 1968 [Bon68], though not precisely

in the format stated above; see Bonami’s 1970 paper [Bon70] for more explanation and an

explicit proof. Bonami’s paper was inspired in part by a 1960 paper of Rudin [Rud60] in

which a similar theorem is proved in the setting f : Zn → R. Bonami’s papers were in

French and it appears they were not widely known to English-speaking researchers until the

early 1990’s — see [Gro92]. Kahn, Kalai, and Linial [KKL88] were the first to use Theo-

rem 2.4.3 in computer science, and they attributed the result to Beckner [Bec75]. Beckner

was motivated in part by Nelson’s inequality [Nel73], a well-known continuous analogue of

Theorem 2.4.3 for real-valued functions f in one-dimensional Gaussian space. Hypercon-

tractive inequalities in this setting have been studied fairly intently and are closely related to

logarithmic Sobolev inequalities — see [Bak92, Gro92, ABC+02]. Interestingly, it is known

([Gro75]) that Nelson’s inequality can be proved very simply from the Bonami-Beckner the-

orem using a limiting argument. There are now many known proofs of the Bonami-Beckner

inequality; see [Gre02, Šte02] for particularly short ones.

Several deep theorems about noise sensitivity and influences of boolean functions are

proved using the Bonami-Beckner inequality. As mentioned, Kahn et al. [KKL88] were the

first to use the result in computer science. They proved the following lower bound on II,

which in turn shows that every balanced boolean function has a variable with influence

Ij ≥ Ω(log n
n):

33

Theorem 2.4.4 If f : {+1,−1}n → {+1,−1} is a boolean function, then

II(f) ≥ Ω

(
Var[f]2

log2 n

n

)
.

Talagrand [Tal94] improved this result:

Theorem 2.4.5 If f : {+1,−1}n → {+1,−1} where {+1,−1}n is the product space in

which P[−1] = p, then

n∑

j=1

I
(p)
j (f)

log(1/I
(p)
j (f))

≥ Ω(p(1 − p)Var[f]).

In 1998 Friedgut [Fri98] used the Bonami-Beckner inequality to show that functions

with very low average sensitivity (significantly smaller than log n, say) are close to juntas:

Theorem 2.4.6 For any boolean function f : {+1,−1}n → {+1,−1} and δ > 0, f is a

(δ, 2O(I(f)/δ))-junta.

Bourgain’s Theorem 1.2.2 which shows that functions with low noise sensitivity are close

to juntas also crucially uses the Bonami-Beckner inequality, as does the related paper of

Kindler and Safra [KS02, Kin02].

Finally, one of Benjamini, Kalai, and Schramm’s [BKS99] main theorems was the fol-

lowing:

Theorem 2.4.7 If a family of functions (fn) satisfies II(fn) → 0 then it is “asymptotically

noise sensitive” in the sense that (NS 1
2
(fn) − NSε(fn)) → 0 as n → ∞ for every ε ∈ (0, 1

2).

The converse also holds when the functions fn are monotone.

The proof is based on another theorem of theirs which uses the Bonami-Beckner inequality.

This second theorem says that the `2 Fourier weight of monotone functions at low levels

can be bounded in terms of II. The case k = 2 in the theorem is due to Talagrand [Tal96];

the bounds on the constant Ck are due to Kindler [Kin03].

Theorem 2.4.8 For each k ≥ 1 there is a constant Ck < ∞ such that for all monotone

boolean functions f ,
∑

|S|=k

f̂(S)2 ≤ CkII(f) lnk−1(e/II(f)).

34

In general, Ck may be taken to be kO(k). If II(f) < exp(−k/e − 1) then Ck may be taken

to be O(1)/k.

We conclude by recording two known extensions of the Bonami-Beckner inequality.

In [Tal94] Talagrand showed how the inequality (with worse constants) could be extended

to product measures on {+1,−1}n in which P[−1] = p, generalizing the case p = 1
2 . In

1982 Borell [Bor82] observed that the reverse Bonami-Beckner inequality holds:

Theorem 2.4.9 Let f : {+1,−1}n → R≥0 be nonnegative and let q ≤ p ≤ 1. Then

||Tρ(f)||q ≥ ||f ||p for all 0 ≤ ρ ≤
(

p − 1

q − 1

) 1
2

.

Equivalently, if f has f̂(S) = 0 for all |S| > d, then

||f ||q ≥
(

q − 1

p − 1

) d
2

||f ||p for all q ≤ p ≤ 1.

The reverse Bonami-Beckner inequality does not appear to have been used previously in

the literature on boolean functions.

35

36

Chapter 3

The Noise Sensitivity Of Specific

Functions

In this chapter we analyze the noise sensitivity of several functions and classes of functions.

Since exact calculations are not possible for most functions, we will often be interested in

asymptotic estimates; for example, we will be interested in showing lower and upper bounds

on the noise sensitivity of functions as the noise parameter ε goes to 0 or 1
2 .

In analyzing a function f , whenever possible we shall include plots of the “noise sensi-

tivity graph” of f and of the “Fourier spectrum graph” of f . The former is simply a plot of

NSε(f) as a function of ε ∈ [0, 1
2]; the latter is a plot of

∑
|S|=k f̂(S)2 versus k for k = 0 . . . n.

3.1 PARITY

From Proposition 2.3.1 we immediately have the following:

Proposition 3.1.1

NSε(PARITYn) = NSε(−PARITYn) =
1

2
− 1

2
(1 − 2ε)n.

Noise sensitivity graphs of PARITY are shown in Figure 3-1. Of course,

̂PARITYn(S) =

1 if |S| = n,

0 otherwise.

37

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

NSε

ε

PARITY5
PARITY15
PARITY45

Figure 3-1: Noise sensitivity graphs of PARITY

Hence the Fourier spectrum graph of PARITYn is as shown in Figure 3-2. From this fact,

we may also deduce the well-known fact that PARITY is the most noise sensitive boolean

function:

Proposition 3.1.2 For each fixed n and ε ∈ (0, 1/2), the functions ±PARITYn are the only

n-bit boolean functions of maximum NSε.

Proof: By Proposition 2.3.1, for any boolean function on n bits f : {+1,−1}n → {+1,−1},

NSε(f) =
1

2
− 1

2

∑

S⊆[n]

(1 − 2ε)|S|f̂(S)2.

But we also know from Parseval that
∑

S⊆[n] f̂(S)2 = 1. It follows immediately that any

function which has all of its Fourier weight on the coefficient of degree n maximizes noise

sensitivity. PARITYn and its negation are the only such functions. 2

Note that any function which is an embedded parity — i.e., is given by the parity of

some subset S of its bits — has the same noise sensitivity as PARITY|S|. In particular, any

dictator function πi
n has NSε(π

i
n) = ε.

38

0

0.2

0.4

0.6

0.8

1

0 1 · · · · · · n

∑
|S|=k

̂PARITYn(S)2

k

Figure 3-2: Fourier spectrum graph of PARITYn

3.2 Dictator functions

As we saw in the previous section, any dictator function ±πi
n trivially has noise sensitivity

ε at ε. For completeness, we give the noise sensitivity and Fourier spectrum graphs of

dictator functions in Figures 3-3 and 3-4. Since the noise sensitivity graph is concave

(Proposition 2.1.9), the dictator functions are least noise sensitive among all functions with

NS 1
2

= 1
2 — i.e., all balanced functions. The dictator functions are the only functions with

this property:

Proposition 3.2.1 Fix any ε ∈ (0, 1
2). Then for all balanced f : {+1,−1}n → {+1,−1}, it

holds that NSε(f) ≥ ε, and equality is achieved if and only if f is a dictator function.

Proof: Let f : {+1,−1}n → {+1,−1} be balanced, so f̂(∅) = 0. By Proposition 2.1.9,

NSε(f) =
1

2
− 1

2

∑

S 6=∅
(1 − 2ε)|S|f̂(S)2

≥ 1

2
− 1

2

∑

S 6=∅
(1 − 2ε)f̂(S)2

= ε,

with equality if and only if f has no Fourier coefficients above degree 1. We claim this

implies f is a dictator function. To prove this we show that in this case, f̂({i}) 6= 0 for at

39

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

NSε(π
i
n)

ε

Figure 3-3: Noise sensitivity graph of πi
n

most one i; then f depends on at most one input, as required.

Suppose to the contrary that f̂({i}), f̂({j}) 6= 0, for i 6= j. Fix any settings for the xk’s

with k 6= i, j, and then consider xi and xj varying over {+1,−1}. Then f̂({i})xi + f̂({j})xj

takes on at least three distinct values; hence f(x) =
∑
|S|=1 f̂(S)xS cannot always take

values in {+1,−1}, a contradiction. 2

Friedgut, Kalai, and Naor [FKN01] proved a significant generalization: any function with
∑
|S|>1 f̂(S)2 ≤ ε is an (O(ε), 1)-junta (i.e., is close to a dictator function or a constant).

See Kalai and Safra [KS02] for further generalization.

3.3 AND and OR

Since AND and OR are the same function up to switching the roles of ±1, the noise sensitivity

properties of the two functions are the same. The following proposition is immediate from

Fact 2.1.7:

Proposition 3.3.1

NSε(ANDn) = NSε(ORn) = 21−n(1 − (1 − ε)n).

40

0

0.2

0.4

0.6

0.8

1

0 1 2 · · · n

∑
|S|=k π̂i

n(S)2

k

Figure 3-4: Fourier spectrum graph of πi
n

Some noise sensitivity graphs of ANDn (equivalently, of ORn) are shown in Figure 3-5.

It easy (see, e.g., [Man95]) to check the following:

ÂNDn(S) =

1 − 21−n if S = ∅,
(−1)|S|+121−n otherwise.

ÔRn(S) =

−1 + 21−n if S = ∅,
21−n otherwise.

Note that all Fourier coefficients of positive degree have the same magnitude. A represen-

tative Fourier spectrum graph of ANDn (equivalently, of ORn) is shown in Figure 3-6.

Given some boolean functions f1, . . . , fm we will be interested in computing the noise

sensitivity of AND(f1, . . . , fm), the function given by applying f1, . . . , fm on disjoint sets of

variables and ANDing together the results. To emphasize the fact that the functions are

on disjoint sets of variables, we call this function the read-once AND (or intersection) of

f1, . . . , fm. It is easy to see that the noise sensitivity of AND(f1, . . . , fm) depends only on

the noise sensitivity of the fi’s and the probability that the fi’s are T:

41

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

NSε

ε

AND3
AND5
AND7

Figure 3-5: Noise sensitivity graphs of AND (equivalently, OR)

Proposition 3.3.2 Let f1, . . . , fm be boolean functions and write pi = P[f(x) = T],

ηi = NSε(fi). Let g = AND(f1, . . . , fm). Then

NSε(g) = 2

(
m∏

i=1

pi

)(
1 −

m∏

i=1

(1 − ηi/2pi)

)
.

Proof: Using Fact 2.1.7 and the independence we get from the fact that the fi’s are defined

on disjoint sets of variables, we have

NSε(g) = 2P[g(x) = T]P[g(Nε(x)) = F | g(x) = T]

= 2

(
m∏

i=1

P[fi(x) = T]

)(
1 −

m∏

i=1

P[fi(Nε(x)) = T | fi(x) = T]

)

= 2

(
m∏

i=1

pi

)(
1 −

m∏

i=1

(1 − ηi/2pi)

)
,

where the last line uses Fact 2.1.7 again. 2

3.4 Majority

As there is a closed form for the Fourier coefficients of MAJn, many questions about the

noise sensitivity of majority can be answered by explicit calculation. However we shall begin

42

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

∑
|S|=k ÂND7(S)2

k

Figure 3-6: Fourier spectrum graph of AND7

by taking a more qualitative route. First, a lemma which describes the sums of the bits in

(x, Nε(x)) in the limit as n → ∞:

Proposition 3.4.1 Let x ∈ {+1,−1}n be chosen uniformly at random, and let y = Nε(x),

where ε ∈ [0, 1]. Write ρ = 1 − 2ε. Let X = n−
1
2
∑n

i=1 xi and Y = n−
1
2
∑n

i=1 yi. Then as

n → ∞, the pair of random variables (X, Y) approaches the jointly normal distribution φΣ

with 0 means and covariance matrix Σ = Σ(ρ) =

 1 ρ

ρ 1

. As an error bound, we have

that for any convex region R ⊆ R2, |P[(X, Y) ∈ R] − φΣ(R)| ≤ O((1 − ρ2)−
1
2 n−

1
2).

Proof: This follows from the Central Limit Theorem (see, e.g., [Fel68]), noting that for

each coordinate i, E[x2
i] = E[y2

i] = 1, E[xiyi] = ρ. The Berry-Esséen-type error bound is

proved in Sazonov [Saz81, p. 10 item 6]. 2

Theorem 3.4.2 For any ε ∈ [0, 1],

lim
n→∞

NSε(MAJn) =
1

2
− 1

π
arcsin(1 − 2ε),

with the following error estimate:

43

∣∣∣∣NSε(MAJn) −
(

1

2
− 1

π
arcsin(1 − 2ε)

)∣∣∣∣ ≤ O((ε(1 − ε)n)−
1
2). (3.1)

Indeed, for ε ∈ [0, 1
2], NSε(MAJn) in increasing in n, and for ε ∈ [12 , 1], NSε(MAJn) is

decreasing in n, so the error estimate (3.1) is always one-sided.

Proof: Using the notation from Proposition 3.4.1, by definition we have NSε(MAJn) =

P[(X, Y) ∈ R], where R is the union of the upper-left and lower-right quadrants of R2,

R = Q+−∪Q−+. But each of Q+− and Q−+ is convex and is well known to have probability

mass 1
4 − 1

2π arcsin ρ under φΣ (see, e.g., [AS72, 26.3.19]). This completes the proof of all

of Theorem 3.4.2 except for the claim that NSε(MAJn) increases with n for ε ∈ [0, 1
2] and

decreases with n for ε ∈ [12 , 1].

The proof of this claim uses the Fourier calculations of Theorem 3.5.2; in particular, the

fact that Mn(k) =
∑
|S|=k M̂AJn(S)2 decreases in n for all k, and is constantly 0 for even

k. We conclude from Proposition 2.3.1,

NSε(MAJn) =
1

2
− 1

2

∑

k odd

(1 − 2ε)kMn(k).

We know that
∑

k Mn(k) = 1 for every n, but as n increases, these nonnegative weights

“shift up” and put more weight at higher levels k. Now simply note that (1 − 2ε)k is

decreasing in k for ε ≤ 1
2 and increasing in (odd) k for ε ≥ 1

2 . 2

It is not surprising that arcsin should arise in this context; c.f. the arc sine laws of

Feller [Fel68].

To make a basic approximation, recall ([AS72, 4.4.41]) the following:

Fact 3.4.3 arcsin(1 − x) = 1
2 − (2x)

1
2 − O(x

3
2).

Thus from Theorem 3.4.2 we conclude:

Corollary 3.4.4 For every n,

NSε(MAJn) ≤ ((2/π) + o(1))
√

ε,

where the o(1) refers to ε → 0.

44

Note that in the range ε ∈ [Ω(1), 1
2], the error bound (3.1) is O(n−

1
2) so the approxima-

tion NSε(MAJn) = 1
2 − 1

π arcsin(1− 2ε) is very good. Indeed, even for ε as small as Ω(n−
1
2)

the error term is no bigger than the actual limiting value; using Fact 3.4.3 again we get,

Corollary 3.4.5 There is a constant C < ∞ such that

NS
Cn− 1

2
(MAJn) = Θ(n−

1
4).

For ε = o(n−
1
2), the error bound in Theorem 3.4.2 breaks down and we need to use

alternative methods. First, we can find NS
′
0(MAJn): Since MAJn is monotone, Proposi-

tion 2.3.7 lets us compute NS
′
0(MAJn) (and NS

′
1
2

(MAJn)) in terms of the degree-one Fourier

coefficients of MAJn. It is easy to check that M̂AJn({j}) =
(n−1

n−1
2

)
21−n for all j ∈ [n]. Hence,

by Proposition 2.3.7 and Stirling’s approximation, we have the following:

Proposition 3.4.6

• NS
′
0(MAJn) = I(MAJn) = n21−n

(n−1
n−1

2

)
= ((2/π)

1
2 + o(1))n

1
2 ,

• NS
′
1
2

(MAJn) = II(MAJn) = n22−2n
(n−1

n−1
2

)
= 2

π + o(1).

For ε ≤ n−1 the following simple estimate proves useful:

Proposition 3.4.7 For n ≥ 3 and ε ≤ n−1,

NSε(MAJn) ≥ (2/π)
1
2 n

1
2 ε exp(−1/3n) exp(−εn).

Proof: Suppose x is chosen uniformly at random and y is formed from x by flipping each

bit independently with probability ε. Then

NSε(MAJn) = P[MAJn(x) 6= MAJn(y)]

≥ P[MAJk(x) 6= MAJk(y) | exactly one flip] × P[exactly one flip], (3.2)

and P[exactly one flip] = nε(1 − ε)n−1. By elementary calculus, (1 − ε)n−1 ≥ exp(−εn) for

ε ≤ n−1. Therefore

P[exactly one flip] ≥ kδ exp(−δk). (3.3)

45

The probability that the majority flips given that there is exactly one flipped bit in x is

exactly the probability that the remaining input bits split evenly — i.e.,

P[MAJn(x) 6= MAJn(y) | exactly one flip] =

(
n − 1
n−1

2

)
21−n

≥ (2/π)
1
2 n−

1
2 (1 − 1/4n) ≥ (2/π)

1
2 n

1
2 exp(−1/3n), (3.4)

where the first inequality follows by Stirling’s formula and the second since 1 − 1/4n ≤
exp(−1/3n) for n ≥ 3. Combining (3.2), (3.3) and (3.4) we obtain the required result. 2

By combining Propositions 3.4.6 and 3.4.7 we get the following:

Proposition 3.4.8 For ε = o(n−1), NSε(MAJn) = ((2/π)
1
2 + o(1))n

1
2 ε. For ε = Θ(n−1),

NSε(MAJn) = Θ(n−
1
2).

Proof: To get the upper bounds, use Proposition 3.4.7 and standard estimates. To get

the lower bounds, use Proposition 3.4.6 and the Intermediate Value Theorem, noting that

NS
′
ε(f) is decreasing in ε and hence maximized at ε = 0. 2

Theorem 3.4.2, Corollary 3.4.5, and Propositions 3.4.6 and 3.4.8 give a fairly complete

picture of the noise sensitivity graph of MAJn. Some noise sensitivity graphs of MAJ are

shown in Figure 3-7.

3.5 The Fourier spectrum of majority

In this section we will examine the Fourier spectrum graph of MAJn. Recall the Taylor

expansion of arcsin x ([AS72, 4.4.40]):

Fact 3.5.1

arcsin x = x +
1

6
x3 +

3

40
x5 +

5

112
x7 + · · ·

=
∑

k odd

k−1

(
k − 1
k−1
2

)
21−k xk.

We shall write [xk](arcsin x) for the degree k coefficient in the above,

[xk](arcsin x) =

0 if k is even,

k−1
(k−1

k−1
2

)
21−k if k is odd.

46

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

NSε

ε

MAJ5
MAJ15
MAJ451

2 − 1
π arcsin(1 − 2ε)

Figure 3-7: Noise sensitivity graphs of MAJ

By comparing Theorem 3.4.2 with Proposition 2.3.1, we expect that
∑
|S|=k M̂AJn(S)2

should go to [xk]((2/π) arcsin x) as n → ∞, and this is indeed true:

Theorem 3.5.2 For odd n and 0 ≤ k ≤ n, write Mn(k) =
∑
|S|=k M̂AJn(S)2. Then for

each fixed k ∈ N,

lim
n→∞

Mn(k) = [xk]((2/π) arcsin x).

Further, Mn(k) is decreasing in n for every k. Finally, for k varying with n, we have the

following error estimate which holds for any k ≤ n/2:

Mn(k) ≤
(
[xk]((2/π) arcsin x)

)
(1 + 2k/n).

Proof: We begin with Bernasconi’s determination of the Fourier coefficients of MAJn

from [Ber98]:

Proposition 3.5.3 Let S ⊆ [n] satisfy |S| = k. Then

M̂AJn(S) =

(−1)
k−1
2

2
2n

(k−1
k−1
2

)(n−k
n−k

2
)

(
n−1

2
k−1
2

)
if k is odd,

0 if k is even.

47

Thus our desired result holds for even k. For odd k, we get

Mn(k) =
4

22n

(
n

k

)(k−1
k−1
2

)2(n−k
n−k

2

)2

(n−1
2

k−1
2

)2 . (3.5)

By explicit expansion and simplification, we get

Mn+2(k)

Mn(k)
=

(n + 2)(n − k + 1)

(n + 1)(n − k + 2)
≤ 1,

and it follows that Mn(k) is decreasing in n for every k, as required. It remains to compare

the limiting value of (3.5) with [xk]((2/π) arcsin x). Again, by explicit expansion to factorials

and simplification, we get

Mn(k)

[xk]((2/π) arcsin x)
= (π/2)n2k+1−2n

(
n − 1
n−1

2

)(
n − k
n−k

2

)
. (3.6)

By Stirling’s approximation,
(

m
m/2

)
↗ (2/π)

1
2 m−

1
2 2m, in the sense that the ratio of the

right-hand side to the left-hand decreases to 1 as m → ∞. Substituting this into (3.6) and

using the same notation, we have

Mn(k)

[xk]((2/π) arcsin x)
↗ n

(n − 1)
1
2 (n − k)

1
2

. (3.7)

When k is fixed, the right-hand side of (3.7) goes to 1 as n → ∞ which proves that

Mn(k) → [xk]((2/π) arcsin x) for all fixed k. In general, we have

n

(n − 1)
1
2 (n − k)

1
2

=

(
1 − k + 1

n
+

k

n

)− 1
2

≤ 1 + 2k/n,

where it can be checked that the inequality holds for all k ≤ n/2. 2

Theorem 3.5.2 gives us very good estimates for the Fourier spectrum of MAJn up to

degree n/2. For higher degree — especially degree n − O(1) — we can instead use the

following:

Proposition 3.5.4 For all 0 ≤ k < n,

∑

|S|=n−k

M̂AJn(S)2 =
k + 1

n − k

∑

|S|=k+1

M̂AJn(S)2

48

Proof: This follows easily from Proposition 3.5.3, which shows that all Fourier coefficients

at degree n−k have the same value as all Fourier coefficients at degree k +1. The quantity

(k + 1)/(n − k) is the ratio
(

n
n−k

)
/
(

n
k+1

)
. 2

For example, since the Fourier weight of MAJn at degree 1 approaches 2/π, the Fourier

weight at degree n approaches 2/πn. Similarly, we can see that the Fourier weight at degree

n − 2 approaches 1/π(n − 2).

To complete our picture of the Fourier spectrum of majority, we consider [xk]((2/π) arcsin x)

asymptotically in k:

Fact 3.5.5 For all odd k,

[xk]((2/π) arcsin x) > (2/πk)
3
2 ,

with the ratio of the two quantities decreasing to 1 as k → ∞ (through the odd numbers).

This follows immediately from Stirling’s approximation.

Using Theorem 3.5.2 and Proposition 3.5.4 we can completely infer the Fourier spectrum

graph for MAJ. A representative example is shown in Figure 3-8.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

∑
|S|=k M̂AJ45(S)2

k

Figure 3-8: Fourier spectrum graph of MAJ45

We end this section by obtaining a lower bound on the Fourier tail of majority.

49

Theorem 3.5.6 For any ε = ε(n) ≥ n−
1
3 the following inequality holds for all sufficiently

large odd n:
∑

|S|≥α

M̂AJn(S)2 > ε,

where α is any odd number no bigger than (1/7)ε−2.

Proof: Fix ε, n and α as described. As in Theorem 3.5.2, write Mn(k) =
∑
|S|=k M̂AJn(S)2.

From the same theorem, we know that for all k ≤ α,

Mn(k) ≤
(
[xk]((2/π) arcsin x)

)
(1 + 2α/n). (3.8)

Since the Taylor series for arcsinx converges at x = 1 and 2
π arcsin 1 = 1, we conclude

that
∑

k odd[x
k]((2/π) arcsin x) = 1. Hence

∑

k<α

[xk]((2/π) arcsin x) = 1 −
∑

k≥α
k odd

[xk]((2/π) arcsin x)

< 1 −
∑

k≥α
k odd

(2/πk)
3
2 (Fact (3.5.5))

≤ 1 − 1

2

∫ ∞

α
(2/πk)

3
2 dk

= 1 − 1

2

[
(2/π)

3
2 · 2k− 1

2

]
k=α

≤ 1 − (2/π)
3
2 α−

1
2 . (3.9)

Combining Equations (3.8) and (3.9), we get

∑

k<α

Mn(k) < (1 + 2α/n)(1 − (2/π)
3
2 α−

1
2)

≤ 1 + 2α/n − (2/π)
3
2 α−

1
2

≤ 1 + (2/7)(ε2n)−1 − (2/π)
3
2 (1/7ε2)−

1
2 (by definition of α)

≤ 1 + (2/7)ε − (2/π)
3
2 7

1
2 ε (as n ≥ ε−3)

< 1 − ε.

But
∑n

k=0 Mn(k) = 1, so the proof is complete. 2

50

3.6 Noise sensitivity of monotone functions

There are several reasons why it is interesting and natural to study the noise sensitivity

of monotone functions. The first is that in some sense they are the “least noise sensitive”

functions. Combinatorial shifting decreases not just average sensitivity but noise sensitivity

as well. Recall the (down-)shifting operators (first introduced by Kleitman [Kle66]; see

Frankl [Fra87] for a survey on shifting):

Definition 3.6.1 Given f : {+1,−1}n → {+1,−1} and i ∈ [n], the operator κj is defined

by κjf : {+1,−1}n → {+1,−1},

(κjf)(x) =

f(x) if f(x) = f(σjx),

xj if f(x) 6= f(σjx).

It is well known that for any f , E[κjf] = E[f], the function κ1κ2 · · ·κnf is monotone, and

that Ii(κjf) ≤ Ii(f) for all i, j (this fact is proved in, e.g., [BL90]). In [BKS99] Benjamini,

Kalai, and Schramm showed the following:

Proposition 3.6.2 For every ε ∈ [0, 1
2], NSε(κjf) ≤ NSε(f).

Thus the monotone-shifted version of any function f is less noise-sensitive than f itself.

Indeed, we will show in Chapter 6 that the “left-monotone-shifted” version of f is less

noise-sensitive than f itself; see Proposition 6.6.4.

Another reason for studying the noise sensitivity of monotone functions is that there

are some well known upper bounds on how noise sensitive monotone functions can be. In

Sections 3.7, 3.8, and 3.9 we will give families of functions which are tight or close to tight

for these bounds. These highly noise sensitive monotone functions will have very useful

application in our study of hardness amplification within NP in Chapter 4.

Finally, monotone functions play an important role in the study of the boolean hyper-

cube and the influences of variables on boolean functions; see, e.g., [KKL88, Tal94, Tal96,

FK96, Tal97, Bou99, BKS99, MO02b].

There are several different ways to formulate the question, “How noise sensitive can a

monotone function be?” A simple folklore isoperimetric inequality (whose proof does not

require the use of combinatorial shifting; see, e.g., [FK96]) implies that among all monotone

51

(indeed, unate) functions on n inputs, the majority function MAJn (or something like it for

even n) has maximal average sensitivity. Since its average sensitivity is easily computed to

be

I(MAJn) = ((2/π)
1
2 + o(1))n

1
2 ,

we get that for all monotone (even unate) functions f on n inputs,

I(f) ≤ ((2/π)
1
2 + o(1))n

1
2 . (3.10)

This bound can be used to get the following upper bound on the noise sensitivity of mono-

tone functions, which is considered folklore:

Proposition 3.6.3 Let f : {+1,−1}n → {+1,−1} be monotone (or unate). Then

NSε(f) ≤ 1

2
− 1

2
(1 − 2ε)I(MAJn) =

1

2
− 1

2
(1 − 2ε)((2/π)

1
2 +o(1))n

1
2 .

Therefore if NSε(f) ≥ η, then

ε ≥ η/I(MAJn) ≥ ((π/2)
1
2 − o(1))n−

1
2 .

Proof: The second statement follows straightforwardly from the first one, which we now

prove. By Parseval’s identity we have
∑

S f̂(S)2 = 1, and by (3.10) and Proposition 2.3.5

we have
∑

S |S|f̂(S)2 ≤ I(MAJn). We want to bound NSε(f) = 1
2 − 1

2

∑
S(1 − 2ε)|S|f̂(S)2.

Clearly a bound is the solution to the following linear programming problem:

Maximize 1
2 − 1

2

∑n
k=0(1 − 2ε)kxk

subject to:
∑n

k=0 xk = 1,
∑n

k=0 kxk ≤ I(MAJn), 0 ≤ xk ≤ 1 for all k.

(3.11)

Since the optimum of a linear program occurs at a vertex, an optimal solution is of the

form xm = 1 and xi = 0 for all i 6= m, for some m. The constraint
∑n

k=0 kxk ≤ I(MAJn)

implies that m ≤ I(MAJn). Therefore the value of 1
2 − 1

2

∑n
k=0(1 − 2ε)kxk is at most

1
2 − 1

2(1 − 2ε)I(MAJn), as claimed. 2

A natural goal which we will pursue in Sections 3.7 and 3.8 is to find a monotone function

f on n bits such that NSε(f) ≥ Ω(1) for the smallest possible quantity ε. This problem

was implicitly posed in Benjamini et al.’s work [BKS99], in which it was noted that the

52

iterated majority-of-3 function MAJ
⊗log3 n

3 , studied first by Ben-Or and Linial [BL90], has at

least constant noise sensitivity for ε as small as O(n− log3
3
2) = O(n−.369...). As an immediate

corollary of Proposition 3.6.3 we have the following:

Corollary 3.6.4 If f is monotone and NSε(f) ≥ Ω(1), then ε ≥ Ω(n−
1
2).

Benjamini et al. conjectured that Corollary 3.6.4 was not sharp, and that the negative

exponent 1
2 could be replaced by some β < 1

2 . In the following sections we will see that this

is not true. In Section 3.7 we study the recursive majority of k function for larger values

of k: 5, 7, 9, etc. Previous techniques had suggested that these functions might be less

sensitive to small noise than iterated MAJ3, but this is not the case. We will see that as k

grows, the recursive majority of k is sensitive to smaller and smaller noise rates:

Theorem For every constant α < 1
2 and δ > 0, there exists an odd k ≥ 3 such that for `

sufficiently large, we have (writing n = k`) the following:

NSn−α(MAJ
⊗`

k) ≥ 1

2
− δ.

(See Theorem 3.7.2 for more details.)

Thus iterated MAJk functions are nearly as sensitive to low noise as is possible for

monotone functions. In the same section we shall further give an explicit infinite family of

monotone boolean functions which have constant noise sensitivity at ε = n−
1
2 logO(1) n:

Theorem 3.7.4 For every sufficiently small ε > 0,

NSε/M (EMn) ≥ ε − O(ε2),

where

M = n
1
2 /Θ(logt n), t = log2

√
π/2 = .3257. . . .

Here the function family (EMn) is also a family of iterated majorities, but these majori-

ties are of varying, nonconstant arity. Finally, in Section 3.8 we will analyze a random family

of monotone functions introduced by Talagrand in [Tal96] and show (non-constructively)

the existence of one with constant noise sensitivity at ε = O(n−
1
2):

53

Theorem 3.8.1 Talagrand’s construction shows there exists an infinite family of monotone

functions (Cn) satisfying

NS
n− 1

2
(Cn) ≥ Ω(1).

This shows that Corollary 3.6.4 is tight up to constant factors.

At the other end of the spectrum we naturally have the following question: As a function

of n, how close can NS 1
2
−Ω(1)(f) be to 1

2 if f is monotone? Kahn, Kalai, and Linial’s

theorem provides a bound as an immediate corollary: Since every monotone function f with

NS 1
2
(f) ≥ 1

3 satisfies NS
′
1
2

(f) = II(f) ≥ Ω(log2 n
n) (Theorem 2.4.4 and Proposition 2.3.7),

and since NSε(f) is an increasing concave function of ε (Proposition 2.1.9), we get the

following:

Corollary 3.6.5 If f : {+1,−1}n → {+1,−1} is monotone (or unate), then

NS 1
2
−δ(f) ≤ 1

2
− Ω

(
log2 n

n

)
δ.

Ben-Or and Linial introduced a family of monotone functions in [BL90] called the tribes

functions; we define this family in Section 3.9. Kahn et al. showed that the tribes functions

were tight for their theorem, Theorem 2.4.4; however, this does not prove that that tribes

functions are tight for Corollary 3.6.5. (For example, although MAJn has maximal NS
′
0

among monotone functions (up to a constant), it is nowhere close to being tight for Corol-

lary 3.6.4.) In Section 3.9 we exactly calculate the noise sensitivity of the tribes functions

and show that they are indeed close to sharp for Corollary 3.6.5; for δ ≤ 1
log n they are sharp

up to a constant factor:

Corollary 3.9.7 If δ ≤ O(1
log n) then NS 1

2
−δ(TRIBESn) ≥ 1

2 − O(log2 n
n δ).

For δ ≤ 1
2 −Ω(1), combining the tribes functions with iterated majorities lets us get a family

of monotone functions sharp for Corollary 3.6.5 up to a logarithmic factor:

Theorem 3.9.8 Let ε ≥ Ω(1). Then there is an infinite family of monotone functions (Tn)

satisfying

NSε(Tn) ≥ 1

2
− log1+u′

n

n
,

54

where u′ is any number exceeding u = log 4
3
3 = 3.818. . . .

3.7 Iterating majority and other functions

Suppose we have a balanced function on a constant number of bits, f : {+1,−1}k →
{+1,−1}. By using the composition operator ⊗, we get a natural family of functions

(f⊗
`
)` defined for infinitely many input lengths k, k2, k3, etc. The noise sensitivity of this

family of functions is inherited from that of f in a simple way: Let p(ε) = NSε(f); then

by Proposition 2.2.7, NSε(f
⊗`

) = p(`)(ε) = p(p(· · · p(ε)))︸ ︷︷ ︸
` times

. Note that p is a concave function

on [0, 1
2] which is 0 at 0 and 1

2 at 1
2 . If we begin iterating p at a very small value ε then

the speed at which the result approaches Ω(1) is governed by p′(0). Similarly, if we start

iterating p at 1
2 − Ω(1), the speed at which the result approaches 1

2 is governed by p′(1
2).

We have the following result:

Proposition 3.7.1 Let f : {+1,−1}k → {+1,−1} be a balanced function, let a = NS
′
0(f),

b = NS
′
1
2

(f), and assume a > 1, b < 1. Then NSε(f
⊗`

) ≥ 1
2 − δ for

` ≥
(
loga(1/ε) + log1/b(1/δ)

)
(1 + r(ε, δ)),

where r(ε, δ) → 0 as ε, δ → 0.

Proof: (For this proof, when a function q depends on ε and δ we will write q = O(1) if q

is uniformly bounded and we will write q = o(1) if q(ε, δ) → 0 as ε → 0, δ → 0.)

Let p(η) = NSη(f). By Proposition 2.1.9 p is an increasing concave polynomial which

is 0 at 0 and 1
2 at 1

2 . Since p′(0) = a, p′(1
2) = b, we have p(η) ≥ aη − cη2 and p(1

2 − η) ≥
1
2−bη−c′η2 for some constants c, c′ which depend only on f . Recall that by Proposition 2.2.7,

NSε(f
⊗`

) = p(`)(ε). We shall analyze this iteration in five steps.

• Let ε′ = 1/ ln(1/ε). As a > 1, we may assume without loss of generality that a−cε′ > 1.

Now whenever η < ε′ we have p(η) ≥ (a − cε′)η. Thus p(k)(η) ≥ min{(a − cε′)kη, ε′}
for all k, and in particular, p(k)(ε) ≥ ε′ so long as k is at least

ln(ε′/ε)
ln(a − cε′)

≤ ln(1/ε)

(1 − O(ε′)) ln a
≤ (1 + o(ε)) loga(1/ε).

55

• Let r = (a−1)/2c > 0, so a−cr > 1. By a similar argument to the above, we conclude

that p(k)(ε′) ≥ r so long as k is at least

ln(r/ε′)
ln(a − cr)

≤ O(ln(1/ε′)) ≤ o(loga(1/ε)).

• Let r′ = (1− b)/2c′ > 0, so b+ c′r′ < 1. Since p is a continuous concave function with

p(0) = 0, p(1
2) = 1

2 , and since p′(0) > 1, we have p(η) > η for all η ∈ (0, 1
2); it follows

that there is a finite constant k (depending only on f) such that p(k)(r) > 1
2 − r′.

• Let δ′ = 1/ ln(1/δ). Whenever η ≤ r′ we have p(1
2 − η) ≥ 1

2 − (b + c′r′)η. Thus

p(k)(1
2 − r′) ≥ 1

2 − (b + c′r′)kr′ for all k, and in particular, p(k)(1
2 − r′) ≥ 1

2 − δ′ so long

as k is at least
ln(δ′/r′)

ln(b + c′r′)
≤ O(ln(1/δ′)) ≤ o(log1/b δ).

• Finally, by similar arguments we conclude that p(k)(1
2 − δ′) ≥ 1

2 − δ so long as k is at

least
ln(δ/δ′)

ln(b + c′δ′)
≤ ln(δ)

(1 − O(δ′)) ln b
≤ (1 + o(δ)) log1/b(1/δ).

Combining the above five steps, we obtain the required result. 2

Let us apply this result to the majority functions MAJk:

Theorem 3.7.2 Let k ≥ 3 be odd, and define

a = k21−k

(
k − 1
k−1
2

)
≥ (2/π)

1
2 k

1
2 , b = k22−2k

(
k − 1
k−1
2

)2

≤ 3

4
.

Then NSε(MAJ
⊗`

k) ≥ 1
2 − δ for ` ≥

(
loga(1/ε) + log1/δ(1/ε)

)
(1 + r(ε, δ)), where r(ε, δ) → 0

as ε → 0 and δ → 0. Hence for every constant α < 1
2 and δ > 0, there exists an odd k ≥ 3

such that for ` sufficiently large, we have (writing n = k`) the following:

NSn−α(MAJ
⊗`

k) ≥ 1

2
− δ.

Proof: This is an immediate corollary of Proposition 3.7.1, using the calculations from

Proposition 3.4.6. 2

56

In light of Corollary 3.6.4, we see that the iterated majority function is almost as sensitive

to small noise as possible among monotone functions. We now give a slightly more involved

construction that produces an explicit family of balanced monotone functions which have

constant noise sensitivity at ε = n−1 logc n, where c < 1. The functions are again defined

by recursive majorities, but the arity is not constant; it increases with depth:

Definition 3.7.3 The expanding majority function, EMn : {+1,−1}n → {+1,−1}, is de-

fined for all n = 32`+`+1, ` ≥ 1, by

EMn = MAJ9 ⊗ MAJ27 ⊗ MAJ243 ⊗ · · · ⊗ MAJ
32`−1+1 ,

where the successive arities ki satisfy ki+1 = k2
i /3 for all i = 1 . . . `.

We remark that the expanding majority function is balanced and also polynomial-time

computable.

Theorem 3.7.4 For every sufficiently small ε > 0,

NSε/M (EMn) ≥ ε − O(ε2),

where

M = n
1
2 /Θ(logt n), t = log2

√
π/2 = .3257. . . .

Proof: Recall that EMn = MAJk1 ⊗ · · · ⊗ MAJk`
, where k1 = 3 and ki+1 = k2

i /3. We have

n, the number of inputs, equal to 32`+`−1; hence log2 log3 n − 1 ≤ ` ≤ log2 log3 n.

Let δ0 = ε/M (where M will be explicitly defined shortly), and recursively define

δi+1 = NSδi(MAJk`−i
). Since all MAJ functions are balanced, Proposition 2.2.7 and the

definition of EMn tell us that NSε/M (EMn) = δ`. We will show that δ` ≥ ε − O(ε2).

By Proposition 3.4.7,

δi+1 ≥ g(k`−i) exp(−δik`−i)δi,

where we define

g(t) = (2/π)
1
2 t

1
2 exp(−1/3t).

Recursively define η0 = η′0 = δ0, and

ηi+1 = g(k`−i) exp(−ηik`−i)ηi, η′i+1 = g(k`−i)η
′
i.

57

Since noise sensitivity is an increasing function, we can conclude that δi ≥ ηi for every i.

But clearly η′i ≥ ηi for every i. Hence for every i, ηi+1 ≥ g(k`−i) exp(−η′ik`−i)ηi. It follows

immediately that

η` ≥
(`−1∏

i=0

g(k`−i) exp(−η′ik`−i)
)
η0

= (2/π)
`
2

∏̀

j=1

k
1
2
j exp(−1

3

∑̀

j=1

k−1
j) · exp

[`−1∑

i=0

−η′ik`−i

]
· δ0.

Now we define M :

M =
∏̀

m=1

g(km) = (2/π)
1
2
`n

1
2 exp

(
−1

3

∑̀

j=1

k−1
j

)
= Θ((2/π)

1
2

log2 log3 n)n
1
2 exp(−O(1)),

which is n
1
2 /Θ(logt n) as claimed. Recalling δ0 = ε/M , we obtain

η` ≥ M · exp
[`−1∑

i=0

−η′ik`−i

]
· (ε/M) = ε · exp

[`−1∑

i=0

−η′ik`−i

]
.

Since δ` ≥ η`, it remains to show

exp
[`−1∑

i=0

−η′ik`−i

]
≥ 1 − O(ε).

By the recursive definition of η′i, we immediately have η′i = (
∏i−1

j=0 g(k`−j))η
′
0. Hence

η′i = M(
∏`−i

m=1 g(km)−1)η′0 = ε(
∏`−i

m=1 g(km)−1). Therefore

exp
[`−1∑

i=0

−η′ik`−i

]
= exp

[
−ε
∑̀

m=1

km

g(k1)g(k2) · · · g(km)

]
.

Hence if we can show
∑`

m=1[km/g(k1)g(k2) · · · g(km)] = O(1), we are done. The first

term in this sum is k1/g(k1) = O(1). The ratio of the mth term to the (m − 1)th term

is km/km−1g(km). But km−1 = (3km)
1
2 by definition, so this ratio is (km/3)

1
2 /g(km) =

(π/6)
1
2 / exp(−1/3km) < 1. Hence the terms in the sum decrease geometrically, so the sum

is indeed O(1). 2

58

3.8 Talagrand’s random CNF

In [Tal96], Talagrand gives a probabilistic construction of a monotone boolean function

Cn : {+1,−1}n → {+1,−1} with the following property: at least an Ω(1) fraction of points

x in {+1,−1}n satisfy both Cn(x) = T and #{x′ : ∆(x, x′) = 1 and f(x) = F} ≥ Ω(n
1
2),

where ∆ denotes Hamming distance. It is natural to conjecture that this function is sensitive

to noise as small as n−
1
2 , and indeed we shall now prove this.

Talagrand’s function C = Cn is a random CNF formula on its n inputs. Specifically,

C is the 2n
1
2 -wise AND of n

1
2 -wise ORs, where each OR’s inputs are selected independently

and uniformly at random (with replacement) from [n].

Theorem 3.8.1 Talagrand’s construction shows there exists an infinite family of monotone

functions (Cn) satisfying

NS
n− 1

2
(Cn) ≥ Ω(1).

Proof: Write ε = n−
1
2 . To prove the theorem, we show that if we pick C, x, and y = Nε(x)

at random, then

EC [P[C(x) 6= C(y)]] ≥ Ω(1).

We shall imagine first picking and fixing the two inputs x and y, and then choosing C at

random. Let nFF denote the number of indices i such that xi = F and yi = F, let nFT

denote the number of indices i such that xi = F and yi = T; analogously define nTF and

nTT. Also define nF? to be nFF + nFT, the number of F’s in x, and similarly n?F, nT?, n?T.

Now consider the construction of C; in particular, look at some particular OR, call it

∨. Let pFF denote the probability — over the choice of C — that ∨(x) = F and ∨(y) = F.

Again, define pFT, pTF, pTT, pF?, etc. analogously.

We immediately get

pFF =
(nFF

n

)n
1
2

,

pTF =
(n?F

n

)n
1
2

−
(nFF

n

)n
1
2

, (3.12)

pFT =
(nF?

n

)n
1
2

−
(nFF

n

)n
1
2

,

59

and by subtracting these quantities from 1,

pTT = 1 −
(n?F

n

)n
1
2

−
(nF?

n

)n
1
2

+
(nFF

n

)n
1
2

.

All of the ORs are independent, so we may make a similar calculation for the main

AND in f ; call it ∧. Let qFF denote the probability — over the choice of C still — that

∧(x) = F,∧(y) = F, and again define qFT, etc.

Calculating as before,

qTT = p2n
1
2

TT ,

qTF = p2n
1
2

T? − p2n
1
2

TT ,

qFT = p2n
1
2

?1 − p2n
1
2

TT .

Now the probability that C(x) 6= C(y) is simply qFT + qTF. Hence

EC

[
P[C(x) 6= C(y)]

]
= Ex, y=Nε(x)

[
PC [C(x) 6= C(y)]

]

= Ex,y[qFT + qTF]

= Ex,y[qFT] + Ex,y[qTF]. (3.13)

Since x and y have the same distribution, Ex,y[qFT] = Ex,y[qTF] by symmetry. Hence

(3.13) = 2Ex,y[qTF]. Thus it suffices to show

Ex,y[qTF] = Ex,y[p
2n

1
2

T? − p2n
1
2

TT] ≥ Ω(1).

We now focus on the quantity (∗) = p2n
1
2

T? − p2n
1
2

TT . Let g(t) = t2
n

1
2
. By the mean value

theorem, g(b) − g(a) = (b − a)g′(c) for some c ∈ [a, b]. Thus

(∗) = (pT? − pTT)2n
1
2 c2n

1
2 −1 = 2n

1
2 pTFc2n

1
2 −1

for some c ∈ [pTT, pT?].

60

Since c2n
1
2 −1 is no smaller than p2n

1
2

TT , we conclude

(∗) ≥ 2n
1
2 pTFp2n

1
2

TT . (3.14)

We proceed by conditioning on (nFF, nFT, nTF, nTT). Since nF? ∼ Bin(n, 1
2), the proba-

bility that nF? is outside the range [n/2−n
1
2 , n/2+n

1
2] is at most .05, for sufficiently large n

(by a standard tail bound; n
1
2 is two standard deviations). Assuming that nF? is some fixed

quantity in this range, nFF ∼ Bin(nF?, 1− ε). By a similar tail bound, the probability that

nFF is larger than (1− ε + 2(ε/nF?)
1
2)nF? is again at most .05. So assuming n is sufficiently

large, we have that except with probability .1,

nF? ∈
[
n/2 − n

1
2 , n/2 + n

1
2

]
, (3.15)

nFF/nF? < 1 − ε + 3(ε/n)
1
2 , (3.16)

where (3.16) uses the bound nF? > n/2.1.

Finally, just as nF? ∈ [n/2 − n
1
2 , n/2 + n

1
2] except with probability .05, so too may we

conclude

n?F ∈
[n
2
− n

1
2 ,

n

2
+ n

1
2

]
, (3.17)

except with probability .05.

In conclusion, (3.15), (3.16), and (3.17) hold, except with probability at most .15. Since

(∗) ≥ 0 always,

Ex,y[(∗)] ≥ Ex,y[(∗) | (3.15), (3.16), (3.17)] × P[(3.15), (3.16), (3.17)]

≥ .85Ex,y[(∗) | (3.15), (3.16), (3.17)].

Since we are only trying to prove Ex,y[(∗)] ≥ Ω(1), we will henceforth assume (3.15), (3.16),

and (3.17) hold, and it suffices to prove Ex,y[(∗)] ≥ Ω(1) conditioned on this assumption.

That is, all future expectations are conditioned on (3.15), (3.16), and (3.17).

61

Continuing from (3.14),

(∗) ≥ 2n
1
2 pTF

(
1 −

(
n?F
n

)n
1
2

−
(

nF?
n

)n
1
2

+
(

nFF
n

)n
1
2

)2n
1
2

≥ 2n
1
2 pTF

(
1 −

(
n?F
n

)n
1
2

−
(

nF?
n

)n
1
2

)2n
1
2

≥ 2n
1
2 pTF

(
1 − (1

2 + n−
1
2)n

1
2 − (1

2 + n−
1
2)n

1
2

)2n
1
2

(by (3.15) and (3.17))

≥ 2n
1
2 pTF(1 − 2e/2n

1
2)2

n
1
2

(asymptotically)

≥ e−2e2n
1
2 pTF

≥ .004 · 2n
1
2 pTF (for all n)

Hence showing Ex,x′ [(∗)] ≥ Ω(1) amounts to showing Ex,x′ [2n
1
2 pTF] ≥ Ω(1). By (3.12),

2n
1
2 pTF =

(
2
n?F

n

)n
1
2 (

1 −
(nFF

n?0

)n
1
2)

≥ (1 − 2n−
1
2)n

1
2
(
1 −

(nFF

n?F

)n
1
2)

(by (3.17))

≥ e−2
(
1 −

(nFF

n?F

)n
1
2)

≥ e−2
(
1 − (1 − ε + 2(ε/n)

1
2)n

1
2
)

(by (3.16))

Recalling ε = n−
1
2 , the quantity (1 − ε + 2(ε/n)

1
2)n

1
2 is asymptotically e−1 for large n.

Hence

Ex,y[2
n

1
2 pTF] ≥ e−2(1 − e−1) ≥ Ω(1),

as claimed. 2

We conclude that Corollary 3.6.4 is tight up to a a constant.

62

3.9 Tribes functions

In this section we consider read-once CNF; that is, functions of the form f = ANDa ⊗ORb.

By combining Propositions 3.3.1 and 3.3.2, we get

Proposition 3.9.1 Let f = ANDa ⊗ ORb and write n = ab. Then

NSε(f) = 2P[f = T]

(
1 −

(
1 − 1 − (1 − ε)b

2b(1 − 2−b)

)a)
.

Hence

NS
′
ε(f) =

2P[f = T]n

2b − 1
(1 − ε)b−1

(
1 − 1 − (1 − ε)b

2b − 1

)a−1

,

and in particular,

NS
′
0(f) =

2P[f = T]n

2b − 1
NS
′
1
2
(f) =

(2P[f = T])2n

(2b − 1)2
.

The quantities NS
′
0(f) and NS

′
1
2

(f) can also be calculated easily using Proposition 2.3.7 and

Mansour’s calculation of the Fourier coefficients ANDa ⊗ ORb from [Man95]:

Proposition 3.9.2 Let f = ANDa ⊗ ORb. Then

f̂(∅) = 1 − 2P[f = T], and

f̂(S1, . . . , Sa) = 2(−1)c+12−bc(1 − 2−b)a−c,

where S = (S1, . . . , Sa) denotes the natural partition of a set S ⊆ [n] according to the input

blocks, and c ≥ 1 is the number of Si 6= ∅.

It is natural to select a and b in such a way that f has P[f = T] = (1−2−b)a as close to 1
2

as possible. To do this, it is best to choose a particular value for n = ab for each possible

value of b. Doing this, we get an infinite family of functions called the “tribes functions.”

These functions were first defined and studied by Ben-Or and Linial [BL90], who showed

these functions satisfy Ij(f) = ln n
n (1 − o(1)) for every j ∈ [n].

Definition 3.9.3 Given b ∈ N, define n = nb to be the smallest integral multiple of

b such that (1 − 2−b)n/b ≤ 1
2 . We then define the tribes function on n inputs to be

TRIBESn = ANDn/b ⊗ ORb.

63

We emphasize that the tribes functions are only defined for some input lengths n.

Let us quantify the relationship between b and n more carefully. For analysis purposes,

let n′ be the real number such that (1−2−b)n′/b = 1
2 . Then b = log2 n′−log2 ln n′+o(1); hence

n′ ≤ n ≤ n′ + log2 n′, and so b = log2 n − log2 ln n + o(1) as well. Thus P[TRIBESn = T] is

equal to (1−2−b)n/b = 1
2(1−2−b)(n−n′)/b = 1

2(1−2−b)1+o(1) = 1
2(1−O(log n

n)). Summarizing:

Fact 3.9.4 Fix b and let n be chosen as in the definition of TRIBESn. Then

• P[TRIBESn = T] = 1
2 − O(log n

n),

• n = (1 + o(1))(ln 2)b2b and hence nb+1 = (2 + o(1))nb,

• b = log2 n − log2 ln n + o(1), so 2b = n
ln n(1 + o(1)).

The tribes functions are very noise-sensitive monotone functions, especially for ε near 1
2 .

Combining Proposition 3.9.1, Fact 3.9.4, and Proposition 2.3.7 we get the following:

Proposition 3.9.5

NS
′
0(TRIBESn) = I(TRIBESn) = (ln n)(1 − o(1)),

NS
′
1
2

(TRIBESn) = II(TRIBESn) =
ln2 n

n
(1 − o(1)).

These facts were known to Ben-Or and Linial. As Kahn et al. point out, the tribes function

are tight (up to a constant) for Theorem 2.4.4; i.e., they have minimal NS
′
1
2

= II among

near-balanced monotone functions. Some noise sensitivity graphs of tribes functions are

shown in Figure 3-9.

As mentioned in Section 3.6, not only is NS
′
1
2

(TRIBES) very small, but NS 1
2
−δ is nearly

as large as 1
2 − ln2 n

n δ for a reasonably large range of δ’s:

Proposition 3.9.6

NS 1
2
−δ(TRIBESn) ≥ 1

2
− ln2 n

n
δ · (2 + o(1))(1 + 2δ)log2 n − O

(
log2 n

n2

)
.

Proof: By Facts 2.1.8 and 3.9.4, NS 1
2
(TRIBESn) = 1

2 − 2P[TRIBESn = T]2, which is

1
2−O(log2 n

n2). Since NSε(TRIBESn) is an increasing concave function of ε (Proposition 2.1.9),

64

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

NSε

ε

TRIBES18
TRIBES44

TRIBES110

Figure 3-9: Noise sensitivity graphs of TRIBES

we get NS 1
2
−δ(TRIBESn) ≥ 1

2 −O(log2 n
n)−δNS

′
1
2
−δ

(TRIBESn) by the mean value theorem. It

remains to check that NS
′
1
2
−δ

(TRIBESn) ≤ ln2 n
n ·(2+o(1))(1+2δ)log2 n. By Proposition 3.9.1,

NS
′
1
2
−δ

(TRIBESn) =
2P[f = T]n

2b − 1

(
1

2
+ δ

)b−1
(

1 − 1 − (1
2 + δ)b

2b − 1

)n/b−1

≤ 2P[f = T]n

2b − 1

(
1

2
+ δ

)b−1

≤ 2n

2b − 1

(
1

2

)b

(1 + 2δ)b−1

≤ ln2 n

n
(2 + o(1))(1 + 2δ)log2 n,

where we have used Fact 3.9.4. 2

We remark that, as might be expected, a slightly more careful analysis lets one shave

off a factor of 2; one can show

NS 1
2
−δ(TRIBESn) ≥ 1

2
− ln2 n

n
δ · (1 + o(1))(η + O(η2)) − O

(
log2 n

n2

)
,

where η = (1 + 2δ)log2 n. However, we shall not bother to prove this. An alternate way

of deriving these estimates based on the Fourier spectrum of the tribes function is given

in [O’D02].

65

As an immediate corollary of Proposition 3.9.6, we have the following:

Corollary 3.9.7 If δ ≤ O(1
log n) then NS 1

2
−δ(TRIBESn) ≥ 1

2 − O(log2 n
n δ).

Thus in the range δ ≤ O(1
log n), Corollary 3.6.5 is tight up to a constant. If we are concerned

about the range δ ≤ 1
2 − Ω(1), we can start by iterating MAJ3 and then use tribes:

Theorem 3.9.8 Let ε ≥ Ω(1). Then there is an infinite family of monotone functions (Tn)

satisfying

NSε(Tn) ≥ 1

2
− log1+u′

n

n
,

where u′ is any number exceeding u = log 4
3
3 = 3.818. . . .

Proof: As stated, the idea is to first use iterated MAJ3 to boost ε up to 1
2 − 1

log n , and then

to apply a tribes function.

Fix a tribes function on n inputs, TRIBESn. We will construct Tn′ on n′ = n logu′
n

inputs. Let ` be the recursive depth necessary for iterated MAJ3’s to increase noise ε up to

noise 1
2 − 1

log n . By Theorem 3.7.2, ` = (1 + o(1)) log 4
3
(log n) is sufficient, since ε ≥ Ω(1).

Put f = MAJ
⊗`

r , so f is a function on 3` = logu′
n inputs. Let Tn′ = TRIBESn ⊗ f .

Now by construction we have NSε(f) ≥ 1
2 − 1

log n . By Corollary 3.9.7 we have,

NS 1
2
−1/ log n(TRIBESn) ≥ O(log n

n). Since f is balanced, by Proposition 2.2.7 we get

NSε(Tn′) ≥ 1
2 − O(log n

n). The result now follows, since as a function of n′, O(log n
n) is

in fact log1+u′
n′

n′ (taking u′ slightly larger to kill any constant factors). 2

It seems possible to improve Theorem 3.9.8 to 1
2 − log2+o(1) n

n by using recursive tribes

functions in the manner the expanding majority functions. However the fact that the tribes

functions are not perfectly balanced is a stumbling block.

Let us conclude this section with a brief estimate of the `2 weight of the Fourier spectrum

of the tribes functions at low levels. From Proposition 3.9.2 we know that an index set

(S1, . . . , Sn/b) with c ≥ 1 nonempty parts contributes

4 · 2−2bc(1 − 2−b)2(n/b−c) = 4P[TRIBESn = T]2
(

2−b

1 − 2−b

)2c

=

(
1 − O

(
log n

n

))(
ln n

n

)2c

(1 + o(1))2c

66

in `2 weight to the Fourier spectrum. For a given level k ≥ 1, let us lower-bound
∑
|S|=k

̂TRIBESn(S)2 simply by taking the contribution of indices with c = 1. There

are exactly n
b

(
b
k

)
such indices, and each contributes weight (at least) (1 − o(1)) ln2 n

n2 . For

k = o(b
1
2) = log

1
2 n we have

(
b
k

)
≥ (1 − o(1)) bk

k! ; hence we have the following conclusion:

Proposition 3.9.9 For 1 ≤ k < o(log
1
2 n),

∑

|S|=k

̂TRIBESn(S)2 ≥ (1 − o(1))
ln2 n

n
(log2 n)k−1.

This shows that the estimate of Benjamini, Kalai, and Schramm, Theorem 2.4.8, has the

correct asymptotics, since in the case of the tribes functions II ∼ ln2 n
n .

A representative Fourier spectrum graph of the tribes function is shown in Figure 3-10.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

∑
|S|=k

̂TRIBES44(S)2

k

Figure 3-10: Fourier spectrum graph of TRIBES44

3.10 Threshold functions

In this section we investigate the sensitivity of weighted threshold functions to small rates

of noise. Benjamini, Kalai, and Schramm gave a somewhat difficult probabilistic argu-

ment in [BKS99] showing that the noise sensitivity at ε of every threshold function is

bounded above by O(ε
1
4), where the hidden constant is independent of n. Peres gave a

67

much simpler argument improving this to the expected tight upper bound O(
√

ε) (unpub-

lished; see [BKS99]). We now present a slightly altered version of Peres’s proof from [Per02]:

Lemma 3.10.1 Let f : {+1,−1}n → {+1,−1} be a weighted threshold function, say

f(x) = sgn(
∑n

i=1 wixi − θ), and assume without loss of generality that
∑

i∈F wixi = 0

never holds for any x and ∅ 6= F ⊆ [n] (perturb the weights if necessary). Then for any set

∅ 6= F ⊆ [n],

P
x,y=Nε(x)

[f(x) 6= f(y) | the flipped bits are precisely F] = E

[
f(x)sgn

(∑

i∈F

wixi

)]
.

Proof: Fix ∅ 6= F ⊆ [n]. Let x be chosen uniformly at random, and let y be given by

flipping the F bits of x. Write S =
∑n

i=1 wixi and S′ =
∑n

i=1 wiyi, and note that S and S ′

are identically distributed, although they are not independent.

Suppose we condition on sgn(S − θ) = sgn(S ′ − θ). Then S and S ′ are still identically

distributed; hence we can imagine choosing S and S ′ by first choosing the unordered pair

{S, S′} subject to sgn(S − θ) = sgn(S ′ − θ), and then flipping a fair coin to decide which is

which. The value of sgn(S − θ) is the same regardless of the coin toss, and thus sgn(S −S ′)

is equally likely ±1, independent of sgn(S − θ). We have thus established the following:

E[sgn(S − θ)sgn(S − S ′) | sgn(S − θ) = sgn(S ′ − θ)] = 0. (3.18)

Suppose on the other hand we condition on sgn(S − θ) = sgn(S ′ − θ). Then we know that

θ is between the two numbers S and S ′, and so sgn(S − θ) = sgn(S − S ′). Hence

E[sgn(S − θ)sgn(S − S ′) | sgn(S − θ) 6= sgn(S ′ − θ)] = 1. (3.19)

Combining Equations (3.18) and (3.19), we get

P[sgn(S − θ) 6= sgn(S ′ − θ)] = E[sgn(S − θ)sgn(S − S ′)]

⇒ P[f(x) 6= f(y)] = E

[
f(x)sgn

(
2

n∑

i=1

wixi

)]
,

and this is conditioned on F being the bits flipped in going from x to y, as desired. 2

Theorem 3.10.2 Let f : {+1,−1}n → {+1,−1} be a weighted threshold function. Then

68

NSε(f) ≤ (
√

2/π + oε(1) + 1/n)
√

ε, where oε(1) represents a function which goes to 0 as

ε → 0, independent of n.

Proof: Let f be as in Lemma 3.10.1, and for F 6= ∅, let ρF = E[f(x)sgn(
∑

i∈F wixi)]. For

each 0 < k ≤ n we wish to upper-bound the probability P (k) that f(x) 6= f(Nε(x)) given

that the noise operator flips exactly k bits. By Lemma 3.10.1 we have P (k) = avg|F |=k{ρF }.

Write m = bn/kc, and let Π = (F1, . . . , Fm) be a random partition of [n] into m disjoint

sets of size k, where n − mk indices are left over. Since each Fj is uniformly distributed

among all k-sets of [n], we have

P (k) = avg
|F |=k

ρF

=
1

m

m∑

j=1

EΠ[ρFj]

=
1

m
EΠ

[m∑

j=1

ρFj

]

=
1

m
EΠ

[m∑

j=1

Ex

[
f(x)sgn

(∑

i∈Fj

wixi

)]]
.

Let us write σj(x) = sgn(
∑

i∈Fj
wixi). Continuing:

P (k) =
1

m
EΠ

[m∑

j=1

Ex[f(x)σj(x)]
]

=
1

m
EΠ,x

[
f(x)

(m∑

j=1

σj(x)
)]

. (3.20)

Since f(x) ∈ {+1,−1}, regardless of the manner in which f(x) is dependent on the

random variables σj(x), we have f(x)(
∑m

j=1 σj(x)) ≤ |∑m
j=1 σj(x)|. Hence

P (k) ≤ 1

m
EΠ,x

[∣∣∣
m∑

j=1

σj(x)
∣∣∣
]
.

But since the sets Fj are always chosen pairwise disjoint, the random variables σj(x) are

mutually independent and uniformly ±1. It is well known that for independent random

69

signs σj , E[|∑m
j=1 σj |] ≤

√
2/π m

1
2 + C for some small universal constant C. Thus

P (k) ≤
√

2/π m−
1
2 + C m−1

=
√

2/π bn/kc− 1
2 + C bn/kc−1

≤
√

2/π(k/n + 2(k/n)2)
1
2 + C (k/n + 2(k/n)2),

where we have used the fact that bx−1c−1 ≤ x + 2x2 for all x ∈ (0, 1]. Note that this

statement is also true for k = 0. We conclude,

NSε(f) = E
k∼Bin(n,ε)

[P (k)]

≤ E[
√

2/π(k/n + 2(k/n)2)
1
2 + C(k/n) + 2C(k/n)2]

≤
√

2/π
√

E[k/n + 2(k/n)2] + C E[k/n] + 2C E[(k/n)2] (Cauchy-Schwarz)

=
√

2/π
√

ε + 2ε/n + Cε + 2Cε/n (3.21)

≤ (
√

2/π + oε(1) + 1/n)
√

ε,

as claimed. 2

Benjamini, Kalai, and Schramm conjectured that majority is the threshold function

which is most sensitive to noise. This seems very plausible despite the small gap between

(2/π)
1
2 and 2/π in Corollary 3.4.4 and Theorem 3.10.2.

Corollary 3.10.3 Let f : {+1,−1}n → {+1,−1} be a weighted threshold function. Then

NSε(f) ≤ 5
4

√
ε, and further NSε(f) ≤ √

ε if ε ≤ 1
100 .

Proof: It is possible to check by exhaustion that the statements are true for n ≤ 4; thus we

may assume n ≥ 5. We now perform the estimation at the end of the proof of Theorem 3.10.2

more explicitly. The constant C there may be taken to be .21. Starting from (3.21),

NSε(f) ≤
√

2/π
√

ε + 2ε/n + Cε + 2Cε/n

≤
√

2/π
√

ε + 2ε/5 + .21ε + .084ε

≤
√

2/π
√

7/5
√

ε + .294ε. (3.22)

It is straightforward to check that (3.22) is never more than 5
4

√
ε, and is at most

√
ε for

ε ≤ 1
100 . 2

70

While Peres’s bound is sharp (up to a constant) for threshold functions in general, more

can be said if we take into account the bias of the function.

Theorem 3.10.4 Let f : {+1,−1}n → {+1,−1} be a weighted threshold function, and let

p = min{P[f = T],P[f = F]}. There is a universal constant C (e.g., 16 suffices), such that

NSε(f) ≤ C · (2p)
√

ln(1/p)
√

ε.

Proof: Suppose without loss of generality that p = P[f = −1] ≤ 1
2 . Proceed as in the

proof of Theorem 3.10.2 until Equation (3.20), recalling that the random variables σj are

independent and uniformly ±1. Let T be a random variable denoting the number of σj ’s

which are +1, so T ∼ Bin(m, 1
2). For each t = 0 . . .m, define pt = P[f(x) = −1 | T = t],

where the probability is taken over the choice of Π and x. Since the event f(x) = −1 is

negatively correlated with the events σj = +1, we conclude that

1 ≥ p0 ≥ p1 ≥ p2 ≥ · · · ≥ pm ≥ 0. (3.23)

Also, by definition, p =

m∑

t=0

P[T = t]pt. (3.24)

Continuing from Equation (3.20), we have

P (k) =
1

m
EΠ,x

f(x)

m∑

j=1

σj

=
1

m

m∑

t=0

P[T = t]E

f(x)

m∑

j=1

σj

 | T = t

=
1

m

m∑

t=0

P[T = t]E[f(x)(2t − m) | T = t]

=
1

m

m∑

t=0

P[T = t](2t − m)E[f(x) | T = t]

=
1

m

m∑

t=0

P[T = t](2t − m)(1 − 2pt)

=
1

m

m∑

t=0

P[T = t](2t − m) +
1

m

m∑

t=0

P[T = t]2pt(m − 2t)

=
4

m

m∑

t=0

P[T = t]
(m

2
− t
)

pt, (3.25)

71

where we have used ET [2T − m] = 0.

We will obtain an upper bound for P (k) by maximizing (3.25) subject to (3.23) and (3.24).

This is a linear programming problem. Hence the maximum occurs at a vertex, which

in this case means the maximum occurs when, for an appropriate 1 ≤ b ≤ m
2 , we have

p0 = p1 = · · · = pb−1 = 1, pb+1 = pb+2 = · · · = pm = 0, and pb is such that (3.24) is

tight. (We have b ≤ m
2 since p ≤ 1

2 .) Henceforth we let the pt’s take on these values which

maximize (3.25) and we will reason about the value of (3.25).

Our goal is now to show the following:

(3.25) ≤ (C/2) · (2p)
√

ln(1/p)m−
1
2 . (3.26)

An easy case occurs if p ≤ 2−m. In this case pt = 0 for all t > 0 and hence (3.25) = 2p.

But p ≤ 2−m implies (C/2)
√

ln(1/p)m−
1
2 ≥ 1 (assuming C ≥ 2), so (3.26) is proved.

Assume then that p > 2−m. We claim that it suffices to show (3.26) in the case that pb = 1;

i.e., the case that p =
∑b

t=0

(
m
t

)
2−m for some b > 0. For suppose that (3.26) holds in this

case; then given any p∗ > 2−m and associated b and p∗t ’s, we may write p∗ = (1−pb)p
−+pbp

+,

where p− =
∑b−1

t=0

(
m
t

)
2−m and p+ =

∑b
t=0

(
m
t

)
2−m. One can easily check that the value

of (3.25) associated to p∗ is (1 − pb)(3.25)
− + pb(3.25)

+, where (3.25)− denotes the value

of (3.25) for p−, and similarly for (3.25)+. But by assumption (3.26) holds for p− and p+;

since p
√

ln(1/p) is a convex function of p, we have that (3.26) holds for p∗ as well.

So we may assume that p =
∑b

t=0

(
m
t

)
2−m; i.e., p = P[T ≤ b], where as before,

T ∼ Bin(m, 1/2). Now we can rewrite (3.25) as

4p

m
E
[m

2
− T | T ≤ b

]
.

Thus showing (3.26) amounts to showing

E
[m

2
− T | T ≤ b

]
≤ (C/4)

√
ln(1/P[T ≤ b]) m

1
2 , (3.27)

for every 1 ≤ b ≤ m
2 . We shall show this is indeed true for C = 16 in the technical

Lemma 3.10.5 which follows. We thus have P (k) ≤ (C/2)(2p)
√

ln(1/p)m−
1
2 . The remainder

of the proof proceeds as in the proof of Theorem 3.10.2, noting that we can upper-bound

(1 + 1/n) by 2. 2

72

We now prove the technical lemma needed in Theorem 3.10.4.

Lemma 3.10.5 Let m ≥ 1 be an integer and let T ∼ Bin(n, 1
2). Let 1 ≤ b ≤ m

2 , and let

q = P[T ≤ b]. Then

E
[m

2
− T | T ≤ b

]
≤ 4
√

ln(1/q) m
1
2 .

Proof: We will make use of the Chernoff bound P[T ≤ m
2 − δ m

2] < exp(−mδ2/4) which

holds for 0 ≤ δ ≤ 1. This immediately yields

b ≥ m

2
−
√

ln(1/q) m
1
2 . (3.28)

The Chernoff bound also tells us that P[T < m
2 − 2

√
ln(1/q) m

1
2] < q4. Hence

P
[
T <

m

2
− 2
√

ln(1/q)
√

m | T ≤ m

2

]
< 2q4.

We write d for 2
√

ln(1/q) m
1
2 and α for 2q4, so we have P[T < m

2 − d | T ≤ m
2] < α. It

follows from the log-concavity of the binomial distribution1 that

P [T < u − d | T ≤ u] < α

holds for every u ≤ m
2 . In particular this holds for u = b, u = b− d, u = b− 2d, u = b− 3d,

etc., whence

E [b − T | T ≤ b] ≤ d + α(2d) + α2(3d) + α3(4d) + · · ·

<
d

(1 − α)2

=
2
√

ln(1/q) m
1
2

(1 − 2q4)2

≤ 2
√

ln(1/q) m
1
2

(1 − 2(1
2)4)2

(3.29)

< 3
√

ln(1/q) m
1
2 . (3.30)

1In particular, log-concavity implies the “new-is-better-than-used” property of mathematical reliability,
which is exactly what we use here. See, e.g., [An95].

73

So we conclude

E
[m

2
− T | T ≤ b

]
=

m

2
− b + E [b − T | T ≤ b]

< 4
√

ln(1/q) m
1
2 ,

by (3.28) and (3.30). 2

As an aside, we believe the lemma is true with the improved constant 1/
√

2; in particular,

we conjecture that

max
1≤b≤m

2

√
ln(1/P[T ≤ b]) m

1
2

E
[

m
2 − T | T ≤ b

] (3.31)

increases as a function of m. If this is true than we can get the improved constant by noting

that (3.31) → 1/
√

2 as m → ∞, by a straightforward normal approximation.

3.11 Read-once intersections of halfspaces

In this section we consider read-once intersections of halfspaces; i.e., functions of the form

f = AND(h1, . . . , hk), where each function hi is a weighted threshold function.

Theorem 3.11.1 Let f = AND(h1, . . . , hk), where each function hi is a weighted threshold

function and k ≥ 2. Let C be the constant from Theorem 3.10.4. Then

NSε(f) ≤ 2C (ε ln k)
1
2 .

Proof: By Proposition 2.2.8 and Corollary 3.4.4, NSε(f) ≤ k · 5
4 ε

1
2 . For k ≤ 6 this is

smaller than 2C (ε ln k)
1
2 , so we assume k ≥ 7.

Write pi = P[hi = T] and ηi = NSε(hi). By Proposition 3.3.2, we have the following:

1

2
NSε(f) =

(
k∏

i=1

pi

)(
1 −

k∏

i=1

(
1 − ηi

2pi

))

≤
(

k∏

i=1

pi

)(
k∑

i=1

ηi

2pi

)
, (3.32)

where we have used the fact that
∏k

i=1(1 − xi) ≥ 1 −∑k
i=1 xi for any x1, . . . , xk ∈ [0, 1]

(note that ηi

2pi
≤ 1 by Fact 2.1.7).

74

We would now like to break up (3.32) into parts depending on the various values of the

pi’s. For 1 ≤ s ≤ t ≤ k, let us write

Us...t =

(
t∏

i=s

pi

)(
t∑

i=s

ηi

2pi

)
.

Our goal is to show U1...k ≤ C (ε ln k)
1
2 . We begin by claiming that it suffices to assume all

of the pi’s are at least 2
3 . For suppose that, say, p1 < 2

3 . Then

U1...k = p1U2...k +

(
k∏

i=1

pi

)(
η1

2p1

)
≤ 2

3
U2...k +

1

2
η1 ≤ 2

3
U2...k +

5

8
ε

1
2 ,

where the last step uses Corollary 3.4.4. Hence if we can show U2...k ≤ C (ε ln k)
1
2 , then

U1...k ≤ 2
3C (ε ln k)

1
2 + 5

8 ε
1
2 ≤ C (ε ln k)

1
2 , since 1

3C (ln k)
1
2 ≥ 1

3C(ln 7)
1
2 ≥ 5

8 . We can repeat

this argument for any pi < 2
3 ; thus in showing U1...k ≤ C (ε ln k)

1
2 it suffices to assume

pi ≥ 2
3 for all i.

Without loss of generality, we may reorder indices so that p1, . . . , p` < 1 − 1
10k and

p`+1, . . . , pk ≥ 1 − 1
10k for some 0 ≤ ` ≤ k. Using the fact that pi ≤ 1 for all i, it is easy to

see that U1...k ≤ U1...` + U`+1...k. We now upper-bound each of these terms individually.

U1...` =

(∏̀

i=1

pi

)(∑̀

i=1

ηi

2pi

)

≤
(∏̀

i=1

pi

)(∑̀

i=1

C ε
1
2

1 − pi

pi

(
ln

1

1 − pi

) 1
2

)
(Theorem 3.10.4)

≤ 3
2C (ε ln 10k)

1
2

(∏`
i=1 pi

)(∑`
i=1(1 − pi)

)
(using 2

3 ≤ pi ≤ 1 − 1
10k)

≤ 3
2C (ε ln 10k)

1
2 µ``(1 − µ) (where µ =

√̀
p1 · · · p`, by the AM-GM inequality)

≤ 3
2C (ε ln 10k)

1
2 e−1 (by elementary calculus, maximizing over µ ∈ [0, 1]).

U`+1...k ≤
(

k∏

i=`+1

pi

)(
k∑

i=`+1

C ε
1
2

1 − pi

pi

(
ln

1

1 − pi

) 1
2

)
(as before)

≤ (k − `)C ε
1
2

1
10k

1 − 1
10k

(ln 10k)
1
2 (since 1−p

p (ln 1
1−p)

1
2 decreases on [1 − 1

10k , 1])

≤ (10 − 1
7)−1C (ε ln 10k)

1
2 (using k − ` ≤ k, k ≥ 7)

75

Thus U1...k ≤ (3
2e + (10 − 1

7)−1)C (ε ln 10k)
1
2 and this is less than C (ε ln k)

1
2 for k ≥ 7, as

desired. 2

We remark that Theorem 3.11.1 is trivial unless ε is significantly smaller than 1
ln k .

3.12 Read-once majorities of halfspaces

In this section we consider read-once unweighted thresholds of halfspaces; i.e., functions of

the form f = sgn(h1 + · · ·hk −θ), where the functions hi are weighted threshold function on

disjoint sets of variables. We mainly have in mind functions of the form MAJk(h1, . . . , hk).

This section shall be devoted to the proof of the following theorem:

Theorem 3.12.1 Let f(x) = sgn(h1(x) + · · · + hk(x) − θ), where the functions hi are

weighted threshold functions on disjoint sets of variables. Then

NSε(f) ≤ Õ
(
(ε log k

ε)
1
4

)
.

(Here Õ(η) denotes O(1) · η log(1/η).)

Proof: Let pi = P[hi(x) = −1] and qi = min{pi, 1 − pi}. Let εi denote NSε(hi). Let C

denote the constant from Theorem 3.10.4.

We begin by reducing to the case in which each qi is not too small, and each εi ≤ qi.

Let si ∈ {+1,−1} be the less likely value for hi(x), so si is such that P[hi(x) = si] = qi.

Let

α = 2
√

C (ε ln k)
1
4 ,

and let Sα = {i ∈ [k] : qi ≤ α/k}. Recalling that both x and Nε(x) are both uniformly

distributed, a union bound tells us that the probability there exists an i ∈ Sα such that

h(x) = si or h(Nε(x)) = si is at most
∑

i∈Sα
2qi ≤ ∑

i∈Sα
2α/k ≤ 2α. Since an additive

α = O(1)(ε log k)
1
4 does not affect the bound we are trying to prove, we may assume without

loss of generality that hi(x) = hi(Nε(x)) = −si for all i ∈ Sα. In this case these halfspaces

are irrelevant to the noise sensitivity calculation, and we can therefore assume without loss

of generality that Sα = ∅; i.e., that qi > α/k for all i.

Next, note that each εi ≤ C(2qi)
(
ε ln 1

qi

) 1
2

by Theorem 3.10.4. We claim that we may

assume C(2qi)
(
ε ln 1

qi

) 1
2 ≤ qi and hence εi ≤ qi. The claimed inequality holds if and

76

only if qi ≥ exp
(
− 1

4C2ε

)
; since each qi > α/k = 2

√
Cε

1
4

(
ln

1
4 k
k

)
, it suffices to establish

2
√

C ε
1
4

ln
1
4 k
k ≥ exp

(
− 1

4C2ε

)
. It is easy to check that this holds so long as k < exp(1

4C2ε
)

because ln
1
4 k
k decreases for k ≥ 2. But this holds without loss of generality, for otherwise

ε ln k ≥ 1
4C2 = Ω(1) and the theorem is trivially true.

To summarize, we may assume without loss of generality,

qi ≥ α/k, qi ≥ εi. (3.33)

Let Fi denote the random variable hi(Nε(x)) − hi(x). Since

P[hi(x) = +1, hi(Nε(x)) = −1] = P[hi(x) = −1, hi(Nε(x)) = +1] = εi/2,

we have that Fi = ±2 with probability εi/2 each, and Fi = 0 with probability 1 − εi.

Let H denote
∑k

i=1 hi(x) and let F denote
∑k

i=1 Fi; thus F denotes the amount by which

h1(x)+ · · ·+hk(x) and h1(Nε(x))+ · · ·+hk(Nε(x)) differ. The proof of the present theorem

centers around the observation that if f(x) 6= f(Nε(x)) then we must have |F | ≥ |H − θ|.
Hence

NSε(f) ≤ P[|F | ≥ |H − θ|],

and we shall proceed by upper-bounding the probability that |F | ≥ |H − θ|.

While the random variables H and F are clearly not independent, each is a sum of

independent Bernoulli random variables, and this allows us to bring to bear a number of

standard estimates. Let us write σ2
H and σ2

F for the variances of H and F respectively. To

upper-bound the probability that H is close to the threshold θ we shall use the following

result, whose proof we defer to the end of this section:

Lemma 3.12.2 Let H1, . . . , Hk be independent ±1-valued random variables, let H =
∑k

i=1 Hi,

and let σ2
H denote Var[H]. Then for every θ ∈ R and every λ ≥ 1 we have

P[|H − θ| ≤ λ] ≤ O(1)
λ

σH
.

To bound the size of |F | in terms of H’s deviation from θ, we will use an estimate for

77

σF /σH . We claim

σF /σH ≤ O(1)

(
ε log

k

α

) 1
4

. (3.34)

To see this, let us compute,

σ2
F =

k∑

i=1

Var[Fi] = 4
k∑

i=1

εi ≤ 8C
k∑

i=1

qi

(
ε ln

1

qi

) 1
2

≤ O(1)

(
ε log

k

α

) 1
2

k∑

i=1

qi,

where the first inequality follows from Theorem 3.10.4, and the second because qi ≥ α/k

using (3.33). As for the variance of H,

σ2
H =

k∑

i=1

Var[Hi(x)] =

k∑

i=1

(1 − (1 − 2pi)
2) =

k∑

i=1

4pi(1 − pi) = 4

k∑

i=1

4qi(1 − qi) ≥ 2

k∑

i=1

qi,

where the inequality uses qi ≤ 1
2 . The inequality claimed in (3.34) now follows.

The proof now splits into two cases, depending on whether σF ≥ 1 or σF < 1.

Case 1: σ2

F
≥ 1. In this case, we shall use a simple tail bound to show that F ’s magnitude

is unlikely to exceed a moderate quantity times σF . Recall that F is the sum of the indepen-

dent random variables Fi, and each one has mean zero and satisfies |Fi| ≤ 2. By Bernstein’s

inequality (a special case of Hoeffding’s inequality; see, e.g., Section 2.2 of [Pet95]), for any

τ > 0 we have

P[|F | ≥ τσF] ≤ 2 exp

[
− (τσF)2

2(σ2
F + 2τσF)

]
≤ 2 exp

[
− τ2

2 + 4τ/σF

]
≤ 2 exp

[
− τ2

2 + 4τ

]
,

where the last inequality uses σF ≥ 1.

As for H, we shall take τ ≥ 1, so τσF ≥ 1 and we can apply Lemma 3.12.2 to conclude

P[|H − θ| ≤ τσF] ≤ O(1)
τσF

σH
≤ O(1)τ

(
ε log

k

α

) 1
4

,

where the second inequality is from (3.34). Hence

P[|F | ≥ |H − θ|] ≤ P[|F | ≥ τσF] + P[|H − θ| ≤ τσF]

≤ 2 exp

[
− τ2

2 + 4τ

]
+ O(1)τ

(
ε log

k

α

) 1
4

.

78

Taking τ = A log(1/(ε log k
α)) with A a suitably large constant we get

NSε(f) ≤ O(1)

(
ε log

k

α

) 1
4

log(1/(ε log k
α)).

Case 2: σ2

F
< 1. In this case, let S denote the random set {i : hi(x) 6= hi(Nε(x))}; we refer

to S as the flip set. We now consider the random variable H conditioned on S being the

flip set. As conditional random variables, we have (H|S) =
∑k

i=1(hi(x)|S), and the random

variables (hi(x)|S) are still independent. It is easily verified that for i ∈ S, (hi(x)|S) takes

the values ±1 with equal probability; whereas, for i 6∈ S, (hi(x)|S) = −1 with probability

pi−εi/2
1−εi

and (hi(x)|S) = +1 with probability 1−pi−εi/2
1−εi

. Thus for i ∈ S, Var[hi(x)|S] = 1,

and for i 6∈ S,

Var[hi(x)|S] = 1 −
(

1 − 2pi

1 − εi

)2

= 1 − (1 − 2qi)
2

(1 − εi)2
≥ (1 − 2qi)

2

(1 − qi)2
≥ 2qi(1 − qi),

where the first inequality uses εi ≤ qi from (3.33) and the second is elementary for qi ∈ [0, 1
2].

Recalling that Var[hi(x)] = 4qi(1 − qi) we see that regardless of whether i ∈ S or not,

Var[hi(x)|S] ≥ 1
2Var[hi(x)]. Hence Var[H|S] ≥ 1

2σ2
H . It thus follows from Lemma 3.12.2

that for every θ ∈ R and λ ≥ 1, P[|H−θ| ≤ λ | S] ≤ O(1)
√

2 λ
σH

, independently of S. Since

|F | ≤ 2|S| is immediate, we conclude,

NSε(f) ≤ P[|H − θ| ≤ 2|S|]

=
∑

S⊆[k]

P[flip set is S] · P[|H − θ| ≤ 2|S| | flip set is S]

≤
∑

S⊆[k]

P[flip set is S] · O(1)
|S|
σH

= O(1)E[|S|]/σH

= O(1)

(
k∑

i=1

εi

)
/σH

= O(1)(σ2
F /σH)

≤ O(1)(σF /σH),

79

where the last inequality is since σF ≤ 1 in Case 2. Hence we have NSε(f) ≤ O(1)(σF /σH) ≤
O(1)

(
ε log k

α

) 1
4 by (3.34).

In conclusion, in both Cases 1 and 2 we have

NSε(f) ≤ O(1)

(
ε log

k

α

) 1
4

log(1/(ε log k
α)).

Since α = O(1)(ε ln k)
1
4 , the proof is complete. 2

3.12.1 Proof of Lemma 3.12.2

In this subsection we prove the technical lemma needed in the preceding proof of Theo-

rem 3.12.1:

Proposition 3.12.3 Let X1, . . . , Xn be independent ±1-valued random variables where

P[Xk = −1] = pk and let x =
∑n

k=1 Xk. Then for every θ ∈ R,

P[|x − θ| ≤ 1] ≤ O(1)√∑n
k=1 pk(1 − pk)

.

Lemma 3.12.2 as stated earlier follows easily from this via a union bound over a suitably

chosen sequence of values for θ. The proof given below is based on similar arguments in

Petrov’s work [Pet95].

Proof: Define

p(x) =
2(1 − cosx)

x2
≥ 0 and h(t) =

1 − |t|, |t| ≤ 1

0, else

.

Elementary integration by parts shows that p(x) is the inverse Fourier transform of h(t);

i.e.,

p(x) =

∫ ∞

−∞
e−itxh(t) dt.

80

By considering the Taylor expansion of cos x, we get that p(x) ≥ 11
12 on the interval [−1, 1].

Hence

P[|x − θ| ≤ 1] = E
x
[1x∈[θ−1,θ+1]]

≤ 12
11E[p(x − θ)]

= 12
11E

[∫ ∞

−∞
e−it(x−θ)h(t) dt

]

=
12

11

∫ ∞

−∞
E[e−itxeitθh(t)] dt

=
12

11

∣∣∣
∫ ∞

−∞
eitθh(t)E[e−itx] dt

∣∣∣ (3.35)

≤ 12

11

∫ 1

−1

∣∣E[e−itx]
∣∣ dt, (3.36)

with (3.35) following because the quantity is already real and nonnegative, and (3.36)

following because |eitθ| ≤ 1, h(t) = 0 outside [−1, 1], and |h(t)| ≤ 1 otherwise.

Now,

E
x
[e−itx] = E

xk←Xk

[
exp(−it

n∑

k=1

xk

)
]

= E
xk←Xk

[n∏

k=1

exp(−itxk)
]

=
n∏

k=1

E
xk←Xk

[exp(−itxk)] (by independence)

=
n∏

k=1

(pk exp(it) + (1 − pk) exp(−it))

=
n∏

k=1

(cos t + i(2pk − 1) sin t).

By comparing Taylor expansions one can establish that

| cos t + i(2p − 1) sin t| ≤ exp
(
−11

24
p(1 − p)t2

)

for p ∈ [0, 1], t ∈ [−1, 1]. We may conclude the following:

81

P[|x − θ| ≤ 1] ≤ 12

11

∫ 1

−1

n∏

k=1

exp(−11
24pk(1 − pk)t

2) dt

=
12

11

∫ 1

−1
exp

(
−11

24

[
n∑

k=1

pk(1 − pk)

]
t2

)
dt

=
12

11

∫ 1

−1
exp

− t2

2
(√

12
11 (
∑

pk(1 − pk))
−1/2

)2

 dt

≤ 12

11

∫ ∞

−∞
exp

− t2

2
(√

12
11 (
∑

pk(1 − pk))
−1/2

)2

 dt

=
√

2π(12
11)3/2

(∑
pk(1 − pk)

)−1/2
,

since (
√

2πσ)−1 exp(−t2/2σ2) is a probability density function for every positive σ. 2

82

Chapter 4

Hardness Amplification

In this chapter we relate noise sensitivity to the problem of hardness amplification from

computational complexity theory. In hardness amplification, the goal is to take a boolean

function f assumed to be slightly hard to compute and to produce a new function h which

is much harder to compute. Here we mean “hardness” in the sense of hardness of average;

we consider the fraction of inputs on which the function is computed correctly:

Definition 4.0.4 We say a boolean function f : {+1,−1}n → {+1,−1} is (1− ε)-hard for

circuits of size s if no circuit of size s can correctly compute f on a 1 − ε fraction of the

inputs {+1,−1}n.

The most straightforward way to perform hardness amplification is to use what is called a

“direct product” theorem (see, e.g., Shaltiel [Sha01] for a study of direct product theorems).

Such a theorem quantifies the hardness of a composite function g⊗f in terms of an assumed

hardness of f and some intrinsic property of g. Prior to this work, the only known direct

product theorem was the classical Yao XOR Lemma (originating in [Yao82]) which dealt

with the case g = PARITYk. Roughly speaking, the Yao XOR Lemma says that if f is

(1− ε)-hard to compute then PARITYk ⊗f is (1
2 + 1

2(1−2ε)k)-hard to compute. As we shall

see, it is not a coincidence that this quantity is precisely 1 − NSε(PARITYk).

In this chapter we prove a nearly sharp direct product theorem for every possible g.

That is, we answer the following question:

Question 4.0.5 Suppose f : {+1,−1}n → {+1,−1} is a balanced boolean function which

is (1 − ε)-hard for circuits of size s. Let g : {+1,−1}k → {+1,−1} be any function. What

is the hardness of the composite function g ⊗ f?

83

(We consider only balanced functions f for technical reasons that will become clear later.

In fact, our final theorem will allow for slightly imbalanced functions.)

The near-sharp answer we give to the above question is in terms of an intrinsic property

of g, parameterized by ε, which we call the expected bias of g. This quantity is very closely

related to the noise sensitivity of g as we shall see. Let us now define expected bias:

Definition 4.0.6 The bias of a boolean function h is bias(h) = max{P[h = T],P[h = F]}.

Definition 4.0.7 We denote by Rn
ε the set of random restrictions ρ on n coordinates, in

which each coordinate is mapped independently to ? with probability ε, to 0 with probability

(1 − ε)/2, and to 1 with probability (1 − ε)/2. Given a boolean function h : {+1,−1}n →
{+1,−1}, we write hρ for the function given by applying restriction ρ to function h.

Definition 4.0.8 Given a boolean function h : {+1,−1}n → {+1,−1} and 0 ≤ ε ≤ 1, the

expected bias of h at ε is

EBε(h) = E
ρ∈Rn

ε

[bias(hρ)].

With this definition in place, we can now answer Question 4.0.5:

Answer 4.0.5 Roughly speaking, the hardness of g ⊗ f is EB2ε(g). To state our direct

product theorem exactly,

Theorem 4.0.9 For every δ > 0, the function g ⊗ f is (EB(2−δ)ε(g) + η)-hard for circuits

of size s′ = Ω(η2/ log(1/ε)
k s).

In Section 4.2 we explain from an intuitive, information-theoretic perspective why An-

swer 4.0.5 should be the correct answer; the proof of Theorem 4.0.9 in Section 4.3 transfers

the ideas to the computational setting of circuits. We also use the intuitive ideas and

constructions of Shaltiel to show that Theorem 4.0.9 is nearly tight; see Section 4.6.

Note that we get a form of Yao’s XOR Lemma as an immediate corollary of Theo-

rem 4.0.9; since EBε(PARITYk) is easily calculated to be 1
2 + 1

2(1− ε)k, we get the following

(taking δ = 1):

Corollary 4.0.10 If f is a balanced boolean function which is (1 − ε)-hard for circuits

of size s, then f ⊕ f ⊕ · · · ⊕ f (k times) is (1
2 + 1

2(1 − ε)k + η)-hard for circuits of size

Ω(η2/ log(1/ε)
k s).

84

As a practical matter, it is often quite difficult to calculate the expected bias of even rela-

tively simple functions. Fortunately, noise stability (i.e., 1 − NSε) is an excellent estimator

for expected bias. This allows us to put to use the calculations from Chapter 3. Qualita-

tively, we have that EB2ε(g) = 1 − o(1) if and only if 1 − NSε(g) = 1 − o(1), and the same

holds for 1 − Ω(1) and 1
2 + o(1) in place of 1 − o(1). Quantitatively, we have the following:

Proposition 4.0.11 Let g be a boolean function and let ε ∈ [0, 1
2]. Write γ = 2(1

2−NSε(g)).

Then

1 − NSε(g) =
1

2
+

1

2
γ ≤ EB2ε(g) ≤ 1

2
+

1

2
γ

1
2 .

Proof: Given a ρ ∈ Rn
ε , write stars(ρ) for the set of coordinates to which ρ assigns ?. By

Fact 2.1.6 we have γ = Ex,y=Nε(x)[g(x)g(y)]. An equivalent way of generating x and y is to

first pick a random restriction ρ ∈ Rn
2ε and then to pick two independent, uniformly random

strings x′ and y′ for the coordinates stars(ρ). Therefore

γ = E
ρ∈Rn

2ε

x′,y′∈{+1,−1}stars(ρ)

[gρ(x
′)gρ(y

′)] = Eρ

[
Ex′ [gρ(x

′)]Ey′ [gρ(y
′)]
]

= Eρ

[
E[gρ]

2
]
.

On the other hand, using bias(gρ) = 1
2 + 1

2 |E[gρ]| and linearity of expectation, we get

EB2ε(g) = 1
2 + 1

2Eρ∈Rn
2ε

[|E[gρ]|]. Thus to complete the proof we need only show that

γ ≤ Eρ [|E[gρ]|] ≤ γ
1
2 , where γ = Eρ

[
E[gρ]

2
]
. But this follows immediately from Cauchy-

Schwarz and the fact that |E[gρ]| ≤ 1. 2

We briefly note that the bounds in Proposition 4.0.11 cannot be much improved. As we

have seen, the lower bound becomes equality for g = PARITYk and every 0 ≤ ε ≤ 1
2 . As

for the upper bound, a very easy modification of the proof of Theorem 3.4.2 establishes the

following:

Theorem 4.0.12 For any ε ∈ [0, 1],

lim
n→∞

EBε(MAJn) =
3

4
+

1

2π
arcsin(1 − 2ε).

(The error estimate is also the same as in Theorem 3.4.2.)

85

Consider now NS 1
2
−δ(MAJn) and EB1−2δ(MAJn) for small δ and very large n. Using

Theorems 3.4.2 and 4.0.12 and the approximation from Fact 3.4.3, we get

1

2
+

1

2
γ ≈ 1

2
+ (2/π)δ EB1−2δ ≈ 1

2
+ (

√
2/π)δ

1
2

1

2
+

1

2
γ

1
2 ≈ 1

2
+ (1/

√
π)δ

1
2 .

So in this case the upper bound in Proposition 4.0.11 is asymptotically tight.

4.1 Motivation: the hardness of NP

Our main motivation for studying hardness amplification is to try to quantify the hardness

on average of complexity classes — especially NP. That is, we would like to know how hard

the hardest function in NP is for polynomial-sized circuits. Of course, we do not know if

there is a function in NP which is even (1 − 2−n)-hard for polynomial circuits since this is

precisely the NP vs. P/poly question. However, under the reasonable assumption that NP

is at least slightly hard on average we can use hardness amplification results to quantify

just how hard it really is.

This problem has been extensively studied for EXP in the context of derandomization,

and very strong results are known — see, e.g., [BFNW93, Imp95, IW97, STV01]. Specifi-

cally, it is known that if EXP is (1−2−n)-hard for polynomial circuits — i.e., if EXP 6⊆ P/poly

— then EXP contains a function which is (1
2 + 1/poly(n))-hard for polynomial circuits. A

crucial ingredient in some of the proofs involved is the Yao XOR Lemma. Unfortunately,

the XOR Lemma cannot be used to amplify hardness within NP. The reason is simple:

PARITYk ⊗ f is not necessarily in NP, even when f is. Given f ∈ NP, the only easy way

to ensure that g ⊗ f is also in NP is to take g to be monotone (and also in NP). Thus we

are naturally led to prove hardness amplification results for monotone g, and this leads us

to look for monotone functions which are very noise-sensitive. This motivated our work in

Sections 3.6, 3.7, 3.8, 3.9.

In addition to Theorem 4.0.9, the main result we prove in this chapter is a hardness

theorem for NP:

86

Theorem 4.1.1 If there is a function family in NP which is infinitely often balanced and

(1 − 1/poly(n))-hard for circuits of polynomial size, then for any constant γ > 0 there is a

function family in NP which is infinitely often (1
2 + n−

1
2
+γ)-hard for circuits of polynomial

size. (Here “infinitely often” simply means for infinitely many input lengths n.)

As we will see in Section 4.5, 1
2+n−

1
2
+γ is nearly optimal for our techniques; getting hardness

down to, say, 1
2 + n−1 would require a significant departure, if indeed this is even possible.

The technical assumption in this theorem that the initial hard function is balanced may

be removed at the expense of a small loss in final hardness:

Theorem 4.1.2 If there is a function family in NP which is infinitely often (1−1/poly(n))-

hard for circuits of polynomial size, then for any constant γ > 0 there is a function family

in NP which is infinitely often (1
2 + n−

1
3
+γ)-hard for circuits of polynomial size.

4.2 Intuition for the direct product theorem

In this section we explain the intuition behind the hardness bound given in Answer 4.0.5.

Suppose that f : {+1,−1}n → {+1,−1} is a balanced function which is (1 − ε)-hard to

compute, and let g : {+1,−1}k → {+1,−1} be the hardness amplifying function. Let us

try to understand what the hardness of computing g ⊗ f should be, and how it relates to

the expected bias and noise sensitivity of g.

Suppose we are trying to compute g ⊗ f using modest computational resources. Inputs

w1, . . . , wk ∈ {+1,−1}n are selected independently and uniformly at random and our task

is to compute g(f(w1), . . . , f(wk)). Let us write xi = f(wi) and call these the “true inputs”

to g. Since f is balanced and the wi’s are independent, the true inputs xi are simply

independent uniform random bits.

Here is the most naive strategy we could use for trying to compute (g⊗f)(w1, . . . , wk) =

g(x1, . . . , xk): First we try to compute each xi; say our computation for f(wi) produces the

possibly mistaken “guess input” yi. We then simply guess g(y1, . . . , yk). Since f is (1 − ε)-

hard, each guess input yi will be equal to xi with probability 1 − ε. Thus our probability

of success — the probability that g(y1, . . . , yk) = g(x1, . . . , xk) — is precisely 1 − NSε(g).

We conclude that it is reasonable for a small circuit to compute g ⊗ f with probability

1 − NSε(g). Indeed, as we see from Proposition 4.0.11, 1 − NSε(g) ≤ EB2ε(g), the hardness

bound we are claiming.

87

However there are situations in which strategies better than the naive one are possible;

in order to definitively say that g ⊗ f has a certain hardness, we must consider the best

possible strategy. It is easy to see that 1−NSε(g) will not be the best possible bound. For

example, given the guess inputs yi, guessing g(y1, . . . , yn) is not necessarily the best idea.

Suppose g = ANDk and ε is quite large. Then even if we compute y1 = y2 = · · · = yk = T,

knowing ε it is still more probable than not that at least one xi equals F. Thus our best

strategy would be to always guess F. In general, if all we know about the yi’s is that they

are correct with probability 1− ε, the best strategy is a maximum likelihood one, computed

by taking a weighted average of g’s values near (y1, . . . , yk).

But even this might not be the best strategy for us, since it neglects a crucial possibility:

we might have extra information as to whether or not yi is correct. One could imagine that

for each input wi, it is easy to tell how hard computing f(wi) is, and thus how confident

we should be in our guess yi. Naturally, this extra confidence information should influence

our strategy for guessing g(x1, . . . , xk). Since f is (1 − ε)-hard, the average confidence we

achieve cannot exceed 1 − ε. But it is not hard to see that it is better for us to know most

inputs with confidence 1 rather than for us to know each input with confidence 1 − ε. Let

us give a name to this more helpful scenario:

Definition 4.2.1 In the Hard-Core scenario (the name is inspired by [Imp95]), for each i,

with probability 1− 2ε our guess yi is the correct value of xi and furthermore we know that

our guess is correct; with probability 2ε, yi is a uniformly random bit and we know that this

guess input is completely uncorrelated to xi.

Note that in the Hard-Core scenario, each guess bit yi is still correct (equal to xi) with

probability 1 − ε. To see that this scenario is more helpful than the situation in the naive

strategy, simply note that we can simulate the latter by ignoring the extra confidence

information.

The Hard-Core scenario in some sense gives us the most information — i.e., it models

f as being (1 − ε)-hard in the easiest possible way. The optimal strategy for guessing g

in this scenario is clear. We look at the restricted version of the function g gotten when

the yi’s which are known to be correct are plugged in. Since the remaining inputs are

completely unknown, but also completely random, we should guess according to the bias

of the restricted function. That is, if the function is biased towards +1, guess +1; if it is

88

biased towards −1, guess −1. The probability that this strategy is correct is exactly the

expected bias of gρ over random restrictions ρ with ?-probability 2ε — i.e., EB2ε(g).

It turns out that using this optimal strategy in the Hard-Core scenario is the best we

can ever do — we show essentially EB2ε(g) hardness for g ⊗ f in Theorem 4.0.9. Further,

as we will see in Theorem 4.6.7, it is perfectly possible for f to be hard in the manner of

the Hard-Core scenario; i.e., for f to be trivial on an easily recognized 1 − 2ε fraction of

inputs and nearly impossible to compute on a 2ε fraction. In this case, assuming that g

is not too complicated a function, we can actually perform the best guessing strategy and

thus Theorem 4.0.9 is nearly tight.

4.3 The hardness theorem

In this section we give the computational proof of Theorem 4.0.9, modeled after the in-

tuitive discussion of the previous section. Our main tool is the hard-core set theorem of

Impagliazzo [Imp95]. Roughly speaking, this theorem says that in the computational con-

text of circuits, every (1 − ε)-hard function conforms to the Hard-Core scenario described

in Section 4.2. That is, on a 2ε-fraction of its inputs the function is nearly impossible for

small circuits, whereas on the remainder of its inputs it may be very easy.

We record here as a lemma the exact statement of Impagliazzo’s theorem that we need:

Lemma 4.3.1 Let f be (1 − ε)-hard for size s. Then for every constant δ > 0, f has a

“hard-core” S ⊆ {+1,−1}n of size at least (2 − δ)ε2n and at most 2ε2n with the following

property: on S, f is balanced and (1
2 + η)-hard for size Ω(η2

log(1/ε) s).

Proof: Combining the results of Impagliazzo [Imp95] with the improvements of Klivans

and Servedio [KS03] (see also [Ser01]), there must exist a set S ′ ⊆ {+1,−1}n of size at least

(2 − δ)ε2n and at most (2 − δ/2)ε2n on which f is (1
2 + η/2)-hard for size Ω(η2

log(1/ε) s). We

would like to add a small number of strings to S ′ to make f balanced on this set. Suppose

without loss of generality that f is biased towards +1 on S ′. Since f is (1
2 + η/2)-hard on

S′, it is +1 on at most (1
2 + η/2)|S′| strings in S′. Since |S′| ≤ (2 − δ/2)ε2n and we may

assume without loss of generality that η < δ/4, the total number of +1’s f has in S ′ is at

most (1
2 + η/2)(2 − 2η)ε2n ≤ ε2n.

On the other hand, since f is (1 − ε)-hard on {+1,−1}n, f must take on the value −1

for at least ε2n strings in {+1,−1}n. It follows that there is a superset S ′ ⊆ S ⊆ {+1,−1}n

89

of S′ on which f is balanced. This set has size at most 2ε2n.

It remains to show that f is (1
2 + η)-hard on S. We know that no circuit (of size

Ω(η2

log(1/ε) s)) gets f right on S ′ with probability more than 1
2 + η/2, and no circuit gets f

right on S \ S ′ with probability more than 1. We know that

|S \ S′| = bias(f |S′)|S′| − (1 − bias(f |S′))|S′| = (2bias(f |S′) − 1)|S′| ≤ η|S′|.

It follows that no circuit gets f right on S with probability more than

(
1

2
+

η

2

) |S′|
|S| +

|S \ S′|
|S| =

(
1

2
+

η

2

) |S| − |S \ S′|
|S| +

|S \ S′|
|S|

=
1

2
+

η

2
+

(
1

2
− η

2

) |S \ S′|
|S|

≤ 1

2
+

η

2
+

(
1

2
− η

2

)
η

≤ 1

2
+ η,

as needed. 2

With Impagliazzo’s theorem formalizing the reason for which f is hard, there is only one

more ingredient we need to complete the proof along the lines outlined in Section 4.2. We

need to show that if all of a function’s inputs look completely random then it is impossible

to guess its value with probability better than its bias:

Lemma 4.3.2 Let Hn denote the n-dimensional Hamming cube with its graph structure,

and suppose h : Hn → {+1,−1} and p : Hn → [0, 1]. Further suppose that

2−n

 ∑

x∈h−1(+1)

p(x) +
∑

x∈h−1(−1)

(1 − p(x))

 (4.1)

is at least bias(h)+ η. Then there exists an edge (x, y) in Hn with |p(x)− p(y)| ≥ Ω(η/n
1
2).

Proof: The idea here is that h is the function whose value on {+1,−1}n we are trying to

guess, and p(x) represents the probability with which we guess +1 when the input is x. Our

success probability is given by (4.1), and the lemma says that if we are doing strictly better

than bias(h) then we must be doing at least some distinguishing between adjacent points

in the cube; i.e., the points in the cube cannot look completely indistinguishable to us.

90

Getting the lower bound Ω(η/n
1
2) is a little tricky, so we defer the proof to Section 4.4.

For now we just prove a lower bound of η/n. Note that using this weaker lower bound in

the proof of Theorem 4.0.9 will make no qualitative difference, and will still be able to prove

the hardness theorem for NP, Theorem 4.1.1, just as well.

Without loss of generality we may assume that h is biased towards +1; write

b = bias(h) = P[h = +1] ≥ 1
2 . By way of contradiction, assume |p(x) − p(y)| < η/n

for all edges (x, y) ∈ Hn. Let M and m be the maximum and minimum values of p on Hn.

Since any of pair of points in the cube is at Hamming distance at most n, it follows that

M −m < η. Now (4.1) would be maximized if p(x) = M for all x ∈ h−1(+1) and p(x) = m

for all x ∈ h−1(−1). Hence

(4.1) ≤ bM + (1 − b)(1 − m)

= (M + m − 1)b + 1 − m

≤ (2M − 1)b + 1 − m + M − M

< (2M − 1)b + 1 − M + η

= (1 − M) − (2 − 2M)b + b + η

≤ b + η,

since b ≥ 1
2 . This contradiction completes the proof. 2

Now we prove our hardness amplification theorem. We will actually prove a slightly

stronger statement than the one given in Section 4 — for technical reasons we want the

theorem to hold under the assumption that the hard function f is only nearly balanced,

not necessarily exactly balanced.

Theorem 4.0.9 Let f : {+1,−1}n → {+1,−1} be a function which is (1− ε)-hard for size

s. Let g : {+1,−1}k → {+1,−1} be any function. Let η > 0 be any parameter, and assume

that bias(f) ≤ 1
2 + (1 − 2ε)η/4k. Then for every δ > 0, g ⊗ f is (EB(2−δ)ε(g) + η)-hard for

circuits of size s′ = Ω(η2/ log(1/ε)
k s).

Proof: Let S be the hard-core for f given by Lemma 4.3.1, using parameters ε, δ, and

η′ = (c/8)ηk−
1
2 , where c is the constant hidden in the Ω(·) of Lemma 4.3.2. Then f is

(1
2 + η′)-hard on S for circuits of size s′. Furthermore, we have bias(f |S) = 1

2 , and because

|S| ≤ 2ε2n and bias(f) ≤ 1
2 + (1 − 2ε)η/4k, we get bias(f |Sc) ≤ 1

2 + η/4k.

91

Let γ = |S|2−n ≥ (2 − δ)ε, and let E = EBγ(g). It’s easy to see that EBε(h) is a

nonincreasing function of ε for any h — simply note that in the guessing game of Section 4.2,

the more information the optimal strategy has the better. Hence E ≤ EB(2−δ)ε(g).

Suppose by way of contradiction that C is a circuit of size s′ computing g ⊗ f on an

(EB(2−δ)ε(g) + η) ≥ E + η fraction of the inputs in ({+1,−1}n)k. For a given restriction

ρ ∈ Rk
γ , let us say that an input (x1, . . . , xk) ∈ ({+1,−1}n)k matches ρ when for all i we have

xi ∈ S ⇒ ρ(i) = ? and xi ∈ Sc ⇒ ρ(i) = f(xi). Note that the probability an input matches

ρ is very nearly ρ’s natural probability under Rk
γ . In particular: the probability that xi ∈ S

is exactly γ, which is the correct ? probability; the probability that f(xi) = +1 given that

xi ∈ Sc is at most 1
2 + η/4k because bias(f |Sc) ≤ 1

2 + η/4k; and, a similar statement holds

for f(xi) = −1. Hence P[(x1, . . . , xk) matches ρ] ≤ P[ρ](1
2 + η/4k)k/(1

2)k ≤ P[ρ](1 + 2
3η)

for every ρ.

Let cρ be the probability that C correctly computes (g ⊗ f)(x1, . . . , xk) conditioned on

the event that (x1, . . . , xk) matches ρ. We have

P[C correct] ≥ E + η

⇒ ∑
ρ P[(x1, . . . , xk) matches ρ]cρ ≥ ∑

ρ P[ρ]bias(gρ) + η

⇒ ∑
ρ P[ρ](1 + 2

3η)cρ ≥ ∑
ρ P[ρ]bias(gρ) + η,

and it follows that there must exists a restriction ρ such that cρ ≥ bias(gρ) + η/4.

By reordering the k length-n inputs to C we may that assume ρ is of the form

(?, . . . , ?︸ ︷︷ ︸
k′ times

, bk′+1, . . . , bk) for some k′ < k, bi ∈ {+1,−1}. An averaging argument tells us

there exist particular x∗k′+1, . . . , x
∗
k ∈ {+1,−1}n with f(x∗i) = bi such that C correctly com-

putes gρ ⊗ f with probability at least cρ when the first k′ inputs are drawn independently

and uniformly from S and the last k − k′ inputs are hardwired to the x∗’s.

Let C ′ be the size s′ circuit given by hardwiring in the x∗’s. So C ′ is a circuit taking

k′ strings in {+1,−1}n, and it correctly computes gρ with probability at least cρ when its

inputs x1, . . . , xk′ are drawn independently and uniformly from S. From now on, whenever

we speak of probabilities with respect to C ′ we mean over uniformly random inputs drawn

from S (not all of {+1,−1}n).

For each (y1, . . . , yk′) ∈ {+1,−1}k′
, let p(y) be the probability that C ′(x1, . . . , xk′) = +1

conditioned on the event that yi = f(xi) for all i = 1 . . . k′. Since f is balanced on S, each

92

of these events is equally likely. It follows that the correctness probability of C ′ is exactly

2−k′

 ∑

y∈g−1
ρ (+1)

p(y) +
∑

y∈g−1
ρ (−1)

(1 − p(y))

 .

Since this quantity is at least cρ ≥ bias(gρ) + η/4, Lemma 4.3.2 tells us that there is an

edge (z, z′) in Hk′ such that |p(z) − p(z′)| ≥ c(η/4)(k′)−
1
2 ≥ (c/4)ηk−

1
2 = 2η′.

Reorder inputs again so that we may assume z = (+1, u), z ′ = (−1, u) for some string

u ∈ {+1,−1}k′−1. Again, an averaging argument tells us that there exist x∗2, . . . , x
∗
k′ with

(f(x∗2), . . . , f(x∗k′)) = u such that

∣∣∣Px1∈(f |S)−1(+1)[C
′(x1, x

∗
2, . . . , x

∗
k′) = +1] −Px1∈(f |S)−1(−1)[C

′(x1, x
∗
2, . . . , x

∗
k′) = +1]

∣∣∣ ≥ 2η′.

Now let C ′′ be the size s′ circuit given by hardwiring in the new x∗’s. Then

∣∣∣Px1∈(f |S)−1(+1)[C
′′(x1) = +1] − Px1∈(f |S)−1(−1)[C

′′(x) = +1]
∣∣∣ ≥ 2η′,

and so we have a circuit of size s′ which when given one random input from S can distinguish

the cases f(x1) = +1 and f(x1) = −1 with advantage 2η′. This contradicts the fact that f

is (1
2 + η′)-hard for size s′. 2

In Section 4.6 we give unconditional constructions showing that this theorem is nearly

tight.

4.4 Proof of Lemma 4.3.2

In this section we prove the strong version of Lemma 4.3.2. The result is a simple example

of the concentration of measure phenomenon. We shall slightly generalize by allowing p’s

range to be [−1, 1] rather than [0, 1].

Lemma 4.3.2 Let Hn denote the n-dimensional Hamming cube with its graph structure,

and suppose h : Hn → {+1,−1} and p : Hn → [−1, 1]. Further suppose |E[hp]| ≥ |E[h]|+ η.

Then there exists an edge (x, y) in Hn such that |p(x) − p(y)| ≥ Ω(η/n
1
2).

Proof: Let γ be the maximum of |p(x) − p(y)| over all edges (x, y) in Hn. For a subset

C ⊆ Hn, let µp(C) denote the average value of p on C. Let m be the median value of p on

93

Hn, and partition Hn into two sets A+ and A− of equal size such that p(x) ≥ m ≥ p(y) for

all x ∈ A+ and y ∈ A−.

We are interested in the the number of points in Hn at distance at most d from A+.

When |A+| = 1
22n, an isoperimetric inequality on the cube (see, e.g., [Bez94]) tells us that

for all d this number is maximized when A+ is a ball of radius n/2. (Strictly speaking, n

should be odd and the radius should be bn/2c. Since we only care about asymptotics in n,

we gloss over such niceties.) It follows that the average distance from A+ (over all points)

is maximized when A+ is such a ball.

The average distance in Hn to a ball of radius n/2 is O(n
1
2); this fact is fairly standard.

To see it, suppose without loss of generality the ball is A = {x ∈ Hn : MAJ(x) = +1}.
Then the distance from a point x to A is equal to 0 if MAJ(x) = +1, and is equal to

(weight(x) − n/2) otherwise. The result now follows from the fact that the distribution of

weight(x) is approximately normal, N(n/2, n/4), and that E[|N(n/2, n/4)−n/2|] = O(n
1
2).

Hence the average distance to A+ over all points in Hn is O(n
1
2). Indeed, since half of all

points have distance 0 from A+, we can conclude that the average distance to A+, over any

set of size 1
22n, is O(n

1
2) (gaining a factor of 2 in the O(·)).

But if the Hamming distance between two points x and y is at most d, then certainly

|p(x) − p(y)| ≤ dγ. Since the smallest possible value of p on A+ is m, it follows that

µp(C) ≥ m−O(γn
1
2) for any set |C| = 1

22n. Running the same argument with A− in place

of A+ yields that µp(C) ≤ m + O(γn
1
2) for any set |C| = 1

22n. Writing θ = O(γn
1
2), we

conclude that µp(C) ∈ [m − θ, m + θ] for all sets |C| = 1
22n.

Now let us turn our attention to h. Write H+ = h−1(+1), H− = h−1(−1) and assume

without loss of generality that b = 2−n|H+| ≥ 1
2 . We first upper-bound µp(H

+). Let M

be the set of 1
22n points in H+ with largest p-value. Then µp(M) ≤ m + θ. The remaining

points in H+ have p-value at most m. Hence

µp(H
+) ≤ 1/2

b
(m + θ) +

b − 1/2

b
m

⇒ bµp(H
+) ≤ bm + θ/2.

Now we lower-bound µp(H
−). Let N be the set of (b− 1

2)2n points outside of H− with

smallest p-value. Then |N ∪ H−| = 1
22n, so µp(N ∪ H−) ≥ m − θ. On the other hand, the

94

points in N have p-value at most m. Hence

b − 1/2

1/2
m +

1 − b

1/2
µp(H

−) ≥ m − θ

⇒ (1 − b)µp(H
−) ≥ (1 − b)m − θ/2.

Subtracting the two inequalities, we get

bµp(H
+) − (1 − b)µp(H

−) ≤ (2b − 1)m + θ

⇒ E[hp] ≤ E[h]m + θ

⇒ E[hp] ≤ |E[h]| + θ,

since m ≤ 1, and we assumed E[h] ≥ 0. Since we could replace p by −p throughout, we can

in fact conclude |E[hp]| ≤ |E[h]| + θ. But |E[hp]| ≥ |E| + η by assumption. Hence θ ≥ η

which implies γ ≥ Ω(η/n
1
2). 2

4.5 Hardness amplification within NP

As we mentioned earlier, we can use the hardness amplification theorem to show that if NP

is slightly hard on average for polynomial circuits, then it is in fact very hard. In this section

we shall prove Theorems 4.1.1 and 4.1.2. Our operating assumption about the hardness of

NP will be that there is a function family (fn) in NP which is infinitely often (1−1/poly(n))-

hard for polynomial circuits. Our methods are more straightforward if this function family

is also assumed to be balanced. However, this assumption appears restrictive; it is not clear

if there is an NP-complete language which is balanced on all input lengths. We will use a

pair of simple tricks to deal with the unbalanced case.

Let us first construct the monotone function we will use to amplify hardness:

Theorem 4.5.1 For every α > 0 there is a monotone function family (gk), computable

in P and defined for every input length k, such that NS1/2kα(gk) ≥ 1
2 − 1

2k−1+4α for all

sufficiently large k.

Proof: Let α′ = 3α. On input length k, pick ` as large as possible so that 3` ≤ kα′
, and

pick k′ to be the largest possible input length less than k1−α′
for the functions T constructed

in Theorem 3.9.8. Define gk = Tk′ ⊗ MAJ
⊗`

3 to be on k bits by ignoring some input bits if

95

necessary. Note that 3` = Ω(kα′
) and k′ = Ω(k1−α′

), so we haven’t lost too much in the

input length. Furthermore, being tribes functions composed with recursive majorities of 3,

the family (gk) is computable in P.

Assume k is sufficiently large. Then by choice of ` and α′, we have 1/2kα ≥ 1/(3`)
log 3

2
3
.

Thus by Theorem 3.7.2, NS1/2kα(MAJ
⊗`

3) ≥ ε for some constant ε ≥ Ω(1). Next, from

Theorem 3.9.8, NSε(Tk′) ≥ 1
2− 1

2(k′)−1+α ≥ 1
2− 1

2k−1+α+α′
for k sufficiently large. Therefore

NS1/2kα(gk) ≥ 1
2 − 1

2k−1+4α by Proposition 2.2.7, as desired. 2

Corollary 4.5.2 The function family (gk) from Theorem 4.5.1 satisfies

EBkα(gk) ≥
1

2
+

1

2
k−

1
2
+2α.

Proof: This follows immediately from Proposition 4.0.11. 2

We can now prove Theorem 4.1.1:

Theorem 4.1.1 If there is a function family (fn) in NP which is infinitely often balanced

and (1 − 1/poly(n))-hard for circuits of polynomial size, then for any constant γ > 0 there

is a function family (hm) in NP which is infinitely often (1
2 + m−

1
2
+γ)-hard for circuits of

polynomial size.

Proof: Let γ be given and assume that (fn) is in NP and is infinitely often balanced and

(1 − 1/nc)-hard for circuits of polynomial size. For each n, define k = k(n) = n4c/γ . Write

m = kn and define hm = gk ⊗ fn, where gk is the function from Theorem 4.5.1. Since gk is

monotone and in P, the family (hm) is in NP. Now apply the hardness amplification theorem,

Theorem 4.0.9, with δ = 1, ε = 1/nc and η = 1/m. Since all the parameters are fixed

polynomials in n, we conclude that hm is (EB1/nc(gk) + 1/m)-hard for polynomial circuits.

By Corollary 4.5.2, EB1/nc(gk) = EB1/kγ/4(gk) ≤ 1
2 + 1

2k−
1
2
+γ/2. But m = k(γ/4c)/(1+γ/4c),

so we may easily conclude that hm is (1
2 + 1

2m−
1
2
+γ +1/m)-hard for polynomial circuits, for

m sufficiently large. This completes the proof. 2

Let us now remark that this bound of 1
2 +m−

1
2
+γ is close to the best we can achieve for

NP using our hardness amplification technique. By Proposition 4.0.11, if g : {+1,−1}k →
{+1,−1} is any hardness amplifying function, EB1−2δ(g) ≥ 1 − NS 1

2
−δ(g). But if we want

to do hardness amplification within NP, g must be monotone, and so Kahn, Kalai, and

96

Linial’s result Corollary 3.6.5 implies that NS 1
2
−δ(g) ≤ 1

2 − Ω(log2 k
k)δ and hence we have

EB1−2δ(g) ≥ 1
2 + Ω(log2 k

k)δ. Thus if we begin with a function f : {+1,−1}n → {+1,−1}
with hardness at least 1

2 + Ω(log2 n
n), then Theorem 4.0.9 will only tell us that g ⊗ f has

hardness EB
1−2Ω(log2 n

n
)
(g) ≥ 1

2 + Ω(log2 k
k)Ω(log2 n

n) ≥ 1
2 + Ω(log2(kn)

kn). Thus as a function

of the new input length kn, we are no harder after amplification than we were before.

Therefore, hardness 1
2 + Ω(log2 m

m) is a barrier for our techniques. Furthermore, it seems

possible that EB1−2δ(g) ≥ 1
2 + Ω(k−

1
2) for all monotone g : {+1,−1}k → {+1,−1}, which

would make Theorem 4.1.1 even tighter for our techniques.

We close this section by showing how to remove the assumption that the initial hard

function in NP is balanced, at the expense of a small loss in final hardness. We begin by

employing a simple reduction using padding:

Proposition 4.5.3 If there is a family of functions (fn) in NP which is infinitely often

(1 − 1/poly(n))-hard for polynomial circuits, then for every γ > 0 there is a family of

functions (gm) in NP which is infinitely often (1 − 1/mγ)-hard for polynomial circuits.

Proof: Suppose (fn) is infinitely often (1 − 1/nc)-hard for polynomial circuits. Pick

K > c/γ, and define m = m(n) = nC . On an input x of length m, define gm(x) to be

fn applied to the first n bits of x. Then (gm) is surely in NP, and we claim that when-

ever n is an input length for which fn is (1 − 1/nc)-hard for polynomial circuits, gm is

(1 − 1/mγ)-hard for polynomial circuits. The proof is simple; suppose C were a circuit of

size md that correctly computed gm on a 1 − 1/mγ fraction of the inputs in {+1,−1}m.

By an averaging argument, there are settings for the last m − n input bits to C such that

C correctly computes gm on a 1 − 1/mγ fraction of the remaining inputs, {+1,−1}n. But

now we have a circuit of size nKd = poly(n) which computes fn with probability at least

1 − 1/nγK > 1 − 1/nc, a contradiction. 2

We now outline the proof of Theorem 4.1.2. We begin with a (1 − 1/nγ)-hard function

f on n inputs by using Proposition 4.5.3, and we wish to apply Theorem 4.0.9 using the

function gk defined in Theorem 4.5.1. The trouble is that the initial function has an unknown

bias. To circumvent this, we map input instances of length n to various instance lengths

around L = L(n), and use the new input lengths as guesses for the bias of the initial hard

function. This allows us to “know” the bias of f to within about ±L−1. At this point we

97

can easily cook up a slightly altered version of f which is still hard and is within about

±L−1 of being balanced. This lets us apply Theorem 4.0.9, so long as η/k ≈ L−1. Since the

expected bias we get from Corollary 4.5.2 exceeds 1
2 by about k−

1
2 , the largest η we would

like to pick is k−
1
2 , leading to k−

3
2 ≈ L−1 ⇒ k−

1
2 ≈ L−

1
3 . This is why the exponent of 1

3

arises in Theorem 4.1.2. We now give the rigorous proof:

Theorem 4.1.2 If there is a function family (fn) in NP which is infinitely often

(1 − 1/poly(n))-hard for circuits of polynomial size, then for any constant γ > 0 there

is a function family (hm) in NP which is infinitely often (1
2 + m−

1
3
+γ)-hard for circuits of

polynomial size.

Proof: Let γ > 0 be given, and assume there is a family of functions (fn) in NP that is

infinitely often (1 − 1/poly(n))-hard for circuits of polynomial size. By Proposition 4.5.3,

there is a family of functions in NP, which we will also denote by (fn), that is infinitely

often (1 − 1/nγ)-hard for polynomial circuits. We now begin to define hm. Let C = C(η)

be a large constant divisible by 3 to be chosen later. On input x of length m, express

m = (n+1)C+1 + i for n as large as possible with i ≥ 0. Assuming 0 ≤ i < 8nC , we “guess”

that the fraction of inputs on which fn is 1 is about i/8nC . (Note that i may be as large

as (n + 2)C+1 − (n + 1)C+1 > 8nC ; when i ≥ 8nC , define hm arbitrarily, say hm ≡ +1.)

Specifically, define f ′n : {+1,−1}n+1 → {+1,−1} as follows: on input yb, where |y| = n,

|b| = 1, put

f ′n(yb) =

f(y) if b = +1,

+1 if b = −1, y is in the first (i/8nC)2n strings of {+1,−1}n in lex order,

−1 otherwise.

The point of this construction is that for every n, there is a particular i and hence a particular

m for which f ′n becomes very close to balanced; specifically, bias(f ′n) ≤ 1
2 +1/8nC . Further,

note that f ′n is easily seen to be (1 − 1/2nγ)-hard for polynomial circuits.

Now we continue the definition of hm. Pick k = n
2
3
C , an integer, and let gk be the

function from Theorem 4.5.1 with parameter α = 2γ/C. Note that with this choice,

1/2nγ > 1/kα for sufficiently large n. On input x of length m (where m = (n + 1)C+1 + i

with 0 ≤ i < 8nC), write x = y1y2 · · · ykz, where |yi| = n + 1 and |z| = m − k(n + 1) > 0.

Now define hm(x) = gk ⊗ f ′n, where the input bits z are ignored.

98

One easily checks that the family (hm) is indeed in NP. We now show that (hm) is

infinitely often (1
2 +m−

1
3
+O(1)γ)-hard for polynomial circuits, which is sufficient to complete

the proof.

Suppose n is an input length for which fn is hard. Then as noted there is an m for

which f ′n becomes close to balanced, bias(f ′n) ≤ 1
2 + 1/8nC . For this m, we claim that hm

has the desired hardness. This follows in a straightforward manner from Theorem 4.0.9,

using Corollary 4.5.2. To be exact, let ε = 1/2nα, η = 1/nC/3, and δ = 1. Note that

bias(f ′n) ≤ 1
2 + 1/8nC ≤ (1 − 2ε)η/4k, as needed. Theorem 4.0.9 tells us that hm is

(EBε(gk) + η)-hard for polynomial circuits. Recall that ε > 1/kα. Thus by Corollary 4.5.2,

the hardness of hm is at most 1
2 + k−

1
2
+4γ/C + 1/nC/3 = 1

2 + n−C/3+(8/3)γ + n−C/3. As a

function of the input length, m ≤ (n + 2)C+1, the quantity n−C/3+(8/3)γ + n−C/3 can be

made smaller than m−
1
3
+O(1)γ by taking C = O(1/γ). 2

4.6 A corresponding easiness theorem

In this section we demonstrate that Theorem 4.0.9 is close to being tight.

Definition 4.6.1 We say a boolean function f : {+1,−1}n → {+1,−1} is (1 − ε)-easy for

circuits of size s if there is a circuit of size s which correctly computes f on a 1− ε fraction

of the inputs {+1,−1}n.

We shall show how to construct, for any ε and any g, a balanced function f which is

(1− ε)-hard, yet such that g⊗f is roughly EB2ε(g)-easy. The constructions of the functions

used in this section are essentially those of Shaltiel [Sha01].

Proposition 4.6.2 There is a universal constant γ ≥ .1 such that there exists a balanced

function h : {+1,−1}n → {+1,−1} which is (1
2 + 2−γn)-hard for size 2γn.

Proof: Folklore proof, by picking h to be a random balanced function. 2

Definition 4.6.3 For a given rational number ε ∈ [0, 1], define a canonical constant zε and

a canonical constant-sized circuit Zε on zε inputs such that P[Zε = +1] = ε.

99

Definition 4.6.4 Given a boolean function f : {+1,−1}n → {+1,−1} and a rational con-

stant ε ∈ [0, 1], define f (ε) : {+1,−1}n+zε+1 by

f (ε)(x, a, b) =

f(x) if Zε(a) = +1,

b else.

The following facts are easily verified:

Proposition 4.6.5

• If f is balanced, so is f (ε).

• If f is α-hard for size s, then f (ε) is (1 − ε + εα)-hard for size s.

• f (ε) is (1 − ε)-easy for size O(1).

Definition 4.6.6 If g : {+1,−1}n → {+1,−1}, define SIZE(g) to be the size of the smallest

circuit computing g exactly, and define R-B-SIZE(g) (standing for “restriction-bias-size”)

to be the size of the smallest circuit that, on input a length-n restriction ρ, outputs the bit

value towards which gρ is biased. (If gρ is balanced, the circuit is allowed to output either

+1 or −1.)

Of course, we can’t expect g⊗f to be easy to compute if g itself is hard to compute. So

intuitively, we think of SIZE(g) as being quite small. R-B-SIZE(g) may or may not be small.

For many simple functions though, such as parity, threshold functions, or tribes functions,

it is small. The easiness theorem we now prove as a converse to Theorem 4.0.9 allows for a

tradeoff, depending on the comparative values of SIZE(g) and R-B-SIZE(g).

Theorem 4.6.7 Let ε be a rational constant. Let ε′ = ε/(1−2−γn) = ε+O(2−γn), where γ is

the constant from Proposition 4.6.2. Then there is a balanced function f : {+1,−1}n+O(1) →
{+1,−1} which is (1 − ε)-hard for circuits of size 2γn, such that

1. g ⊗ f is EB2ε′(g)-easy for size R-B-SIZE(g) + O(k);

2. g ⊗ f is (1 − NSε′(g))-easy for size SIZE(g) + O(k); and,

3. g ⊗ f is (EB2ε′(g) − O(m−
1
2))-easy for size mSIZE(g) + O(mk).

100

Proof: Take h to be the hard balanced function from Proposition 4.6.2, and let f = h(2ε′).

Then by Proposition 4.6.5, f is balanced and (1 − ε)-hard for size 2γn. But it is also

(1 − 2ε′)-easy for size O(1). We are now essentially in the Hard-Core scenario described in

Section 4.2; with probability (1− 2ε′) we know the correct answer, and with probability 2ε′

we have no good idea.

Let us call our inputs w1, . . . , wk, where wi = (w′i, ai, bi). Let A be the constant-sized

circuit which on input (w′i, ai, bi) ∈ {+1,−1}n+zε′+1 outputs bi if Zε′(ai) 6= +1, or ? if

Zε′(ai) = +1. Let B be the circuit of size O(k) which applies a copy of A to each input

wi. The output of B is a length-k restriction, and we have the property that the output

distribution of B is exactly that of Rk
2ε′ .

Now we apply the two guessing strategies suggested in Section 4.2, given the restriction

ρ output by B.

To get result 1, we use a circuit of size R-B-SIZE(g) to output the more likely value of

gρ over a uniform choice of inputs.

To get result 2, our circuit picks a random bit for each coordinate on which ρ is ?; then

a SIZE(g) circuit outputs the appropriate value of g. A standard averaging argument lets

us trade off the randomness for nonuniformity.

To get result 3, we try to guess the bit towards which gρ is biased by trying many

random values. Specifically, we take m copies of the randomized circuit for result 2 (size

mSIZE(g)), and take their majority (size O(mk)). Again, the O(mk) random bits can be

traded for nonuniformity. Let a = 2(bias(gρ) − 1
2), and assume without loss of generality

that gρ is biased towards +1. The probability that the majority of m random outputs of g

is −1 is at most η = exp(− a2

1+a
m
4), using the Chernoff bound. Consequently, the probability

the circuit is correct is at least (1−η)(1
2 + 1

2a)+η(1
2 − 1

2a) = 1
2 + 1

2a−aη = bias(gρ)−aη. It

is straightforward to show using calculus that a exp(− a2

1+a
m
4) is maximized for a = Θ(m−

1
2).

In this case, aη = O(m−
1
2). Averaging over ρ, we get the claimed result. 2

101

102

Chapter 5

Learning Theory

In this chapter we give new computational learning algorithms whose efficiency and cor-

rectness are based on noise sensitivity considerations. Noise sensitivity was first related to

computational learning theory by Bshouty, Jackson, and Tamon [BJT99b] in 1999. How-

ever, their results were mainly negative; they gave lower bounds for the amount of time

necessary to learn classes of functions with high noise sensitivity under attribute noise. In

contrast, our results are positive; we give new algorithms which work in the usual, noiseless

model.

We first observe that any class of functions with low noise sensitivity can be learned

under the uniform distribution in a correspondingly low amount of time. As a result, we

can immediately apply our work from Sections 3.10, 3.11, and 3.12 to get new polynomial

time and quasipolynomial time algorithms for learning various classes based on halfspaces,

under the uniform distribution.

Next we describe a variation on the usual uniform-distribution PAC learning model,

namely the Random Walk model, first studied by Bartlett, Fischer, and Höffgen [BFH94].

Briefly, in this model the learner’s examples are not distributed independently, but rather

are produced according to a random walk on the hypercube. Under the Random Walk

model, we give a polynomial time algorithm for learning one of the most important and

notorious classes in learning theory, namely polynomial-sized DNF formulas. This is the

first known efficient algorithms for learning DNF in a natural, passive model of learning

from random examples only. Our technique involves introducing another model of learning

which we call the “Noise Sensitivity” model. We first show that learners with access to the

103

Random Walk model can simulate access to the Noise Sensitivity model. We then show

how the relationship between noise sensitivity and Fourier coefficients allows the learner to

identify large Fourier coefficient of the unknown DNF. This leads to an efficient learning

algorithm in the Noise Sensitivity model by known learning theory techniques.

Finally, in our last result we work further on the problem of learning DNF under the

uniform distribution by attacking the important problem of learning juntas. Although

our techniques do not use noise sensitivity directly, we believe that breakthroughs for this

problem may involve noise sensitivity. As H̊astad and Bourgain showed (see Theorem 1.2.2),

juntas and noise sensitivity are intimately related — sufficiently noise-stable functions must

be close to juntas, and vice versa. Furthermore, the recent polynomial time algorithm of

Fischer, Kindler, Ron, Safra, and Samorodnitsky [FKR+02] for testing juntas is based on

Fourier analysis of the sort relevant to noise sensitivity.

5.1 PAC learning preliminaries

The computational learning model we consider is Valiant’s popular “Probably Approxi-

mately Correct” (PAC) model of learning from random examples [Val84]; see Kearns [Kea90]

for an extensive survey. In this framework, a learning problem is identified with a concept

class C = ∪n≥1 Cn which is simply a collection of boolean functions, each f ∈ Cn being a

function {+1,−1}n → {+1,−1}.

The goal of a learning algorithm A for C is to identify an unknown function f ∈ C by

using random examples from this function only. In particular, the probabilistic algorithm

A takes as input as accuracy parameter ε and a confidence parameter δ; it also has access

to an example oracle EX(f,D). Here f may be any function in Cn and D may be any

probability distribution over {+1,−1}n. When queried, the example oracle provides the

learning algorithm with a labeled example 〈x, f(x)〉, where x is drawn from the distribution

D. The output of A is a hypothesis h, which is a boolean function h : {+1,−1}n → {+1,−1}
(in the form of a circuit, say). The hypothesis h is said to be ε-close to f if Prx←D[h(x) =

f(x)] ≥ 1 − ε. We say that A is a learning algorithm for C if for all f ∈ C and D, when A

is run with example oracle EX(f,D), with probability at least 1− δ it outputs a hypothesis

which is ε-close to f . Here the probability is over the random examples A sees from the

oracle and also over A’s own random bits.

104

The measure of A’s efficiency is its running time; A is only charged unit time for each

example it draws, but it is charged all of the time it takes to write down its hypothesis. In

general, we consider A’s running time as a function of n, ε−1, log(1/δ), and usually also a

“size” parameter s from the concept class.

Finally, since PAC learning in its full generality seems to be very difficult for many

natural concept classes, often some of its requirements are relaxed. When the algorithm

need only work when the distribution D is the uniform distribution over {+1,−1}n, it is

said to be a uniform-distribution learning algorithm. Uniform-distribution PAC learning is

very frequently studied; a very small selection of results includes [Ver90, HM91, LMN93,

BFJ+94, Man95, Kha95, BT96, Jac97, BJT99a, Ser01, JKS02, KS03]. We will mostly be

concerned with uniform-distribution PAC learning in this chapter. Another weakening of

the model is to allow the learning algorithm to make membership queries; in this model,

the learner is allowed to ask for the value of the target function on points of its choosing.

This model gives the learner considerably more power than usual and is thus a significant

weakening. It also departs from the traditional passive nature of learning from random

examples. The new algorithms we present will never require membership queries; however,

we shall often point out the cases in which allowing membership queries makes our learning

problems easier.

5.1.1 Uniform-distribution learning via Fourier coefficients

Many uniform-distribution learning algorithms work by estimating the Fourier coefficients

of the unknown function. This technique originated with the “Low Degree” algorithm

of Linial, Mansour, and Nisan [LMN93]. (See Mansour’s survey [Man94] for an overview

and for proofs of some of the facts below.) Linial et al. showed that a learning algorithm

with access to uniformly random examples from a function f could accurately estimate

any particular Fourier coefficient f̂(S) it wanted in polynomial time. The technique is

straightforward: since f̂(S) = E[f(x)χS(x)], drawing many uniformly random examples

〈xi, f(xi)〉i=1...m and computing the average value of f(xi)χS(xi) gives a good estimate. To

be exact,

Theorem 5.1.1 Given access to uniform random examples from f : {+1,−1}n → {+1,−1},
for any S ⊆ [n], a randomized algorithm can compute f̂(S) to within an additive error of λ

with confidence 1 − δ using O(λ−2 log(1/δ)) examples and time.

105

Linial et al. also showed that for any boolean function f , if h : {+1,−1}n → R satisfies
∑

S⊆[n](f̂(S)− ĥ(S))2 ≤ ε then the boolean function sgn(h) is ε-close to f . It follows quite

easily that if an algorithm accurately estimates most of f ’s Fourier coefficients (all except

for some whose squared weight sums to at most ε), then it can output a good hypothesis

for f consisting of the sign of the truncated Fourier polynomial it computes. Rigorously,

we have the following theorem (proved in [KM93]):

Theorem 5.1.2 Suppose that a learning algorithm can determine a set of parities S ⊆ 2[n]

such that it is assured that
∑

S∈S
f̂(S)2 ≥ 1 − ε.

Then with probability 1 − δ it can output an ε-close hypothesis for f in total time

poly(|S|, n, ε−1, log(1/δ)).

We will use Theorem 5.1.2 as a black box. Since the quantity poly(|S|, n, ε−1, log(1/δ))

is invariably dominated by |S|, we shall often say the running time is poly(|S|), with the

true quantity being understood.

5.2 Learning noise-stable functions

As we saw in Corollary 2.3.3 in Chapter 2, the relationship between the noise sensitivity of a

function and its Fourier coefficients tells us that if a function has low noise sensitivity, then

most of its Fourier coefficients are concentrated on low degree. Thus if we want to learn a

concept class C under the uniform distribution, and we can show that the functions in C have

bounded noise sensitivity, then we can get an efficient learning algorithm by taking S to

be all the parities of low degree in Theorem 5.1.2. In particular, combining Corollary 2.3.3

and Theorem 5.1.2 we immediately have the following main theorem:

Theorem 5.2.1 Suppose C = ∪n≥1 Cn is a concept class such that for every f ∈ Cn,

f : {+1,−1}n → {+1,−1}, we have NSε(f) ≤ m(ε), where m : [0, 1
2] → [0, 1] is a continuous,

strictly increasing function. Then there is a uniform-distribution learning algorithm for C
running in time nO(k)polylog(δ−1), where k = 1

m−1(ε/2.32)
.

The “slogan” by which one can remember the running time is “n to the power of the recip-

rocal of the inverse [of the noise sensitivity bound].”

106

Although it is derived in a simple way from facts already known, Theorem 5.2.1 is a

potentially powerful way of obtaining new uniform-distribution learning results. For exam-

ple, we shall shortly see that it can be used to give efficient algorithms for the historically

difficult problem of learning functions of halfspaces.

It is interesting to try to understand from an intuitive perspective why noise stability

should imply fast learning. A simple attempt at justification might go as follows: If a

function f is noise-stable, its value on a given point y should be well correlated with its

values on points near to y in Hamming distance. Thus a good way to learn f is to draw a

number of labeled examples from the oracle, thus producing a “net” of points on which f ’s

value is known; then the hypothesis can guess the value of f on a given point y by looking

at the known values of f near y and computing an appropriate weighted threshold. The

weight given to a known example should depend only on its Hamming distance from y.

Further reflection might lead one to view the above intuition with suspicion. It might

seem that it should not be as easy as taking a net after all, since unless an exponential

number of examples are drawn for the net, almost every new point to be hypothesized

about will be at distance almost n
2 from the known net points. Knowing that f has low

noise sensitivity at some small ε seems unhelpful in making such long-distance correlations.

However, the original intuition is correct, albeit not sophisticated enough to be a proof.

To see this, simply open the learning black box employed in Theorem 5.2.1. The learning

algorithm draws a number of examples, 〈xi, f(xi)〉i=1...m. The final hypothesis applied to a

point y is given by

sgn

∑

|S|≤k

˜̂
f(S)yS

 ,

where
˜̂
f(S) is an estimate for f̂(S). Each of these estimates is formed by a simple average,

˜̂
f(S) = 1

m

∑m
i=1 f(xi)(xi)S . Thus the hypothesis on y is

sgn

∑

|S|≤k

1

m

m∑

i=1

f(xi)(xi)SyS

 = sgn

m∑

i=1

∑

|S|≤k

(xiy)S

 f(xi)

= sgn

(
m∑

i=1

Wk(∆(y, xi))f(xi)

)
,

107

where Wk(d) =
∑k

s=0 Ks(d) and Ks = K
(n)
s is the sth Kravchuk polynomial, Ks(d) =

∑s
j=0(−1)j

(
d
j

)(
n−d
s−j

)
. (For a brief reference on Kravchuk polynomials and sums of Fourier

characters, see Linial and Samorodnitsky [LS03].) So the hypothesis we use for noise-stable

f ’s is indeed a weighted threshold over the labels of the points in a net, with the weight

given to a known example depending only on its Hamming distance from the point whose

label we are guessing.

Still, the weighting scheme used is fairly strange; further, there does not seem to be

an easy, direct way to show that it leads to a good hypothesis for noise-stable functions.

Rather, it appears that any justification must pass to the Fourier representation. Note

that a more natural-seeming weighting scheme for functions with low noise sensitivity at ε,

namely W (d) = εd(1 − ε)n−d, appears to require far too many points in the net to work.

5.3 Learning intersections and other functions of halfspaces

In the context of learning theory, a linear threshold function f : Rn → {+1,−1} given by

f(x) = sgn(
∑n

i=1 wixi − θ) is usually referred to as a halfspace. The problem of learning

an unknown halfspace from labeled data is one of the oldest problems in machine learning,

dating back to the late 1950s [Ros58, Blo62]. This problem has been intensively studied over

the years and efficient algorithms are now known for several different learning models. In

particular, the concept class of halfspaces over Rn is PAC-learnable in polynomial time un-

der any probability distribution: Blumer, Ehrenfeucht, Haussler, and Warmuth [BEHW89]

showed that linear programming can be used to give a poly(n)ε−1 log(1/δ) algorithm.

While the problem of learning a single halfspace is fairly well understood, learning more

complicated functions which depend on several halfspaces seems to be quite difficult; in

particular, learning an intersection of several unknown halfspaces stands as a major open

problem in computational learning theory. Intersections of halfspaces form an important

concept class for many reasons: any convex body can be expressed as an intersection of

halfspaces, and several well-studied classes of boolean functions such as DNF formulas can

be naturally viewed as special cases of intersections of halfspaces over {+1,−1}n.

Given the apparent difficulty of learning intersections of halfspaces, several algorithms

in weaker models have been proposed. Building on work of Blum, Chalasani, Goldman, and

Slonim [BCGS98] and Baum [Bau91a], Kwek and Pitt [KP98] gave a membership query

108

algorithm for learning the intersection of k halfspaces in Rn with respect to any probability

distribution in time polynomial in n and k. Progress has been much more limited for

learning intersections of halfspaces from random examples only; all such results to date

require that the examples be drawn from some restricted class of probability distributions.

Baum [Bau91b] gave a polynomial time algorithm for learning an intersection of exactly

two zero-threshold halfspaces under any origin-symmetric distribution (i.e., one satisfying

D(x) = D(−x) for all x ∈ Rn). His algorithm is essentially a reduction to the problem of

learning a single halfspace, and does not seem to generalize to more than two halfspaces.

Building on work of Blum and Kannan [BK97a], Vempala [Vem97] gave a polynomial time

algorithm which can learn an intersection of log n/ log log n halfspaces under “near-uniform”

distributions on the Euclidean ball in Rn.

Computational learning theory is frequently concerned with boolean halfspaces — i.e.,

restrictions of halfspaces to {+1,−1}n — and neither of the two algorithms mentioned

previously can learn even the intersection of two arbitrary boolean halfspaces under the

uniform distribution on {+1,−1}n in subexponential time. (Baum’s algorithm comes close,

but requires the halfspaces to have a threshold of zero; also, it does not work at all for the

intersection of three boolean halfspaces.) We now give new polynomial and quasipolynomial

time algorithms for this important problem of learning functions of boolean halfspaces under

the uniform distribution. These are immediately derived from Theorem 5.2.1 and our noise

sensitivity calculations in Sections 3.10, 3.11, and 3.12.

From Corollary 3.10.3 and Proposition 2.2.8 we get that any function of k boolean

halfspaces has noise sensitivity at most 5
4k

√
ε at ε. Thus by Theorem 5.2.1 we get the

following:

Theorem 5.3.1 Let Cn be the concept class of all boolean functions on {+1,−1}n express-

ible as some function of k boolean halfspaces. Then Cn can be learned under the uniform

distribution to accuracy ε in time nO(k2/ε2), assuming ε ≤ 1/k2.

Let us emphasize that for constant ε and k, this gives a polynomial time algorithm for

learning any function of k halfspaces under the uniform distribution.

From Theorem 3.11.1 we derive a quasipolynomial time algorithm for learning the read-

once intersection of halfspaces:

Theorem 5.3.2 Let Cn be the concept class of all functions of the form AND(h1, . . . , hk),

109

where the hi’s are boolean halfspaces on disjoint subsets of n variables. Then Cn can be

learned under the uniform distribution to accuracy ε in time nO((log k)/ε2), assuming ε ≤
1/ log k.

In passing we note that Golea, Hancock, and Marchand [GHM94] gave a polynomial time

algorithm for learning the read-once intersection of majorities under the uniform distribu-

tion. But the concept class mentioned in Theorem 3.11.1 is much richer as it allows for the

intersection of arbitrary halfspaces.

Finally, from Theorem 3.12.1 we get a quasipolynomial time algorithm for learning the

read-once majority (or unweighted threshold) of halfspaces:

Theorem 5.3.3 Let Cn be the concept class of all functions of the form sgn(h1+· · ·+hk−θ),

where the hi’s are boolean halfspaces on disjoint subsets of n variables. Then Cn can be

learned under the uniform distribution to accuracy ε in time nÕ(log(k/ε)/ε4), assuming ε ≤
1/ log k.

We close by noting that Bourgain’s Theorem 1.2.2 shows that Theorem 5.2.1 cannot be

used to produce uniform-distribution learning algorithms which run faster than nO(1/ε2),

except when they are for uninteresting concept classes — ones consisting of functions that

are close to O(1)-juntas. Thus Theorem 5.3.1, with k constant, is an example of the fastest

nontrivial learning algorithm derivable from Theorem 5.2.1.

5.4 Learning DNF from random walks

Disjunctive normal form (DNF) formulas of polynomial size form what is probably the

most notorious concept class studied in computational learning theory. DNF formulas

seem to be a natural form of knowledge representation for humans; furthermore, they

are a universally expressive concept class in the sense that every boolean function can

be represented as a DNF formula of some size. In his original paper on PAC learning,

Valiant [Val84] asked whether there is a polynomial time learning algorithm for the class

of DNF formulas of polynomial size. Such algorithms have proved extremely difficult to

come by; to date, the fastest known algorithm runs in time 2Õ(n1/3) [KS01]. Even under the

uniform distribution the fastest known learning algorithm [Ver90] requires superpolynomial

time nO(log(n/ε)). A breakthrough on this problem was made by Jackson [Jac97], who gave a

110

polynomial time membership query algorithm for learning polynomial-sized DNF under the

uniform distribution. His algorithm combined a membership query algorithm of Kushilevitz

and Mansour [KM93] for finding Fourier coefficients with the learning-theoretic concept of

boosting.

Unfortunately, granting the learner membership queries departs significantly from the

traditional passive model of learning from random examples only. Building on Jackson’s and

Kushilevitz’s and Mansour’s work, Bshouty and Feldman [BF02] gave a polynomial time

learning algorithm polynomial-sized DNF under a model of intermediate power between

uniform-distribution learning and uniform-distribution learning with membership queries.

In their model, called SQ-Dρ, the learner is allowed to make statistical queries about the

target function under product distributions of the learner’s choosing. Although this gives

the learner strictly less power than a learner with membership queries, it still represents a

non-passive (and somewhat artificial) model of learning.

In this section we will consider a natural, passive model of learning under the uniform

distribution, the Random Walk model. This model is also of intermediate power compared

to uniform-distribution learning and uniform-distribution learning with membership queries.

We will give a polynomial time algorithm for learning polynomial-sized DNF in the Random

Walk model. We emphasize that this is the first known polynomial time algorithm for

learning a universally expressive concept class in a passive model of learning from random

examples only.

5.4.1 The Random Walk learning model

Variants of PAC learning in which the examples are not i.i.d., but rather are generated

according to a stochastic process, were first considered by Aldous and Vazirani [AV90].

Despite being quite natural, these models have not been studied nearly as intensively as

other variants on PAC learning. Bartlett, Fischer, and Höffgen [BFH94] introduced what

is perhaps the simplest and most natural such model, namely the Random Walk model,

which we define shortly. The authors gave learning algorithms for some very simple concept

classes under the Random Walk model, namely boolean threshold functions in which each

weight is 0 or 1, parities of two monotone ANDs, and DNF formulas with two terms.

Gamarnik [Gam99] further studied learning under stochastic processes but did not give any

algorithms for specific concept classes.

111

Let us begin by defining the Random Walk model of learning. As the Random Walk

model is a variation on the standard PAC model, we shall only describe the differences.

In the Random Walk model our concept classes Cn will consist of collections of real-valued

boolean functions f : {+1,−1}n → R. A learning algorithm’s hypothesis is also required

to be a real-valued boolean function h, and the measure of its error with respect to the

target function f is E[(f − h)2]. This extension to real-valued boolean functions is very

common in PAC learning. The major difference between the two models is the way in which

the learner gets its examples. The first labeled example the learner gets is a random point

from {+1,−1}n. Following this, the examples the learner sees are generated by a standard

random walk on the hypercube. That is, if the tth example given to the learner is x, then

the (t + 1)st example will be chosen by selecting a bit position i ∈ [n] uniformly at random

and then flipping the ith bit of x.

Let us compare the Random Walk model with other common PAC learning models.

First, we note that learning real-valued boolean functions under the L2 error measure is a

strict generalization of learning boolean-valued boolean functions under the usual uniform-

distribution error metric. This is because, as noted in Subsection 5.1.1, taking the sign

of a real-valued function which has L2 distance ε from a boolean-valued function yields a

boolean-valued function with ε error under the uniform distribution.

Second, we note that learning boolean-valued functions under the Random Walk model

is no stronger than learning under the usual uniform distribution model. The reason is

that a learner with access to examples generated by a Random Walk can easily simulate

examples generated from the uniform distribution with only polynomial slowdown. This

is because the random walk on the hypercube mixes rapidly; if a learner getting examples

from the Random Walk lets O(n log n) steps pass then the next example it gets will be

uniformly random.1

Next, it is immediate that having access to membership queries is at least as powerful

as getting examples generated from a random walk. In fact, we now give a proof that

uniform-distribution learning with membership queries is strictly easier than learning in

the Random Walk model, under a standard cryptographic assumption.

Proposition 5.4.1 If one-way functions exist then there is a concept class C which is

1Strictly speaking, the example will only be very nearly uniformly random; we should factor the confidence
error δ into this statement. However, in this section all considerations involving δ are completely standard
and we will frequently gloss over them for clarity.

112

learnable in polynomial time under the uniform distribution with membership queries, but

is not learnable in polynomial time in the Random Walk model.

Proof: Assume one-way functions exist; then pseudorandom function families also exist by

a well known result in cryptography [HILL99]. Let {fs : {+1,−1}n → {+1,−1}}s∈{+1,−1}n

be a pseudorandom function family. For s ∈ {+1,−1}n let gs : {+1,−1}n → {+1,−1} be

defined by

cs(x) =

si if x = ei for some i ∈ [n],

fs(x) otherwise.

(Here ei denotes the string (−1, . . . ,−1, +1,−1, . . . ,−1), with the +1 in the ith position.)

We claim the concept class C = {gs}s∈{+1,−1}n has the desired property.

It is easy to see that any gs ∈ C can be learned exactly in polynomial time if membership

queries are allowed. The algorithm simply queries e1, . . . , en to learn all bits s1, . . . , sn of s

and outputs a representation of gs. On the other hand, a random walk which proceeds for

only poly(n) steps will with probability 1− 2−Ω(n) miss all the points ei. A straightforward

argument shows that conditioned on missing all these points, it is impossible to learn gs

in polynomial time. (To see this, note that an algorithm which has oracle access to a

pseudorandom function fs can easily simulate a random walk which misses all ei. Thus if it

were possible to learn gs in polynomial time from a random walk conditioned on missing all

ei, it would be possible to learn the class {fs} given oracle access to fs. But this is easily

seen to contradict the definition of a pseudorandom function family.) 2

We end this subsection by describing an equivalent model to the Random Walk model

which is easier to work with for our purposes. We call this model the Random Walk model

with updating oracle. The updating oracles gives examples to the learner in a slightly

different fashion than does the usual Random Walk oracle. In the updating oracle, again

the first example given is chosen uniformly random. Further, the example given at time

t + 1 depends on the example from time t. Suppose this previous example was x. Then

for the (t + 1)st example, the updating oracle picks an index i uniformly at random. The

oracle then updates the ith bit of x, producing y. That is, y is equally likely to be x or σix.

Finally, the updating oracle tells the learner 〈i, y, f(y)〉.

It is easy to simulate the updating oracle using the original Random Walk oracle. Each

time the learner wants a new example, it tosses a fair coin. On heads, it draws a new

113

example from the standard Random Walk oracle, noting which input bit got flipped. On

tails, it chooses a random bit position i and pretends that the updating oracle announced

that the ith bit was updated but did not change.

5.4.2 A Noise Sensitivity learning model

As we have seen, learning under the Random Walk model is easier than learning under

the uniform distribution. In this section we introduce a new family of learning models of

strength intermediate to these two. We call these models the “Noise Sensitivity models” of

learning. Although the models are somewhat artificial, they are easy to define and are the

least powerful passive models we know of in which polynomial-sized DNF can be learned

efficiently. Since we will see that the Random Walk model can simulate the Noise Sensitivity

models, we conclude that DNF can also be learned efficiently in the Random Walk model.

For each value of γ ∈ [0, 1
2], we define the γ-Noise Sensitivity model of learning as follows:

The model is again a model for learning real-valued boolean functions under the uniform dis-

tribution. The distinguishing feature is the nature of the example oracle. Given an unknown

target function f : {+1,−1}n → R, the learner has access to the “Noise Sensitivity oracle,”

NS-EXγ(f). Every time the learner asks for an example, NS-EXγ(f) independently chooses a

random input x ∈ {+1,−1}n, forms y = Nγ(x), and then tells the learner 〈x, f(x), y, f(y)〉.
Note that this oracle is of equivalent power to an “updating” Noise Sensitivity oracle, in

which each bit of x is updated with probability 2γ, and the learner is told which bits were

updated in going from x to y. To see this, simply note that the extra information can be

simulated by the learner with access to the usual NS-EXγ(f) oracle: upon seeing a pair

of examples (x, y), the learner decides that each bit position in which x and y differ was

updated; furthermore, for each bit position on which x and y are the same, the learner

pretends that an update occurred independently with probability γ/(1 − γ).

Let us consider the different models of learning we get as we vary γ. The cases γ = 0

and γ = 1
2 are trivially equivalent to the usual PAC model of learning under the uniform

distribution. For values γ ∈ (0, 1
2), learning with NS-EXγ(f) is clearly at least as easy as

learning under the uniform distribution. Since we shall show that polynomial-sized DNF

are efficiently learnable in in the γ-Noise Sensitivity model for every constant γ ∈ (0, 1
2), it

appears as though learning in these models is strictly easier than learning under the uniform

distribution. It also seems to us that for differing constants γ, γ ′ ∈ (0, 1
2) the γ- and γ′-Noise

114

Sensitivity models are of incomparable strength.

One thing we can show explicitly is that having access to the Random Walk oracle is at

least as powerful as having access to NS-EXγ for any γ:

Proposition 5.4.2 For any γ ∈ [0, 1
2], any γ-Noise Sensitivity learning algorithm can be

simulated in the Random Walk model with only a multiplicative O(n log n) slowdown in

running time.

Proof: Fix γ ∈ [0, 1
2]. We show how to simulate the oracle NS-EXγ using the Random

Walk model’s updating oracle. To get an example 〈x, f(x), y, f(y)〉, we first draw O(n log n)

examples from the updating oracle to get to a uniformly random point x; this point and

its label f(x) will be the first part of our NS-EXγ example. We then want to generate a

point y which is formed from x by updating each bit with probability 2γ. This is equivalent

to picking a quantity u ∼ Bin(n, 2γ), and then updating a random subset of u of x’s bits.

Accordingly, in our simulation we shall randomly choose an integer 0 ≤ u ≤ n according

to Bin(n, 2γ). We then repeatedly draw examples from the Random Walk updating oracle

until u distinct input positions have been updated. Having done this, it as if a random

subset of u bits had been updated, since updating an input position more than once has no

extra effect. Therefore, if we call the resulting point y and output 〈x, f(x), y, f(y)〉, then

this example is distributed exactly as it should be for the oracle NS-EXγ . Note that even if

u is as large as n, it only takes O(n log n) samples to get a string in which all u = n distinct

bit positions of x have been updated. 2

Our main theorem in this section is the following:

Theorem 5.4.3 The class of DNF formulas on n variables with s terms can be learned in

the Random Walk model in time poly(n, s, ε−1, log(1/δ)).

5.4.3 Performing the Bounded Sieve in the Noise Sensitivity model

As stated earlier, we prove Theorem 5.4.3 by showing that polynomial-sized DNF can

be learned under any γ-Noise Sensitivity learning model. Then Theorem 5.4.3 follows

immediately from Proposition 5.4.2. We therefore prove the following:

Theorem 5.4.4 Let γ ∈ (0, 1
2), and let c0 = − log(γ(1

2 − γ)), a constant if γ is constant.

Then the class of polynomial-sized DNF formulas on n variables can be learned in the

γ-Noise Sensitivity model in time poly(nc0 , ε−c0 , log(1/δ)).

115

To prove Theorem 5.4.4, we give an algorithm that, given access to the oracle NS-EXγ(f),

finds all of the “large” Fourier coefficients f̂(S) of f which satisfy |S| ≤ O(log n). More

precisely, we prove the following:

Theorem 5.4.5 Let f : {+1,−1}n → {+1,−1} be an unknown function, and let γ ∈
(0, 1

2). Fix parameters ` ∈ [n] and θ > 0. Then there is an algorithm running in time

poly(n, [γ(1
2 − γ)]−`, θ−1, ||f ||∞, log(1/δ)) which, given access to examples from the oracle

NS-EXγ(f), with probability 1 − δ returns a list of subsets of [n] such that

• for each S ⊆ [n], if |S| ≤ b and f̂(S)2 ≥ θ, then S is in the list; and,

• for each set S in the list, |S| ≤ b and f̂(S)2 ≥ θ/2.

(Here ||f ||∞ denotes maxx∈{+1,−1}n |f(x)|.)

Bshouty and Feldman call the task performed by this algorithm the Bounded Sieve. It

is a weakened version of the algorithm of Kushilevitz and Mansour which finds all large

Fourier coefficients f̂(S), regardless of |S|. As noted in Bshouty and Feldman’s paper [BF02],

Jackson’s Harmonic Sieve algorithm for learning DNF does not need the full power of

Kushilevitz and Mansour’s routine; it only requires that it work for sets S whose size is

bounded by O(log n) (and that it works in time polynomial in ||f ||∞). Our Theorem 5.4.5 is

the analogue of Bshouty and Feldman’s Theorem 13, and the fact that Theorem 5.4.4 follows

from Theorem 5.4.5 follows by repeating the arguments following Theorem 13 in [BF02].

Thus to complete the proof of Theorem 5.4.3, we now prove Theorem 5.4.5.

5.4.4 Proof of Theorem 5.4.5

The idea for proving Theorem 5.4.5 is to get at the Fourier coefficients of the unknown

function indirectly via a noise sensitivity-like quantity:

Definition 5.4.6 Given f : {+1,−1}n → R, γ ∈ (0, 1
2), and I ⊆ [n], define

T (I)
γ (f) =

∑

S⊇I

(1 − 2γ)|S|f̂(S)2.

When f and γ are clear from context, we write simply T (I).

116

(Notice that T (∅)
γ (f) = 1 − 2NSγ(f).)

We can use the Noise Sensitivity oracle to estimate the quantities T (I)
γ (f):

Lemma 5.4.7 For fixed constant γ ∈ (0, 1
2) and unknown f : {+1,−1}n → R, an algorithm

with access to NS-EXγ(f) can, with probability 1 − δ, estimate T (I) to within ±η in time

poly(n, γ−|I|, ||f ||∞, η−1, log(1/δ)).

Proof: Given γ and I, consider the joint probability distribution D(I)
γ defined over pairs

of strings (x, y) ∈ ({+1,−1}n)2 as follows: First x is picked uniformly at random; then y

is formed by updating each bit of x in I with probability 1 and updating each bit of x not

in I with probability 2γ. We claim that access to pairs from this distribution and their

values under f can be simulated by access to NS-EXγ(f), with slowdown poly(γ−|I|). To

see this, simply use the “updating” version of the NS-EXγ(f) oracle and reject all samples

in which not every bit in I is updated. Conditioning on not rejecting we indeed get pairs

precisely from the distribution D(I)
γ ; furthermore, the time it takes to get a good sample is

poly(γ−|I|) with high probability.

Let us define T ′(I) to be E
(x,y)←D(I)

γ
[f(x)f(y)]. Since we can simulate access to pairs

from D(I)
γ and their values under f , we can estimate T ′(I) simply by taking many samples

and averaging. By standard arguments we can compute a ±η approximation with prob-

ability 1 − δ in time poly(n, ||f ||∞, η−1, log(1/δ)). But the quantity T ′(I) is very closely

related to T (I). In particular, an easy argument akin to the proof of Proposition 2.3.1

shows that T ′(I) =
∑

S : S∩I=∅(1 − 2γ)|S|f̂(S)2. Let us now define T ′′(I) = T ′(∅) − T ′(I),

again a quantity we can estimate in time poly(n, γ−|I|, ||f ||∞, η−1, log(1/δ)). We have

T ′′(I) =
∑

S : S∩I 6=∅(1− 2γ)|S|f̂(S)2. Thus if we compute T ′′(J) for all J ⊆ I, it is straight-

forward to calculate T (I) =
∑

S⊇I(1 − 2γ)|S|f̂(S)2 using inclusion-exclusion. Since there

are only 2|I| ≤ γ−|I| such subsets J , the claimed running time follows. 2

Next, we note that the sum of the T (I) values across all |I| = j is not too large:

Lemma 5.4.8 For any f : {+1,−1}n → R and γ ∈ (0, 1
2), we have

∑

|I|=j

T (I) ≤ ||f ||2∞(2γ)−j .

Proof: We have

117

∑

|I|=j

T (I) =
∑

|I|=j

∑

S⊇I

(1 − 2γ)|S|f̂(S)2

=
∑

|S|≥j

(|S|
j

)
(1 − 2γ)|S|f̂(S)2

≤
∑

|S|≥j

f̂(S)2
∞∑

t=j

(
t

j

)
(1 − 2γ)t

= ||f ||22
1

1 − 2γ

(
1 − 2γ

2γ

)j+1

≤ ||f ||2∞(2γ)−j ,

as claimed. 2

Using these lemmas we can now complete the proof of Theorem 5.4.5. Consider the

directed graph on all subsets of [n], in which there is an edge from I to J if I ⊂ J and

|J \ I| = 1. Imagine the nodes I being divided into n layers, according to the value of

|I|. Our algorithm for finding the large Fourier coefficients of f will perform a breadth-first

search on this graph, starting at the node I = ∅. For each active node in the search, the

algorithm estimates both T (I) and f̂(I)2. Naturally, if the estimate of f̂(I)2 is at least

θ/2 then the algorithm adds I to the list of f ’s large Fourier coefficients. The breadth-first

search proceeds to the neighbors of I only if |I| < ` and the estimate of T (I) is at least

(1 − 2γ)`θ/2. We make two claims: first, the algorithm finds (with high probability) all

Fourier coefficients f̂(S) with f̂(S)2 ≥ θ and |S| ≤ `; and second, the algorithm ends its

search within time poly(n, [γ(1
2 − γ)]−`, θ−1, ||f ||∞, log(1/δ)).

To see the first claim, simply note that if |S| ≤ ` and f̂(S)2 ≥ θ, then this Fourier

coefficient contributes at least (1 − 2γ)`θ to the value of T (I) for all I ⊆ S. Thus by

the monotonicity of T , the search will certainly proceed all the way to S, so long as all

estimations are taken to be sufficiently precise (compared to the quantity (1 − 2γ)`θ/2).

For the second claim, note that by Lemma 5.4.8, the number of “active nodes” at layer

j in the breadth-first search can be at most

||f ||2∞(2γ)−j

(1 − 2γ)jθ/2
= 2||f ||2∞θ−1 (2γ(1 − 2γ))−j .

Since j is never more than `, the total number of nodes the breadth-first search ever en-

counters is at most 2||f ||2∞θ−1(2γ(1 − 2γ))−(`+1) = poly(||f ||∞, θ−1, [γ(1
2 − γ)]−`). Thus

our estimations need only have additive error inverse-polynomial in this quantity, and we

118

conclude that the final running time is indeed poly(n, [γ(1
2 − γ)]−`, θ−1, ||f ||∞, log(1/δ)), as

claimed.

5.5 Learning juntas

In this final section of the chapter, we study the problem of learning juntas under the

uniform distribution. We believe this is the most important open question in uniform-

distribution PAC learning. As discussed in the previous section, polynomial-sized DNF

formulas, along with polynomial-sized decision trees, are two very natural, important, and

notorious classes that we would like to efficiently learn under the uniform distribution.

However a basic bottleneck for learning these classes is that any O(log n)-junta on n bits

can be represented by a DNF formula or decision tree of polynomial size. Thus in order to

make progress on learning DNF and decision trees, it is necessary to find algorithms that

can learn juntas of size O(log n) or smaller. But furthermore, the reverse relation holds:

any size-k decision tree is also a k-junta, and any k-term DNF is ε-indistinguishable (under

the uniform distribution) from a k log(k/ε)-junta. Thus we conclude that the essential

open problems of learning ω(1)-sized decision trees and ω(1)-term DNF in polynomial time

are equivalent to the problem of learning ω(1)-juntas in polynomial time. Along with the

natural elegance of the problem, this justifies our assertion regarding the importance of the

problem of learning juntas under the uniform distribution.

Let us now formally define the problem. We wish to learn the concept class of k-juntas

over n variables. We shall think of the parameter k as being very small compared to n; in

particular, we view it as O(log n) and possibly even as small as a large constant. We learn

in the uniform-distribution PAC framework with the following simplification: the accuracy

parameter ε will always taken to be 0; i.e., our hypotheses will be required to be exactly

correct. This assumption does not lose much generality since any hypothesis which is ε-close

to a k-junta for ε < 2−k must have zero error. Since running time dependence should be

polynomial in ε−1, fixing ε to be, say, 2−k−1 incurs a running time blowup of only poly(2k).

When measuring running time dependencies we view factors of poly(2k) as negligible, since

for k = O(log n) they are polynomial. We shall therefore typically express running times in

the form poly(n, 2k, log(1/δ)) · nα and view nα as the essential measure of complexity.

The naive algorithm for learning k-juntas does a brute-force search over all possible
(
n
k

)

119

sets of relevant variables. For k = O(log n) there are at least nk−polylog(k) such sets, and thus

the naive algorithm takes time at least n(1−o(1))k. In this section we make the first known

significant improvement to this running time, giving an algorithm which learns k-juntas

under the uniform distribution in time poly(n, 2k, log(1/δ) · n ω
ω+1

k, where ω is the matrix

multiplication constant. Since Coppersmith and Winograd [CW90] showed ω < 2.376, our

running time is about n.704k.

5.5.1 History of the problem

The problem of learning juntas is a natural one in the context of machine learning. One

of the most important and challenging issues in machine learning is how to learn efficiently

and effectively in the presence of irrelevant information. In real-world learning scenarios,

a frequently encountered situation is one in which the data points one sees contain a large

amount of information, but the labeling on them one is trying to learn depends only on

a small unknown portion of this information. For example, in a computational biology

scenario each data point may correspond to a long DNA sequence and the label may be

some property which depends only on a small unknown active part of this sequence. To

model this phenomenon, Blum [Blu94] and Blum and Langley [BL97] proposed the junta-

learning problem as a clean formulation of learning in the presence of irrelevant information.

Since the problem was proposed, there has been almost no progress over the naive nk

time algorithm for learning k-juntas under the uniform distribution. The first improvement

over the trivial time bound of which we are aware is an unpublished algorithm of A. Kalai

and Mansour [KM02] which runs in time roughly nk−Ω(k1/4). Mansour [Man01] later im-

proved this to nk−Ω(k1/2). As stated, our algorithm is the first known superlinear speedup,

running in time n.704k.

Finally, we note that learning from uniform random examples seems to be the model in

which this problem has the right amount of difficulty. Blum and Langley observed [BL97]

that if the learning algorithm is allowed to make membership queries then the class of

k-juntas can be learned in time poly(2k, n, log(1/δ). Indeed, this holds true even in the

weaker Random Walk model. To see this, we need only show that in the Random Walk

model we can check if a particular variable is relevant in time poly(n, 2k, log(1/δ)). (We

explicitly show that finding the relevant variables is enough in Proposition 5.5.6.) If the

ith variable is relevant to the target function f , then by definition there exists a particular

120

setting y to the k bits of the junta such that f(y) 6= f(σiy). To check for this, suppose we

repeatedly draw O(n log n) examples to get a to a uniformly random string, and then draw

one more example, hoping that the ith bit flips. If it does, and if the value of the function

also flips, then we conclude that the ith variable is relevant. But also, if the ith variable is

indeed relevant then the expected number of times we must repeat the procedure in order

to get y to show up and to get the ith bit of y to flip is only n2k. Thus if we repeat the

procedure poly(n, 2k, log(1/δ)) times we can test whether the ith variable is relevant with

confidence 1 − δ.

While membership queries or even the Random Walk model make the problem of learn-

ing juntas easy, casting the problem in the more restrictive statistical query learning model

of Kearns (see [Kea98] for background on this model) makes the problem provably hard.

The class of k-juntas over n variables contains at least
(
n
k

)
distinct parity functions, and

for any two distinct parity functions xS 6= xT we have that E[xSxT] = 0. Consequently,

an information-theoretic lower bound of Bshouty and Feldman [BF02] implies that any

statistical query algorithm for learning k-juntas under the uniform distribution must have

q/τ2 ≥
(
n
k

)
, where q is the number of statistical queries the algorithm makes and τ ∈ (0, 1)

is the additive error tolerance required for each query. Thus improving on the naive running

time for learning k-juntas under the uniform distribution in the statistical query model is

essentially not possible.

We close this subsection by noting that if we replace the uniform distribution by a prod-

uct measure in which P[xi = T] = pi, then for almost every choice of (p1, . . . , pn) ∈ [0, 1]n,

the class of k-juntas is learnable in time poly(2k, n, log(1/δ)). In particular, we claim that

for every product distribution outside a set of measure zero in [0, 1]n, every k-junta f has

nonzero correlation with every variable on which it depends. This easily implies an efficient

Fourier-based learning algorithm for identifying all relevant variables, simply by sampling.

Our claim is a consequence of the following straightforward fact:

Fact 5.5.1 If a boolean function f is not a dictator function and f depends on xi, then

Ep1,...,pn [f(x)xi], when viewed formally as a multivariable polynomial in p1, . . . , pn, is not

identically zero.

As a consequence, the set of points (p1, . . . , pn) ∈ [0, 1]n on which this polynomial takes

value 0 has measure 0. The union of all such sets for all (finitely many) choices of i and f

121

still has measure 0, and the claim is proved.

5.5.2 Representing boolean functions as polynomials

Our learning algorithm for k-juntas will exploit different ways of representing boolean func-

tions as multilinear polynomials. For the remainder of this chapter, instead of always

viewing boolean functions as maps {+1,−1}n → {+1,−1}, we will take a more abstract

view. In general, we will denote an abstract boolean function by g : {F, T}n → {F, T}. We

now consider different ways of representing such a g as a multilinear polynomial:

Definition 5.5.2 Let F be a field and let f, t ∈ {−1, 0, 1} be distinct elements of F. We

say that a multilinear polynomial p 〈F, f, t〉-represents g if p : Fn → F has the following

properties:

• for all inputs in {f, t}n, p outputs a value in {f, t}; and,

• p and g induce the same mapping when F and T are identified with f and t in the

input and output.

Note that since f2, t2 ∈ {0, 1}, the assumption that p is multilinear is without loss of

generality. It is well known that the 〈F, f, t〉-representation of g always exists and is unique.

The fields we will consider in this section are the two-element field F2 and the field R

of real numbers. In F2 we will represent bits by f = 0 and t = 1, and in R we will usually

represent bits by f = +1, t = −1.

Definition 5.5.3 Given a boolean function g on n bits,

• we write gF2 for the multilinear polynomial which 〈F2, 0, 1〉-represents g, and we say

that gF2 F2-represents g;

• we write gR for the multilinear polynomial which 〈R, +1,−1〉-represents g, and we say

that gR R-represents g. Note that this is precisely the Fourier polynomial expansion

of g.

As an example, if g = PARITYn then we have gF2 = x1 +x2 + · · ·+xn and gR = x1x2 · · ·xn.

Note that there is a huge difference in the degrees of these two polynomial representations;

we will be very interested in the degree of boolean functions under various representations.

We observe that for a given field this degree is independent of the exact choice of f, t. This

122

is because we can pass back and forth between any two such choices by nonconstant linear

transformations on the inputs and outputs, and under such transformations the monomials

of highest degree can never vanish. Thus we can make the following definition:

Definition 5.5.4 degF(g) is defined to be deg(p) where p is any 〈F, f, t〉-representation

of g.

Hence we have degF2
(PARITYn) = 1 and degR(PARITYn) = n. In general degF2

(g) ≤
degR(g):

Fact 5.5.5 For any boolean function g, degF2
(g) ≤ degR(g).

Proof: Let p be the 〈R, 0, 1〉-representation of g, so degR(g) = deg(p). By uniqueness, p

must be precisely

p(x) =
∑

z∈{0,1}n

[
p(z)

(∏

i : zi=1

xi

)(∏

i : zi=0

(1 − xi)

)]
.

But this polynomial plainly has integer coefficients; hence if we reduce the coefficients mod

2 then what we get must be gF2 . This operation can only decrease degree. 2

5.5.3 Learning tools for the junta problem

In this subsection we give the learning algorithms we will use for the junta problem. We

first show that it suffices to give a learning algorithm which can identify a single relevant

variable of an unknown junta. We then give two learning algorithms that look for relevant

variables. Our algorithm for learning k-juntas will end up trying both algorithms and we

shall prove in Subsection 5.5.4 that at least one of them always works.

Throughout this subsection, f will denote a k-junta on n bits, R will denote the set

of variables on which f depends, k′ will denote |R| (so 0 ≤ k′ ≤ k), and f ′ will denote

the function {+1,−1}k′ → {+1,−1} given by restricting f to R. Recall the definition of

restrictions of boolean functions, Definition 4.0.7.

Proposition 5.5.6 Suppose that A is an algorithm running in time nα·poly(2k, n, log(1/δ))

which can identify at least one variable relevant to f with confidence 1 − δ (assuming f

is nonconstant). Then there is an algorithm for exactly learning f which runs in time

nα · poly(2k, n, log(1/δ)).

123

Proof: First note that if f is nonconstant then for uniform random inputs each output

value occurs with frequency at least 2−k. Hence we can decide whether or not f is a constant

function with confidence 1 − δ in time poly(2k, n, log(1/δ)).

Next, suppose ρ is any restriction fixing at most k bits. We claim that we can run any

learning algorithm on fρ with a slowdown of at most poly(2k). To do so, we only need to

transform the example oracle for f into one for fρ; this is easily done by rejecting all samples

〈x, f(x)〉 for which x does not agree with ρ. Since ρ fixes at most k bits, the probability

that a random x agrees with ρ is at least 2−k. Hence with probability 1 − δ we can get M

samples for fρ by taking M · poly(2k) log(M/δ) samples from the oracle for f .

We now show how to identify all the variables R on which f depends in the requisite

amount of time. By induction, suppose we have identified some relevant variables R′ ⊆ R.

For each of the 2|R
′| possible restrictions ρ which fix the bits in R′, consider the function

fρ. Since fρ is also a k-junta, A can identify some variables relevant to fρ (or else we can

check that fρ is constant). By running A (with the slowdown described above) for each

possible ρ, we will identify new variables to add into R′. We repeatedly add new variables

to R′, testing all restrictions on these variables, until all of the restricted subfunctions are

constant. It is clear that at this point we will have identified all variables relevant to f .

Note that R′ grows by at least one variable at each stage, and so we will never run A
more than k2k times. Further, we can get confidence 1−k−12−kδ for each run — even after

the rejection-sampling slowdown — in time nα ·poly(2k, n, log(1/δ)). Hence we can identify

R in time nα · poly(2k, n, log(1/δ)) with confidence 1 − δ.

Finally, once R is identified it is easy to learn f exactly. Simply draw poly(2k, log(1/δ))

samples; with probability 1 − δ we will see every possible bit setting for R so we can build

f ’s truth table and output this as our hypothesis. 2

We now focus on finding algorithms that can identify a random variable given examples

from an unknown junta. One technique we have already seen is Fourier coefficient estima-

tion. Note that the Fourier coefficients of f are the same as those of f ′, and thus each one

has a rational value of the form a/2k for a an integer. Thus using Theorem 5.1.1 we can cal-

culate any Fourier coefficient f̂(S) exactly with confidence 1−δ in time poly(n, 2k, log(1/δ)),

just by taking λ = 2−k−1 and rounding the estimate to the nearest multiple of 2−k. Now

note that if we ever determine a Fourier coefficient f̂(S) 6= 0 with S 6= ∅, then all variables

124

in S must be relevant to S. This is simply because if f does not depend on i ∈ S then

f̂(S) = E[f(x)xS] = E[xi]E[f(x)xS\{i}], and E[xi] = 0. Thus one technique for trying

to identifying variables relevant to f is to estimate all of its Fourier coefficients f̂(S) for

1 ≤ |S| ≤ α for some α, looking for one which is nonzero. We immediately get the following:

Proposition 5.5.7 If f̂ ′(S) 6= 0 for some S with 1 ≤ |S| ≤ α, then we can identify at least

one relevant variable for f with confidence 1 − δ in time nα · poly(2k, n, log(1/δ)).

Our second technique for trying to identify variables relevant to f is to see if f can be

represented as a low degree polynomial over the two-element field F2. A well-known result

from computational learning theory [HSW92] says that degree-1 polynomials over F2 —

i.e., parities — can be learned in polynomial time under any distribution:

Theorem 5.5.8 Let g : F2
N → F2 be a parity function (i.e., a linear polynomial) on an

unknown subset of the N boolean variables x1, . . . , xN . There is a learning algorithm B
that, given access to labeled examples 〈x, g(x)〉 drawn from any probability distribution D
on F2

N , outputs a hypothesis h (which is itself a parity of some subset of x1, . . . , xN) such

that with probability 1 − δ we have Px∈D[h(x) 6= g(x)] ≤ ε. Algorithm B runs in time

O((N
ε + log(1/δ)

ε)ω) where ω < 2.376 is the exponent for matrix multiplication.

The idea behind Theorem 5.5.8 is simple: since g is a parity function, each labeled exam-

ple 〈x, g(x)〉 corresponds to a linear equation over F2 where the ith unknown corresponds

to whether xi is present in g. Algorithm B draws O(N
ε + log(1/δ)

ε) examples and solves the

resulting system of linear equations to find some parity over x1, . . . , xN which is consistent

with all of the examples. Well-known results in PAC learning theory [BEHW87] imply that

such a consistent parity will satisfy the ε, δ PAC criterion.

Now suppose degF2
(f ′) = α ≤ k. Then f ′ is a F2-linear combination (i.e., a parity)

over the set of monomials (conjunctions) in x1, . . . , xn of degree up to α. This lets us learn

f ′ in time roughly nωα:

Proposition 5.5.9 If degF2
(f ′) = α, then there is a learning algorithm that identifies f

exactly in time nωα ·poly(2k, n, log(1/δ)) with confidence 1−δ. (Hence it certainly identifies

a variable on which f depends.)

Proof: Consider the expanded variable space consisting of all monomials over x1, . . . , xn

of degree at most α. There are at most N = nα variables in this space. Run algorithm B

125

from Theorem 5.5.8 on this variable space, with ε set to 2−(k+1). That is, given an example

〈x, f(x)〉, translate it to the example 〈(xS)|S|≤α, f(x)〉, and run B using this new example

oracle. Simulating a draw from this new oracle takes time N ·poly(n), so constructing all the

necessary examples for B takes time N 2 · poly(2k, n, log(1/δ)). Solving the resulting system

of equations takes time Nω · poly(2k, n, log(1/δ)). Hence the total time for the algorithm is

nωα · poly(2k, n, log(1/δ)) as claimed.

We now argue that B’s output hypothesis is precisely the F2-representation of f . Let D
be the distribution over the expanded variable space induced by the uniform distribution

on x1, . . . , xn. Since f ′ (equivalently f) is a parity over the expanded variable space, the

output of B will be a parity hypothesis h over the expanded variable space which satisfies

Px∈D[h(x) 6= f(x)] ≤ 2−(k+1).

View both f and h as F2-polynomials of degree α over the original variables x1, . . . , xn.

If f and h are not identical, then f+h 6≡ 0 and we have P[f(x) 6= h(x)] = P[f(x)+h(x) 6= 0].

Now since degF2
(f + h) ≤ α and f + h is not identically 0, the polynomial f + h must be

nonzero on at least a 2−α ≥ 2−k fraction of the points in F2
n, by the Schwartz-Zippel

Lemma. But this contradicts the fact that Px∈D[h(x) 6= f(x)] ≤ 2−(k+1). 2

5.5.4 Learning using new structural properties of boolean functions

With our learning tools in hand we are ready to give the algorithm for learning k-juntas.

The basic idea is to show that every boolean function f ′ must either have a nonzero Fourier

coefficient of “not too large” positive degree, or must be a polynomial over F2 of “not too

large” degree. Then by Propositions 5.5.7 and 5.5.9, in either case we can find a relevant

variable for f ′ without performing a full-fledged exhaustive search.

The Fourier learning algorithm described earlier fails only on functions whose low-degree

Fourier coefficients are all zero (except for possibly the constant coefficient; if this is nonzero

the Fourier algorithm can still fail). Let us make a definition for such functions:

Definition 5.5.10 Suppose that g satisfies ĝ(S) = 0 for all 1 ≤ |S| < t. If ĝ(∅) is also 0

then we say that g is strongly balanced up to size t. If ĝ(∅) is nonzero we say that g is

strongly biased up to size t.

These definitions were essentially first made by Bernasconi in [Ber01]. The justification

of the terminology is this: if g is strongly balanced up to size t, then it is easy to show that

126

every subfunction of g obtained by fixing 0 ≤ ` ≤ t − 1 bits is balanced. Similarly, if g is

strongly biased up to size t then it is easy to show that every such subfunction has the same

bias as g itself.

We now show that strongly balanced functions have low F2-degree:

Theorem 5.5.11 Let g /∈ {PARITYn,−PARITYn} be a boolean function on n bits which is

strongly balanced up to size t. Then degF2
(g) ≤ n − t.

Proof: Given such a g, let h = g⊕PARITYn. Then hR = gR·x1x2 · · ·xn. By assumption, gR

has zero coefficient on all monomials xS with |S| < t. By multilinear reduction (x2
i = 1) we

see that hR has zero coefficient on all monomials xS with |S| > n−t. Hence degR(h) ≤ n−t,

so by Fact 5.5.5, degF2
(h) ≤ n− t. But since g = h⊕ PARITYn, the F2-representation of g

is simply gF2(x) = hF2(x) + x1 + · · · + xn. Adding a degree-1 polynomial to hF2 does not

increase degree (since g is neither PARITYn nor its negation, h is not a constant function

and hence degF2
(h) ≥ 1), and consequently degF2

(g) ≤ n − t. 2

The bound n − t in Theorem 5.5.11 is best possible. To see this, consider the function

g(x) = (x1 ∧ · · · ∧ xn−t) ⊕ xn−t+1 ⊕ · · · ⊕ xn.

This function has F2-representation gF2(x) = x1 · · ·xn−t + xn−t+1 + · · ·+ xn so degF2
(g) =

n − t. Moreover, g is balanced and every subfunction of g fixing fewer than t bits is also

balanced, since to make g unbalanced one must restrict all of xn−k+1, . . . , xn.

It remains to deal with strongly biased functions. Our next theorem shows that no

boolean function can be strongly biased up to too large a size:

Theorem 5.5.12 If g is a nonconstant boolean function on n bits which is strongly biased

up to size t, then t ≤ 2
3n.

Proof: Let gR(x) =
∑

S cSxS be the R-representation of g. Since g is nonconstant and

strongly biased up to size t we have 0 < |c∅| < 1 and cS = 0 for all 0 < |S| < t. As in

Theorem 5.5.11, we let h = g ⊕ PARITYn so hR(x) = c∅x1x2 · · ·xn +
∑
|S|≤n−t c′SxS , where

c′S = c[n]\S .

Let h′ : {+1,−1}n → {1+c∅, 1−c∅,−1+c∅,−1−c∅} be the real-valued function given by

h′(x) = hR(x)−c∅x1x2 · · ·xn; note that deg(h′) ≤ n−t. Furthermore, for x ∈ {+1,−1}n we

127

have h′(x) ∈ {1+c∅, 1−c∅} if and only if hR(x) = +1, and h′(x) ∈ {−1+c∅,−1−c∅} if and

only if hR(x) = −1. Since 0 < |c∅| < 1 we have that {1 + c∅, 1− c∅} and {−1 + c∅,−1− c∅}
are disjoint two-element sets.

Let p : R → R be the degree 3 polynomial which maps 1 + c∅ and 1 − c∅ to +1 and

−1 − c∅ and −1 + c∅ to −1. Now consider the polynomial p ◦ h′. By construction p ◦ h′

maps {+1,−1}n → {+1,−1}, and p ◦ h′ R-represents h. But the R-representation of h is

unique, so after multilinear reduction p ◦h′ must be identical to hR. Since c∅ 6= 0, we know

that degR(h) is exactly n. Since p has degree exactly 3 and deg(h′) ≤ n − t, we conclude

that 3(n − t) ≥ n, whence t ≤ 2
3n. 2

Following publication of the previous result, Regev [Reg03] gave a quicker proof of

Theorem 5.5.12 which we now present:

Proof: (Regev) Let gR(x) be as in the previous proof. Let U be any set of maximal size

such that cU 6= 0; since g is nonconstant and strongly biased up to size t we have |U | ≥ t.

Consider expanding gR(x)2 = (
∑

S cSxS)(
∑

T cT xT); there will be a nonzero coefficient on

the cross-term x∅xU . But gR(x)2 must be identically 1 after multilinear reduction, since

gR takes on only the values ±1. Thus the nonzero coefficient on xU must be cancelled in

the expansion. But if t > 2
3n then cT = 0 for all 1 ≤ |T | ≤ 2

3n, and by the pigeonhole

principle all nonzero cross-terms not involving the constant term c∅ will be on terms xV

with V < 2
3n. This contradicts the fact that the xU term must be cancelled. 2

The bound 2
3n in Theorem 5.5.12 is best possible. To see this, let n = 3m and consider the

function

f(x1, . . . , xn) =

(
2m⊕

i=1

xi

)∧(
n⊕

i=m+1

xi

)
.

It is easy to see that this function is unbalanced, and also that its bias cannot change under

any restriction of fewer than 2m bits (to change the bias, one must set bits 1 . . . 2m or

m + 1 . . . 3m or 1 . . .m, 2m + 1 . . . 3m).

We can now prove our main theorem:

Theorem 5.5.13 The class of k-juntas over n bits can be exactly learned under the uniform

distribution with confidence 1 − δ in time n
ω

ω+1
k · poly(2k, n, log(1/δ)).

128

Proof: Let f be a k-junta on n bits and f ′ be the function on at most k bits given by

restricting f to its relevant variables. Let t = ω
ω+1k > 2

3k. If f ′ is strongly balanced up to

size t then by Theorem 5.5.11 f ′ is an F2-polynomial of degree at most k − t = k/(ω + 1).

By Proposition 5.5.9 f ′ can be learned in time (nk/(ω+1))ω · poly(2k, n, log(1/δ)). On the

other hand, suppose f ′ is not strongly balanced up to size t. By Theorem 5.5.12, f ′ cannot

be strongly biased up to size t, since t > 2
3k. Hence f ′ has a nonzero Fourier coefficient of

degree less than t and greater than 0. So by Proposition 5.5.7, some relevant variable for f

can be identified in time nt · poly(2k, n, log(1/δ)).

In either case, we can identify some relevant variable for f in the claimed time,

n
ω

ω+1
k · poly(2k, n, log(1/δ)). Proposition 5.5.6 completes the proof. 2

5.5.5 Variants of the junta learning problem

We can use the ideas developed thus far to analyze some variants and special cases of the

juntas learning problem. We begin by describing various subclasses of k-juntas for which

the learning problem is more easily solved:

Monotone juntas: Every variable xi relevant to f ′ has strictly positive influence, in

the sense of Definition 2.3.4: i.e., Ii(f) > 0. But when f ′ is monotone, Ii(f) = f̂ ′({i}).
Thus the class of monotone k-juntas can be learned in time poly(2k, n, log(1/δ)) using the

Fourier learning algorithm of Proposition 5.5.7.

Random juntas: As observed in [BL97], almost every k-junta on n variables can be

learned in time poly(2k, n, log(1/δ)). To see this, observe that if a function f ′ on k bits is

chosen uniformly at random, then for every S we have f̂ ′(S) = 0 only if exactly half of all

inputs have f ′(x) = xS . This occurs with probability
(

2k

2k−1

)
/22k

= O(1)/2k/2. Consequently,

with overwhelming probability in terms of k — at least 1−O(k)/2k/2 — a random function

on k variables will have every Fourier coefficient of degree 1 nonzero, and hence we can

learn using Proposition 5.5.7.

Symmetric juntas: A symmetric k-junta is a junta whose value depends only on how

many of its k relevant variables are set to true. We can learn the class of symmetric k-

juntas in time n
2
3
k · poly(2k, n, log(1/δ)), which is a slight improvement on our bound for

arbitrary k-juntas. To prove this, we show that every symmetric function f ′ on k variables

other than parity and its negation has a nonzero Fourier coefficient f̂ ′(S) for 1 ≤ |S| < 2
3k.

129

Hence we can identify at least one relevant variable in time n
2
3
k · poly(2k, n, log(1/δ)) using

Proposition 5.5.7, and we can use the algorithm of Proposition 5.5.6 since the class of

symmetric functions is closed under subfunctions.

To prove this claim about the Fourier coefficients of symmetric functions, first note that

if f ′ is not balanced then by Theorem 5.5.12 it must have a nonzero Fourier coefficient

of positive degree less than 2
3k. Otherwise, if f ′ is balanced and is neither parity nor its

negation, then the function g = f ′ ⊕ PARITYk is a symmetric nonconstant function and

degR(g) < k; this last fact follows because the x1x2 · · ·xk coefficient of g is the constant

coefficient of f ′, and f ′ is balanced. By a result of von zur Gathen and Roche [vzGR97],

every nonconstant symmetric function g on k variables has degR(g) ≥ k − O(k.548). Hence

ĝ(S) 6= 0 for some k−O(k.548) ≤ |S| < k, so f̂ ′([k]\S) 6= 0 and 1 ≤ |[k]\S| ≤ O(k.548) ≤ 2
3k.

By considering the work of von zur Gathen and Roche it seems probable that every

symmetric boolean function on k bits has a nonzero Fourier coefficient on a much smaller

nonzero degree; perhaps O(log k) or even O(1). But a proof would be at least as difficult

as improving von zur Gathen and Roche’s conjecture that every symmetric nonconstant

function has degree at least k − O(1).

130

Chapter 6

Coin Flipping From A Cosmic

Source

As we saw in Section 2.4, the study of the noise sensitivity of boolean functions is equivalent

to the study of the 2-norm of the Bonami-Beckner operator Tρ. In this chapter we introduce

a new problem in theoretical computer science which essentially amounts to studying the

higher norms of this operator.

6.1 Coin flipping from a cosmic source

Consider a “cosmic” source of truly random bits x ∈ {+1,−1}n which is accessible to

k distributed parties. If the k parties want to use the source to obtain a common single

random bit, they can easily do so by deciding beforehand to let the common bit be x1. More

generally, they can decide beforehand on any balanced function f : {+1,−1}n → {+1,−1}
and let the common bit be f(x).

In this setting, there is no real advantage in taking the function f to be anything other

than the dictator function f = π1
n. The problem becomes more interesting when the parties

independently receive noisy versions of the cosmic random bits. That is, party i receives the

string yi and the strings yi are independently distributed as Nε(x). Assume the parties are

separated and cannot communicate; however they still want to toss the same fair coin given

their noisy versions of the source. We will now allow each party i to use a different balanced

function fi : {+1,−1}n → {+1,−1} as a coin tossing procedure. We want to maximize the

probability that all of the parties agree on their coin flips; i.e., P[f1(y
1) = · · · = fk(y

k)].

131

This problem has natural motivations in cryptography. One setting in which it very

relevant is that of the “everlasting security” protocol of Ding and Rabin [DR02]. This

protocol gives a very secure encryption algorithm in the bounded storage model. However,

the authors presuppose the existence of a satellite or other cosmic source which broadcasts

a continuous stream of a huge number of random bits — on the order of a trillion per

second. It is natural to expect that the distributed parties using this source will have some

reception errors. Further, it is not clear that putting an error-correcting code on the bits

is feasible or even desirable — the parties may not trust the performer of the encoding,

and may prefer instead to agree on a measurable random source from nature. Another

cryptographic problem somewhat related to our cosmic coin flipping problem was studied

by Maurer [Mau97].

This cosmic coin flipping problem is also of interest as a noncryptographic collective

coin flipping problem. Another example of such a problem is the full information model,

introduced by Ben-Or and Linial [BL90] and studied extensively (see, e.g., the brief survey

in [Dod00] and the references therein). In this problem, many parties try to agree on a single

random bit; each generates a random coin toss, and there is a single protocol (function)

taking all the coin tosses and producing a bit. The difficulty arises from the assumption

that some parties are corrupt and can choose their coins adversarially. In our problem,

the major difference is that the parties do not communicate any random bits, so they each

must apply a protocol to a shared random string. And, instead of arbitrary corruptions, we

assume random ones.

The problem we study in this chapter is also a natural question regarding error correction

for the broadcast channel (see, e.g., [CT68]) with a truly random source. Naturally, when

the source is truly random, error correction is impossible. However, here instead of requiring

that every party obtains all of the information transmitted with high probability, we only

require that all parties attain some mutual information with high probability, and that this

mutual information has high entropy.

Finally, this problem is a strict generalization of the study of the noise sensitivity of

balanced functions. To see this, suppose k = 2 and both parties use the same balanced

function f . Then the first party’s bits y1 are uniformly random, and the second party’s bits

y2 can be viewed as being distributed as Nε′(y
1), where ε′ = 2ε(1 − ε). Thus the success

probability of the parties is precisely 1 − NSε′(f).

132

As mentioned previously, for k > 2 the problem can be viewed as the study of the

higher norms of the Bonami-Beckner operator. Suppose again that all parties use the same

function f for their coin-tossing protocols, and that f has the property that, when using it,

the parties are equally likely to agree on +1 and −1. (See Theorem 6.5.1 and the discussion

of antisymmetry in the next section for more on these assumptions.) Then by symmetry

we may as well compute twice the probability that the parties agree on −1. By Fact 2.4.2,

for every source string x and for each i independently, the probability that party i outputs

−1 is precisely 1
2 − 1

2T1−2ε(f)(x) = T1−2ε(
1
2 − 1

2f)(x). Write f ′ : {+1,−1}n → {0, 1} for the

boolean function 1
2 − 1

2f . Then the overall probability of success is 2Ex[(T1−2ε(f
′)(x))k] =

2||T1−2ε(f
′)||kk. This justifies our statement that the problem studied in this chapter is

equivalent to the problem of studying the higher norms of the Bonami-Beckner operator

Tρ.

6.2 Definitions and notation

Let us define the problem precisely:

The model: Let k ≥ 1 be the number of parties, let n ≥ 1 be the block length and let

ε ∈ (0, 1
2) be the corruption probability. Our probability space is the space all sequences

(x, y1, . . . , yk) ∈ {+1,−1}n(k+1). Here x represents the source and is chosen uniformly at

random from {+1,−1}n; yi represents the bits that party i holds and is distributed as Nε(x),

independently for each i. When we write P and E we mean probability and expected value

in this space.

Balanced and antisymmetric functions: Let Bn denote the set of balanced boolean

functions f : {+1,−1}n → {+1,−1}; i.e., those satisfying E[f] = 0. Let An denote the

set of antisymmetric boolean functions f : {+1,−1}n → {+1,−1}; i.e., those satisfying

f(−x) = −x. Note that An ⊂ Bn.

Protocols: A protocol consists of k functions fi ∈ Bn. An antisymmetric protocol consists

of k functions fi ∈ An. For a protocol (f1, . . . , fk) we write P(f1, . . . , fk; ε) for the probability

that all parties agree when using f1, . . . , fk, so

P(f1, . . . , fk; ε) = P[f1(y
1) = · · · = fk(y

k)].

133

We write Pk(f ; ε) in place of P(f1, . . . , fk; ε) in case f1 = · · · = fk = f .

It turns out that restricting all fi to be balanced is neither necessary nor sufficient for

ensuring that the output bit, when agreed upon, is uniformly random. Non-necessity is

not particularly interesting; e.g., we may have k = n = 2, f1 = AND2, f2 = OR2. More

interesting is non-sufficiency; see Proposition 6.10.4 for a counterexample, requiring k ≥ 3,

n ≥ 5. A sufficient condition is that every function be antisymmetric, since in this case,

P[f1(y
1) = · · · = fk(y

k) = +1] = P[f1(−y1) = fk(−yk) = −1]

= P[f(y1) = · · · = f(yk) = −1],

where the first equality is by antisymmetry and the second since P assigns the same prob-

ability to (x, y1, . . . , yk) as it does to (−x,−y1, . . . ,−yk). We are not aware of a weaker

condition than antisymmetry that ensures that the output bit, when agreed upon, is uni-

formly random. In any case, we shall consider both antisymmetric and merely balanced

protocols.

We end this section with a few more definitions. For S ⊆ [n] and π a permutation of [n],

let πS : {+1,−1}n → {+1,−1}n be defined by πS(x)i = xπ(i) if i ∈ S and πS(x)i = −xπ(i)

if i 6∈ S. Any πS merely permutes coordinates and switches the roles of ±1 on some

coordinates. It is therefore easy to see that P(f1 ◦ πS , . . . , fk ◦ πS ; ε) = P(f1, . . . , fk; ε) for

any πS .

In order to express uniqueness results cleanly, we abuse language in the following way:

For particular k, n, and ε, we say that (f1, . . . , fk) is the unique best protocol “up to πS” if

the set of best protocols is exactly {(f1 ◦ πS , . . . , fk ◦ πS) : S ⊆ [n], π ∈ Sn}. This notation

should not be confused with the notation for a dictator function πi
n.

6.3 Outline of results

In this section we outline our main results, which we prove in the succeeding sections.

One reason we study the probability that all parties agree on a random bit — rather

than an alternative metric such as the expected number of pairs of parties who agree or the

expected number of parties in the majority — is that these alternative metrics are subsumed

by the case k = 2. In this case, and also in case k = 3, Fourier analysis gives an exact

134

solution to our problem, and the best protocol up to πS is for all parties to use the first-bit

dictator function, f = π1
n. We attribute the case k = 2 in the following theorem to folklore:

Theorem 6.4.1 For all k, n, ε, if we wish to maximize the expression

E[#(i, j) : fi(y
i) = fj(y

j)], (6.1)

the unique best protocol up to πS is given by f1 = · · · = fk = π1
n. In particular, if k = 2 or

k = 3, then for all n and ε the unique best protocol, up to πS, for maximizing P(f1, . . . , fk; ε)

is given by f1 = · · · = fk = π1
n.

In general we do not know how to find the optimal protocol for every n, k, and ε. How-

ever, we can prove some general properties of the protocols which maximize P(f1, . . . , fk; ε).

First we show that, as might be expected, in any optimal protocol all parties use the same

function:

Theorem 6.5.1 Fix k, n, and ε. Let C be any class of boolean functions on n bits. Subject

to the restriction that f1, . . . , fk ∈ C, every protocol which maximizes P(f1, . . . , fk; ε) has

f1 = · · · = fk.

The proof of this uses convexity.

Knowing that all parties should use the same function, we can derive further information

about what this function must look like. Recall from Section 3.6 that Benjamini et al.

showed that shifting a function to make it monotone causes its noise sensitivity to go down.

The same phenomenon occurs in the present problem. Via such shiftings we can show that

the best protocol is a monotone function. Indeed, we can say more. For x, y ∈ {+1,−1}n,

let us write x �L y if
∑m

i=1 xi ≤ ∑m
i=1 yi for every m = 1 . . . n. We call a function f

left-monotone if f(x) ≤ f(y) whenever x �L y. (This partial ordering has been studied

in other contexts; for example, left-monotone functions are equivalent to shifted simplicial

complexes [Kli03].) Note that the partial order induced by �L is a refinement of the usual

partial order on the hypercube, and in particular, every left-monotone function is monotone.

By shifting again, we have the following:

Theorem 6.6.1 For all k, n, and ε, if f maximizes Pk(f ; ε) among all protocols then

135

f is left-monotone (up to πS). This theorem remains true if “protocol” is replaced by

“antisymmetric protocol”.

So far we have not ruled out the possibility that the optimal protocol always consists

of taking just one bit. However when n and ε are fixed and k → ∞, it becomes better to

use the majority of all the bits (rather than just the first). Using a coupling argument, we

prove the following result:

Theorem 6.7.2 For all n odd and all ε, there exists a K = K(n, ε) such that for k ≥ K,

the unique best protocol up to πS is given by f = MAJn. Moreover, as k → ∞,

Pk(MAJn; ε) = Θ
(
(1 − P[Bin(n, ε) > n/2])k

)
,

where Bin(n, ε) is a binomial variable with parameters n and ε. (This should be compared

to Θ((1− ε)k) for the protocol f = π1
n.) When n is even, a similar result is true; in place of

MAJn, one should take any balanced function f which has f(x) = +1 whenever
∑n

i=1 xi > 0

and f(x) = −1 whenever
∑n

i=1 xi < 0.

A dual result is obtained by fixing n and k, and letting ε go to either 0 or 1
2 . The proof

uses isoperimetry and Fourier analysis.

Theorem 6.8.1 For all k and n, there exist 0 < ε′ = ε′(n, k) < ε′′ = ε′′(n, k) < 1
2 such that

for all 0 < ε < ε′ or ε′′ < ε < 1
2 , the unique best protocol up to πS is given by the dictator

function f = π1
n = MAJ1.

It may now seem like the optimal protocol consists of either taking all functions to be

MAJ1 or all functions to be MAJn. This is not the case however, as a computer-assisted

proof shows that sometimes MAJr is better than MAJ1 and MAJn for 1 < r < n. See

Proposition 6.10.2.

Finally we come to what is perhaps the most interesting asymptotic setting for n, k,

and ε; namely, ε a fixed constant in (0, 1
2), k → ∞, and n an unbounded function of k and ε.

In this case we are unable to determine the best protocol function. However, we are able to

show an asymptotically tight result. Despite Theorem 6.7.2, it is not true that as k → ∞,

the success probability of the best protocol goes to 0 exponentially fast in k. If the parties

136

use the majority protocol on a large number of bits, their success probability goes to 0 only

as a slowly diminishing polynomial in k; furthermore, this protocol is essentially the best

possible.

Theorem 6.9.1 Fix ε ∈ (0, 1
2) and let ν = ν(ε) = 4ε(1−ε)

(1−2ε)2
. Then as k → ∞,

sup
f∈B

Pk(f ; ε) = Θ̃
(
k−ν

)
,

where the supremum is taken over all balanced boolean functions f on finite numbers of bits,

and Θ̃(·) denotes asymptotics to within a subpolynomial (ko(1)) factor. The upper bound is

achieved asymptotically by the majority function MAJn with n sufficiently large (in terms

of k and ε).

The proof of the upper bound uses the reverse Bonami-Beckner inequality.

Finally, it is natural to ask if the optimal function is always MAJr for some 1 ≤ r ≤ n

(assuming, say, n is odd). We conjecture that this is the case, at least for antisymmetric

protocols:

Conjecture 6.3.1 For any k, ε, and odd n, there is an odd 1 ≤ r ≤ n such that Pk(f ; ε)

is maximized among antisymmetric functions by f = MAJr.

In fact, we know of no counterexample to Conjecture 6.3.1 even if we allow the parties

to use any balanced function (which could allow for a biased output). Some evidence

that resolving this conjecture could possibly be hard: One, it is not true that for any

non-majority function f , and any fixed k, there is a majority function which dominates

f over all ε — see Proposition 6.10.3 for a computer-assisted counterexample. Two, for

certain k and ε, Pk(MAJr, ε) is not even unimodal as a function of r. For example, one can

show by explicit calculation (as described in Section 6.10) that for k = 12 and ε = .1, we

have Pk(MAJ1; ε) ≥ Pk(MAJ3; ε), Pk(MAJ3; ε) ≤ Pk(MAJ5; ε) ≤ · · · ≤ Pk(MAJ11; ε), and

P(MAJ11; ε) ≥ P(MAJ13; ε), and it appears as though the sequence is decreasing from this

point on.

In the following sections we prove the theorems given above, and close with a section

describing some computer-assisted analysis of the problem.

137

6.4 k = 2, 3

In this section we show that for k = 2, 3, all parties should use the same function. The

reason, roughly speaking, is that when k = 2 and the parties use the same function, the

problem reduces to finding the least noise-sensitive balanced functions; as we know from

Proposition 3.2.1, these functions are precisely the dictator functions. Only a few more

ideas are needed to deal with the possibility the parties use different function, and with the

case k = 3.

Recall Theorem 6.4.1:

Theorem 6.4.1 For all k, n, ε, if we wish to maximize the expression

E[#(i, j) : fi(y
i) = fj(y

j)], (6.2)

the unique best protocol up to πS is given by f1 = · · · = fk = π1
n. In particular, if k = 2 or

k = 3, then for all n and ε the unique best protocol, up to πS, for maximizing P(f1, . . . , fk; ε)

is given by f1 = · · · = fk = π1
n.

Proof: Let us analyze the quantity (6.2):

E[#(i, j) : fi(y
i) = fj(y

j)] =
∑

1≤i<j≤k

E[1fi(yi)=fj(yj)]

=
∑

i<j

E

[
1

2
+

1

2
fi(y

i)fj(y
j)

]

=
1

2

(
k

2

)
+

1

2

∑

i<j

E[fi(y
i)fj(y

j)].

Using the same argument as in the proof of Proposition 2.3.1, it is easy to show that

E[fi(y
i)fj(y

j)] =
∑

S⊆[n]

(1 − 2ε)2|S|f̂i(S)f̂j(S).

Note that this sum may be taken over S 6= ∅, since fi and fj are assumed balanced. Now

138

by Cauchy-Schwarz,

∑

S 6=∅
(1 − 2ε)2|S|f̂i(S)f̂j(S) ≤

∑

S 6=∅
(1 − 2ε)2|S|f̂i(S)2

1
2

∑

S 6=∅
(1 − 2ε)2|S|f̂j(S)2

1
2

=
(
1 − 2NS2ε(1−ε)(fi)

) 1
2
(
1 − 2NS2ε(1−ε)(fj)

) 1
2

≤ (1 − 2ε)2,

where the second inequality is by Proposition 3.2.1. This inequality is tight if and only if

fi and fj are both dictator functions. In this case, the first inequality is tight if and only if

fi and fj are the same dictator function. Since any dictator function is the function π1
n up

to πS , the proof of the first part of the theorem is complete.

For the second part, first note that in the case k = 2, the quantity P(f1, f2; ε) is

precisely E[#(i, j) : fi(y
i) = fj(y

j)], since only i = 1, j = 2 is possible. In the case

k = 3, whenever all parties agree there are three pairs who agree, and otherwise there is

exactly one pair who agrees. Hence P(f1, f2, f3; ε) = 1
2E[#(i, j) : fi(y

i) = fj(y
j)] − 1

2 , so

maximizing P(f1, f2, f3; ε) is equivalent to maximizing (6.2). 2

6.5 All parties should use the same function

In this section we show that, as might be expected, in any optimal protocol all parties use

the same function:

Theorem 6.5.1 Fix k, n, and ε. Let C be any class of boolean functions on n bits. Subject

to the restriction that f1, . . . , fk ∈ C, every protocol which maximizes P(f1, . . . , fk; ε) has

f1 = · · · = fk.

Proof: Let C = {f1, f2, . . . , fM}, and assume M > 1, else the theorem is trivial. Assume C
doesn’t contain one of the constant functions, else again the theorem is trivial. Now suppose

that among the k parties, exactly ti use the function fi. Then clearly,

ti ≥ 0,
M∑

i=1

ti = k, ti ∈ Z. (6.3)

For each i, write ci(x) for the probability that a party outputs +1 given that the source

string is x. By Fact 2.4.2, ci(x) = 1
2 + 1

2T1−2ε(f)(x). Writing P = P(f1, . . . , fk; ε) for short,

139

we have exactly

P =
∑

x∈{+1,−1}n
2−n

(
M∏

i=1

(ci(x))ti +
M∏

i=1

(1 − ci(x))ti

)
.

Since no fi is constant we have ci(x) ∈ (0, 1) for all i. Note that for any c ∈ (0, 1), the

function g(t) = ct, is log-convex (since log ct = t log c is linear). Therefore the function

g1 · · · gM : RM → R given by (t1, . . . , tM) 7→ ∏M
i=1 gi(ti) is a log-convex function, and

therefore a convex function. Since the sum of convex functions is also convex, we conclude

that P is a convex function of the ti’s. We wish to maximize P subject to the restrictions

(6.3).

If we relax the assumption ti ∈ Z to ti ∈ R, we are simply maximizing a convex function

over a convex bounded polytope. The vertices of the polytope are simply the points of the

form (0, . . . , 0, k, 0, . . . , 0). The maximum must occur at a vertex, and so it follows that

there is at least one maximizing protocol in which all parties use the same function.

It remains to show that P does not obtain a maximum at any point which is not a

vertex of the polytope. Note that by convexity, if P has a maximum which is not a vertex

of the polytope, then there exists an interval I = {λv1 + (1 − λ)v2 : λ ∈ [0, 1]}, where v1

and v2 are vertices of the polytope, such that f is a constant function on I. Therefore if we

could show that f is strictly convex on I (as a function of λ), then it will follow that the

maximum is obtained only at vertices of the polytope.

Note that when restricted to the edge I joining, for example, v1 = (k, 0, . . . , 0) and

v2 = (0, k, 0, . . . , 0), P is given by

∑

x∈{+1,−1}n
2−n

(
(c1(x))λk (c2(x))(1−λ)k + (1 − c1)(x))λk (1 − c2(x))(1−λ)k

)
.

Since T1−2ε is a 1-1 operator on the space of functions {+1,−1}n → R by Fact 2.4.2,

there must be some x0 ∈ {+1,−1}n such that T1−2ε(f1)(x0) 6= T1−2ε(f2)(x0) and hence

c1(x0) 6= c2(x0). Using c1(x0) 6= c2(x0) it is easy to show that

(c1(x0))
λk (c2(x0))

(1−λ)k = (c2(x0))
k

(
c1(x0)

c2(x0)

)λk

is a strictly convex function of λ. Thus P is strictly convex on I, as needed. 2

140

6.6 The protocol should be left-monotone

Because of the results in the previous section, we will assume from now on that the parties

all use the same function. In this section we shall show that the success probability is

maximized when the parties’ function is left-monotone (up to πS):

Theorem 6.6.1 For all k, n, and ε, if f maximizes Pk(f ; ε) among all protocols, then f

is left-monotone (up to πS). This theorem remains true if the phrase “protocol” is replaced

by “antisymmetric protocol”.

We will prove this in two parts; first we shall show in Proposition 6.6.2 that the shifting

operators κi increase the probability of success; this suffices to show that f must be mono-

tone up to πS (i.e., f must be unate). We then define a left-shifting operator and show

in Proposition 6.6.4 that it increases the success probability of monotone functions. Since

repeated left-shifting will produce a left-monotone function, this will show that f must be

left-monotone up to πS . The two propositions taken together prove Theorem 6.6.1.

Proposition 6.6.2 Let C stand for either Bn or An. For any k, n, ε, if f is restricted to

be in C, then Pk(f ; ε) is maximized only if f is monotone up to πS; i.e., f is unate.

Proof: Let f ∈ C be any function which maximizes Pk(f ; ε) among functions in C. Recall

the shifting operators κi from Definition 3.6.1. We shall show that Pk(κif ; ε) ≥ Pk(f ; ε),

with equality only if f is either monotone or anti-monotone in the ith coordinate. Since

shifting on all coordinates produces a monotone function, this will complete the proof.

Without loss of generality assume i = 1, and write f ′ = κ1f , so for each x ∈ {+1,−1}n−1,

• if f(−1, x) = f(+1, x) then f ′(−1, x) = f ′(+1, x) = f(−1, x) = f(+1, x);

• if f(−1, x) 6= f(+1, x) then f ′(−1, x) = −1, f ′(+1, x) = +1.

It is easy to see that in the case C = Bn, f ′ remains in C; a little thought reveals that this

is again true in the case C = An.

For y ∈ {+1,−1}n, let ỹ ∈ {+1,−1}n−1 denote the last n − 1 bits of y. To show

Pk(f
′; ε) ≥ P(f ; ε), we will show that for all z1, . . . , zk ∈ {+1,−1}n−1,

P[f ′(y1) = · · · = f ′(yk) | ỹ1 = z1, . . . , ỹk = zk]

≥ P[f(y1) = · · · = f(yk) | ỹ1 = z1, . . . , ỹk = zk]. (6.4)

141

So suppose each yi’s last n − 1 bits are fixed to be zi. Given zi, f(yi) is a function from

{+1,−1} to {+1,−1}, and is therefore either a constant function ±1 or a dictator function

±π1.

If f(yi) is already determined by zi, then so is f ′(yi) and the determined value is the

same. Otherwise, f(yi) is a nonconstant function of the one remaining unknown bit, yi
1,

and is thus either π1 or −π1. In either case, f ′(yi) is the identity function π1 on yi
1

Assume that given (z1, . . . , zk), there are a + b undetermined functions f(yi
1), with a of

them π1, and b of them −π1. The probability that all of these functions agree on +1 (or

−1) is

q =
1

2

(
(1 − ε)aεb + εa(1 − ε)b

)
,

and the probability that all of the undetermined f ′’s agree on +1 (or −1) is

q′ =
1

2

(
(1 − ε)a+b + εa+b

)
.

There are three cases to consider:

• If some of the determined functions are determined to be +1 and some to be −1, then

both terms in (6.4) are zero.

• If all of the determined functions are determined to be +1 (−1), then the left side

of (6.4) is q′ and the right side of (6.4) is q.

• If there are no determined functions, then the left side of (6.4) is 2q ′ and the right

side of (6.4) is 2q.

Therefore our claim that Pk(f
′; ε) ≥ Pk(f ; ε) will follow once we show that q′ ≥ q. But

this is

1

2
(1 − ε)a+b + εa+b ≥ 1

2
(1 − ε)aεb + εa(1 − ε)b

⇔ 1 +

(
ε

1 − ε

)a+b

≥
(

ε

1 − ε

)b

+

(
ε

1 − ε

)a

, (6.5)

which follows by the convexity of the function t →
(

ε
1−ε

)t
.

Thus we’ve established Pk(f
′; ε) ≥ P(f ; ε). It remains to prove that this inequality

is strict unless f was already monotone or anti-monotone on the first coordinate. If f is

142

neither monotone nor anti-monotone on the first coordinate, then there exist z1 and z2 such

that f , when the last n− 1 coordinates are restricted to z1, becomes π1, and when the last

n− 1 coordinates are restricted to z2, becomes −π1. Picking z3, . . . , zk so that all the other

restricted functions are ±π1, we obtain a, b ≥ 1, so (6.5) is strict inequality and therefore

q′ > q. 2

To show that it is best for the protocol to be left-monotone, we introduce a left-shift

operator for monotone functions:

Definition 6.6.3 Given a monotone f : {+1,−1}n → {+1,−1} and i 6= j ∈ [n], we define

the operator λij which maps f to another monotone function λijf as follows: For each

x, consider the function on two bits gotten by restricting f to have input x except on

coordinates i and j. Since f is monotone, there are only 6 possibilities for what the restricted

function is; its support may be ∅, {(−1,−1)}, {(−1,−1), (−1, +1)}, {(−1,−1), (+1,−1)},
{(−1,−1), (−1, +1), (+1,−1)} or {(−1,−1), (−1, +1), (+1,−1), (+1, +1)}. Define λijf to

be the same function in all cases except when the support is {(−1,−1), (+1,−1)}; in this

case, switch it to {(−1,−1), (−1, +1)}.

It is straightforward to check that λij preserves balance and antisymmetry and that applying

all possible left-shifts to a monotone function produces a left-monotone function.

Proposition 6.6.4 Let C stand for either Bn or An. For any k, n, and ε, if f is restricted

to be in C, then any function which maximizes Pk(f ; ε) must be left-monotone, up to πS.

Proof: The proof is similar to the proof of Proposition 6.6.2, so we proceed briefly. By

Proposition 6.6.2, we may assume that any maximizing f is monotone. We again show

that for all i < j, Pk(λijf ; ε) ≥ Pk(f ; ε), with equality only if f is already left-shifted on

coordinates i, j.

Write f ′ = λijf . As before, we condition on all but the i and j bits of each y1, . . . , yk,

and show that f ′ is better in every case. Say that under this conditioning, a of the f(yi)’s

restrict to the function with support {(−1,−1), (−1, +1)}, and b of the f(yi)’s restrict to

the function with support {(−1,−1), (+1,−1)}. Since all other possible restricted functions

have the same value for (+1,−1) as they do for (−1, +1), it suffices again to compare

the probability with which the a + b functions agree on −1 with the probability that the

143

corresponding shifted functions agree on −1. Further, by symmetry, we need only consider

the cases when the two source bits from x are different (otherwise f and f ′ do equally well).

So considering the two cases — the source bits are (−1, +1) or the source bits are

(+1,−1) — we get that the contribution from the f -restricted functions will be

1
2((1 − ε)aεb) + εb(1 − ε)a), and the contribution from their shifted versions will be

1
2((1 − ε)a+b + εa+b). As we saw in Proposition 6.6.2, this latter quantity is always at

least the former quantity. Hence the shift can only improve the probability of agreement.

Thus we indeed have Pk(f
′; ε) ≥ Pk(f ; ε). Now note that if none of the shifting opera-

tions strictly increased the probability of agreement for f , then for every pair of coordinates

(i, j) which were shifted, either all the balanced restrictions of f to coordinates (i, j) had sup-

port {(−1,−1), (−1, +1)}, or all the balanced restrictions had support {(−1,−1), (+1,−1)}.
In either case, all the shifting did was replace the function f by a function f ◦ π∅, where

π∅ is the transposition of coordinates (i, j). It thus follows that the original function was

already left-monotone up to some π∅, as needed. 2

6.7 Fixed ε, n; k → ∞

In this section we consider the case that ε and n are fixed and k → ∞. In this case, for

sufficiently large k the best protocol is the majority of all the bits, MAJn. The intuitive

reason is as follows: When the number of parties is extremely large — equivalently, when

considering ||Tρ||k for extremely large k — one would rather have a protocol f which is

extremely stable at a few inputs, rather than one which is moderately stable on all inputs.

Thus the majority function MAJn, which is extremely stable to noise when the source input

is +~1 = (+1, . . . , +1) or −~1 = (−1, . . . ,−1), is preferable to the dictator function π1, which

is 1 − ε stable at all inputs. We proceed to make this intuition rigorous.

Given a boolean function f , let us write p+(f, x, ε) for the probability that f(Nε(x)) =

+1 and p−(f, x, ε) for the probability that f(Nε(x)) = −1.

Lemma 6.7.1 Fix ε and let f be monotone. Then as a function of x, p+(f, x, ε) is maxi-

mized at x = +~1, and p−(f, x, ε) is maximized at x = −~1.

Proof: We prove the lemma for p1, the proof for p0 being the same. Recalling Defini-

tion 2.1.1, we think of the noise operator as acting by updating each bit with probability

144

2ε. Let x ∈ {+1,−1}n be any string. Let x′ = Nε(x) and +~1′ = Nε(+~1). We claim that

we can couple the random variables x′ and +~1′ in such a way that x′ ≤ +~1′ (in the sense

of the monotone partial order). The coupling is achieved in the easiest possible way: we

update the same bits of x and +~1 with the same values. Clearly, we have x′ ≤ +~1′. Hence

by monotonicity, if f(x′) = +1 then f(+~1′) = +1. Thus

p+(f, x, ε) = P[f(x′) = +1] ≤ P[f(+~1′) = +1] = p+(f, +~1, ε),

as needed. 2

Theorem 6.7.2 For all constant odd n and all ε, there exists a K = K(n, ε) such that for

k ≥ K, the unique best protocol up to πS is given by f = MAJn. Moreover, as k → ∞,

Pk(MAJn; ε) = Θ
(
(1 − P[Bin(n, ε) > n/2])k

)
,

where Bin(n, ε) is a binomial variable with parameters n and ε. (This should be compared

to Θ((1− ε)k) for the protocol f = π1
n.) When n is even, a similar result is true; in place of

MAJn, one should take any balanced function f which has f(x) = +1 whenever
∑n

i=1 xi > 0

and f(x) = −1 whenever
∑n

i=1 xi < 0.

Proof: For simplicity we will prove the theorem only for odd n; the case of even n is simply

wordier. By Theorems 6.5.1 and 6.6.1, we may assume without loss of generality that all

parties use the same monotone function f ∈ Bn. Now on one hand,

Pk(MAJn; ε) = 2−n
∑

x∈{+1,−1}n
(p+(MAJn, x, ε)k + p−(MAJn, x, ε)k)

≥ 2−n(p+(MAJn, +~1, ε)k + p−(MAJn,−~1, ε)k). (6.6)

On the other hand, using Lemma 6.7.1,

Pk(f ; ε) = 2−n
∑

x∈{+1,−1}n
(p+(f, x, ε)k + (p−(f, x, ε))k)

≤ 2−n
∑

x∈{+1,−1}n
(p+(f, +~1, ε)k + p−(f,−~1, ε)k)

= p+(f, +~1, ε)k + p−(f,−~1, ε)k. (6.7)

145

We claim that if f 6= MAJn then both p+(f, +~1, ε) < p+(MAJn, +~1, ε) and p−(f,−~1, ε) <

p−(MAJn,−~1, ε). By comparing (6.6) and (6.7) one can see that if this is true, we will indeed

have Pk(f ; ε) < Pk(MAJn; ε) for sufficiently large k.

To show the claim, simply note that

p+(f, +~1, ε) =
∑

x∈f−1(+1)

(1 − ε)n−∆(x,+~1)ε∆(x,+~1), (6.8)

where ∆ denotes Hamming distance. The quantity being summed is a strictly decreas-

ing function of ∆(x, +~1). Thus if f ∈ Bn differs from MAJn then we will indeed have

p+(f, +~1, ε) < p+(MAJn, +~1, ε). The proof for p− is similar.

The proof is now complete except for the asymptotic bound given in the statement of

the theorem. This bound follows immediately from (6.6), (6.7), and (6.8) once we note that

p+(MAJn, +~1, ε) = p−(MAJn,−~1, ε) = 1 − P[Bin(n, ε) > n/2]. 2

6.8 Fixed k, n; ε → 0 or ε → 1
2

We now consider different asymptotics for the parameters; k and n are fixed arbitrarily and

ε → 0 or ε → 1
2 . In both cases, the best protocol is the dictator function, but separate proofs

are required. When ε → 0, the intuition is that the probability of failure is dominated by

the case when there is only a single error among all the parties; hence we want the function

which is most stable to a single error. Isoperimetry shows this is the dictator function.

When ε → 1
2 , the intuition is just the opposite; we imagine that among all the bits the

parties hold, there are two parties with correlated bits on some coordinate, and otherwise

everything is uniformly random. In this case, Fourier analysis shows that the dictator

function is again the best.

Theorem 6.8.1 For all k and n, there exist 0 < ε′ = ε′(n, k) < ε′′ = ε′′(n, k) < 1
2 such that

for all 0 < ε < ε′ or ε′′ < ε < 1
2 , the unique best protocol up to πS is given by the dictator

function f = π1
n.

We prove the two halves of the theorem separately.

Proposition 6.8.2 For all k and n, there exists ε′(k, n) > 0 such that for all 0 < ε <

ε′(k, n), the unique best protocol up to πS is given by the dictator function f = π1
n.

146

Proof: As ε → 0, the probability that there is more than one corrupted bit among the

players is O(ε2) (here the constant in the O(·) does depend on k and n). Suppose that there

is exactly one flipped bit, and it is bit i for some party j. Then all the parties will agree if

and only if f(x) = f(σix). We therefore obtain the following:

Pk(f ; ε) = (1 − ε)kn + kε(1 − ε)kn−1
n∑

i=1

Px[f(x) = f(σix)] + O(ε2).

Thus for ε sufficiently small (compared to k and n), maximizing Pk(f ; ε) is equivalent to

maximizing
∑n

i=1 Px[f(x) = f(σix)].

Write A for the subset of the hypercube {x : f(x) = −1}, and ∂E(A) for the edge-

boundary of the set A,

∂E(A) = ∪n
i=1{(x, σix) : x ∈ A, σix /∈ A}.

It’s easily seen that

n∑

i=1

Px[f(x) = f(σix))] = n − 2−n+1|∂E(A)|.

Thus the maximizing balanced protocol f is the one which minimizes |∂E(A)| over sets A

such that |A| = 2n−1. By the edge-isoperimetric inequality for the cube, the minimizing sets

A are precisely those of the form {x : xi = −1}, or {x : xi = +1}. Thus the best protocol f

is π1
n up to πS , as claimed. 2

Proposition 6.8.3 For all k and n, there exists ε′(k, n) < 1
2 such that for all ε′(k, n) <

ε < 1
2 , the unique best protocol up to πS is given by the dictator function f = π1

n.

Proof: The proof is somewhat similar to the previous one. Let us think of the noise

operator Nε as updating bits with probability 2ε. We will imagine the tableau of bits the

parties receive as being generated in the following manner. For 1 ≤ i ≤ k and 1 ≤ j ≤ n,

define Xij to be i.i.d. random variables taking 1 with probability δ = 1 − 2ε and 0 with

probability δ. We then let x be a uniformly random string, and we define yi as follows:

yi
j = xj if Xij = 1, and otherwise yi

j is chosen uniformly at random.

147

When ε → 1
2 , δ → 0, so almost all of the Xij ’s will be 0. If all of the X(i, j)’s are 0 then

the parties’ strings are uniform and independent. Thus since f is balanced,

P[f(y1) = · · · = f(yk) |
∑

i,j

Xij = 0] = 2−k+1.

Indeed, this can be true even if not all Xij ’s are 0. Suppose that
∑

Xij = 1. Then the

parties’ bits are still uniform and independent. (The single correlation with x is irrelevant,

since x is uniform.) Hence

P[f(y1) = · · · = f(yk) |
∑

i,j

Xij = 1] = 2−k+1.

Even more, if
∑

Xij = 2 but it is because Xij = Xi′j′ = 1 where j 6= j ′, then the parties’

bits are uniform and independent for the same reason:

P[f(y1) = · · · = f(yk) | Xij = Xi′j′ = 1,
∑

s,t

Xs,t = 2] = 2−k+1, for j 6= j′.

For
∑

Xij = 2, there is only effective correlation among the parties’ strings if we have

Xij = Xi′j = 1 for some i 6= i′. Now note that

P

∑

i,j

Xij > 2

 = O(δ3)

(where the constant in the O(·) does depend on k and n).

We therefore conclude

Pk(f ; ε) = Ck,n,δ + δ2(1 − δ)kn−2
∑

i<i′

n∑

j=1

P[f(y1) = · · · = f(yk) | Xi,j = Xi′,j = 1] + O(δ3),

(6.9)

where Ck,n,δ is independent of f . Thus for ε → 1
2 — i.e., δ → 0 — we see that maximizing

Pk(f ; ε) over balanced functions is equivalent to maximizing

∑

i<i′

n∑

j=1

P[f(y1) = · · · = f(yk) | Xi,j = Xi′,j = 1]. (6.10)

148

Write z for a uniformly random string from {+1,−1}n, and z′ for a string which is chosen by

first picking 1 ≤ j ≤ n uniformly at random, and then choosing z ′ ∈ {+1,−1}n uniformly

among all z′ such that z′j = zj . Then it is easy to see that (6.10) is equal to

n

(
k

2

)
P[f(z) = f(z′)]2−k+1,

since f is balanced and the values of i and i′ are irrelevant. Thus the maximizing protocols

are those f maximizing P[f(z) = f(z′)] = 1
2 + 1

2E[f(z)f(z′)]. We pass to the Fourier

representation of f . It is very easy to check that

E[zSz′T] =

0 if S 6= T ,

0 if S = T , |S| > 1,

1
n if S = T , |S| = 1,

1 if S = T = ∅.

It follows that E[f(z)f(z′)] = f̂(∅)2+ 1
n

∑
|S|=1 f̂(S)2. But f̂(∅)2 = 0 since f is balanced, and

1
n

∑
|S|=1 f̂(S)2 ≤ 1

n , with equality if and only if f has Fourier degree 1. By Proposition 3.2.1

this happens if and only if f is a dictator function. The proof is complete. 2

6.9 Fixed ε; k → ∞ with n unbounded

Finally, we come to the most natural asymptotic question, and the most difficult: if we treat

ε as fixed and allow n to be unbounded (in terms of k and ε), what is the best protocol as

k → ∞, and what success rate does it achieve?

Unlike in the previous two sections, we do not know the best protocol in this case.

However we are able to give an asymptotically good answer. In this section we show that

the optimal success probability decreases as a slowly diminishing polynomial, and that the

majority protocol on many bits is asymptotically near-best:

Theorem 6.9.1 Fix ε ∈ (0, 1
2) and let ν = ν(ε) = 4ε(1−ε)

(1−2ε)2
. Then as k → ∞,

sup
f∈B

Pk(f ; ε) = Θ̃
(
k−ν

)
,

where the supremum is taken over all balanced boolean functions f on finite numbers of bits,

149

and Θ̃(·) denotes asymptotics to within a subpolynomial (ko(1)) factor. The upper bound is

achieved asymptotically by the majority function MAJn with n sufficiently large (in terms

of k and ε).

We shall prove Theorem 6.9.1 in two parts; first we estimate the success probability of

the majority protocol limn→∞ Pk(MAJn; ε) and show it is Ω(k−ν). We then show this is

asymptotically best possible.

Theorem 6.9.2 Fix ε ∈ (0, 1
2). Then

lim
n→∞

Pk(MAJn; ε) ≥ Ω(k−ν).

In particular, there is a sequence (nk) with nk = O(k2ν) for which the above bound holds.

Proof: We begin by establishing

lim
n→∞
n odd

Pk(MAJn; ε) =
2ν

1
2

(2π)
1
2
(ν−1)

∫ 1

0
tkI(t)ν−1 dt, (6.11)

where I = φ◦Φ−1 is the so-called Gaussian isoperimetric function, with φ and Φ the density

and distribution functions of a standard normal random variable.

Apply Lemma 3.4.1, with X ∼ N(0, 1) representing n−
1
2 times the sum of the bits in

the cosmic source, and Y |X ∼ N((1 − 2ε)X, 4ε(1 − ε)) representing n−
1
2 times the sum of

the bits in any given party’s string. Thus as n → ∞, the probability that all parties agree

on +1 when using MAJn is precisely

∫ ∞

−∞
Φ

(
(1 − 2ε)x

[4ε(1 − ε)]
1
2

)k

φ(x) dx.

By symmetry we can multiply this by 2 to get the probability that all k parties agree.

Making the change of variables t = Φ(ν−
1
2 x), x = ν

1
2 Φ−1(t), dx = ν

1
2 I(t)−1 dt, we get

lim
n→∞

Pk(MAJn; ε) = 2ν
1
2

∫ 1

0
zkφ(ν

1
2 Φ−1(t))I(t)−1 dt

=
2ν

1
2

(2π)
1
2
(ν−1)

∫ 1

0
tkI(t)ν−1 dt,

as claimed.

150

We now estimate the integral in (6.11). It is known (see, e.g., [BG99]) that I(t) ≥
J(t(1 − t)), where J(t) = t

√
ln(1/t). We will forego the marginal improvements given by

taking the logarithmic term and simply use the estimate I(t) ≥ t(1 − t). We then get

∫ 1

0
tkI(t)ν−1 dt ≥

∫ 1

0
tk(t(1 − t))ν−1

=
Γ(ν)Γ(k + ν)

Γ(k + 2ν)
([AS72, 6.2.1, 6.2.2])

≥ Γ(ν)(k + 2ν)−ν (Stirling approximation).

Substituting this estimate into (6.11) we get limn→∞ Pk(MAJn; ε) ≥ c(ν)k−ν for some

c(ν) > 0 depending only on ε, as desired. By the error bound from Proposition 3.4.1, the

lower bound holds with a smaller constant as long as n is at least as large as O(k2ν). 2

The formula (6.11) can be used to get very accurate estimates of the majority protocol’s

probability of success. For example, if we take ε = 1
2 −

√
2

4 so that ν = 1 then we get

limn→∞ Pk(MAJn; ε) = 2
k+1 . A combinatorial explanation of this fact would be interesting.

We now complete the proof of Theorem 6.9.1 by showing an upper bound of k−ν+o(1)

for the success probability of k parties.

Lemma 6.9.3 Let f, g : {+1,−1}n → R≥0 be nonnegative, let x ∈ {+1,−1}n be chosen

uniformly at random, and let y = Nε(x), where ε ∈ [0, 1
2]. Then for p, q ≤ 1,

E[f(x)g(y)] ≥ ||f ||p||g||q whenever (1 − p)(1 − q) ≥ (1 − 2ε)2.

Proof: Write ρ = 1 − 2ε. By Definition 2.4.1, E[f(x)g(y)] = E[f · Tρ(g)]. Since f and

Tρ(g) are nonnegative and 1
p + p−1

p = 1, we can apply the reverse Hölder inequality to

conclude E[f ·Tρ(g)] ≥ ||f ||p||Tρ(g)|| p
p−1

. Now apply the reverse Bonami-Beckner inequality,

Theorem 2.4.9, to conclude ||Tρ(g)|| p
p−1

≥ ||g||
1− ρ2

1−p

. But 1 − p ≥ ρ2

1−q , so 1 − ρ2

1−p ≥ q and

hence ||g||
1− ρ2

1−p

≥ ||g||q, as desired. 2

Theorem 6.9.4 Let f : {+1,−1}n → {0, 1} and suppose E[f] ≤ 1
2 . Then for any fixed

ε ∈ (0, 1
2), as k → ∞, ||T1−2εf ||kk ≤ k−ν+o(1).

151

Proof: Write ρ = 1 − 2ε. Suppose we have E[(Tρf)k] ≥ 2δ for some δ. Define

G = {x ∈ {+1,−1}n | (Tρf)(x)k ≥ δ}. Then since 0 ≤ (Tρf)k ≤ 1, we conclude that

|G| ≥ δ2−n. Let g be the 0-1 indicator function for G. Now on one hand,

〈Tρ(1 − f), g〉 = 〈1, g〉 − 〈Tρf, g〉

≤ δ − 〈Tρf, g〉

≤ δ − δ · δ 1
k ,

the last inequality following because (Tρf)(x) ≥ δ
1
k for all x with g(x) = 1. On the other

hand, if we apply Lemma 6.9.3 with p = log−
1
2 k and q = 1 − 1

1−pρ2 = 1 − (1 + o(1))ρ2, we

get the following:

〈Tρ(1 − f), g〉 ≥ ||1 − f ||p||g||1−(1+o(1))ρ2

≥
(

1

2

) 1
p

δ
1

1−(1+o(1))ρ2

= k−o(1)δ
(1+o(1)) 1

1−ρ2 .

Thus

δ − δ · δ 1
k ≥ k−o(1)δ

(1+o(1)) 1
1−ρ2

⇒ 1 − k−o(1)δ
(1+o(1))(ρ2

1−ρ2) ≥ δ
1
k

⇒ ln

(
1 − k−o(1)δ

(1+o(1))(ρ2

1−ρ2)
)

≥ 1
k ln(δ)

⇒ −k−o(1)δ
(1+o(1))(ρ2

1−ρ2) ≥ 1
k ln(δ)

⇒ δ
(1+o(1))(

ρ2

1−ρ2)

ln(1/δ) ≤ 1
k1−o(1)

⇒ δ ≤ k
− 1−ρ2

ρ2 +o(1)

⇒ 2δ ≤ k−ν+o(1),

which completes the proof. 2

Corollary 6.9.5 Fix ε ∈ (0, 1
2). Then for all balanced functions f : {+1,−1}n → {+1,−1},

the success probability Pk(f ; ε) is at most k−ν+o(1).

Proof: As argued at the end of Section 6.1, the probability that all k parties agree on −1

when using f is precisely ||T1−2ε(
1
2 − 1

2f)||kk. By symmetry, the probability that all k parties

agree on +1 is ||T1−2ε(
1
2 + 1

2f)||kk. Since 1
2 ± 1

2f are 0-1 functions with expectation exactly

152

f Pk(f ; ε)

MAJ1 εk + (1 − ε)k

T1 1/16 (−6 ε3 +5 ε4 −2 ε5 +4 ε2)k +1/16 (1+6 ε3 −5 ε4 +2 ε5 −4 ε2)k +1/16 (4 ε−10 ε2 +10 ε3 −5 ε4 +2 ε5)k +1/16 (1−

4 ε+10 ε2−10 ε3+5 ε4−2 ε5)k +1/4 (ε−ε2+4 ε3−5 ε4+2 ε5)k +1/4 (1−ε+ε2−4 ε3+5 ε4−2 ε5)k +1/4 (1−2 ε+4 ε2−

6 ε3+5 ε4−2 ε5)k +1/4 (2 ε−4 ε2+6 ε3−5 ε4+2 ε5)k +3/8 (ε+ε2−4 ε3+5 ε4−2 ε5)k +3/8 (1−ε−ε2+4 ε3−5 ε4+2 ε5)k

T2 1/8 (−2 ε3 + 3 ε2)k + 1/8 (1 + 2 ε3 − 3 ε2)k + 1/8 (3 ε − 6 ε2 + 4 ε3)k + 1/8 (1 − 3 ε + 6 ε2 − 4 ε3)k + 3/8 εk + 3/8 (1 −

ε)k + 3/8 (1 − 2 ε + 3 ε2 − 2 ε3)k + 3/8 (2 ε − 3 ε2 + 2 ε3)k

MAJ3 1/4 (−2 ε3 + 3 ε2)k + 1/4 (1 + 2 ε3 − 3 ε2)k + 3/4 (2 ε − 3 ε2 + 2 ε3)k + 3/4 (1 − 2 ε + 3 ε2 − 2 ε3)k

T3 1/8 (−6 ε3+5 ε4−2 ε5+4 ε2)k+1/8 (1+6 ε3−5 ε4+2 ε5−4 ε2)k+1/16 (ε−ε2+4 ε3−5 ε4+2 ε5)k+1/16 (1−ε+ε2−4 ε3+

5 ε4−2 ε5)k+1/4 (1−2 ε+4 ε2−6 ε3+5 ε4−2 ε5)k+1/4 (2 ε−4 ε2+6 ε3−5 ε4+2 ε5)k+1/8 (1−ε−ε2+4 ε3−5 ε4+2 ε5)k+

1/8 (ε+ε2−4 ε3+5 ε4−2 ε5)k+3/16 (8 ε3−5 ε4+2 ε5+3 ε−7 ε2)k+3/16 (1−8 ε3+5 ε4−2 ε5−3 ε+7 ε2)k+3/16 (2 ε3−5 ε4+

2 ε5+2 ε2+1−2 ε)k+3/16 (−2 ε3+5 ε4−2 ε5−2 ε2+2 ε)k+1/16 (2 ε3−5 ε4+2 ε5+2 ε2)k+1/16 (1−2 ε3+5 ε4−2 ε5−2 ε2)k

T4 1/16 (ε2 + 6 ε3 − 10 ε4 + 4 ε5)k + 1/16 (1 − ε2 − 6 ε3 + 10 ε4 − 4 ε5)k + 1/8 (ε + 2 ε2 − 8 ε3 + 10 ε4 − 4 ε5)k + 1/8 (1 − ε −

2 ε2 +8 ε3 − 10 ε4 +4 ε5)k +1/16 (1− 2 ε + ε2 +6 ε3 − 10 ε4 +4 ε5)k +1/16 (2 ε− ε2 − 6 ε3 +10 ε4 − 4 ε5)k +3/16 (5 ε2 −

10 ε3 + 10 ε4 − 4 ε5)k + 3/16 (1 − 5 ε2 + 10 ε3 − 10 ε4 + 4 ε5)k + 3/8 (3 ε − 8 ε2 + 12 ε3 − 10 ε4 + 4 ε5)k + 3/8 (1 − 3 ε +

8 ε2 − 12 ε3 + 10 ε4 − 4 ε5)k + 3/16 (1 − 2 ε + 5 ε2 − 10 ε3 + 10 ε4 − 4 ε5)k + 3/16 (2 ε − 5 ε2 + 10 ε3 − 10 ε4 + 4 ε5)k

MAJ5 1/16 (10 ε3 − 15 ε4 + 6 ε5)k + 1/16 (1 − 10 ε3 + 15 ε4 − 6 ε5)k + 5/16 (6 ε2 − 14 ε3 + 15 ε4 − 6 ε5)k + 5/16 (1 − 6 ε2 +

14 ε3 − 15 ε4 + 6 ε5)k + 5/8 (3 ε − 9 ε2 + 16 ε3 − 15 ε4 + 6 ε5)k + 5/8 (1 − 3 ε + 9 ε2 − 16 ε3 + 15 ε4 − 6 ε5)k

1
2 , Theorem 6.9.4 upper-bounds both quantities by k−ν+o(1). 2

6.10 Computer-assisted analysis; n = 5

Our problem well avails itself to analysis by computer. In particular, given any explicit

function f : {+1,−1}n → {+1,−1}, a computer mathematics package can easily calculate

Pk(f ; ε) exactly as a function of k and ε. Furthermore, if n is very small, a computer program

can enumerate all antisymmetric left-monotone functions on n bits. We determined there

are “only” 135 such functions for n = 7 and 2470 such functions for n = 8. (The number

jumps to 319124 for n = 9.) Thus for particular small values of n and k, we can completely

solve the problem by comparing an explicit set of polynomials in ε on the range (0, 1
2). As

an example, we now analyze the case n = 5.

There are exactly 7 antisymmetric left-monotone functions on 5 bits; they are MAJ1,

MAJ3, MAJ5, and four functions expressible as thresholds: T1 = Th(3, 1, 1, 1, 1),

T2 = Th(2, 1, 1, 1, 0), T3 = Th(3, 2, 2, 1, 1), and T4 = Th(4, 3, 2, 2, 2), where Th(a1, . . . , a5)

denotes the function sgn(
∑5

i=1 aixi). The table shows Pk(f ; ε) for each of the functions.

For small values of k, we plotted these polynomials for ε ∈ (0, 1
2). This led to the

following facts, which in principle could be proved by elementary analysis:

Fact 6.10.1

• For n = 5, 2 ≤ k ≤ 9, and any ε, the best antisymmetric protocol is MAJ1.

• For n = 5, k = 10, 11, there exist 0 < ε′k < ε′′k < 1
2 such that MAJ3 is the best

153

antisymmetric protocol for ε ∈ [ε′k, ε
′′
k], and MAJ1 is the best antisymmetric protocol

for all other ε.

• For n = 5, k = 12, there exist 0 < ε′k < ε′′k < ε′′′k < 1
2 such that MAJ5 is the best

antisymmetric protocol for ε ∈ [ε′k, ε
′′
k], MAJ3 is the best antisymmetric protocol for

ε ∈ [ε′′k, ε
′′′
k], and MAJ1 is the best antisymmetric protocol for all other ε.

The pattern for k = 12 appears to hold for all higher k, with MAJ5 dominating more

and more of the interval, as expected from Theorem 6.7.2.

We will end this section by proving some facts mentioned earlier in this chapter:

Proposition 6.10.2 There exist k, ε, odd n, and odd 1 < r < n such that MAJr is a

superior protocol to both MAJ1 and MAJn.

Proof: Substitute k = 10, ε = .26 into the table. By explicit calculation, P10(MAJ1; .26) ≤
.0493, P10(MAJ5; .26) ≤ .0488, and P10(MAJ3; .26) ≥ .0496. 2

Proposition 6.10.3 There exist k, n, and a non-majority function f ∈ An such that for

each odd 1 ≤ r ≤ n, there is an ε for which Pk(f ; ε) > Pk(MAJr; ε).

Proof: Take k = 20, n = 5, and f = Th(3, 1, 1, 1, 1). Then by substitution into the

table we have Pk(f ; .01) > .76 > Pk(MAJ3; .01) > Pk(MAJ5; .01) and Pk(f ; .25) > .0034 >

Pk(MAJ1; .25). 2

Proposition 6.10.4 There exist n, k, and f ∈ Bn such that the probability all parties agree

on −1 differs from the probability all parties agree on +1.

Proof: Taking n = 5, k = 3, and f the left-monotone function whose minterms are

(−1, +1, +1,−1, +1) and (+1,−1,−1, +1,−1), explicit calculation gives 1

2
− 39

16
ε + 9 ε2 − 459

16
ε3 +

297

4
ε4− 2331

16
ε5+ 3465

16
ε6−234 ε7+171 ε8−75 ε9+15 ε10 and 1

2
− 39

16
ε+ 69

8
ε2− 381

16
ε3+ 93

2
ε4− 885

16
ε5+ 519

16
ε6+6 ε7−24 ε8+15 ε9−3 ε10

for the probabilities of agreement on −1 and +1, respectively. 2

154

Chapter 7

Discussion And Open Problems

We conclude this thesis with a discussion of some results and open problems suggested by

our study of noise sensitivity.

7.1 Isoperimetry via the reverse Bonami-Beckner inequality

As mentioned, the reverse Bonami-Beckner inequality does not seem to have been previ-

ously used in the study of boolean functions. We believe it should have further interesting

applications beyond those in Section 6.9. As an example, we will use it to prove a new

isoperimetry or concentration of measure result on the hypercube (c.f. Talagrand [Tal95],

Bobkov and Götze [BG99]).

In this section, let us fix ε ∈ [0, 1
2], write ρ = 1 − 2ε, and write φΣ(ρ) for the density

function of ρ-correlated bivariate normals, as in Proposition 3.4.1. Explicitly,

φΣ(ρ)(x, y) = (2π)−1(1 − ρ2)−
1
2 exp

(
−1

2

x2 − 2ρxy + y2

1 − ρ2

)

= (1 − ρ2)−
1
2 φ(x)φ

(
y − ρx

(1 − ρ2)
1
2

)
,

where φ denotes the standard normal density function.

Theorem 7.1.1 Let S, T ⊆ {+1,−1}n with |S| = exp(− s2

2)2n and |T | = exp(− t2

2)2n.

Then P[x ∈ S, Nε(x) ∈ T] ≥ 2π(1 − ρ2)
1
2 φΣ(−ρ)(s, t).

Proof: Take f and g to be the 0-1 characteristic functions of S and T , respectively. Then

155

by Lemma 6.9.3, for any choice of 0 < p, q ≤ 1 with (1 − p)(1 − q) = ρ2, we get,

P[x ∈ S, Nε(x) ∈ T] ≥ exp(−s2/2p) exp(−t2/2q). (7.1)

Write p = 1 − ρr, q = 1 − ρ/r in (7.1), with r > 0. Maximizing the right-hand side as

a function of r using calculus, the best choice turns out to be r =
t
s
+ρ

1+ρ t
s

. (Note that this

depends only on the ratio of t to s.) Substituting this choice of r (and hence p and q)

into (7.1) yields exp(− 1
2

s2+2ρst+t2

1−ρ2), and the proof is complete by definition of φΣ(−ρ). 2

On the other hand, we have the following:

Proposition 7.1.2 Fix s, t ≥ 1, and let S, T ⊆ {+1,−1}n be diametrically opposed Ham-

ming balls, with S = {x :
∑

xi ≤ −sn
1
2 } and T = {x :

∑
xi ≥ tn

1
2 }. Then we have

limn→∞P[x ∈ S, Nε(x) ∈ T] ≤ 2π(1 − ρ2)
1
2 φΣ(−ρ)(s, t)

Proof: By Proposition 3.4.1, the limit is precisely

∫ −s

−∞

∫ ∞

t
φΣ(ρ)(x, y) dy dx =

∫ ∞

s

∫ ∞

t
φΣ(−ρ)(x, y) dy dx.

Let h(x, y) = (x+ρy)(ρx+y)−ρ(1−ρ2)
(1−ρ2)2

. Note that for x, y ≥ 1, h(x, y) ≥ (1+ρ)2−ρ(1−ρ2)
(1−ρ2)2

=

1+ρ2

(1+ρ)(1−ρ)2
≥ 1. (Indeed, this inequality holds for a greater range of values for x and

y, but we will not try to improve the parameters.) Thus on the range of integration,

φΣ(−ρ)(x, y) ≤ h(x, y)φΣ(−ρ)(x, y). But it may be checked by elementary means that
∫ ∫

h(x, y)φΣ(−ρ)(x, y) dy dy = 2π(1 − ρ2)
1
2 φΣ(−ρ)(x, y). The result follows. 2

The set S in Proposition 7.1.2 satisfies limn→∞ |S|2−n = Φ(−s) ≥ φ(s)(s−1 − s−3)

(see [AS72, 26.2.12]), which is quite close to exp(− s2

2) for large s. A similar statement

holds for T . Thus Theorem 7.1.1 is very close to being tight.

As an immediate corollary of Theorem 7.1.1, we have the following:

Corollary 7.1.3 Let S ⊆ {+1,−1}n have fractional size σ ∈ [0, 1], and let T ⊆ {+1,−1}n

have fractional size σα, for α ≥ 0. Then if x is chosen uniformly at random from S,

then the probability that Nε(x) is in T is at least σ
(
√

α+ρ)2

1−ρ2 . In particular, if |S| = |T |,
P[Nε(x) ∈ T | x ∈ S] ≥ σ

1−ε
ε .

156

So, for example, given any two sets with fractional size 1
3 , the probability that applying

.3-noise takes a random point chosen from the first set into the second set is at least

(1
3).7/.3 ≈ 7.7%; this probability is nearly achieved by diametrically opposed Hamming

balls.

7.2 Open problems

7.2.1 Fourier analysis

Kindler showed that the constant in Theorem 2.4.8 can be taken to be O(1)/k; however,

this is not known to be tight. If the tribes function is tight for this inequality, then by the

calculations at the end of Section 3.9, the correct constant is of a much smaller order: 1/k!.

Open Question 7.2.1 Can Theorem 2.4.8 of Talagrand and Benjamini, Kalai, and Schramm

be improved to
∑

|S|=k

f̂(S)2 ≤ 1 + o(1)

k!
II(f)[log2(1/II(f))]k−1

for all 1 ≤ k � log(1/II(f))?

7.2.2 The reverse Bonami-Beckner inequality

We believe the reverse Bonami-Beckner inequality should have further applications in the

study of boolean functions. These applications may be of a somewhat different nature than

those of the usual Bonami-Beckner inequality. The reason is that most of the powerful

theorems using the usual Bonami-Beckner apply it not to the 0-1 boolean function under

study, but to some related function taking on both positive and negative values. In contrast,

the reverse Bonami-Beckner inequality only applies to nonnegative functions. As such, it

is more likely that it will be useful in direct application to 0-1 boolean functions, as in

Theorem 7.1.1.

One area which is a promising candidate for applications of the reverse inequality is that

of limitations of distance vs. rate tradeoffs for error correcting codes. The isoperimetric

Theorem 7.1.1 already points towards such results; we believe that the reverse inequality

may have applications in the Fourier-theoretic study of lower bounds, as in McEliece et

al. [MRJW77], Kalai and Linial [KL95] (which describes a failure of the usual Bonami-

Beckner inequality in this context), and Linial and Samorodnitsky [LS03].

157

7.2.3 Noise sensitivity of halfspaces

Perhaps the most interesting tractable problem in analyzing the noise sensitivity of halfs-

paces is whether our bound for the read-once intersection of halfspaces holds true for general

intersections. We conjecture that it does:

Conjecture 7.2.2 Let f be a function given by the intersection (AND) of k boolean halfs-

paces over the same set of variables. Then NSε(f) ≤ O(1)(ε ln k)
1
2 .

Naturally, such a result would be very interesting from a computational learning theory

perspective, due to Theorem 5.2.1. Conjecture 7.2.2 may be difficult if it requires intricate

analysis of vector-valued random variables of the form
∑

σiWi, where σi are i.i.d. ±1 signs

and the Wi’s are in Rn.

7.2.4 Hardness amplification

An interesting problem in this area would be to see if the direct product theorem, Theo-

rem 4.0.9, can be “derandomized.” That is, if we wish to get hardness for the composite

function g ⊗ f , is it necessary for the inputs to copies of f to be independently randomly

chosen? Or can they be chosen using fewer input bits — pairwise independently, say, or

from a walk on an expander graph? Impagliazzo and Wigderson [IW97], building on the

work of Impagliazzo [Imp95], showed that Yao’s XOR Lemma holds in such a setting, using

many fewer than kn input bits. Their techniques may well extend to Theorem 4.0.9. Such

a “derandomization” might be useful in improving Theorem 4.1.2 down to the expected

1
2 + n−

1
2
+γ .

7.2.5 Learning juntas

The major open goal for this problem, and indeed a central problem for uniform-distribution

learning theory, is to give a polynomial time agorithm for learning O(log n)-juntas or even

ω(1)-juntas. While the problem seems very difficult, perhaps our improving understanding

of noise sensitivity and juntas will allows us to make progress. Right now the most serious

difficulty is learning k-juntas of the form PARITYk/2 ⊕ g, where g is any function on the

k/2 bits not in the parity. Getting an algorithm running in time nαk for α < 1
2 would be a

major breakthrough.

158

The current bottleneck between n.704k and n
2
3
k is due to the problem of strongly balanced

juntas. A. Kalai has asked the following question:

Open Question 7.2.3 Is it true that for any boolean function f on k bits which is strongly

balanced up to size 2
3k, there is a restriction fixing at most 2

3k bits under which f becomes

a parity function?

If the answer were yes, then it would be straightforward to give a learning algorithm for

k-juntas running in time n
2
3
k.

Finally, our junta learning algorithm does not seem to generalize easily to extended

versions of the problem. Is it possible to learn juntas under any fixed product distribution

besides the uniform one in time n(1−Ω(1))k? Is it possible to learn ternary juntas (i.e.

functions on {0, 1, 2}n with k relevant variables) under the uniform distribution with non-

trivial efficiency?

7.2.6 The cosmic coin problem

In the cosmic coin problem, the problem of determining the best protocol for each k, n,

and ε seems quite delicate; it might not have a simple explicit answer. The main open

conjecture regarding this problem was mentioned already in Section 6.1:

Conjecture 6.3.1 For any k, ε, and odd n, there is an odd 1 ≤ r ≤ n such that Pk(k; ε)

is maximized among antisymmetric functions by f = MAJr.

Another very interesting and perhaps easier conjecture is that the majority on a very

large number of bits is not worse than the optimal majority by more than a constant factor:

Conjecture 7.2.4 There is a universal constant C < ∞ such that for every k, ε,

Pk(MAJn∗ ; ε) ≤ C lim
n→∞
n odd

P(MAJn, k, ε),

where n∗ is any odd number (presumably maximizing Pk(MAJn∗ ; ε)). That is, the limiting

value of Pk(MAJn; ε) is no worse than the success probability of the best majority, up to a

constant factor.

159

The worst constant C we know to be necessary in Conjecture 7.2.4 is π
2 , from the case k = 2,

ε → 1
2 . Resolving both of the above conjectures would give an essentially complete (up to

constant factors) solution to the cosmic coins problem for all n, k, and ε.

We end with a conjecture strictly weaker than Conjecture 6.3.1 which might be sub-

stantially easier to prove:

Conjecture 7.2.5 For any k, ε, and n, the best protocol among all antisymmetric threshold

functions is an unweighted antisymmetric threshold function; i.e., a majority.

160

Bibliography

[ABC+02] C. Ané, S. Blachère, D. Chafäı, P. Fougères, I. Gentil, F. Malrieu, C. Roberto,

and G. Scheffer. Sur les inégalités de Sobolev logarithmiques. Société

Mathématique de France, 2002.

[An95] M. An. Log-concave probability distributions: Theory and statistical testing.

Economics working paper archive at wustl, Washington University at St. Louis,

1995.

[AS72] M. Abramowitz and I. Stegun. Handbook of mathematical functions. Dover,

1972.

[AV90] D. Aldous and U. Vazirani. A Markovian extension of Valiant’s learning model.

In Proc. 31st Ann. IEEE Symp. on Foundations of Comp. Sci., pages 392–404,

1990.

[Bak92] D. Bakry. L’hypercontractivité et son utilisation en théorie des semigroupes.

Springer-Verlag, 1992.

[Ban65] J. Banzhaf. Weighted voting doesn’t work: A mathematical analysis. Rutgers

Law Review, 19:317–343, 1965.

[Bau91a] E. Baum. Neural net algorithms that learn in polynomial time from examples

and queries. IEEE Trans. on Neural Networks, 2:5–19, 1991.

[Bau91b] E. Baum. A polynomial time algorithm that learns two hidden unit nets. Neural

Computation, 2:510–522, 1991.

[BCGS98] A. Blum, P. Chalasani, S. Goldman, and D. Slonim. Learning with unreliable

boundary queries. Journal of Computing and Sys. Sci., 56(2):209–222, 1998.

161

[Bec75] W. Beckner. Inequalities in Fourier analysis. Ann. of Math., pages 159–182,

1975.

[BEHW87] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam’s razor.

Information Processing Letters, 24:377–380, 1987.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and

the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

[Ber98] A. Bernasconi. Mathematical techniques for the analysis of boolean functions.

PhD thesis, Institute for Computational Mathematics, Pisa, 1998.

[Ber01] A. Bernasconi. On a hierarchy of boolean functions hard to compute in constant

depth. Discrete Math. and Theoretical Comp. Sci., 4(2):79–90, 2001.

[Bez94] S. Bezrukov. Isoperimetric problems in discrete spaces. In P. Frankl and Z.

Furedi and G. Katona and D. Miklós, editor, Extremal problems for finite sets,

number 3. Bolyai Soc. Math. Stud., 1994.

[BF02] N. Bshouty and V. Feldman. On using extended statistical queries to avoid

membership queries. Journal of Machine Learning Research, 2:359–395, 2002.

[BFH94] P. Bartlett, P. Fischer, and K.-U. Höffgen. Exploiting random walks for learning.

In Proc. 7th Ann. Workshop on Comp. Learning Theory, pages 318–327, 1994.

[BFJ+94] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly

learning DNF and characterizing statistical query learning using Fourier analy-

sis. In Proc. 26th Ann. ACM Symp. on the Theory of Computing, pages 253–262,

1994.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponen-

tial time simulations unless EXPTIME has publishable proofs. Computational

Complexity, 3:307–318, 1993.

[BG99] S. Bobkov and F. Götze. Discrete isoperimetric and Poincaré-type inequalities.

Prob. Theory and Related Fields, 114:245–277, 1999.

162

[BGS98] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-

approximability — towards tight results. SIAM Journal on Computing, 27:804–

915, 1998.

[BJ02] R. Blei and S. Janson. Rademacher chaos: tail estimates vs. limit theorems.

To appear, Arkiv för Matematik.

[BJT99a] N. Bshouty, J. Jackson, and C. Tamon. More efficient PAC learning of DNF

with membership queries under the uniform distribution. In Proc. 12th Ann.

Workshop on Comp. Learning Theory, pages 286–295, 1999.

[BJT99b] N. Bshouty, J. Jackson, and C. Tamon. Uniform-distribution attribute noise

learnability. In Proc. 12th Ann. Workshop on Comp. Learning Theory, pages

75–80, 1999.

[BK97a] A. Blum and R. Kannan. Learning an intersection of a constant number of

halfspaces under a uniform distribution. Journal of Computing and Sys. Sci.,

54(2):371–380, 1997.

[BK97b] J. Bourgain and G. Kalai. Influences of variables and threshold intervals under

group symmetries. Geom. and Func. Analysis, 7:438–461, 1997.

[BKK+92] J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson, and N. Linial. The influence of

variables in product spaces. Israel Journal of Mathematics, 77:55–64, 1992.

[BKS99] I. Benjamini, G. Kalai, and O. Schramm. Noise sensitivity of boolean functions

and applications to percolation. Inst. Hautes Études Sci. Publ. Math., 90:5–43,

1999.

[BL97] A. Blum and P. Langley. Selection of relevant features and examples in machine

learning. Artificial Intelligence, 97(1/2):245–271, 1997.

[Blo62] H. Block. The Perceptron: a model for brain functioning. Reviews of Modern

Physics, 34:123–135, 1962.

[Blu94] A. Blum. Relevant examples and relevant features: Thoughts from computa-

tional learning theory. In AAAI Fall Symposium on ‘Relevance’, 1994.

163

[BMOS03] N. Bshouty, E. Mossel, R. O’Donnell, and R. Servedio. Learning DNF from

random walks. To appear, 2003.

[BL90] M. Ben-Or and N. Linial. Collective coin flipping. In S. Micali, editor, Ran-

domness and Computation. Academic Press, New York, 1990.

[Bon68] A. Bonami. Ensembles Λ(p) dans le dual de D∞. Ann. Inst. Fourier, 18(2):193–

204, 1968.

[Bon70] A. Bonami. Études des coefficients Fourier des fonctiones de Lp(G). Ann. Inst.

Fourier, 20(2):335–402, 1970.

[Bor82] C. Borell. Positivity improving operators and hypercontractivity. Math. Z.,

180(2):225–234, 1982.

[Bou01] J. Bourgain. On the distribution of the Fourier spectrum of boolean functions.

To appear in Israel Journal of Mathematics.

[Bou99] J. Bourgain. An appendix to Sharp thresholds of graph properties, and the k-sat

problem, by E. Friedgut. J. American Math. Soc., 12(4):1017–1054, 1999.

[BT96] N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions.

Journal of the ACM, 43(4):747–770, 1996.

[CG02] H. Chockler and D. Gutfreund. A lower bound for testing juntas. Manuscript,

2002.

[CT68] T. Cover and J. Thomas. Elements of information theory. John Wiley & Sons,

1968.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-

gressions. Jounal of Symbolic Comp., 9:1–6, 1990.

[Dod00] Y. Dodis. Impossibility of black-box reduction from non-adaptively to adap-

tively secure coin-flipping. Electronic Colloq. on Comp. Complexity (ECCC),

(039), 2000.

[DR02] Y. Ding and M. Rabin. Hyper-encryption and everlasting security, volume 2285

of Lecture Notes in Computer Science, pages 1–26. 2002.

164

[DS02] I. Dinur and S. Safra. The importance of being biased. In Proc. 34th Ann.

ACM Symp. on the Theory of Computing, pages 33–42, 2002.

[Fel68] W. Feller. An introduction to probability theory and its applications. John Wiley

& Sons, 1968.

[FK96] E. Friedgut and G. Kalai. Every monotone graph property has a sharp thresh-

old. Proc. Amer. Math. Soc., 124:2993–3002, 1996.

[FK98] E. Friedgut and J. Kahn. The number of copies of one hypergraph in another.

Israel Journal of Mathematics, 105:251–256, 1998.

[FKN01] E. Friedgut, G. Kalai, and A. Naor. Boolean functions whose Fourier transform

is concentrated at the first two levels. To appear, Advances in Mathematics.

[FKR+02] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky. Testing juntas.

In Proc. 43rd Ann. IEEE Symp. on Foundations of Comp. Sci., pages 103–112,

2002.

[Fra87] P. Frankl. The shifting technique in extremal set theory, pages 81–110. Cam-

bridge University Press, 1987.

[Fri02] E. Friedgut. Influences in product spaces: KKL and BKKKL revisited. To

appear, Combinatorics, Probability, and Computing.

[Fri98] E. Friedgut. Boolean functions with low average sensitivity depend on few

coordinates. Combinatorica, 18(1):474–483, 1998.

[Gam99] D. Gamarnik. Extension of the PAC framework to finite and countable Markov

chains. In Proc. 12th Ann. Workshop on Comp. Learning Theory, pages 308–

317, 1999.

[GHM94] M. Golea, T. Hancock, and M. Marchand. On learning µ-perceptron networks

on the uniform distribution. IEEE Trans. on Neural Networks, 9:67–82, 1994.

[Gre02] B. Green. Lecture notes on Restriction and Kakeya Phenomena — Beckner’s

inequality. http://www.dpmms.cam.ac.uk/~bjg23/rkp.html.

165

[Gro75] L. Gross. Logarithmic Sobolev inequalities. Amer. J. of Math., 97:1061–1083,

1975.

[Gro92] L. Gross. Logarithmic Sobolev inequalities and contractivity properties of semi-

groups. Springer-Verlag, 1992.

[GTT99] D. Guijarro, J. Tarui, and T. Tsukiji. Finding relevant variables in PAC model

with membership queries. In Proc. 10th Ann. Conference on Algorithmic Learn-

ing Theory, volume 1720, pages 313–322. Springer, 1999.

[H̊as97] J. H̊astad. Some optimal inapproximability results. In Proc. 29th Ann. ACM

Symp. on the Theory of Computing, pages 1–10, 1997.

[H̊as01] J. H̊astad. Some optimal inapproximability results. Journal of the ACM,

48:798–869, 2001.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator

from any one-way function. SIAM Journal on Computing, 28(4):1364–1396,

1999.

[HM91] T. Hancock and Y. Mansour. Learning monotone k-µ DNF formulas on product

distributions. In Proc. 4th Ann. Workshop on Comp. Learning Theory, pages

179–193, 1991.

[HSW92] D. Helmbold, R. Sloan, and M. Warmuth. Learning integer lattices. SIAM

Journal on Computing, 21(2):240–266, 1992.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proc.

26th Ann. IEEE Symp. on Foundations of Comp. Sci., pages 538–545, 1995.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits:

Derandomizing the XOR lemma. In Proc. 29th Ann. ACM Symp. on the Theory

of Computing, pages 220–229, 1997.

[Jac97] J. Jackson. An efficient membership-query algorithm for learning DNF with

respect to the uniform distribution. Journal of Computing and Sys. Sci., 55:414–

440, 1997.

166

[JKS02] J. Jackson, A. Klivans, and R. Servedio. Learnability beyond AC
0. In Proc.

34th Ann. ACM Symp. on the Theory of Computing, pages 776–784, 2002.

[Kal02] G. Kalai. A Fourier-theoretic perspective on the Concordet paradox and Arrow’s

theorem. Adv. in Appl. Math., 29(3):412–426, 2002.

[Kea90] M. Kearns. The computational complexity of machine learning. The MIT Press,

1990.

[Kea98] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of

the ACM, 45(6):983–1006, 1998.

[Kha95] M. Kharitonov. Cryptographic lower bounds for learnability of boolean func-

tions on the uniform distribution. Journal of Computing and Sys. Sci., 50:600–

610, 1995.

[Kho02] S. Khot. On the power of unique 2-prover 1-round games. In Proc. 34th Ann.

ACM Symp. on the Theory of Computing, pages 767–775, 2002.

[Kin02] G. Kindler. Property testing, PCP, and juntas. PhD thesis, Tel Aviv University,

2002.

[Kin03] G. Kindler. Personal communication, 2003.

[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean func-

tions. In Proc. 29th Ann. IEEE Symp. on Foundations of Comp. Sci., pages

68–80, 1988.

[KL95] G. Kalai and N. Linial. On the distance distribution of codes. IEEE Trans. on

Info. Theory, 41:1467–1472, 1995.

[Kle66] D. Kleitman. Families of non-disjoint subsets. J. Combin. Theory, 1:153–155,

1966.

[Kli03] C. Klivans. Combinatorial properties of shifted complexes. PhD thesis, Mas-

sachusetts Institute of Technology, 2003.

[KM93] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spec-

trum. SIAM Journal on Computing, 22(6):1331–1348, 1993.

167

[KM02] A. Kalai and Y. Mansour. Personal communication, 2002.

[KOS02] A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections and thresh-

olds of halfspaces. In Proc. 43rd Ann. IEEE Symp. on Foundations of Comp.

Sci., pages 177–186, 2002.

[KP98] S. Kwek and L. Pitt. PAC learning intersections of halfspaces with membership

queries. Algorithmica, 22(1/2):53–75, 1998.

[KS02] G. Kindler and S. Safra. Noise-resistant boolean functions are juntas.

Manuscript.

[KS01] A. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). In Proc. 33rd Ann.

ACM Symp. on the Theory of Computing, pages 258–265, 2001.

[KS03] A. Klivans and R. Servedio. Boosting and hard-core sets. Machine Learning,

53(2):217–238, 2003.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform

and learnability. Journal of the ACM, 40(3):607–620, 1993.

[LS03] N. Linial and A. Samorodnitsky. Linear codes and character sums. Combina-

torica, 22(4):497–522, 2003.

[Man94] Y. Mansour. Learning boolean functions via the Fourier transform, pages 391–

424. 1994.

[Man95] Y. Mansour. An O(nlog log n) learning algorithm for DNF under the uniform

distribution. Journal of Computing and Sys. Sci., 50:543–550, 1995.

[Man01] Y. Mansour. Personal communication, 2001.

[Mau97] U. Maurer. Information-theoretically secure secret-key agreement by NOT au-

thenticated public discussion, volume 1233 of Lecture Notes in Computer Sci-

ence, pages 209–225. 1997.

[MO02a] E. Mossel and R. O’Donnell. Coin flipping from a cosmic source: On error

correction of truly random bits. To appear, 2002.

168

[MO02b] E. Mossel and R. O’Donnell. On the noise sensitivity of monotone functions.

In B. Chauvin, P. Flajolet, D. Gardy, and A. Mokkadem, editors, Trends in

Mathematics: Mathematics and Computer Science II. Birkhäuser, 2002.

[MORS03] E. Mossel, R. O’Donnell, O. Regev, and B. Sudakov. Applications of the reverse

Bonami-Beckner inequality. Ongoing work, 2003.

[MOS03] E. Mossel, R. O’Donnell, and R. Servedio. Learning juntas. In Proc. 35th Ann.

ACM Symp. on the Theory of Computing, 2003.

[MRJW77] R. McEliece, E. Rodemich, H. Rumsey Jr. and L. Welch. New upper bounds

on the rate of a code via the Delsarte-MacWilliams identities. IEEE Trans. on

Info. Theory, 23:157–166, 1977.

[Nel73] E. Nelson. The free Markov field. J. of Functional Analysis, 12:211–227, 1973.

[O’D02] R. O’Donnell. Hardness amplification within NP. In Proc. 34th Ann. ACM

Symp. on the Theory of Computing, pages 751–760, 2002.

[Per02] Y. Peres. Personal communication, 2002.

[Pet95] V. Petrov. Limit theorems of probability theory. Oxford Science Publications,

Oxford, England, 1995.

[PRS01] M. Parnas, D. Ron, and A. Samorodnitsky. Proclaiming dictators and juntas,

or testing boolean formulae. Lecture Notes in Computer Science, 2129:273–284,

2001.

[Raz95] R. Raz. Fourier analysis for probabilistic communication complexity. Compu-

tational Complexity, 5(3/4):205–221, 1995.

[Reg03] O. Regev. Personal communication, 2003.

[Ros58] F. Rosenblatt. The Perceptron: a probabilistic model for information storage

and organization in the brain. Psychological Review, 65:386–407, 1958.

[Rud60] W. Rudin. Trigonometric series with gaps. J. of Math. and Mech., 9:203–227,

1960.

169

[Saz81] V. Sazonov. Normal approximation — some recent advances. Springer-Verlag,

1981.

[Ser01] R. Servedio. Efficient algorithms in computational learning theory. PhD thesis,

Harvard University, 2001.

[Sha01] R. Shaltiel. Towards proving strong direct product theorems. Electronic Colloq.

on Comp. Complexity (ECCC), (009), 2001.

[ST99] O. Schramm and B. Tsirelson. Trees, not cubes: hypercontractivity, cosiness,

and noise stability. Electron. Comm. Probab., 4(6):39–49, 1999.

[Šte02] D. Štefankovič. Fourier transforms in computer science. Master’s thesis, Uni-

versity of Chicago, 2002.

[STV01] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the

XOR lemma. Journal of Computing and Sys. Sci., 62(2):236–266, 2001.

[Tal94] M. Talagrand. On Russo’s approximate 0-1 law. Annals of Probability, 22:1476–

1387, 1994.

[Tal95] M. Talagrand. Concentration of measure and isoperimetric inequalities in prod-

uct spaces. Inst. Hautes Études Sci. Publ. Math., 81:73–205, 1995.

[Tal96] M. Talagrand. How much are increasing sets positively correlated? Combina-

torica, 16(2):243–258, 1996.

[Tal97] M. Talagrand. On boundaries and influences. Combinatorica, 17(2):275–285,

1997.

[Tsi99] B. Tsirelson. Noise sensitivity on continuous products: an answer to an old

question of J. Feldman, 1999. math.PR/9907011.

[Val84] L. Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134–1142, 1984.

[Vem97] S. Vempala. A random sampling based algorithm for learning the intersection

of halfspaces. In Proc. 38th Ann. IEEE Symp. on Foundations of Comp. Sci.,

pages 508–513, 1997.

170

[Ver90] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-

polynomial time. In Proc. 3rd Ann. Workshop on Comp. Learning Theory,

pages 314–326, 1990.

[vzGR97] J. von zur Gathen and J. Roche. Polynomials with two values. Combinatorica,

17(3):345–362, 1997.

[Yao82] A. Yao. Theory and application of trapdoor functions. In Proc. 23rd Ann.

IEEE Symp. on Foundations of Comp. Sci., pages 80–91, 1982.

171

