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Abstract

We consider the problem of estimating the surface area of an unknown n-dimensional set F' given
membership oracle access. In contrast to previous work, we do not assume that F' is convex, and in fact
make no assumptions at all about F'. By necessity this means that we work in the property testing model;
we seek an algorithm which, given parameters A and e, satisfies:

o if surf(F') < A then the algorithm accepts (whp);
e if F'is not e-close to some set G with surf(G) < kA, then the algorithm rejects (whp).

We call k > 1 the “approximation factor” of the testing algorithm.

The n = 1 case (in which “surf(F) = 2m” means F is a disjoint union of m intervals) was
introduced by Kearns and Ron [KR98], who solved the problem with k = 1/e and O(1/¢) oracle
queries. Later, Balcan et al. [BBBY12] solved it with with x = 1 and O(1/¢?) queries.

We give the first result for higher dimensions n. Perhaps surprisingly, our algorithm completely
evades the “curse of dimensionality”: for any n and any x > % ~ 1.27 we give a test that uses O(1/¢)
queries. For small n we have improved bounds. For n = 1 we can achieve k = 1 with O(1/¢3-5) queries
(slightly improving [BBBY12]), or any £ > 1 with O(1/¢) queries (improving [KR98]). For n = 2,3
we obtain k & 1.08,1.125 respectively, with O(1/¢) queries. Getting an arbitrary x > 1 forn > 1
remains an open problem.

Finally, motivated by the learning results from [KOS08], we extend our techniques to obtain a similar
tester for Gaussian surface area for any n, with query complexity O(1/¢) and any approximation factor
k>4 ~1.27
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1 Introduction

We consider a fundamental geometric problem — estimating the surface area of a set ' C IR"™ given
point-query access. This problem arises in several practical scientific areas under the name stereology, as
well as in the fields of statistics and computer graphics/vision, e.g., [CFRC07, LYZ" 10, YC96, Ras03].

In the special case that F'is promised to be convex, the problem is closely related to the well-known
task in theoretical computer science of estimating volume given membership oracle access (and a point
inside F'). The task of estimating surface area of convex sets was stated as an open problem in the
monumental work of Grotschel et al. [GLS88]. It was apparently first solved by Belkin et al. [BNNO6];
they showed that an O(n®%)-query algorithm could be deduced from the work of Dyer et al. [DGH98],
and also gave an O(n*)-query algorithm.

In this work we consider arbitrary sets /' C IR™ and do not make any assumptions of convexity. By
necessity, this means that we must relax our goals slightly. For example, given a nice convex set such as a
sphere, one can add a very thin tentacle to it with negligible volume but arbitrarily large surface area. No
algorithm with only oracle access to the set can hope to find (let alone estimate the surface area of) this
tentacle, even given a starting point inside the initial convex set. Relatedly, one can take a nice convex
set and make part of its boundary “wiggle violently” at a very small scale, increasing its surface area
by an arbitrary amount in a way that is undetectable to oracle algorithms. Thus, without the convexity
assumption, we must allow ourselves the flexibility of disregarding or smoothing out tiny-volume pieces
of the set. This leads us naturally to work in the model of property testing [RS96, BLR93, GGR98].

1.1 Property testing

The natural framing of surface area estimation in the property testing model is as follows. An algorithm is
given black-box query access to a set F' C IR"™, meaning it can query any point x € IR"™ and learn whether
ornot x € F'. The algorithm is also given as input two parameters: a surface area upper bound A and an
error tolerance € > 0. The algorithm — which is allowed to be randomized — makes queries to F' and
then, must either “accept” or “reject”. The goal for it is to accept (with high probability) if F”’s surface
area satisfies surf(F) < A and reject (with high probability) if F is “e-far” from having surf(F) < A.
Roughly speaking, the second condition means that if Fis accepted with non-negligible probability, then
it can be made to have surface area at most A after altering at most € volume. (Presumably, this entails
deleting some small parts of I, or smoothing out some small crinkles.) One is typically less concerned
with the actual running time of the testing algorithm than its query complexity, though, in fact, the testing
algorithms in this paper are extremely efficient (running in time linear in the number of queries).

We will also allow one more relaxation to the usual property testing framework: a slight gap be-
tween the “completeness” and “soundness”. Specifically, we will only require the testing algorithm to
reject with high probability if F' is e-far from having surf(F) < k- A. We call £ > 1 the “approxi-
mation factor”. This extra flexibility (introduced already in the first work on the topic [KR98]) lets us
achieve substantial query savings in n = 1 dimension and is necessary for our proof technique in higher
dimensions.

To make the property testing definitions precise we need a notion of volume or probability density
on R™. In this paper we consider two different possibilities. For the main part of the paper we will
assume that the set I’ has been translated and scaled so that it lies inside the unit cube (0, 1)™. Lebesgue
measure on (0,1)™ is a probability measure and it gives us a natural notion of two sets F, G C (0,1)"
being e-close, that the volume of their symmetric difference be at most €: vol(FAG) < e.

We advise the reader that this setting is probably the most natural in the practical case of low di-
mensions; e.g., n = 2 or 3. In high dimensions, the assumption that ' C (0, 1)™ may cause the error
tolerance ¢ to have a rather large effect. For example, any sphere F' C (0,1)" has volume 2~©(") and
can therefore be considered “negligible” (unless € < 2-°("). This seems like an unavoidable aspect of
working in the property testing model. Indeed, for high dimensions n, we feel that our second setting,
Gaussian space, is more natural.

Gaussian surface area. Property testing is often viewed as a precursor to Computational Learning
(see [Ron08]) and indeed an important motivation for our paper arises from the learning results of Klivans



et al. [KOSO08]. In this case, the standard n-dimensional Gaussian measure is used to define the volume
(and surface area) of sets in IR™. Analogous to the previous setting, the distance between two sets
F,G C R™ is defined as the Gaussian volume of FAG. In this setting, Klivans et. al. gave an n®(4”°)-
time agnostic learning algorithm under the Gaussian distribution for the class of sets with Gaussian
surface area at most A. Our Gaussian surface area tester fits very nicely in the “testing before learning”
framework. The soundness of our tester guarantees that any set F' that the tester accepts (with high
probability), is e-close to having Gaussian surface area at most « - A. The deficiency of being e-close that
comes with property testing is taken care of by the agnostic aspect of the [KOSO08] learning algorithm,

and the approximation factor x does not make any real difference to the learning algorithm’s run-time of
O(A?)
n .

1.2 Prior and related work

The framework of property testing has seen a tremendous amount of work, see, e.g., [Ron08, RS11];
especially in the areas of algebraic properties, e.g., [BLR93, DLMT08, AKK'05], graph properties,
e.g., [GGRI8, AFNS09], and discrete function properties, e.g., [Bla09, BO10]. For testing in the context
of geometric properties see, e.g., the work of Czumaj et al. [CSZ00, CSO1].

As far as we are aware, the specific problem studied in this paper — property testing surface area
— has been studied previously only in n = 1 dimension. In this case, the “surface area” of an open set
F C [0, 1] is the number of points on its boundary; hence the problem is equivalent to testing whether
F is a union of at most A/2 intervals. In this form, the problem was first proposed by Kearns and
Ron [KR98]. They gave a tester solving the problem with excellent query complexity, O(1/¢), but
a rather large approximation factor, K = 1/e. The problem was taken up again by Balcan et al. in
2012 [BBBY12]. They gave a tester with query complexity O(1/¢*) and no approximation factor —
i.e., k = 1. Actually, their tester naturally achieves x = 1 + ¢, but they proved the following simple fact
(specific to 1 dimension) which allowed them to reduce « to exactly 1:

Fact 1.1 ((BBBY12]). Any F' C (0, 1) which is the union of at most m(1 + €) intervals is e-close to a
union of at most m intervals.

1.3 Our results

We give the first efficient property testing algorithm for surface area in any dimension n > 1. Our testing
algorithm is highly efficient — needs just O(1/€) queries (and running time) — and achieves a small
constant approximation factor x for every dimension n, both in the standard Euclidean and Gaussian
settings. We find it somewhat surprising that the “curse of dimensionality” can be completely avoided,
especially in the standard Euclidean setting.

To state our results, let’s first define the approximation factor x,, we achieve in dimension n:

Definition 1.2. For n € N7 and T, the standard Gamma function, define

n 2
(n/zl/z)]

4 n I'n/2+1)I(n/2)
~anal Teeize ety

2n

s0 k1 =1, Ky = 25 ~ 1.08, kg = 2 = 1.125, etc.

Fact 1.3. «,, increases to a limit of% ~ 1.27asn — oc.

Proof. The fact that k,, — % is a straightforward consequence of Stirling’s formula. Thus it remains to

show that r,, = k,,/kp+1 < 1forall n. Since r,, — 1 asn — oo it suffices to show that r,, 42 /r,, > 1 for

_ (n+4)(n+2)°

all n. But by direct computation, 7, o/1, = (CESNCEE )L which is easily shown to decrease to 1. [

We can now state our main theorem for n-dimensional Euclidean surface area. For technical sim-
plicity (to avoid edge effects) we work in the unit torus T™ = IR"™/Z" rather than the unit cube (0, 1)™.



Theorem 1.4. There is a randomized testing algorithm with the following properties. Given black-box
query access to a set F C T™ with piecewise-C' boundary, as well as parameters A > 0,0 < € < 1/2,

2.5
and 0 < n < 1/2, the algorithm makes O( L/ Z ) queries and then either “accepts” or “rejects”. The
tester satisfies:

o (Completeness.) If surf(F') < A, then the tester accepts with probability at least 9/10.

e (Soundness.) If the tester accepts with probability at least 1/10, then there is a set G C T™ with
vol(FAG) < € such that surf(G) < (kn, +1) - A

Here k., is as given by Definition 1.2.

(We remark also that in the soundness statement, we can ensure that G is a finite union of polytopes with
dist(z, ') < O(\/nne/A) forall z € G.)

Let’s consider Theorem 1.4 in combination with Fact 1.3. For n = 1, we can achieve any approxima-
tion factor k£ > 1 using O(1/¢)-queries. This significantly improves on the result in [KR98]. By taking
n = e and applying Fact 1.1, we can also achieve no approximation factor (i.e., & = 1) withan O(1/e3-5)-
query tester, slightly improving the result from [BBBY12]. For n = 2 we can achieve approximation
factor 1.081 using O(1/¢) queries; for n = 3 we can achieve approximation factor 1.126 using O(1/¢)
queries. Finally, for general dimensions n we can achieve any approximation factor £ > % ~ 1.27 using
O(1/€) queries.

Our result for testing Gaussian surface area is similar and completely dimension-independent:

Theorem 1.5. There is a randomized testing algorithm with the following properties. Given black-box
query access to a set ' C R™ with piecewise-C' boundary, as well as parameters A > 0,0 < € < 1/2,

and 0 < n < 1/2, the algorithm makes 0(1/22'5
tester satisfies:

) queries and then either “accepts” or “rejects”. The

o (Completeness.) If surf, (F') < A, then the tester accepts with probability at least 9/10.

e (Soundness.) If the tester accepts with probability at least 1/10, then there is a set G C R™ with
vol, (FAG) < e such that surf(G) < (2 +1n) - A.

Here surf,(-) denotes Gaussian surface area and vol,(-) denotes n-dimensional Gaussian probability
measure.

We remark that we can’t expect the approximation factor in the Gaussian setting to be better than the
approximation factor in the Euclidean setting. This is because for sets F' C IR™ very close to the origin,
Gaussian and Euclidean surface area are essentially the same, up to a scaling factor (namely, the value
of the Gaussian pdf at 0).

1.4 Our methods

In this section we give a rough description of the ideas behind our surface area tester in T™. In fact, all
of the complexity occurs already in the case of n = 2 dimensions. We therefore encourage the reader
to keep the special case of n = 2 in mind (and read “perimeter” for “surface area”, and “area” for
“volume™).

Let’s warm up by considering the problem of testing volume. This is essentially a trivial problem in
the property testing framework; a tester can accurately estimate vol(F") or vol, (F') simply by querying
many independent random points and computing the empirical fraction which lie in F'. Indeed, here is a
simple theorem one can prove for testing Gaussian volume using just a standard Chernoff bound':

Theorem 1.6. There is a randomized testing algorithm GAUSSIANVOLUMETEST with the following
properties. Given black-box query access to a set F' C R™ as well as parameters V > 0,0 < 7 < 1/2,

2
the algorithm makes O(l/TT) queries and then either “accepts” or “rejects”. Further:

o (Completeness.) If vol, (F') < V then the tester accepts with probability at least 99/100.

'A similar theorem also holds for testing Lebesgue volume.



e (Soundness.) If vol,(F') > (1 + 7) - V then the tester rejects with probability at least 99 /100.

How about surface area? For sets F' with nice enough surface we have surf(F') = lims_,q %Fw),
where OF%/2 denotes the set of all points within distance § /2 of F’s boundary. This yields a natural idea
for estimating surf(F): choose a small § > 0, (try to) estimate vol(OF°%/2) by the above sampling
approach, and then divide by . Since oracle access to F' does not directly give us oracle access to
OF°%/2, we can modify this idea by, say, querying two random points z and y at roughly a distance of &
to see if one is inside F' and the other outside.

This modification is backed up by an appropriate version of the Cauchy—Crofton or “Buffon’s Nee-
dle” Theorem (see Theorem 2.3 below), which roughly says that

E[# of intersections between OF and a random “needle” Zy of length 4]

f(F) =c-
surf(F) = ¢ 5 )

(M

where ¢ = O(y/n) is a dimension-dependent constant. We can underestimate the expectation in the
numerator by the probability a random length-é needle intersects OF', which in turn can underestimated
by

Pr{two random points z, y at distance § satisfy € F, y ¢ F or vice versa]. 2)

This probability — which is something like the “noise sensitivity of F' at §” — can be accurately esti-
mated by a tester. After dividing by §/c we get an (under)estimate for the true surface area; if this is
at most A, the tester can accept. Thus we have a tester whose completeness is ensured by the Buffon’s
Needle Theorem. We remark that the ideas so far are precisely those used in the n = 1 tester of Balcan
etal. [BBBY12].

The hope is that this underestimate is close to the truth if § is “small enough”. The difficulty is that
a random length- needle might pass through F’s boundary £ > 2 times; and in this case, even though
it should contribute % to the numerator in (1), it will only be counted once (if & is odd) or zero times
(if k is even) in the approximation (2). In the “limit” when é becomes very small, we expect the needle
to intersect F’s boundary in either zero or one points, but how can the tester know how small does &
need to be? Indeed, the tester does not want to take § too small, or else it will take too many samples
to estimate (2) empirically. What we hope is that by choosing ¢ roughly proportional to ¢/A, we get a
significant underestimate only when the boundary of F' “wiggles at a scale of §”, in which case, we can
attempt to find a G satisfying vol(FAG) < e by “smoothing out” such wiggles.

The difficulty is in defining such a G. As in [BBBY12], we consider a “smoothed-out” version of
F’s indicator function,

g(z) = Pr[y € F, for y arandom point at distance roughly ¢ from x].

(Actually, the “needle length” ¢ also needs to be randomized to avoid periodicity issues.) Then it appears
natural to declare that G contains all = where g(x) is close to 1 and that G' doesn’t contain any point
where g(z) is close to 0. It remains to decide how to define G on points = where g(x) is “in the middle”.
(These correspond to points that are roughly near the boundary of F'.) It can be shown that vol( FAG)
is small no matter what choice is made for such points; the challenge is to fill in the gaps in such a way
that the resulting G has small surface area.

In the 1-dimensional case studied in [BBBY12] this task is very easy: the partial definition of G
fixes some intervals to be contained in G and some intervals to be excluded from G. At this point, any
sensible method of filling in the gaps yields appropriately small “surface area” (number of endpoints).
In 2 or more dimensions, though, the problem is more complicated; indeed it seems very hard to give a
construction for this gap-filling problem. Our solution is to use the Probabilistic Method; we define G
to be a random super-level set of g, i.e., G = {x : g(x) > t}. It turns out that if ¢ is chosen from
the triangular probability distribution (rather than the naive choice of the uniform distribution) then
the coarea formula from geometric integration theorem gives a link between surface area and noise
sensitivity which is enough to establish the soundness of our tester.



1.5 Organization of the remainder of the paper

In Section 2 we give the technical preliminaries concerning surface area, the Cauchy—Crofton formula,
and the coarea formula. In Section 3 we state our testing algorithm for T™ and prove its completeness.
In Section 4 we prove the soundness of the tester. In Section 5 we give all the generalizations to the
Gaussian case. Finally, we conclude with some open problems.

2 Technical preliminaries

Notation 2.1. We write T™ for the torus R™/Z"™. We write B™ to denote the unit open ball in R™ and
let S™~! denote its boundary, the unit sphere in R"™.

We define surface area only for “sets of finite perimeter”; for the definition of this term we refer the
reader to [AFP00, Section 3.3]. We will use the following:

Notation 2.2. Let I’ C T" be a “set of finite perimeter”. We write surf(F') for its perimeter (surface
area). For sets F' with piecewise-C! boundary this coincides with H"~1(0F), where H"~! denotes
(n — 1)-dimensional Hausdorff measure. We further remark that any set of finite perimeter FF C T"
can be approximated by a sequence of open sets (F;) each with piecewise-affine boundary” such that
vol(F;AF) — 0, surf(F;) — surf(F).

Our testing algorithm will rely on an alternate characterization of surface area, namely the follow-
ing Cauchy—Crofton or “Buffon’s Needle”-type fact from integral geometry (see, e.g., [San04, 1.8.3,
II1.15.9]). Note that in this theorem the intuition is that the needle length ¢ is very short, though in fact
it can be of any length.

Theorem 2.3. Assume that F C T™ is such that OF is a piecewise-C' surface. For x € T™ and a vector
ywith ||y|| = 6, let N(z,y, F') denote the “number of times the needle from x to x + y intersects OF ”;
more precisely, #{t € [0,1] : x + ty € OF }. Then

[N(z,dv, F)] = 6, - surf(F) - 4.

x~T" ’,U,\,Sn— 1

Here 3, is the dimension-dependent constant whose definition is given below.

Definition 2.4. The constant 3,, in Theorem 2.3 is defined by 3,, = E,,.gn-1[|v1]]. Note that 3, also
equals E, _gn-1[|{v, w)|] for any fixed unit vector w.

Fact 2.5. We have 81 = 1, B2 = 2, B3 = %, and in general 3, = fplzi%i)yz [[

We will need to introduce a notion of “noise sensitivity” for functions on the torus. This notion was
also used by [BBBY12] for their n = 1 testing algorithm.

Definition 2.6. Let f : T® — IR be integrable. For § > 0 we define S5 f : T* — R by

Ssf(x) = E [f(x+02)]

z~Bn

When f has range +1 (i.e., f is the +1-indicator of a measurable subset of T™) we also define

NS;[f]= B [}-3/() Ssf@]=__ Pr [f(x) £ f(x+62)]
In the soundness analysis of our algorithm we will consider the superlevel sets of a certain Lipschitz
function g; i.e., g°¢ = {x : g(x) > t}. The coarea formula connects the expected value of the surface

area of superlevel sets and the gradient of the function g. Citations for the following form of the theorem
include [AFP00, Theorem 2.93], [EG92, Section 3.4.3].>

20r C* boundary if desired, assuming n > 2.
3These state the result when the domain of g is an open subset of R™, rather than T™. However the result continues to hold for
.



Theorem 2.7. Let g : T™ — R be Lipschitz and let 1) : R™ — [0, 00) be bounded. Then

/Tn Y(z)|Vy(z)| dz = /_O; (/g_l(t) U(x) d?—["—l(x)> dt.

Corollary 2.8. Let g : T" — R be Lipschitz and let ¢ be a bounded probability density function on R.

Then
E [¢(9(x))|Vg(x)|] = t§¢[8urf(g>t)]~

x~T™
Here g”t = {x € T" : g(x) > t}, and this is a “set of finite perimeter” with probability 1.
Proof. Apply Theorem 2.7 with 1y = ¢ o g. On the right-hand side we get
/ < | o dH“(x)) dt = B " (o - g(x) = 1))

—oo \Jg7'(¢) t~d
But it is known for Lipschitz ¢ that for almost all # the set g~ is of finite perimeter, having surface area
equal to H" 1 ({z : g(x) = t}) (see [AFP0OO, Theorem 3.40], [Mag12, Theorem 18.1], [EG92, Section
5.5]). [
3 The algorithm and its completeness

We begin with the algorithm that gives us our main theorem (Theorem 1.4).

Given black-box membership access to F' C T™, as well as parameters A > 0and 0 < ¢, < 1/2:

1. Define 6 = B"L&e. (In fact, any 6 = @(@e) would be acceptable.)

2. Let NS;s[f] be an empirical estimate of N'S;[f] computed using ¢ = samples. (Here C

is a large universal constant to be specified later.)

7]2'56

3. Acceptif and only if NS;[f] < 55 - B8, - A6+ (1 +1n) (equivalently, - - /7 - €- (1 +1)).

We now prove the completeness of this tester:

Theorem 3.1 (Completeness). Let F' C T™ be such that OF is a piecewise-C' surface. Assume that
surf(F') < A. Then the tester accepts with probability at least 9/10.

Proof. Let r be the random variable distributed as the length of a random vector z ~ B™. It is well
known and easy to verify that E[r] = 5. Now

NSs;[f]=E Pr [f(x) # f(a:—l—(;r'v)]] < ];;, [E [N(x,drv, F)]|,

T |z~Td v~ Sd-1 x,v
where N (x,drv, F') is as in Theorem 2.3. Here we used the fact that if a needle’s endpoints are on
opposite sides of F' then the needle must cross OF at least once. Applying Theorem 2.3 we get

n n
n+1 " n+1

NS;s[f] < ]:;[Bn -surf(F) - or] = B, - surf(F) - 6 Bp-A-b=p.

—~—

It remains to show that the empirical estimate NS;[f] will not exceed this by a factor of more than
(1 + n) except with probability at most 1/10. Noting that 1 = O(,/7¢€), a standard Chernoff bound
implies that

—_~—

Pr[NS;[f] > p(1 + )] < exp(—ptn?/3) = exp(=O(n**et)) < 1/10

provided the constant C'in ¢’s definition is sufficiently large. O



4 Soundness

The goal of this section is to prove the soundness portion of Theorem 1.4. The first step is to analyze the
Lipschitz constant of S; f.

Proposition 4.1. Let f T" — [—1, 1] be measurable and let § > 0. Then g = Ss f is (L, /6)-Lipschitz,
where L1 =1, Ly = = L3 % and in general

_vol(BY) 2 T(n/2+1)
Lo =20y = e 17~V VRO

Proof. Let z,y € T" be at distance A < %diam('ﬂ‘”). Let D, be the probability density on T" of
x + z, where z ~ B™; similarly define D,,. Since g(x) (respectively, g(y)) is the average of f under
D, (respectively, D,) and since f’s range is [—1, 1], it follows that |g(z) — g(y)| < 2d7rv(Dy, Dy).
By the data processing inequality this bound can only increase if we interpret D, as being the uniform
distribution on the Euclidean ball B, = = 4+ B™ C R" (and similarly for D,), rather than taking the
distribution mod Z". Thus

l9(z) — g(y)| < 2%3\59).

To estimate this, without loss of generality let = be the origin and let y = (=), 0,...,0). By simple
geometric considerations we have

vol(Bg \ By)  vol(By NW)

vol(B,)  vol(Bp) '’

where W = {z € R"™ : |21| < 3}; note that this still holds even if § > 2 (in which case B, \ B, = B,).
In turn we can upper-bound vol(B, N W) by the volume of a cylinder of width A and base equal to the
(n — 1)-dimensional radius-6 ball {z € B, : z; = 0}. Thus we deduce

A- 8" vol(Bm) L

lg(x) —g(y)| < SrolBr) A 7”7

as needed. O

The key lemma we’ll need to establish the soundness is the following:

Lemmad4.2. Let f : T" — {—1, 1} be the indicator of a measurable set F' C T™ with smooth boundary.
Then for any 0 < n < % there exists a set G C T"™ satisfying

surf(G) < 2L, - 3 - NS5[f] - (1 + 27),

vol(FAG) ; % NSs[f]-

Here L, is as in Proposition 4.1.

Proof. We use the probabilistic method. Let ¢ = S;f, which by Proposition 4.1 is (L, /J)-Lipschitz.
The essential idea (which doesn’t quite work) is to let ¢ be the random variable drawn from the triangular
distribution on [—1, 1] with pdf ¢(t) = 1 — |t|, and define G to be the set g~* = {z € T" : g(x) > t}.
As the reader will see shortly, by applying the coarea formula Corollary 2.8 we would get E[surf(G)] <
2L, - 5 - NSs[f], and it is also not hard to show that E[vol(FAG)] < O(NS;[f]). Thus in expectation
G satisfies the desired properties (with the volume difference being even smaller than claimed). The
catch is that we need both to hold simultaneously. It is possible to achieve both with a factor—O(%]) loss
on vol( F"AG) using Markov’s inequality. However it is more effective to slightly change the distribution
on t. To be precise, we truncate ¢ to the interval [—1 + Vi, 1= \/ﬁ] i.e., we let it be drawn according
to the following probability density:

%(t){ll‘;' for — 1+ N<t<1— /7

0 else.



Now defining G = ¢~* and applying the coarea formula Corollary 2.8 we obtain

E [suwf(G)] = E [¢,(9(z))[Vg(a)[]

tod, @A Tn
< (Luf9)- B [6,(0()) (g1 (Ln/8) Lipschitz)
< (Ln/9) - m]%rn {11_9(:”} (definition of ¢,))
<(Ln/0)-(1+2n)- E [1 - f(z)g(z)] 0 <n<1/2 f(z) € {-1,1})

= (Ln/6) - (1 4 2n) - 2NSs[f].

Thus G satisfies the claimed surface area bound in expectation. We will complete the proof by showing
that G satisfies the claimed volume bound with probability 1; this shows there exists a set of finite
perimeter G satisfying both bounds.

Note that every outcome of t ~ ¢, satisfies [t| < 1 — /. Thus whenever v € FAG —ie.,

f(z) # sgn(g(x) — t) — we have
f@gx)<1-yvn 53— 5f(@)g(@) = 3vn.
We deduce that with probability 1 over the choice of G,
lierng < %(% — 3 f(z)g(x)) for all x € T".
Taking expectations over x € T™ completes the proof. O

We can now complete the proof of soundness of our tester.

Theorem 4.3 (Soundness). Suppose that the tester accepts with probability at least 1/10. Then there
exists a set G C T™ (which is, in fact, a finite union of polytopes) such that:

surf(@) < (ko +O(n)) - 4,
vol(FAG) < O(e),
where
=2 — Ly fa=2(n+1) M 2

and the O(+)’s hide small universal constants.

Proof. By a Chernoff bound very similar to the one in the completeness Theorem 3.1, if NSs[f] fails to
satisfy

NSs[f] < hg - Bn-A-6-(142n) = 5 - Vn-e- (1+2n) 3)
then the tester rejects with probability at least 9/10. Thus (3) must hold, whence applying Theorem 4.2
lets us deduce that there exists a set of finite perimeter GG satisfying:

Surf(G) < 2Ly - HL_H B A (1 + 0(77)) = (’in + 0(77)) ’ A7

vol(FAG) < % catg v/m e (1+2n) < O(e).

O

Remark 4.4. One can approximate the set GG in the proof above, arbitrarily well by a set with piecewise-
affine boundary, if desired (see remarks in Notation 2.2). Also, for any = € G, as g(x) = Ssf(z) >
1—/m if x ¢ F, at least /7)/2 fraction of its ¢-neighborhood will lie in F'. Thus, in this case,

dist(z, ') = O(\/nne/A).



5 Testing Gaussian surface area

In this section we show how to modify our arguments to obtain similar results for testing Gaussian
surface area. We need analogous definitions of surface area of sets and the coarea formula in the Gaussian
case; here the reader is referred to [CKO1] for more details.

Notation 5.1. Let ' C R™ be a set with finite Gaussian perimeter. We write vol., (F") for its Gaussian
volume and surf., (F) for its Gaussian perimeter (surface area). For sets F' with piecewise-C! boundary,
surf. (F) coincides with 2~ ! (9F), where H2~" denotes the (n — 1)-dimensional Hausdorff measure
computed using n-dimensional Gaussian volume as the reference measure.

Theorem 5.2 (Coarea Formula). Let g, : R™ — R be bounded functions. In addition, assume that g

is Lipschitz. Then
_ > n—1
| v@iva@ian = [ ( |, e <x>> ,

where v, is the n-dimensional Gaussian measure.

Corollary 5.3. Let g : R™ — R be a bounded Lipschitz function and let ¢ be a bounded probability
density function on R. Then

E [¢(g(x))|Vg(x)]] = t§¢[8urfw(g>t)}-

T~Yn
Here g”t is a “set of finite Gaussian perimeter” with probability 1.

Next we need the appropriate notion of “noise sensitivity”, which is defined using the Ornstein—
Uhlenbeck operator:

Definition 5.4. Let f : R™ — IR be integrable under Gaussian measure. For 0 < J < 7/2 we define
GSsf : R™ — R by
GSsf(z) = E [f((cosd)x + (sind)z)].

2~

In case f has range +1 we also define

GNSs[fl= E [5—3f(x)GSsf(x)] = Pr [f(z)# f((cosd)z + (sind)z)].

T~Yn T,Z2~Yn

This can be connected to Gaussian surface area, in a manner similar to the Buffon’s Needle Theo-
rem 2.3, using the following one-sided inequality due to Ledoux [Led94]:*

Theorem 5.5. Let F' C R™ have piecewise-C' boundary. Then GNS;[f] < \/g 2§ - surf(F).

Next we give our testing algorithm. The high level idea of the tester is the same as in the Euclidean
case before, but requires a minor adjustment in case the desired value for § isn’t less than /2. This
minor adjustment uses the GAUSSIANVOLUMETEST algorithm from Theorem 1.6.

Given black-box membership access to F' C IR™, as well as parameters A > 0and 0 < e, < 1/2:

1. Define 6 = @e.
2

2.If § > 7/2 then execute GAUSSIANVOLUMETEST(F, V = 2¢, 7 = 1),

GAUSSIANVOLUMETEST(F¢, V = %e, T = 3), and accept if either accepts. Otherwise. . .

3. Let GINS;[f] be an empirical estimate of GNS;s[f] computed using t = % samples. (Here
C is a large universal constant to be specified later.)

4. Acceptif and only if GNS;[f] < /2 -5+ A+ (1 -+ 1) (equivalently, \/2 - /7 ¢ (1+ 1)),

*Also credited by Ledoux to Pisier [Pis86]. Ledoux only proved the theorem for sets with C> boundary; however it holds for
general Borel sets /' when surface area is defined as ’Hfj’l (OF) [KOS08, Footnote 1], and this coincides with surf. (') when F
has piecewise-C* boundary [CKO1].



We remark that the GAUSSIANVOLUMETEST algorithm only uses O(1/€) queries, so the test still
2.5
needs O (£ ‘T—) queries in total.

We now analyze our tester. Let’s first dispense with the case of § > 7/2;1i.e., A < (2/7)/ne.

Lemma 5.6. Suppose that 6 > /2. Then the tester accepts with probability at least 9/10 if surf., (F') <
A. If the tester accepts with probability at least 1/10, then, there exists G C R™ with surf(G) < A
and vol,(FAG) < e.

Proof. The second statement (“soundness”) is almost trivial. If the tester accepts with probability at least
1/10 then at least one of GAUSSIANVOLUMETEST(F'), GAUSSIANVOLUMETEST(F'¢), must accept
with probability at least 1/20. By the soundness of GAUSSIANVOLUMETEST, this means that either
vol,(F) < 2¢- (1 + 3) = e orelse vol,(F) > 1 — e. In the former case we may take G = 0); in the
latter case we may take G = IR™. Both of these sets have surf(G) = 0 < A.

Regarding the first statement of the theorem (“completeness”), suppose surf(F) < A, and thus
surf(F) < (2/7)y/ne < ?e. Just from the Gaussian isoperimetric inequality [Tsi76, Bor75] it holds
that

surf(F) > 2\/2 -vol, (F') - vol, (F°)
(see [Led94, (8.25)]). Thus we conclude

vol, (F) - vol, (F°) < %e < de

™

and hence either vol, (F) < Ze or vol, (F°) < Ze. In either case, the tester will accept with probability
at least 99/100 > 9/10, by the completeness of GAUSSIANVOLUMETEST. O

In the remainder of this section we analyze the tester under the assumption that § < 7/2. We begin
by showing that completeness follows easily from Theorem 5.5.

Theorem 5.7 (Completeness). Let F C R™ be such that OF is a piecewise-C' surface. Assume that
surf, (F') < A. Then the tester accepts with probability at least 9/10.

Proof. By Theorem 5.5, GNS;[f] < \/g -0 - A = p. Since p = O(,/ne€), the claim now follows
exactly as in Theorem 3.1. O

It remains to show the soundness of the tester. As before, we begin with analyzing the Lipschitz
constant of GSs[f].

Proposition 5.8. Let f : R™ — [—1, 1] be measurable and let 0 < § < 7/2. Then h = GSsf is
(\/g cot §)-Lipschitz.

Proof. Let z,y € R™ be at distance \. Let D, be the probability density of (cos §)x + (sin d)z, where
Z ~ 7p, and similarly define D,,. As in the proof of Proposition 4.1, it suffices to show

dTV(Dm Dy) < \/%(CO'L 5))\
Now D, and D, are n-dimensional Gaussian distributions, with standard deviation sin ¢ in each direc-
tion and means at distance (cos d)A. Without loss of generality we may assume z is the origin and y is

(—(cosd)A,0,...,0). Then the event achieving the total variation distance between D, and D, is the
halfspace H = {z € R" : 21 > —1(cos§)A}, and

- (cos §)A = —L—(cot §) A\,

ID’r[H] —Pr[H] = Pr [—1(cosd)A < (sinf)z < 1(cosd)A] < T

1
@ D, zom V2 sin
1

since the pdf of a 1-dimensional Gaussian with standard deviation sin ¢ is bounded above by Tomsins
This completes the proof.
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Next, we have the following lemma which is crucial for the soundness analysis. Its proof is identical
to the proof of Lemma 4.2, using Corollary 5.3 in place of Corollary 2.8 and Proposition 5.8 in place of
Proposition 4.1.

Lemma 5.9. Let f : R" — {—1,1} be the indicator of a measurable set I C R". Then for any
0<n< %, there exists a set G C R"™ satisfying

surf, (G) < 2\/%cot§ - GNS;[f] - (1+2n),

vol, (FAG) < % - GNS;[f].

We can now present the analysis of soundness of our Gaussian surface area tester, with approximation
factor k = 2 4+ O(n):

Theorem 5.10 (Soundness). Suppose that the tester accepts with probability at least 1/10. Then there
exists a set G C IR"™ such that:

surf, (G)
vol, (FAG)

where the O(+)’s hide small universal constants.

Proof. The proof is identical to that of Theorem 4.3 except for the numerical calculations. By a Chernoff
bound we must have

NS[f) < \/2-6-A-(1+2m) = /2 i-c- (1 +2m). @)
Applying Theorem 5.9 now gives us G with vol, (FAG) < O(e) and

4 )
f(G)< = —— - A-(1+2n)?
surf( )_7r tan § (1+2m)%,
which completes the proof because ﬁ <lfor0<d<m/2. [

6 Conclusion

In this paper, we have given property testing algorithms which test surface area up to any approximation
factor Kk > % using O(1/¢€) queries. It works for both Euclidean and Gaussian settings, with query
complexity and the approximation factor independent of the dimension. A straightforward open question
is whether one can achieve approximation factor « arbitrarily close to 1 in dimensions n > 1 (perhaps at
the cost of slightly increasing the query complexity). It is possible that our algorithm already achieves
this and that it’s only our analysis which is deficient. Alternatively, one may seek a lower bound — for
example, is it possible that testing surface area in T? to approximation factor 1.01 requires w(1/€) or

even (1/€)“() queries?
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