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Abstract.  Foam problems are concerned with how one can partition space 

into ―bubbles‖ which minimize surface area. We investigate the case where one 

unit-volume bubble is required to tile d-dimensional space in a periodic fashion 

according to the standard, cubical lattice. While a cube requires surface area 2d, 

we construct such a bubble having surface area very close to that of a sphere; i.e., 

proportional to d (the minimum possible even without the periodicity constraint). 

Our method for constructing this ―spherical cube‖ has a surprising inspiration: 

foundational questions in the theory of computation—specifically the issue of 

―hardness amplification.‖ We additionally show an algorithmic application of our 

new foam: a method for ―coordinated discretization‖ of high-dimensional data 

points which has near-optimal resistance to noise. Finally, we provide the most 

efficient known cubical foam in 3 dimensions. 
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How can space be tiled by shapes of a given volume so that the average surface area 

is minimized? This fundamental question has been a focus of study for scientists in many 

disciplines, from physicists studying soap bubbles (1), to chemists studying crystal 

structures (2), biologists studying cell aggregation (3), mathematicians studying sphere-

packings (4), materials scientists studying polymers (5), and even artists and architects (6). 

In this work we present a new approach to the construction of tiling shapes, based on 

methods from computer science. This approach leads to an asymptotically optimal solution 

of the Cubical Foam Problem, defined below.  

Foams.  Questions about minimal surface area tilings of space have a very long 

history. In the 19
th

 century Thomson (Lord Kelvin) introduced the Kelvin Foam Problem 

(7), which asks how 3-dimensional space can be partitioned into bubbles of volume 1 such 

that the average surface area of the bubbles in the foam is minimized. This question (which 

turns out to be extremely difficult) is motivated not only by its mathematical appeal, but 

also by interest in the physics of foams in nature, since surface tension makes bubbles seek 

to minimize their surface area. 

One of the very few known ways of designing foams with small surface area is to 

first construct a lattice of periodically arranged points, and then to take the Voronoi cells 

around each lattice point. The Voronoi cell of a lattice point x is defined to be the bubble 

which includes all points which are closer to x than to any other lattice point. The solution 

Kelvin proposed in 1887 for his problem was based on the Voronoi foam associated to the 

body-centered cubic lattice. The bubbles in this foam have surface 

area 315.514831203
4

3  . Kelvin further suggested letting this foam ―relax‖ so that it 

conforms with Plateau’s Rules for soap bubbles (1); modern computer simulations (8) show 

that this decreases the surface area to about 5.306 (9). Kelvin’s foam was widely believed 
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to be optimal until 1994, when Weaire and Phelan (10) exhibited a foam with an improved 

average surface area of about 5.288. The Weaire–Phelan foam is also formed by relaxing 

the Voronoi foam for a certain periodic arrangement of points in space (a subset of a 

lattice). Weaire and Phelan based their arrangement of points on the crystal structure of a 

certain silicon-sodium clathrate; whether or not their foam optimally solves Kelvin’s 

problem is still an open question.  

 

As with the closely related question of sphere-packing (i.e., how efficiently equal-

sized spheres can be packed in space), it is natural to study the Kelvin Foam Problem in 

dimensions other than 3. In 2 dimensions, it was long believed that the best solution is to 

tile space with regular hexagons—the ―Voronoi foam‖ of the triangular lattice. Although 

Pappus of Alexandria claimed this solution was optimal in the 4
th

 century, a mathematical 

proof was found only in 1999, by Hales (11). In higher dimensions, a lower bound on 

 

A       B 

Fig. 1. (A) Four bubbles in the Kelvin Foam, formed by relaxing the Voronoi 

cells of the body-centered cubic lattice. (B) Seven bubbles in the Weaire–

Phelan Foam, formed by relaxing the Voronoi cells of the A15 Packing.  
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average surface area follows from the Isoperimetric Inequality: the surface area of any 

bubble of volume 1 must be at least as large as that of a ball of volume 1. As the number of 

dimensions d grows, this lower bound asymptotically approaches



2e d . An upper 

bound which matches this lower bound up to a factor of 2 can be obtained by taking the 

Voronoi foam of a d-dimensional lattice in which the covering-radius to packing-radius 

ratio tends to 2—such a lattice can be obtained by a probabilistic construction (12). Hence 

the minimum surface area in the d-dimensional Kelvin Foam Problem grows in proportion 

to the square-root of the dimension.  

In our work we consider tilings that are periodic with respect to a specific and very 

natural lattice, the integer lattice (also known as the cubic lattice). This lattice consists of 

the points in d-dimensional space whose coordinates are all integers. We address the 

following question: 

Cubical Foam Problem: What is the least surface area of a bubble that partitions d-

dimensional space periodically according to the integer lattice?  

The Voronoi foam for the integer lattice consists of cubes of side-length 1. In d 

dimensions, these cubes have surface area 2d. This grows linearly with the dimension, 

much higher than the known lower bound of d . Are there more ―spherical‖ cubes, which 

still tile by the integer lattice but have surface area closer to that of a ball? Prior to our 

work, there was no general conjecture as to whether integer-lattice foams require surface 

area proportional to the dimension, to the square root of the dimension, or to something in 

between.  
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The Cubical Foam Problem seems to have been first formally raised by Choe in 1989 

(13). Choe showed that in 2 dimensions, the unit square (whose ―surface area‖—i.e., 

perimeter—is 4) is not the optimal solution. Rather, the optimal solution is the ―isosceles‖ 

hexagon shown in Fig. 2A, with 120 angles, side lengths 
6

1

2

1   and 
3
2 , and perimeter 

about 3.864. Choe gave the 3-dimensional version as an open problem. No solution has 

even been conjectured, and prior to our work the best known solution was simply to add 

depth to the Choe hexagon, transforming it into the prism shown in Fig. 2B with surface 

area 5.864 (14). 

 

 The high-dimensional version of the Cubical Foam Problem was raised by Feige, 

Kindler, and O’Donnell (14) in 2007, who noted a surprising connection to a certain 

 

A       B 

Fig. 2. (A) The Choe Hexagon, Choe’s optimal solution to the Cubical Foam 

Problem in 2 dimensions. (B) The hexagons extruded into 3-dimensional 

prisms. The resulting 3-dimensional cubical foam is not optimal; a solution 

with smaller average surface area is presented in this work.  
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problem in theoretical computer science about computational hardness amplification. This 

connection is explained later in this article. A subsequent result of Raz (15) on the limits of 

such amplification, using an idea from a related paper of Holenstein (16), provided us with 

the tools to solve the high-dimensional Cubical Foam Problem.

 

A       B 

Fig. 3. Cubical Foam solutions, surface area vs. dimension d. The green plot 

shows the previous best construction, Choe prisms. The red plot shows the 

theoretical lower bound given by the sphere’s surface area. The blue plot 

shows the results achieved in this paper. (A) d = 1…100. (B) d = 1…10,000.   
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 Our results.   

 We give a probabilistic construction proving the existence of a bubble that partitions d-

dimensional space according to the cubic lattice and whose surface area is at most 

d4 . Thus our bubble is nearly ―spherical‖, in the sense that its surface area is larger 

than that of a sphere by only a constant multiplicative factor (about 3.04). This is in 

contrast to best previous constructions with ―cube-like‖ surface area proportional to d. 

We conclude that the optimal solution to the Cubical Foam Problem has surface area 

proportional to the square-root of the dimension, just as in the more general Kelvin 

Foam Problem. Thus in high dimensions, integer-lattice tilings are essentially as 

efficient as any tilings. 

 We show that our construction also yields a highly noise-resistant procedure for the 

―coordinated discretization‖ of data. Specifically, the construction can be viewed as a 

randomized procedure which assigns each vector of real numbers  dxx ,,1   to a vector 

of integers  drr ,,1  , with the following two guarantees. The ―closeness‖ guarantee is 

that each ri is always simply xi rounded up or down to the nearest integer. The ―noise-

resistance‖ guarantee is that if two real vectors  dxx ,,1   and  dyy ,,1   are at 

Euclidean distance  in R
d
, then our procedure assigns them to the same integer vector 

except with probability proportional to  (more precisely, probability at most  2 ). 

Somewhat remarkably, the noise-resistance guarantee is independent of d, the 

dimension of the vectors. Previously known coordinated discretization procedures had 

either a worse ―closeness‖ guarantee, with ii rx   possibly as large as d , or a worse 

―noise-resistance‖ guarantee (17, 18), with ―miscoordination‖ probability proportional 

to d  rather than to our . 
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 Using traditional methods tangential to the main focus of the paper, we give an explicit 

construction for the Cubical Foam Problem in 3 dimensions with surface area about 

5.602. This beats the ―Choe prism’s‖ surface area of 5.864 by about 4.5%. 

The connection to computational hardness amplification. Our method for 

constructing a ―sphere-like‖ cubical foam has its roots in an unexpected source: the subject 

of computational hardness amplification, a basic topic of study in the theory of 

computation. Consider a computational task T, such as solving a system of equations, 

finding the best move in a chess position, optimizing a schedule under constraints, etc. The 

difficulty, or hardness, of T is measured in terms of the computational resources required to 

obtain a solution of a given quality. ―Hardness amplification‖ asks about ways of 

transforming T into an even harder task; for example, by asking that T be solved on d inputs 

simultaneously. Is this ―d times harder‖, or can a clever reuse of resources allow for a 

computation that achieves more than one would naively expect?  

This question arises in many areas of computational theory, including cryptography, 

pseudorandomness, and optimization, and has proven to be extremely subtle. Our foam 

construction is motivated by the hardness amplification problem in the context of 

constraint satisfaction problems (CSPs), a major topic in computer science, operations 

research, statistical physics, and information theory (19). Here the focus is on the accuracy 

that efficient algorithms can have when solving CSPs. Assuming the standard hypothesis 

NPP  , it follows that efficient algorithms cannot guarantee a 100%-accurate solution to a 

satisfiable CSP. A seminal hardness amplification result, the PCP Theorem (20, 21) from 

1992, improved this to show ―  01  -hardness‖. By this we mean that given a satisfiable 

CSP, no efficient algorithm can guarantee finding a solution satisfying even a  01  -

fraction of the constraints. Here 0  is a (small) positive constant. Raz’s celebrated Parallel 
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Repetition Theorem (22) from 1995 dramatically strengthened this: he showed -hardness 

for any  > 0. Indeed, Raz showed this is true even for ―bipartite‖ CSPs, in which each 

constraint involves only two variables. 

 Raz’s work was a hardness amplification result: given a ―  1 -hard‖ bipartite CSP, 

Raz showed that solving d instances of it ―in parallel‖ constitutes a roughly   d321  -hard 

CSP. This was later (16) improved
 
to   d31   (and to   d21   for CSPs arising from the 

PCP Theorem (23)), but the question of Strong Parallel Repetition—namely, whether the 

resulting CSP is in fact   d1 -hard—remained open for many years. Note that 

    dd 11  assuming d1 ; thus the Strong Parallel Repetition question asks to 

confirm the intuition that having to simultaneously satisfy d constraints should amplify the 

inaccuracy of efficient algorithms from   to d .  

Herein lies the connection to foams. In 2007, Feige, Kindler, and O’Donnell (14) 

investigated parallel repetition of the Odd Cycle CSPs, showing hardness amplification 

from 1  to roughly  d1 . They also observed a connection to foam problems, 

proving that if there exists a cubical foam with surface area A then amplification beyond 

 A1  is impossible. Hence proving Strong Parallel Repetition would require showing 

that d-dimensional cubical foams require surface area proportional to d. However, in 2008 

Raz (15) showed that Strong Parallel Repetition fails for Odd Cycle CSPs, and that 

amplification to  d1  is optimal. In retrospect, one can view Raz’s work as 

constructing a kind of ―discrete cubical foam‖ with ―surface area‖ proportional to d . One 

key tool in Raz’s proof was the Consistent Sampling Lemma, first used in the context of 

parallel repetition by Holenstein (16).  

Our solution to the Cubical Foam Problem involves generalizing Raz’s discrete 

methods to real space, and ―opening up‖ the proof of the Consistent Sampling Lemma. We 
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also use the ―Buffon’s Needle‖ method to estimate surface area, and we optimize our 

results using Fourier analysis. Full mathematical proofs are supplied in the supporting 

online text. 

Our cubical foam and discretization procedure. Before describing our ―sphere-

like‖ cubical foam, we will give some motivation for its construction. As stated earlier, our 

construction can also be interpreted as a very noise-resistant ―randomized discretization 

procedure‖ for rounding off vectors of real numbers to vectors of integers. Let us make 

some definitions. 

Definitions: A discretization is a mapping which assigns each point x =  dxx ,,1   in R
d
 to 

an integer point r =  drr ,,1   in Z
d
 such that each ir  is either xi rounded up or xi rounded 

down. A discretization is periodic if for all x in R
d
, x is assigned to r if and only if x + s is 

assigned to r + s for each s Z
d
. Given a periodic discretization, we define its principal 

bubble to be the set of all points in R
d
 assigned to  0,,0 . 

The principal bubble of a periodic discretization tiles R
d
 according to the integer 

lattice. Thus any periodic discretization immediately yields a cubical foam. We will in fact 

give a randomized procedure whose output is a periodic discretization (hence also a cubical 

foam). As described earlier, we say that such a procedure is ―noise-resistant‖ if every two 

nearby points x, y  R
d
 are unlikely to be assigned to different integer points. Intuitively, 

we expect the bubbles produced by a noise-resistant procedure to have small surface area, 

because x and y are assigned to different integer points only if the line segment joining 

them crosses the surface of a bubble.  

We will later see that finding a periodic discretization in which nearby pairs x and y 

are usually assigned to the same integer point is very similar to a bipartite CSP whose 
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―variables‖ are the points of R
d
. Indeed, Raz’s analysis (15) of the Odd Cycle CSPs 

suggests the investigation of a related problem (which we state somewhat imprecisely for 

the sake of brevity): Assign each point x in the unit cube [0,1)
d
 a random ―shift‖ z  [0,1)

d
 

in such a way that nearby points are very likely to be assigned the same shift.  

For now, let f be a probability density function on [0,1)
d 

for shifts; let xf  be its 

translation by x , so xf  is a probability density on  d
x 1,0 ; and, let xf

~
 be the periodic 

extension of this function, so )1mod()(
~

xzfzf x  . Holenstein’s Consistent Sampling 

Lemma gives a method for assigning shifts to all points such that the probability x and y are 

assigned different shifts is essentially  
d yx ff

)1,0[

~~
. Thus we are led to seek a function f 

for which this is small whenever x and y are nearby points. 

In Raz’s CSP analysis it was sufficient to use the Consistent Sampling Lemma as a 

―black box‖. However for our construction of a periodic discretization and foam in R
d
, we 

need to analyze the actual proof of the lemma. In our setting, Holenstein’s proof would 

draw a sequence of pairs (Zi,Hi), with Zi random in [0,1)
d
 and iH  random in  


f,0 , 

where 


f  denotes the maximum value of f. Then x would be assigned the shift Zi for the 

minimal i with iZix HxfZf
i

 )(
~

)(
~

. This method forms the basis of our construction. 

Given a density function f and a number h > 0, consider the shape D consisting of 

  dhxfx )1,0()(:  together with its boundary. We call D (or a translate of D) a 

―droplet‖. We will want droplets to have smooth boundaries which do not touch the 

boundary of [0,1]
d
. For this reason we will require that f’s periodic extension f

~
 be analytic, 

equal to 0 on the boundary of [0,1]
d
; we will call such a density function f proper. Given a 

proper density function f, we can now describe our randomized algorithm for producing a 

periodic discretization and associated cubical foam: 
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Algorithm 1: Periodic discretization (and foam) construction, given f 

1. Let all points in R
d
 be ―unassigned‖. 

2. For stage i = 1, 2, 3, ... until all points are assigned: 

3.  Choose a uniformly random shift  diZ 1,0 . 

4.  Choose a uniformly random parameter  


 fH i ,0 . 

5.  Let droplet iD  be  iZ Hxfx
i

)(: , together with its boundary.  

6.  Assign all currently unassigned points in iD  to  0,,0 , and extend this 

 assignment periodically. 

7.  ―Color‖ all newly assigned points from Step 6 with ―color i‖.  

We remark that the ―coloring‖ done in Step 7 is not essential to the algorithm per se, 

but is helpful for understanding and reasoning about it.  

It is not hard to prove that this algorithm indeed always ends after a finite number of 

stages (see supporting online text for all mathematical proofs). It is also clear that 

regardless of the algorithm’s random choices, it always produces a periodic discretization. 

Thus the points assigned to  0,,0  by the algorithm always constitute a principal bubble 

which partitions space according to the integer lattice.  

We illustrate a sample run of the algorithm in Fig. 4, with d = 2 and 

)(sin)(sin4),( 2

2

1

2

21 xxxxf  . Therein the integer lattice is outlined in gray, with the 

origin  0,0  depicted as a gray dot. The first three panels illustrate stages 1, 2, and 3 of the 

algorithm. In each stage, the black dot represents iZ  and the black dashed line outlines the 

droplet iD . Colors 1, 2, and 3 are green, yellow, and red, respectively; we have used dark 
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colors to show the points assigned to  0,0 , and light colors to show their periodic 

translations, assigned to  1,1 ,  1,0 ,  1,1 ,  0,1 ,  0,1 , etc. 

A B 

 

Fig. 4. Example construction.  (A) The assignment after stage 1: all points in 

the dark green droplet are assigned to (0,0); the light green translations are 

assigned periodically. (B) The assignment after stage 2; the unassigned 

(uncolored) points within the outlined droplet are colored dark yellow and are 

assigned to (0,0). (C) The assignment after stage 3, using red. The algorithm 

terminates after this stage—all points in R2 have been assigned. (D) Here we 

outline the final bubble which partitions R2 periodically according to the 

integer lattice. 

D C 
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Analysis of our construction. We establish the following theorems about Algorithm 1, 

with all proofs given in the supporting online text.   

First we compute the probability of ―miscoordinating‖ a pair x and y in terms of f: 

Theorem 1: Fix a proper density function f. Let xy  be a short line segment in R
d
; say 

uxy   , where u is a unit vector and 0  is sufficiently small. For a given execution 

of Algorithm 1, let N denote the times the segment xy  crosses the boundary between 

differently colored regions. Then 

E[N] ~  

d

uf

)1,0[

, .                                                  (1) 

(Here E denotes expectation and the notation ~ means equality up to an error of order 2 .)  

Next, using the relationship between noise-resistance and surface area we show: 

Theorem 2: Given an execution of Algorithm 1, let A denote the surface area of the 

boundary between color regions within [0,1)
d
. Then 

E[A] =  
d

f

)1,0[

.                                                    (2) 

Finally, we find an f so as to minimize the noise-resistance and surface area: 

Theorem 3: There exists a proper density function f with df 2 , namely 

  



d

i

ixxf
1

2sin2)(  .                                              (3) 

Moreover, for each unit vector u, f satisfies 2,  uf . 
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The bounds we obtain for our cubical foam solution and for the noise-resistance of 

our coordinated discretization procedure follow easily from these theorems. The bubble B 

output by Algorithm 1 has surface area at most 2A, where A is the quantity in Theorem 2; 

hence with the f from Theorem 3, the expected value of B’s surface area is at most d4 . 

Hence there must exist a bubble that tiles R
d
 according to the integer lattice with surface 

area at most d4 . As for the noise-resistance of Algorithm 1 as a coordinated 

discretization procedure: if points x, y R
d
 at distance   are assigned different integer 

points by the algorithm then N, the number of times segment xy  crosses the boundary 

between color regions, must be at least 1. But the probability of this, i.e., Pr[N   1], is at 

most E[N]. Combining Theorems 1 and 3, the probability is at most 2 , as claimed (up to 

an error of order 2 , but in fact this can be eliminated). 

A 3-dimensional cubical foam. Although we have asymptotically solved the 

Cubical Foam Problem up to a small constant factor, in the physically natural case of d = 3 

our construction does not improve on the ―Choe prism‖ (or even on the cube). Here we 

present an improved 3-dimensional cubical foam, constructed via an ad hoc method.  

The 2-dimensional minimizer given by Choe in Fig. 2A can (when translated by (½, 

½)) be described as follows: Start with a ―base‖ facet centered at the origin; specifically, an 

edge from (s,s) to (s,s) for some parameter s. This already gives all vertices, by periodic 

extension. The hexagonal bubble is the convex hull of the two base points, their translates 

within [0,1)
2
, and their translates by (1,1). One chooses s to minimize the resulting surface 

area (perimeter). 

We similarly construct a tiling shape B in 3 dimensions. We form a ―base‖ facet 

centered at the origin which is a regular hexagon, with vertices (0,t,t), (t,0,t), and 
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(t,t,0), for some t (0,1/3). Again, this gives all vertices, by periodic extension. We take 

B to be the convex hull of the 6 base points, along with their 6 translates within [0,1)
3
 and 

their 6 translates within (0,1]
3
. The polytope B has 14 facets: 2 opposing base regular 

hexagons, 6 larger ―isosceles‖ hexagons, and 6 rectangles. An illustration is in Fig. 5A    

 

A B 

 

 

Fig. 5. Our new 3-dimensional cubical foam.  (A) The unrelaxed tile. (B) The 

tile after it has relaxed according to Plateau’s Rules. (C) The unrelaxed tile 

forming a foam according to the integer lattice. (D) Illustrating the relaxed 

foam as soap bubbles. 

D C 



17 

One may calculate (see the supporting online text) that B has surface area  

                                   222 321)1(641236 ttttttt  ,                         (11) 

which is minimized when t  0.1880, having minimal value about 5.6121. This already 

beats the Choe prism. 

We can further improve this solution by letting B relax (within the torus R
3
/Z

3
) as a 

soap bubble. Using Brakke’s Surface Evolver
 
(8), we obtain the relaxed bubble B shown in 

Fig. 5B. We remark that it has slightly wavy faces and curved edges, and that the vertices 

have moved according to t  0.1814. The surface area of B is slightly less than 5.602, 

according to Surface Evolver. 

Discussion. We have given a probabilistic construction of a cubical foam with near-

spherical surface area. The construction uses ideas that are new to the study of foams, and 

is inspired by work on the limits of ―hardness amplification‖ in certain computational 

optimization problems. Our construction gives the first suggestion that in high dimensions, 

optimal foams might not be derived from Voronoi cells and may be quite unlike polyhedra.  

 We have also given an algorithmic application of our foam’s construction: a very 

―noise-resistant‖ procedure for rounding off vectors of d real numbers to integers. This 

discretization algorithm may not be practical for very large d, as Algorithm 1 is likely to 

run for a number of stages which is exponential in d. An important open problem is to find 

a coordinated discretization procedure with similar noise-resistance but taking time which 

grows only polynomially in d.  

Finally, the construction of our cubical foam used randomness in an essential way; 

randomness is also used in other efficient high-dimensional constructions of foams (such as 
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high-dimensional Kelvin foams). Although randomness is clearly required for noise-

resistant coordinated discretization, it is an intriguing question as to whether it is necessary 

for the construction of foams, or whether ―explicit‖ or ―derandomized‖ constructions exist. 

Subsequent to the preliminary announcement of our work
 
(24), Alon and Klartag

 
(25) 

showed an alternative derivation of our cubical foam via Cheeger’s isoperimetric 

inequality; their analysis also shows that there exists a fixed parameter h that can be used as 

iH  throughout Algorithm 1. In other words, a good foam can be derived from the random 

translations of a single droplet of the form  xclosureD ({ R
d
    }).sin2:

1

2 hx
d

i

i 


  

However it still remains unknown how to construct an explicit ―spherical cube‖.  
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SOM Text

Herein we give complete proof details for the mathematical claims made in the article.

Regularity properties of the droplets and color regions

In this section we establish some regularity properties of the droplets and color regions formed by
Algorithm 1.

Prior to introducing Algorithm 1 in the main document we defined the notion of a “proper”
probability density function f on [0, 1)d; this was one whose periodic extension f̃ is real analytic
and 0 on the boundary of [0, 1]d. The first condition is chosen to ensure that the final bubble B has
piecewise-smooth boundary. The second condition is to ensure that each droplet

Di = cl({x ∈ −Zi + [0, 1)d : fZi
(x) > Hi}),

is in fact contained within −Zi + (0, 1)d. (Recall that Zi ∈ [0, 1)d, fZi
denotes f shifted by −Zi,

0 < Hi < ‖f‖∞, and cl(G) is the topological closure of the set G.) We require this fact that
Di ⊂ −Zi + (0, 1)d so that Algorithm 1 produces a well-defined periodic assignment; otherwise,
Di might contain distinct points which are integer shifts of one another.

Let us make these observations precise. Recall that a setK is closed regular ifK = cl(int(K)),
where int(K) is the topological interior of K. A set is semianalytic if it is everywhere locally
equal to a finite Boolean-algebraic combination of sets of the form {x : g(x) > 0} where g is real
analytic. For more background on such sets, see (26,27).

Lemma 0.1. Each Di is closed regular and semianalytic. Furthermore, Di ⊂ −Zi + (0, 1)d.

Proof. There is no loss of generality in assuming Zi = 0. We then have Di = cl(Gi) where
Gi = {x ∈ [0, 1)d : f(x) > Hi}. Since f̃ is 0 on the boundary of [0, 1]d, and Hi > 0, we must
have Gi ⊆ (0, 1)d. Thus Gi = {x : g(x) > Hi}, where g denotes the restriction of f (and also f̃ )
to (0, 1)d. Since g is analytic on (0, 1)d, the set Gi is semianalytic. It is also open by virtue of g’s
continuity. Thus Di = cl(Gi) = cl(int(Gi)) ⊆ [0, 1]d is closed regular. Di is also semianalytic,
using the fact that the closure of a semianalytic set is semianalytic. Finally, by continuity of f̃ we
have f̃(x) ≥ Hi > 0 for all x ∈ Di. It follows that Di cannot meet the boundary of [0, 1]d; hence
Di ⊂ (0, 1)d as needed.

Let us now make some more observations about Algorithm 1. In the main article, we described
it as also generating new “color regions” in each stage. Let us write

D̃i = Di + Zd, Ci = Di \ (D̃1 ∪ · · · ∪ D̃i−1), C̃i = Ci + Zd.

Thus Ci is the set of points assigned to (0, . . . , 0) in stage i of the algorithm, and C̃i is the ith color
region. One easily shows by induction that

C̃1 t · · · t C̃i = D̃1 ∪ · · · ∪ D̃i ∀i.
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The algorithm halts as soon as the above set is all of Rd. Later in this supporting text we show that
with probability 1 the algorithm halts after some finite number of stages n. In this case the colors
are numbered 1 through n, and the final tiling bubble is

B = C1 ∪ · · · ∪ Cn. (1)

For technical reasons we will prefer to “regularize” the color regions. We define the ith regularized
color region to be

C ′i = cl(int(Ci)),

a closed regular set. We also define C̃ ′i = C ′i + Zd. We require the following technical lemmas:

Lemma 0.2. Ci ⊆ C ′i ⊆ cl(Ci) ⊆ Di for each i.

Proof. The latter two inclusions are easy: int(Ci) ⊆ Ci ⊆ Di, hence

C ′i = cl(int(Ci)) ⊆ cl(Ci) ⊆ cl(Di) = Di.

As for the inclusion Ci ⊆ C ′i, let us write Ci = Di \ F , where F = D̃1 ∪ · · · ∪ D̃i−1 is closed and
Di is closed regular. Writing Di = D for simplicity, we have

D \ F = (int(D) ∪ ∂D) \ F (since D is closed)
= (int(D) \ F ) ∪ (∂D \ F )
= (int(D) \ F ) ∪ (∂int(D) \ F ) (since D is closed regular)
= (int(D) \ F ) ∪ (∂int(D) ∩ int(F c)) (int(F c) = F c since F is closed)
⊆ (int(D) \ F ) ∪ (∂(int(D) ∩ F c)) (Property 2.7.13 in (28))
= cl(int(D) \ F )
= cl(int(D \ F )) (using Property 2.6.12 in (28) and F closed),

as claimed.

Lemma 0.3. ∂C ′i is contained in ∂Di and is disjoint from int(D̃1 ∪ · · · ∪ D̃i−1) for each i.

Proof. Using the notation F from the previous lemma’s proof, we have

∂C ′i = ∂int(Ci) = ∂(int(Di ∩ F c)) = ∂(int(Di) ∩ int(F c)) = ∂(int(Di) ∩ F c) (2)

where we used that F is closed. This set is contained in ∂int(Di) ⊆ ∂Di; hence it remains to show
that (2) is disjoint from int(F ). We have

(2) = ∂((int(Di) ∩ F c)c) = ∂(int(Di)
c ∪ F ),

and since the boundary of a set is disjoint from its interior, we conclude that the above set is disjoint
from int(int(Di)

c ∪ F ) ⊇ int(F ), as needed.

Lemma 0.4. The sets D̃i and C̃ ′i are closed regular.

Proof. This follows easily from the fact that the sets Di and C ′i are closed regular and are isolated
from their integer translates by the grid of open cubes −Zi + (0, 1)d + Zd.



25

Lemma 0.5. The sets D̃i, Ci, C ′i, C̃i, C̃ ′i, and B are semianalytic.

Proof. By Lemma 0.1, the integer translates ofDi are isolated from one another. Hence each point
of Rd has a neighborhood on which D̃i is a finite union of translates of Di. Since these translates
are semianalytic (Lemma 0.1), it follows that D̃i is semianalytic. Since finite Boolean-algebraic
combination of semianalytic sets are semianalytic, it follows that each Ci is semianalytic, as is B.
C ′i is semianalytic since semianalyticity is preserved under interior and closure. Finally, C̃i and C̃ ′i
are semianalytic for the same reason D̃i is.

A consequence of B being semianalytic and compact is that its boundary ∂B is a piecewise
smooth surface (i.e., the disjoint union of finitely many smooth (d−1)-dimensional surfaces along
with sets of Hausdorff dimension at most d− 2).

An algorithm on the torus

We now describe how Algorithm 1 can be thought of as also taking place in the torus, Td = Rd/Zd.
Let p : Rd → [0, 1)d be the natural map x 7→ (x1 mod 1, . . . , xd mod 1). As Algorithm 1 is
producing droplets Di, color regions Ci, and regularized color regions C ′i, we may also consider
the images of these sets in the torus, p(Di), p(Ci), p(C ′i). By Lemma 0.1 p is a bijection on Di,
hence also on Ci and C ′i by Lemma 0.2. We have D̃i = p−1(p(Di)) and similarly for C̃i, C̃ ′i. It
follows from Lemma 0.4 that p(Di) and p(C ′i) are closed regular in the torus topology, and from
Lemma 0.5 that they are semianalytic therein.

Indeed, we can think of the algorithm taking place on the torus Td as follows: At each stage,
Zi and Hi are chosen randomly; then p(Di) is defined to be the translation by −Zi (within Td) of
cl({x ∈ Td : f(x) > Hi}) ⊆ Td, where f is thought of as an analytic function on the torus. The
color region p(Ci) is defined by p(Ci) = p(Di) \ (p(C1) ∪ · · · ∪ p(Ci−1)); the regularized color
region p(C ′i) is cl(int(p(Ci))) (in the torus topology). The algorithm halts once all points of Td
are colored. The downside of viewing the algorithm exclusively on the torus is that it is less clear
what the final tiling bubble B ⊂ Rd is. Thus, it is best to think of the algorithm as taking place in
parallel on Rd and on Td.

Deducing our main results from Theorems 1, 2, 3

In the main article, after the statements of Theorem 1, 2, and 3 we give a paragraph explaining why
these imply our main results. In this section we spell out the deductions formally.

We will formally view Theorems 1 and 2 in the main document as being about the algorithm
on the torus Td, and we will interpret “the boundary between color regions” as meaning

S =
n⋃
i=1

∂p(C ′i).

Our first task is to justify the statement that if the (d − 1)-dimensional area of S is A, then the
surface area of B is at most 2A. By Lemma 0.2,

B =
n⋃
i=1

Ci ⊆
n⋃
i=1

C ′i ⇒ ∂B ⊆
n⋃
i=1

∂C ′i.
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Writing | · | for (d− 1)-dimensional area, we conclude that the surface area of B is at most
n∑
i=1

|∂C ′i| =
n∑
i=1

|∂p(C ′i)|,

the equality holding because C ′i is contained in an open cube of side-length 1. We will show
that this quantity in fact equals 2|S| = 2A. In doing so, we may clearly assume that each set
p(C ′i) is nonempty. Then since the sets p(C ′1), . . . , p(C

′
n) are semianalytic and closed regular

subsets of the compact torus Td, they may be triangulated into homogeneously d-dimensional
topological sub-polyhedra of Td. Further, since they meet only at their boundaries (as C ′i ⊆ cl(Ci)
by Lemma 0.2, and the Ci’s are disjoint) and since their union is all of Td, these triangulations may
be commonly refined to a homogeneously d-dimensional triangulation of Td. In this triangulation,
each set ∂p(C ′i) will be the union of some topological (d−1)-dimensional simplices with mutually
disjoint interiors. The surface S is the union of all these (d− 1)-simplices. Each (d− 1)-simplex
K is contained in precisely two topological d-dimensional simplices, which in turn are contained
in distinct sets p(C ′j) and p(C ′k). Further, since the p(C ′i)’s are homogeneously triangulated, K
cannot be contained in any additional p(C ′`). Thus indeed

∑n
i=1 |∂p(C ′i)| = 2|S|.

Our second task is to justify the analysis of Algorithm 1 as a randomized discretization proce-
dure. First, assume that the distance between points x, y ∈ Rd is “sufficiently short” as required
for Theorem 1; we will later relax this assumption. Let us justify the claim that if x and y are
assigned to different integer points then the line segment joining them—or rather, its image in the
torus p(xy)—must intersect the boundary between color regions S. Suppose that p(xy) does not
meet S; since p(xy) meets some p(C ′i), it must be in the interior of this p(C ′i) and cannot intersect
any other p(C ′j). Thus all of p(xy) has color i, and so the same of true of xy ⊂ Rd. Thus the only
way x and y could be assigned to different integer points is if x and y were in different integer
translates of C ′i ⊂ Rd. But these translates are isolated from one another by distinct open cubes of
side-length 1, meaning that the segment xy would have to meet some C̃ ′j for j 6= i.

Finally, we eliminate the assumption that the distance ε between x and y be sufficiently short.
From Theorems 1 and 3 in the main document we have that there are universal constants w,W > 0
such that if ε ≤ w then x and y are assigned to different integer points with probability at most
2πε +Wε2. If ε > w, consider evenly spaced points x = x0, x1, x2, . . . , xε/δ = y at distance δ
along xy, where δ ≤ w satisfies ε/δ ∈ N. For each segment xixi+1 we know that xi and xi+1 are
assigned to the same integer point except with probability at most 2πδ +Wδ2. By a union bound,
the probability that x = x0 and y = xε/δ are assigned to different integer points is at most

(ε/δ)(2πδ +Wδ2) = 2πε+Wεδ.

Since this holds for arbitrarily small δ, we conclude that in fact the probability is at most 2πε, as
claimed in the main document.

Analysis of the number of stages Algorithm 1 takes

In this section we view Algorithm 1 as taking place on the torus Td. Following the description of
Algorithm 1 in the main document we state that the algorithm always (i.e., with probability 1) ends
after a finite number of stages. This is a consequence of the Borel–Cantelli Lemma together with
the following result:
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Theorem. For every proper density function f , there exists ε > 0 and M ∈ N such that the
probability of Algorithm 1 taking more than M +m stages is at most (1− ε)m, for each m ∈ N.

Proof. Since f is nonnegative and
∫
Td f = 1, there must exist some positive h0 > 0 such that

G0 := {x ∈ Td : f(x) > h0} has positive measure. Since f is continuous, G0 is open, and so
G0 contains some open cube L with positive measure; say L has side-length δ. Partition Td into
subcubes of positive side-length δ′ ∈ (0, δ/2]. Let K denote any such subcube. We claim that in
each stage of Algorithm 1, the chosen droplet D = cl({x : fZ(x) > H}) has probability at least
ε := (δ/2)d · (h0/‖f‖∞) > 0 of covering K. To see this, first note that H ≤ h0 with probability at
least h0/‖f‖∞. Assuming this, D will be some translate within Td of a set which contains G0 and
hence L. Further, this translate is uniformly random, since Z is uniform on Td and independent of
H . But a uniformly random translate of L has probability at least (δ/2)d of containing K, since L
has side-length δ and K has side-length at most δ/2.

Hence for each subcube K, the probability that Algorithm 1 has not chosen a droplet that
covers it within the first N stages is at most (1 − ε)N . On the other hand, the algorithm must
terminate by the time it has chosen droplets which cover every subcube, since all points of Td must
be colored by this time. Taking a union bound over all (1/δ′)d subcubes, we see that the probability
of Algorithm 1 not terminating after the first M +m stages is at most (1/δ′)d(1 − ε)M+m, which
is at most (1− ε)m if we take M ≥ d ln(1/δ′)/ε.

We now also verify the claim, made in the Discussion section of the article, that with the
property density function given in Theorem 3, Algorithm 1 is likely to take a number of stages
which is exponential in d.

Theorem. There are universal constants 1 < c < C such that Algorithm 1, when run with f(x) =∏d
i=1(2 sin

2(πxi)), takes between cd and Cd stages except with probability at most c−d.

Proof. For the upper bound we can follow the proof of the previous theorem. If we set h0 = 1,
then G0 = {x ∈ Td : f(x) > h0} contains every point in L := (1

4
, 3
4
)d, since 2 sin2(πxi) > 1

whenever 1
4
< xi <

3
4
. Thus we can take δ = 1/2 and δ′ = 1/4. Further, as ‖f‖∞ = 2d, the

quantity ε equals (1/4)d · (1/2d) = 8−d. We may therefore select M = (ln 4)d8d and m = d8d and
conclude that Algorithm 1 terminates after M +m stages except with probability at most e−d, as
needed.

As for the lower bound, we have

Pr[Hi ≤ (1.9)d for some 1 ≤ i ≤ (1.05)d] ≤ (1.05)d · (1.9)
d

2d
< (.999)d.

We will complete the proof by showing that if Hi > (1.9)d for each 1 ≤ i ≤ (1.05)d then the
algorithm does not terminate within the first (1.05)d stages. To see this, note that for Hi > (1.9)d,
the associated droplet Di = cl({x ∈ Td : fZi

(x) > Hi}) is contained within a translate of the set

V := {x ∈ Td :
∏d

i=1(2 sin
2(πxi)) ≥ (1.9)d}.

We claim that every point x ∈ V has at least .96d of its coordinates in the range [1
6
, 5
6
]. For

otherwise, we would have

f(x) ≤ 2.96d · (2 sin2(π/6)).04d = 2.92d < (1.9)d.
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It follows that A is contained within the following union of boxes U :

U =
⋃

I⊂{1,...,d}
|I|=d.96de

[1
6
, 5
6
]I × [0, 1]{1,...,d}\I .

But the volume of U is at most(
d

.96d

)
(4
6
).96d ≤ 2H2(.96)d(2

3
)d ≤ (.79)d,

and so this is an upper bound on the volume of each droplet Di. Thus the algorithm will not have
colored all points of Td within the first (1.05)d stages as (1.05)d · (.79)d < 1.

Proof of Theorem 1

We view Theorem 1 as referring to Algorithm 1 on the torus Td; in this section we will write Di,
Ci, C ′i instead of p(Di), p(Ci), p(C ′i) for simplicity, and we think of f as an analytic probability
density function on the torus. We identify x, y ∈ Rd with their images in the torus and write ` for
the image of the segment joining them, p(xy). We assume the distance ε is at most 1 so that ` has
no self-intersections. We write n for the number of stages the algorithm takes (a random variable);
we know that n is finite with probability 1. Recall that the boundary between color regions, S, is
taken to mean

⋃n
i=1 ∂C

′
i (this is a random set). If N is the random variable denoting the number of

intersections between ` and S, our task is to show∣∣∣∣E[N ]− ε ·
∫
Td

|〈∇f, u〉|
∣∣∣∣ ≤ Wε2

assuming ε ≤ w, where w,W > 0 are universal constants depending only on f .
The desired result is a consequence of the following two lemmas:

Lemma 0.6. Consider D1, the first droplet chosen by Algorithm 1 (in the torus). Let I1 denote the
event that D1 ∩ ` 6= ∅ and let M1 be the random variable #(∂D1 ∩ `). Finally, let κ = E[M1 | I1].
Then ∣∣∣∣κ− ε · ∫

Td

|〈∇f, u〉
∣∣∣∣ ≤ W ′ε2

provided ε ≤ w′, where w′,W ′ > 0 are universal constants depending only on f .

Lemma 0.7. Let κ be as in the previous lemma let ε be sufficiently small so that κ < 1. Then
κ ≤ E[N ] ≤ κ/(1− κ).

Proof. (Lemma 0.6.) First, note that κ is well-defined: it is easy to show Pr[I1] > 0 using the
proof technique of the previous section. Let us now understand how I1 and M1 are determined
by the random variables Z1, H1 ∈ Td. For a given z ∈ Td let us write gz : [0, ε] → R≥0 for the
restriction of the function fz(x) = f(x− z) to the segment ` and write G(z) = ‖gz‖∞. Recall that
D1 = cl({x ∈ Td : fZ1(x) > H1}). Thus

{(z, h) : h < G(z)} ⊆ I1 ⊆ {(z, h) : h ≤ G(z)}
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and note that the event {(z, h) : h = G(z)} has probability 0. As for M1, write P = {s ∈ [0, ε] :
gZ1(s) = H1}. We have

P ⊇ ∂D1 ∩ ` ⊇ P \ {s ∈ [0, ε] : g′Z1
(s) = 0}.

The latter inclusion is because any point x where fZ1(x) = H1 yet x 6∈ ∂D1 must be a local
extremum for fZ1 . Each g′Z1

is real analytic on [0, ε] and hence either has only finitely many zeros
on [0, ε] or is identically zero there; in the latter case gZ1 is constant on [0, ε]. Regardless, we may
conclude that M1 = #P with probability 1. Combining these facts about I1 and M1 we obtain

κ = E[M1 | I1] =
∫
Td

∫ G(z)

0
#{s ∈ [0, ε] : gz(s) = h} dh dz∫

Td G(z) dz
. (3)

The remainder of the proof involves simple estimation. Regarding the denominator of (3), by
Taylor’s theorem we have G(z) ≈ gz(0) = f(z) up to an additive error of at most W1ε, where W1

is the maximum length of f ’s gradient. Since
∫
Td f = 1, we conclude that the denominator in (3)

equals 1 up to±W1ε. Thus we can complete the proof by showing that the numerator of (3) equals
ε
∫
|〈∇f, u〉| up to an additive error of at most W2ε, where W2 depends only on f .
Regarding the numerator of (3), the inner integral equals the vertical distance traveled by a par-

ticle moving along the curve gz; hence it also equals
∫ ε
0
|g′z|. (This equality is a simpler statement

statement than the Crofton formula and would hold even if gz were merely C1.) Using Taylor’s
theorem again, |g′z(h)| ≈ |g′z(0)| up to an additive error of at most W2ε, where W2 is the maximum
magnitude of f ’s Hessian’s eigenvalues. It follows that, up to an additive W2ε

2, the inner integral
equals ε|g′z(0)| = ε|〈∇fz(x), u〉|. It thus remains to observe that∫

Td

|〈∇fz(x), u〉| dz =
∫
Td

|〈∇f, u〉|

as required, since the integral on the left does not depend on x (as expected).

Proof. (Lemma 0.7.) Generalizing the notation from the previous lemma, let Ij denote the event
that Dj ∩ ` 6= ∅ and let Mj be the random variable #(∂Dj ∩ `). Further, let Ej be the event that
` ⊂ int(Dj), and note that

Ej = Ij ∧ (Mj = 0).

We wish to define J to be the least index such that the event EJ occurs. Now it may be that
∪jEj has not occurred by the time the algorithm halts. In this case, it is convenient to think of the
algorithm as continuing until some Ej occurs. Note that nothing changes by doing this, since the
new color regions Cj and regularized color regions C ′j will all be empty. Since Pr[Ij] > 0 and
E[Mj | Ij] = κ < 1, each event Ej has positive probability. Therefore J , the least index such that
EJ occurs, will be finite with probability 1.

Let j1 < j2 < · · · < jK be the stages in which Ij occurs, up until jK = J . We claim that

Mj1 ≤ N ≤
K∑
k=1

Mjk . (4)

Let us first justify N ≥Mj1 . For this we need to show that ∂Dj1 ∩ ` ⊆ ∂C ′j1 ∩ `. Since C ′j1 ⊆ Dj1 ,
it suffices to show that for each point u ∈ ∂Dj1 ∩ ` and each neighborhood U 3 u, there is a point
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of C ′j1 in U . Write G = (D1 ∪ · · · ∪ Dj1−1)
c, an open set. Since j1 is the first stage for which

Ij occurs, we have ` ⊂ G. Thus there is a neighborhood U0 3 u entirely contained in G. Since
u ∈ ∂Dj1 there is a point v ∈ Dj1 in the neighborhood U0∩U . Since v ∈ G it follows that v ∈ Cj1 ,
and hence v ∈ C ′j1 by Lemma 0.2.

Next we justify N ≤
∑K

k=1Mjk . Since Mj 6= 0 implies Ij occurs, we have

K∑
k=1

Mjk =
J∑
j=1

Mj ≥
J∑
j=1

#(∂C ′j ∩ `),

where we used ∂C ′j ⊆ ∂Dj (Lemma 0.3). It remains to show that ` ∩ ∂C ′j = ∅ for all j > J .
By definition of J , we have that ` ⊂ int(DJ). But Lemma 0.3 says that C ′j ⊇ ∂C ′j is disjoint
from int(DJ) for all j > J ; hence indeed ∂C ′j is disjoint from ` for all j > J . This completes the
justification of (4).

Note that the distribution of each random variable Mjk is the same as that of M1 | I1; hence
E[Mjk ] = κ for all k ≤ K. Taking expectations in (4) we conclude

κ ≤ E[N ] ≤ E[K]κ,

where we used Wald’s Theorem. Now K is distributed as the least index for which a sequence of
i.i.d. random variables, Mj1 , . . . ,MjK , is 0. Since Mjk is integer-valued, the probability it is 0 is
at least 1− E[Mjk ] = 1− κ. Hence E[K] ≤ 1/(1− κ), the mean of a geometric random variable
with parameter 1− κ. This completes the proof.

Proof of Theorem 2

To deduce Theorem 2 from Theorem 1, we need a method for computing surface area. We use the
following “Buffon’s Needle Theorem”:

Theorem. Let S be a piecewise smooth surface in the torus Td. “Drop a needle” ` of length
0 < ε < 1 into the torus; i.e., let x ∈ Td be uniformly random, let u be a uniformly random unit
vector, let y = x+ εu, and let ` = xy. If N denotes the number of intersections of ` with S, then

E
`
[N ] = cd · ε · area(S),

where cd is the dimension-dependent constant E[|u1|].

This theorem is stated as (8.11) in Santaló’s textbook (29) in the d = 2 case; the extension to higher
dimensions is discussed on page 274.

Given an execution of Algorithm 1, we can apply Buffon’s Needle Theorem to the resulting S
(which is indeed piecewise-smooth since the sets p(C ′i) are semianalytic and compact) to compute
its area A:

A = E
`
[N ]/(cdε).

Thus including the randomness of Algorithm 1 we deduce

E
S
[A] = E

S
[E
`
[N ]/(cdε)] = E

`
[E
S
[N ]]/(cdε).
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But for each fixed `, Theorem 1 tells us that ES[N ] = ε
∫
|〈∇f, u〉| up to an additive Wε2, where

W is a constant depending only on f . Hence

E
S
[A] = E

`
[
∫
|〈∇f, u〉|]/cd ±Wε,

and so in fact there is exact equality by taking ε → 0. The proof of Theorem 2 is completed by
noting that E`[|〈∇f(z), u〉|] = cd · ‖∇f(z)‖ for any z, and therefore

E
`
[
∫
|〈∇f, u〉|]/cd =

(∫
Td

E
`
[|〈∇f(z), u〉|] dz

)
/cd =

∫
Td

‖∇f‖

as required.

Proof of Theorem 3

Recall that we seek a property density function f : [0, 1)d → R≥0 such that
∫
‖∇f‖ is small and

such that
∫
|〈∇f, u〉| is small for every fixed unit vector u. Let us express f as f = g2 for some

g : [0, 1]d → R. For f to be a property density function, the following properties of g are required:

1.
∫
g2 = 1.

2. g is 0 on the boundary of [0, 1]d.

3. g2 is analytic when extended periodically to all of Rd.

Then we can bound
∫
‖∇f‖ as follows:

∫
‖∇f‖ = 2

∫
|g| · ‖∇g‖ ≤ 2

√∫
g2

√∫
‖∇g‖2 = 2

√∫
‖∇g‖2; (5)

here we used Cauchy–Schwarz as well as property 1 of g. Hence the first part of Theorem 3 in the
main article is implied by the following:

Theorem. For piecewise C1 functions g satisfying properties 1 and 2 above, the minimum possible
value of

∫
‖∇g‖2 is π2d and it occurs when

g(x) =
d∏
i=1

√
2 sin(πxi). (6)

This g also satisfies property 3 above.

Proof. Suppose g : [0, 1]d → R is piecewise C1 and satisfies properties 1 and 2. We expand in
terms of its (multidimensional) Fourier sine series:

g(x) =
∑
ω∈Nd

ĝ(ω)
d∏
i=1

√
2 sin(πωixi), (7)
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where

ĝ(x) =

∫
g(x)

d∏
i=1

√
2 sin(πωixi).

We remark that we have pointwise convergence everywhere in (7). This is because g is piecewise
C1 and because

√
2 sin(πxi) is 0 on the boundary of [0, 1], hence its odd extension to [−1, 1] is

continuous. More crucially, these conditions also justify term-by-term differentiation of g’s sine
series, giving us the expansion

Djg(x) =
∑
ωinNd

πωj ĝ(x) · (
√
2 cos(πωjxj)) ·

∏
i 6=j

√
2 sin(πxi). (8)

Recall that ∫ 1

0

(
√
2 sin(πt))2 dt =

∫ 1

0

(
√
2 cos(πt))2 dt = 1

(this is Parseval’s identity for sine and cosine series). We use this fact when computing
∫
g2 and∫

‖∇g‖2 from (7) and (8):

1 =

∫
g2 =

∑
ω∈Nd

ĝ(ω)2, (9)

∫
‖∇g‖2 =

d∑
i=1

∑
ω∈Nd

π2ω2
i ĝ(ω)

2 = π2
∑
ω∈Nd

ĝ(ω)2‖ω‖2. (10)

Now subject to the condition in (9), it’s clear that (10) is minimized when the Fourier sine spec-
trum of g is concentrated on the frequency ω which minimizes ‖ω‖2, namely ω = (1, 1, . . . , 1), for
which ‖ω‖2 = d. This means that (6) indeed gives the minimizing g, and the minimum value for∫
‖∇g‖2 is π2d.

It remains to verify that this minimizing g indeed satisfies property 3; i.e., that g2 is analytic
when extended periodically to all of Rd. Note that this is not true of g itself, since g’s periodic
extension is g(x) =

∏d
i=1

√
2| sin(πxi)|. But on [0, 1]d we have

g(x)2 =
d∏
i=1

2 sin2(πxi) =
d∏
i=1

(1− cos(2πxi)), (11)

by a trigonometric identity. Since cos(2πxi) is periodic on [0, 1], the above formula also gives the
periodic extension of g2 to Rd. And the function in (11) is evidently an analytic function on Rd.

The following completes the proof of Theorem 3 from the main article:

Theorem. When f = g2 for g as in (6), it holds that
∫
|〈∇f, u〉| ≤ 2π for all unit vectors u ∈ Rd.

Proof. Similar to the deduction of (5), we have∫
|〈∇f, u〉| = 2

∫
|g| · |〈∇g, u〉| ≤ 2

√∫
g2

√∫
〈∇g, u〉2 = 2

√∫
〈∇g, u〉2,
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and hence it suffices to show that

π2 ≥
∫
〈∇g, u〉2 =

d∑
j,k=1

uiuj

∫
Djg Dkg. (12)

In fact, we show that for our particular choice of g we have equality in (12). For the j 6= k terms
in (12) we have

Djg(x) ·Dkg(x) = (
√
2π cos(πxj))

∏
i 6=j

√
2 sin(πxi) · (

√
2π cos(πxk))

∏
i 6=k

√
2 sin(πxi)

= (2π2 sin(πxj) cos(πxj))(2π
2 sin(πxk) cos(πxk))

∏
i 6=j,k

(
√
2 sin(πxi))

2.

As
∫
2π2 sin(πxj) cos(πxj) = 0 (and similarly for k), the j 6= k terms drop out of (12). As for the

k = j terms in (12), with our g we get

d∑
j=1

u2j

∫
(Djg)

2 =
d∑
j=1

u2j

∫
(
√
2π cos(πxj))

2
∏
i 6=j

(
√
2 sin(πxi))

2 dx =
d∑
j=1

u2jπ
2,

using Parseval’s identity. But this equals π2 as claimed, since u is a unit vector.

The surface area of our 3-dimensional tiling bubble

In the main article we described a (non-relaxed) polyhedral bubble B, parameterized by some
t ∈ (0, 1), which tiles R3 periodically according to the integer lattice Z3. We claimed that surface
area of B is given by formula (11) from the main article:

6
(√

3t2 +
√
2t
√
1− 4t+ 6t2 + (1− t)

√
1− 2t+ 3t2

)
.

Here we verify this formula. (The claim that this quantity has minimal value approximately 5.6121
when t ≈ 0.1880 can be checked numerically; we used Maple.)

As noted in the article, the polyhedral bubbleB has 14 facets: 2 opposing base regular hexagons,
6 larger “isosceles” hexagons, and 6 rectangles. Let F be the base hexagon centered at the origin,
let X be the isosceles hexagon “on the bottom”, and let R be the rectangle “on the top”; these may
be described as

F = convex-hull
(
(0,−t, t), (−t, 0, t), (−t, t, 0), (0, t,−t), (t, 0,−t), (t,−t, 0)

)
,

X = convex-hull
(
(0, t,−t), (t, 0,−t), (1− t, t, 0), (1, 1− t, t), (1− t, 1, t), (t, 1− t, 0)

)
,

R = convex-hull
(
(0,−t, t), (−t, 0, t), (0, t, 1− t), (t, 0, 1− t)

)
.

where we listed the vertices in order around the perimeter of each facet. We have

surface-area(B) = 2× area(F ) + 6× area(X) + 6× area(R), (13)
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so it remains to compute the area of F , X , and R. The area of F is 6 times the area of the
equilateral triangle with vertices (0,−t, t), (−t, 0, t), and (0, 0, 0). This triangle has area equal to
half the magnitude of the cross product (0,−t, t)× (−t, 0, t), namely, (

√
3/2)t2. Hence

area(F ) = 6× (
√
3/2)t2 = (3

√
3)t2.

The area of the “isosceles” hexagon X can be computed as twice the area of the trapezoid with
parallel sides joining (0, t,−t) to (t, 0,−t) and (t, 1− t, 0) to (1− t, t, 0). The first of these sides
has length s1 =

√
2t; the second has length s2 =

√
2(1 − 2t). The height of the trapezoid is the

distance between the midpoints of these sides, (t/2, t/2,−t) and (1/2, 1/2, 0); hence the height is
h =

√
2(1/2− t/2)2 + t2 =

√
1/2− t+ 3t2/2. Thus

area(X) = 2× s1 + s2
2

h = (1− t)
√
1− 2t+ 3t2.

Finally, the area of the rectangleR is just the product of the lengths of its two side vectors, (−t, t, 0)
and (t, t, 1− 2t). Hence

area(R) =
√
2t2
√

2t2 + (1− 2t)2 =
√
2t
√
1− 4t+ 6t2.

Substituting the calculation of area(F ), area(X), and area(R) into (13) gives our claimed formula
for the surface area of B.
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Fig. S1. 

Our 3-dimensional bubble before relaxation. This shows our new 3-dimensional tiling 

bubble in its original polyhedral shape, before being relaxed according to Plateau’s rules for 

soap bubbles. 
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Fig. S2 

The relaxed 3-dimensional bubble. This shows (another angle on) the relaxed version of our 

3-dimensional bubble, which tiles R
3
 according to the integer lattice. 



37 

 
 

Fig. S3 

Four copies of the bubble. This shows how four copies of the relaxed 3-dimensional bubble 

fit together in a cubical pattern. 
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Fig. S4 

Eight copies of the bubble. This shows a rotated view of how eight copies of the relaxed 3-

dimensional bubble fit together in a cubical pattern. 


