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Abstract
Suppose we want to minimize a polynomial p(x) = p(x1, . . . , xn), subject to some polynomial
constraints q1(x), . . . , qm(x) ≥ 0, using the Sum-of-Squares (SOS) SDP hierarachy. Assume we
are in the “explicitly bounded” (“Archimedean”) case where the constraints include x2

i ≤ 1 for
all 1 ≤ i ≤ n. It is often stated that the degree-d version of the SOS hierarchy can be solved, to
high accuracy, in time nO(d). Indeed, I myself have stated this in several previous works.

The point of this note is to state (or remind the reader) that this is not obviously true. The
difficulty comes not from the “r” in the Ellipsoid Algorithm, but from the “R”; a priori, we only
know an exponential upper bound on the number of bits needed to write down the SOS solution.
An explicit example is given of a degree-2 SOS program illustrating the difficulty.
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1 Introduction

Suppose you want to approximately minimize a real polynomial p(x) = p(x1, . . . , xn) over the
set K = {x ∈ Rn : q1(x) ≥ 0, . . . , qm(x) ≥ 0}, where q1, . . . , qm are real polynomials. All of
the examples I’ll consider will be quite simple: m will be at most O(n); and, the polynomials
p, q1, . . . , qm will be of degree at most 2 and will have small integer coefficients (magnitude
at most poly(n), say; often at most 2). A good example to keep in mind arises from the
“Balanced Separator” problem in combinatorial optimization. There, you’re given an n-vertex
graph G = (V,E) and the goal is to partition its vertices into two parts, neither of size more
than 2

3n, such that the number of edges crossing between the parts is minimized. Introducing
a variable xi for each vertex, this is equivalent to solving

min
∑
{i,j}∈E

1
4 (xi − xj)2 subject to {x2

i = 1 ∀i, − 1
3n ≤ x1 + · · ·+ xn ≤ 1

3n}.

Here x2
i = 1 can be treated as the two inequalities 1− x2

i ≥ 0, −1 + x2
i ≥ 0. Another good

example arises from the “Maximum Independent Set” problem on G:

max
n∑

i=1
xi subject to {x2

i = xi ∀i, xixj = 0 ∀{i, j} ∈ E}.
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23:2 SOS is not obviously automatizable

A powerful technique for trying to certify that the minimum is at least θ ∈ R is to find a
formal polynomial identity of the form

p(x)− θ = u0(x) + u1(x)q1(x) + · · ·+ um(x)qm(x), (1)

where each uj(x) is SOS; i.e., a sum of squares of polynomials. We will refer to this as
“SOS-proving” or “SOS-certifying” the statement “p(x) ≥ θ”. A variation of this technique
(“SOS-refutation”) is to take qm+1(x) = (θ − ε)− p(x) ≥ 0 as an additional constraint, and
then try to SOS-prove the statement “−1 ≥ 0”. It’s easy to check that we can do this for every
ε > 0 provided that “p(x) ≥ θ” is SOS-provable. So if we aren’t concerned with very small
additive errors — and I won’t be, in this note — the refutation technique is fundamentally
stronger (see, e.g., [22] for further discussion). In any case, I’ll use the “SOS-certifying”
terminology in the rest of the note, since SOS-refutation is just a special case with one extra
constraint.

Suppose we now bound the degree of the uj(x)’s, insisting that deg(u0), deg(u1q1), · · · ≤ d.
Then the question of whether the certifying uj(x)’s exist is equivalent to the feasibility of a
certain semidefinite program (SDP). This is the “degree-d SOS relaxation”, pioneered by
Shor [28], Nesterov [20], Grigoriev and Vorobjov [9], Lasserre [16, 17] and Parrilo [23]. See,
e.g., [18, 3] for many more details.

Under the simple assumptions I mentioned (namely, m ≤ O(n), p and qj ’s having small
coefficients and degree at most 2), the degree-d SOS SDP for (1) can be written down
using N = nO(d) bits. It is then quite commonly stated that feasibility can be tested in
poly(N) time, using, say the Ellipsoid Algorithm [15, 11]. This is sometimes referred to as
the SOS proof system being “automatizable”. Unfortunately, I will now explain why it’s not
clear whether this is truly the case.

1.0.0.1 Approximation, and the explicitly bounded case.

I should emphasize that I am not worried about very small additive errors; i.e., the difference
between testing feasibility and near-feasibility. Indeed, most often the caveat is correctly
added that semidefinite programming only tests feasibility up to a very small additive error.
This caveat is related to the fact that the Ellipsoid Algorithm has a technical requirement, that
if the SDP is feasible then it contains a feasible ball of some small radius r = 2−poly(N) > 0.
Actually, to talk about additive error only makes sense if there is some notion of “scaling”.
To continue keeping things simple, I’ll henceforth assume that the variables are intended to
be in the range [−1, 1]; i.e., that K always includes the constraints x2

i ≤ 1 for 1 ≤ i ≤ n. (It
would actually be fine if we even just had x2

i ≤ 2poly(N) for all i.) This is sometimes called
the “explicitly bounded” or “Archimedean” case, and it’s also known to imply that the SDP
has no duality gap [13].

With this issue discussed, let’s now again pose the question:

1.0.0.2 Question.

Suppose there is a degree-d SOS proof that p(x) ≥ θ subject to constraints x2
1, . . . , x

2
n ≤ 1

and q1(x), . . . , qm(x) ≥ 0, of the form (1). Is there a poly(N)-time algorithm (presumably, a
version of the Ellipsoid Algorithm) that finds SOS polynomials u0(x), . . . , um(x) certifying
p(x) ≥ θ − oN (1)?
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In a joint work with Yuan Zhou [22, Footnote 2], I wrote that the answer is “yes”.1
However I now see that my reasoning was incomplete, and that the answer is unclear. In fact,
I would now guess that the answer is probably “no”. Although it’s true that the technical “r”
parameter in the Ellipsoid Algorithm does not cause real problems in the explicitly bounded
case, there is another technical parameter, “R” — and it does seem to cause real problems.
The Ellipsoid Algorithm is only guaranteed to work correctly in poly(N) time if the SDP’s
feasible region (should it exist) intersects a ball of radius R = 2poly(N). In other words,
algorithmically speaking it’s not enough for an SOS proof to exist; we also need one to
exist in which all the SOS polynomials can be written down with poly(N) bits. However,
in the next section I’ll show a simple, explicitly bounded example where an inequality is
SOS-provable, but any approximate SOS proof requires integers of size roughly 22n . This
example is based on the well-known fact (attributed to J. Ramana in [1] and to Khachiyan
in [25]) that there are SDPs with n variables and O(n) constraints that are feasible, yet for
which every feasible solution requires exponential bit-complexity.

In fact, as pointed out to me by Pablo Parrilo, every SDP-feasibility problem can be
viewed as an SOS-feasibility problem modulo an ideal; thus, if we ignore the insistence on
x2

i ≤ 1 constraints, the above Question is tantamount to simply asking if the Semidefinite
Feasibility Problem (SDFP) is in P. This is a well-known open question; see [25, 24, 30].
The best current upper bound known is PSPACE, by reduction to the existential theory of
the reals.2

2 SOS-provable, but only with huge coefficients

Let’s say we have 2n indeterminates x1, x2, . . . , xn, y1, . . . , yn, and the following con-
straints.

2x1y1 = y1, 2x2y2 = y2, 2x3y3 = y3, 2xnyn = yn,

x2
1 = x1, x2

2 = x2, x2
3 = x3, · · · x2

n = xn,

y2
1 = y2, y2

2 = y3, y2
3 = y4, y2

n = 0.
(K)

(These should be read column-wise. Notice the very last constraint, y2
n = 0, breaks the

pattern.)

At first, I won’t include the constraints x2
i ≤ 1, y2

i ≤ 1; we’ll analyze their inclusion later.

We wish to know whether

pn(x, y) = x1 + x2 + x3 + · · ·+ xn − 2y1

is nonnegative subject to these constraints. It’s easy for the human mathematician to see
the answer is “yes”, because “solving” the constraints shows that they are equivalent to

1 Sorry for talking you into that footnote, Yuan.
2 Even the special case of deciding whether a given rational multivariate polynomial is SOS is not known

to be in P or even in NP. I do not know if the “R” problem is relevant here, but the “r” problem
certainly is; according to Scheiderer [26] there are rational polynomials such as x4 + xy3 + y4 − 3x2yz−
4xy2z + 2x2z2 + xz3 + yz3 + z4 that are SOS but don’t have a rational SOS representation. However in
this work I am less concerned with this kind of example, because I would like to consider the “bounded
case” and allow approximation.

CVIT 2016



23:4 SOS is not obviously automatizable

x1, . . . , xn ∈ {0, 1} and y1 = · · · = yn = 0; hence the minimum of pn(x) is 0. However SOS
algorithms do not first try to “solve” or “simplify” the constraints.3 So we have to see what
happens when SOS algorithms are run “generically” on this input.

For simplicity, let’s consider the degree-2 SOS algorithm. In this case, whether we consider
the constraints as equalities or two-inequalities amounts to the same thing: we get to multiply
them by nonnegative reals. Thus the question becomes:

pn(x, y) =
[
degree-2 SOS] mod (K)? (2)

where the “mod” refers to adding linear multiples of the constraint equations — i.e., adding
a(2x1y1−y1)+b(x2

1−x1)+c(y2
1−y2)+d(2x2y2−y2)+ · · · for some real constants a, b, c, d, . . . .

The answer to this question is also “yes”:

pn(x, y) = (x1−2y1)2+(x2−4y2)2+(x3−16y3)2+(x4−256y4)2+· · ·+(xn−22n−1
yn)2 mod (K).

However, it turns out that every way of expressing pn(x, y) as in (2) has exponential-in-n
bit-complexity. This shows that no matter how exactly we formulate the SOS problem as an
SDP (e.g., whether we look for homogeneous or non-homogeneous sums of squares, whether
we explicitly introduce variables a, b, c, d, . . . to multiply against the constraints or instead
work “mod the ideal”, etc.), no generic polynomial-time SDP-solving algorithm will find a
degree-2 SOS proof of pn(x, y) ≥ 0.4

Before proving this, two comments: First, this example and its proof are nothing more than
a slight rearrangement of the standard example of a feasible SDP whose only feasible solutions
are doubly exponential. I’m only putting an SOS spin on it. Second, this argument doesn’t
really give a negative example for the Question from Section 1, because it’s conceivable that
there is a degree-2 SOS proof with polynomial bit-complexity of “pn(x, y) ≥ −εn”, where
εn = on(1). In Subsections 2.1, 2.2, I’ll show that even this is impossible, even when the
constraints x2

i ≤ 1, y2
i ≤ 1 are added.

So let’s suppose we have an SOS representation of pn(x, y) as in (2):

x1 + x2 + · · ·+ xn − 2y1 =
∑

j

`j(x, y)2 mod (K), (3)

where the `j ’s denote linear polynomials. In fact, the `j ’s must be homogeneous of degree 1.
The reason is that if we set all xi’s and yi’s to 0 in (3), the LHS becomes 0 and the RHS
becomes the sum of the squares of the constant coefficients of the `j ’s. Hence all these
constant coefficients must be 0.

Next, let us express each `j as
∑n

k=1 `jk, where each `jk is of the form ajkxk + bjkyk.
It would of course be incorrect to say that `2

j =
∑n

k=1 `
2
jk — to neglect the cross-terms is

the so-called “freshman’s dream”. Notice, though, that any nonzero cross-term contains a
monomial of the form xkxk′ , xkyk′ , or ykyk′ (k 6= k′), and no such monomial appears on the
left in (3). Furthermore, such monomials are not affected by the “mod (K)”, and thus they

3 Otherwise, the well-known SOS lower bounds for “Knapsack” [8] and “kXOR” [7, 27] would be invalid.
In particular, applying a Gröbner basis algorithm to the constraints is not a good idea in general, since
it has exponential complexity even for zero-dimensional ideals [12]. For example, the size of the Gröbner
basis for the very simple “Max-Bisection” ideal, {x2

1 = · · · = x2
2n = 1, x1 + · · ·+ x2n = 0}, is Θ̃(2n).

4 Note that it doesn’t matter whether we ask the algorithm to find a PSD matrix representing the SOS
polynomial, or the actual sums of squares. Since Cholesky (LDL) decomposition can be done in polyno-
mial time (see Section 4), if there were a rational PSD matrix of polynomial bit-complexity representing
the SOS polynomial, we could extract from it an explicit rational sum-of-squares representation with
polynomial bit-complexity.
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must be canceled via cross-terms arising from other squares `2
j′ in the sum. Hence following

the “freshman’s dream” in
∑

j `
2
j actually gives the same identity in (3). In other words, we

may assume without loss of generality that (3) is of the form

n∑
i=1

∑
j

(aijxi + bijyi)2 =
n∑

i=1
(A2

ix
2
i + 2Mixiyi +B2

i y
2
i ), (4)

where Ai =
√∑

j a
2
ij , Bi =

√∑
j b

2
ij , and Mi =

∑
j aijbij . Cauchy–Schwarz implies

|Mi| =
∑

j

aijbij ≤ AiBi. (5)

For (4) to equal the LHS of (3) mod (K), we’ll need to use all of the equality constraints,
thereby obtaining

n∑
i=1

(A2
ixi +Miyi +B2

i yi+1),

with yn+1 denoting 0. Equating coefficients with LHS(3), we deduce

Ai = 1 ∀i, M1 = −2, Mi+1 = −B2
i ∀1 < i < n.

Combining this with (5), we get Bi ≥ |Mi| for all i, and hence

B1 ≥ 2, Bi+1 ≥ B2
i ∀1 < i < n.

Thus Bn ≥ 22n−1 ; i.e., the sum of the squares of the coefficients on yn in any representation (3)
is at least 22n . So indeed any solution to (2) has exponential bit-complexity.

2.1 Even approximately
I’ll now show that even getting a degree-2 SOS proof of pn(x, y) ≥ −on(1) is impossible
without exponential bit-complexity. So suppose we have

x1 + x2 + · · ·+ xn − 2y1 + ε =
∑

j

`j(x, y)2 mod (K), (6)

where ε ≤ .01, say. Now we can’t deduce that the `j ’s are homogeneous, but the reasoning
concerning the “freshman’s dream” still holds. So the SOS part must be of the form

n∑
i=1

∑
j

(aijxi + bijyi + cij)2 =
n∑

i=1
(A2

ix
2
i + 2Mixiyi +B2

i y
2
i + 2Uixi + 2Viyi + C2

i ),

where we’re now introducing the notation Ui =
∑

j aijcij , Vi =
∑

j bijcij , and Ci =
√∑

j c
2
ij .

Cauchy–Schwarz still implies (5), and also

|Ui| ≤ AiCi, |Vi| ≤ BiCi. (7)

Again, equating coefficients and reducing mod (K) yields

ε =
∑

i

C2
i , A2

i + 2Ui = 1 ∀i, M1 + 2V1 = −2, Mi+1 + 2Vi+1 = −B2
i ∀1 < i < n. (8)

CVIT 2016



23:6 SOS is not obviously automatizable

As ε ≤ .01, the first equation implies Ci ≤ .1 for all i. Thus (7) implies |Ui| ≤ .1Ai,
|Vi| ≤ .1Bi. Substituting these into the above yields the following:

A2
i−.2Ai ≤ 1 =⇒ Ai ≤ 1.2 ∀i; |M1| ≥ 2−.2B1; |Mi+1| ≥ B2

i −.2Bi+1 ∀1 < i < n.

As we still have (5), the first inequality above yields 1.2Bi ≥ |Mi| for all i. Combining this
with the second and third inequalities above gives:

1.4B1 ≥ 2 =⇒ B1 ≥ 1.42;
1.2Bi+1 ≥ |Mi+1| ≥ B2

i − .2Bi+1 =⇒ 1.4Bi+1 ≥ B2
i ∀1 < i < n.

Together, the above yield Bn ≥ 1.4(1.42/1.4)2n−1 , and we again see that exponential bit-
complexity is required for a degree-2 SOS proof of pn(x, y) ≥ −.01 mod (K). (Incidentally,
this also rules out the possibility of “SOS-refuting” the statement pn(x, y) < −on(1) with
degree 2.)

2.2 Even with the “Archimedean” constraints
Finally, it’s easy to see that the conclusion doesn’t change even if we add to (K) the additional
constraints x2

i ≤ 1 and y2
i ≤ 1 for all i, making the domain “Archimedean” (“explicitly

bounded”). We know these constraints are actually redundant, so still pn(x, y) has minimal
value 0. As for the effect on degree-2 SOS proofs, the new constraints allow us to also add
terms Di(1 − x2

i ) and Ei(1 − y2
i ) on the RHS of (6) for nonnegative constants Di, Ei. In

turn, this changes (8) to

ε =
∑

i

(C2
i +Di + Ei), A2

i + 2Ui −Di = 1 ∀i, M1 + 2V1 = −2,

Mi+1 + 2Vi+1 = −B2
i + Ei ∀1 < i < n.

The first constraint implies Di, Ei ≤ .01 for all i. Given Di ≤ .01, we can still deduce
A2

i − .2Ai ≤ 1.01, which still implies Ai ≤ 1.2. The condition Ei ≤ .01 changes |Mi+1| ≥
B2

i − .2Bi+1 to |Mi+1| ≥ B2
i − .2Bi+1 − .01, and hence we only get 1.4Bi+1 ≥ B2

i − .01 for
all 1 < i < n. But this is still enough to conclude Bn is doubly-exponential in n, as before.
In summary:

I Theorem 1. Subject to (K) and x2
i ≤ 1, y2

i ≤ 1, there is a degree-2 SOS proof that
pn(x, y) ≥ 0. However any degree-2 SOS proof even of pn(x, y) ≥ −.01 requires bit-
complexity Θ(2n).

As a further remark, in the “explicitly bounded” case it’s known that there is no SDP
duality gap. So instead of trying to use semidefinite programming to get an SOS proof of
pn(x, y) ≥ −on(1), we might try using it to find a “pseudoexpectation” Ẽ[·] that satisfies
the constraints and minimizes Ẽ[pn(x, y)]. (See [3] for more on this terminology.) In this
dual case, there won’t be any “R problem”, but instead we’ll get an “r problem”. The
Ellipsoid Algorithm might be used to produce an Ẽ[·] that satisfies all the constraints up
to doubly-exponentially small tolerance; e.g., the genuine distribution xi ≡ 0, yi ≡ 2−2i

satisfies all constraints except for y2
n = 0, which it satisfies to doubly-exponentially small

tolerance. As constructors of SDP hierarchy integrality gaps know, the step of massaging
an almost-satisfying solution to an exactly-satisfying solution is often non-obvious and
problem-specific.
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3 Discussion

I think that Theorem 1 gives a particularly simple example of things going wrong. It’s not too
much different from, say, the SOS formulation of Maximum Independent Set. Undoubtedly
there are generic extensions of the SOS method that will handle this one specific example.
For example, the Gröbner basis technique will not have exponential complexity in this case,
and will in fact lead to an efficient degree-2 SOS-proof of pn(x, y) ≥ 0. We also did not
analyze how degree-four SOS behaves on this instance. But the point is that it’s not so easy
to think of generic SOS extensions that will always work in polynomial time. Nor is it easy
to think of additional structural constraints on instances that may help, yet that are not too
restrictive.

An obvious candidate for additional structure is the constraint that every variable is not
just bounded in [−1, 1] but Boolean. This is at least a common scenario in combinatorial
optimization. One still has to be careful though. For example, there is a well-known trick
for converting inequality constraints to equality constraints in SOS: replace qi(x) ≥ 0 with
qi(x) = z2 where z is a new variable. However this new variable wouldn’t be constrained to
be Boolean.

I don’t know whether constraining every variable to be Boolean will cause feasible SOS
SDPs to always have solutions of polynomial bit-complexity. However in the next section
I’ll observe that if these are the only constraints, we are in good shape. Nevertheless, this
seems to me a somewhat rare situation; e.g., it’s not satisfied in the Balanced Separator
or Independent Set examples. And as noted earlier, although you may succeed in SOS-
proving p(x) ≥ θ subject to x2

i = 1 ∀i, it’s always fundamentally better to try SOS-proving
−1 ≥ 0 subject to the extra constraint p(x) ≤ θ − ε. But then you have an additional
constraint-inequality in addition to Booleanness.

4 Automatizing SOS proofs subject only to Booleanness

Here I’ll record the known observation that, in nO(d) time, we can approximately test if
some p(x) is a degree-d sum of squares, modulo {x2

i = 1, ∀i}. (To avoid an extra parameter,
I’ll assume the coefficients of p(x) are rationals expressible with nO(d) bits.) Specifically, if
indeed p(x) is degree-d SOS, then the algorithm will find a degree-d SOS representation of
p(x) + ε for some 0 ≤ ε ≤ 2−NO(d) . I emphasize that there is no mathematical innovation in
this section; all the details herein are known.

The typical way to formulate this problem as an SDP is to consider real symmetric
matrices X with rows and columns indexed by the N = nO(d) subsets S ⊆ [n], |S| ≤ d/2.
Then p(x) is degree-d SOS mod {x2

i = 1, ∀i} if and only if

∃X � 0 such that
∑

|S|,|T |≤d/2
SMT =U

XS,T = pU ∀ U ⊆ [n], |U | ≤ d, (SDP)

where pU denotes the coefficient of p(x) on
∏

i∈U xi. (We may assume without loss of
generality that p(x) is multilinear.) This SDP feasibility problem can be written down using
poly(N) bits, and we want to argue it can be decided (approximately) in poly(N) time.

The key observation is that the U = ∅ constraint of (SDP) is precisely “tr(X) = p∅”. The
bit-complexity of p∅ is poly(N), by assumption (in general, it’s bounded by the input size).
Thus any feasible PSD solution X has the sum of its eigenvalues at most poly(N), and hence
squared Frobenius norm at most poly(N). This means we can take the “R” in the Ellipsoid

CVIT 2016



23:8 SOS is not obviously automatizable

Algorithm to be poly(N), overcoming the main difficulty described in this note. (Note that
we could still run in poly(N) time even if R were 2poly(N).)

We now recall how to take care of the “r” for the Ellipsoid Algorithm. The linear
constraints in (SDP) obviously preclude any feasible region from containing a ball of positive
radius. So we relax the “= pU” equality constraints to two-sided “∈ [pU − ε′, pU + ε′]”
inequalities, where ε′ = 2−Nc for some constant c. (Note that this preserves feasibility,
and the bit-complexity of ε′ is just poly(N).) Actually, we’re still not done because of
the additional symmetry requirement XS,T = XT,S , but we can take care of this as in the
original paper by Grötschel, Lovász, and Schrijver [10] by not introducing variables for the
below-diagonal elements of X, treating them implicitly. We can now take the Ellipsoid
Algorithm’s “r” parameter to be 2−poly(N), as needed.

Finally, we have a poly(N)-time “strong separation oracle” for the relaxed form of (SDP).
This follows immediately from the fact that testing whether a matrix of rationals is PSD
can be done exactly in polynomial time, as noted in [10].5 Thus the Ellipsoid Method, as
described thoroughly in [11], will find a solution to the relaxed form of (SDP) in poly(N)
time, provided one exists.

By performing LDL> decomposition on the solution (see, e.g., [21]), in poly(N) time
we get an exact SOS representation p′(x) =

∑n
j=1 cjrj(x)2, where p′(x) is a polynomial

with the property that |pU − p′U | ≤ 2−Nc for all U . (Here cj and the coefficients of rj(x)
are rational, and the degree of each rj(x) is at most d/2.) Writing ∆(x) = p′(x) − p(x),
we have a degree-d SOS representation of p(x) + ∆(x), where ∆ has degree at most d and
all coefficients bounded by ε. Now for each monomial δxU in ∆(x), we can get a degree-d
SOS proof of δxU ≤ |δ| by using either xU = −1 + 1

2 (xV + xW )2 or xU = 1− 1
2 (xV − xW )2,

where V and W partition U into two sets, each of cardinality at most d/2. Adding these
in for each of the roughly N2 potential monomials of ∆(x) therefore gives a degree-2d SOS
representation of p(x) + ε for ε / N22−Nc , and we can make the constant c as large as we
want.

5 Conclusion

Several papers have shown that certain “hard-seeming instances” of combinatorial optim-
ization problems — like Unique-Games or Balanced-Separator — are not hard for the
constant-degree SOS proof system. Optimistically, this might be evidence that there are
better polynomial-time approximation algorithms for the problems than those currently
known. But in the end, if we want to show that certain approximation tasks are literally in P
in the Turing machine model, we’ll have to treat some of the details discussed in this paper.

A good open problem is to establish useful conditions under which this treatment can be
done automatically. E.g., does the Question from Section 1 have a positive answer if the
constraints x2

i ≤ 1 are upgraded to x2
i = 1?

5 I’ve found that the correct proof of this fact appears extremely rarely in the literature; indeed, I’ve only
seen it in the work of Grötschel, Lovász, and Schrijver [10, 11] and in a survey article by Lovász [19]. You
certainly can’t just “compute the eigenvalues of the matrix and check if they’re nonnegative”. It’s also a
somewhat common misconception [29, 4] that X is PSD if and only if its N leading principal minors are
nonnegative. The correct proof from [19] involves seeing whether the Cholesky (LDL) decomposition
on X succeeds. (This is essentially the same as the proof in [10], which involves finding the image of X,
then checking if X is strictly positive definite on the image by testing if the leading principal minors
are strictly positive.) In turn, this relies on the old but nonobvious [6] fact due to Edmonds [5] that
Gaussian Elimination is in polynomial time.
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Regarding errata for my own works: In [22, 14] we showed that certain explicit families
of combinatorial optimization instances have low-degree SOS analyses. I did not yet verify
that these SOS proofs also have the necessarily small bit-complexity that would allow an
efficient algorithm to (approximately) find them. However we didn’t formally claim that
these algorithms exist; the theorems in these works were just evidence that SOS might be
successful on all instances. In [2] we claimed that SOS algorithms could efficiently refute
random instances of certain CSPs with certain parameters. I’m confident that this statement
is true, but rather than prove it I’ll simply say that the SOS-ability here is essentially just a
side comment. It’s clear that there is some efficient algorithm: all that’s ultimately needed
for refutation is the certification that a certain symmetric matrix A has ‖A‖ ≤ O(small).
This is equivalent to O(small) · I −A � 0, and as noted in Section 4, testing semidefiniteness
of rational matrices can be done efficiently.
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