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Abstract

This work is concerned with the proof-complexity of certifying that optimization problems do not
have good solutions. Specifically we consider bounded-degree “Sum of Squares” (SOS) proofs, a pow-
erful algebraic proof system introduced in 1999 by Grigoriev and Vorobjov. Work of Shor, Lasserre, and
Parrilo shows that this proof system is automatizable using semidefinite programming (SDP), meaning
that any n-variable degree-d proof can be found in time nO(d). Furthermore, the SDP is dual to the
well-known Lasserre SDP hierarchy, meaning that the “d/2-round Lasserre value” of an optimization
problem is equal to the best bound provable using a degree-d SOS proof. These ideas were exploited
in a recent paper by Barak et al. (STOC 2012) which shows that the known “hard instances” for the
Unique-Games problem are in fact solved close to optimally by a constant level of the Lasserre SDP
hierarchy.

We continue the study of the power of SOS proofs in the context of difficult optimization problems.
In particular, we show that the Balanced-Separator integrality gap instances proposed by Devanur et al.
can have their optimal value certified by a degree-4 SOS proof. The key ingredient is an SOS proof
of the KKL Theorem. We also investigate the extent to which the Khot–Vishnoi Max-Cut integrality
gap instances can have their optimum value certified by an SOS proof. We show they can be certified to
within a factor .952 (> .878) using a constant-degree proof. These investigations also raise an interesting
mathematical question: is there a constant-degree SOS proof of the Central Limit Theorem?
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1 Introduction

In a typical constraint satisfaction problem (CSP) we are given a set of variables V to be assigned values
from some finite domain Ω (often {0, 1}); we are also given a set of local constraints specifying how various
small groups of variables should be assigned. The task is to find an assignment to the variables which
minimizes the number of unsatisfied constraints. Sometimes there may also be inviolable global constraints;
for example, that no domain element is assigned to too many variables. A canonical example is the Balanced-
Separator problem: given is a graph (V,E) with n vertices which must be partitioned into two “balanced”
parts, each of cardinality at least n/3; the goal is to minimize the number of edges crossing the cut.

For such problems, certifying that there is a good solution is in NP; for example, given a graph we
can efficiently prove that it has a balanced cut of size at most α simply by exhibiting the cut. But what
about the opposite problem, certifying that every balanced cut has size at least β? Since this problem is
coNP-complete it is unlikely that there are efficient certifications for every instance; however there may be
efficient certifications for specific instances or classes of instances. For example, if we consider a linear
programming relaxation of a given Balanced-Separator instance and then exhibit a dual solution of value β,
this constitutes a proof that every balanced cut in the instance has size at least β.

The question is also interesting for problems in P, especially when the complexity of the proof system
is taken into account. For example, given an unsatisfiable instance Ax = b of the 3Lin2 CSP (meaning
the equations are over F2 and each involves at most 3 variables), there is always an easy-to-verify proof
of unsatisfiability: a vector y such that y>A = 0 but y>b 6= 0. However finding such a proof requires a
rather specialized algorithm, Gaussian Elimination. By contrast, unsatisfiable instances of the 2Lin2 CSP
have simple proofs of unsatisfiability (an unsatisfiable “cycle” of variables) which can be found by a very
generic “local consistency” algorithm. Indeed, one can view this algorithm as searching for all constant-
width Resolution proofs of unsatisfiability; the same algorithm works for any “bounded-width CSP” [2].

Positivstellensatz proofs. In this work we consider a certain strong proof system for CSPs. It belongs to
the well-studied class of algebraic proof systems, in which local constraints are represented by polynomial
equations. To handle global constraints we also allow for polynomial inequalities; this is also natural in
the context of the linear programs and semidefinite programs used by optimization algorithms. To give
an example, suppose we have a Balanced-Separator instance (V,E) with V = [n]. We introduce a real
variable Xi for each i ∈ V . Now to say that the optimum value of the instance is larger than β is precisely
equivalent to saying the following system of polynomial equations and inequalities (each of degree at most 2)
is infeasible:

A =
{
X2
i = Xi ∀i ∈ [n]

}
∪
{ n∑
i=1

Xi ≥ n/3,
n∑
i=1

Xi ≤ 2n/3
}
∪
{ ∑

(i,j)∈E
(Xi −Xj)

2 ≤ β
}
.

Here the first set of equations enforces Xi ∈ {0, 1}, encoding a cut. The second set of inequalities enforces
that the cut is balanced. The final inequality states that at most β edges cross the cut. Now what would
constitute a proof that A has no real solutions; i.e., that the Balanced-Separator value exceeds β? One
certificate would be a formal identity in the polynomial ringR[X1, . . . , Xn] of the following form:

−1 =
n∑
i=1

Pi ·(X2
i −Xi)+U ·(

n∑
i=1

Xi−n/3)+U ′ ·(2n/3−
n∑
i=1

Xi)+V ·(β−
∑

(i,j)∈E
(Xi−Xj)

2)+W, (1)

whereP1, . . . , Pn ∈ R[X1, . . . , Xn] and whereU,U ′, V,W ∈ R[X1, . . . , Xn] are each sums of squares (SOS),
meaning of the form Q2

1 +Q2
2 + · · ·+Q2

m for some Q1, . . . , Qm ∈ R[X1, . . . , Xn]. Such an identity would
indeed imply that A is infeasible, since substituting any solution of A into (1) would give a nonnegative
right-hand side.
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In fact, a certain refinement [49] of the Positivstellensatz of Krivine [32] and Stengle [55] guarantees
that if A is infeasible then there is always a proof of the form (1). A generic “SOS proof system” based on
the Positivstellensatz was introduced around 1999 by Grigoriev and Vorobjov [19]. As with most algebraic
proof systems it can be difficult to place an a priori upper bound on the degree of the polynomials needed
for a proof; if we insist on a fixed degree bound d then the proof system becomes incomplete. On the other
hand this incomplete system has the advantage of being efficiently automatizable, meaning that if a proof
exists it can be found in time poly(nd). The algorithm uses semidefinite programming and follows from the
work of Shor [54], Nesterov [44], Lasserre [33, 34] and Parrilo [47]. See Section 1.1 for more details.

The power of SOS. Most of the previous relevant work focused on showing SOS-degree (equivalently,
Lasserre-round) lower bounds. However a recent paper by Barak, Brandão, Harrow, Kelner, Steurer, and
Zhou [3] brought to light the importance of SOS degree upper bounds for the study CSP approximability.
That paper considered the strong integrality gap instances known for the notorious Unique-Games CSP [50,
27, 4] and (essentially) showed that degree-8 SOS proofs can certify that the instances have value close to 0.
Thus the generic poly(n)-time “level-4 Lasserre SDP” algorithm refutes their having large optimal value.
This is despite the fact that the instances still have value near 1 after Θ(log log n)1/4 rounds of the rather
powerful Sherali–Adams SDP hierarchy [50].

The purpose of the present paper is to further explore the relevance of SOS proof complexity to the
algorithmic theory of CSP approximation. Specifically, we show that the Devanur–Khot-Saket–Vishnoi [12]
instances of Balanced-Separator can have their optimal value well-certified by a degree-4 SOS proof. We
also investigate the problem of SOS proofs for the Khot–Vishnoi (KV) [29] instances of Max-Cut and raise
an intriguing mathematical question: is there an SOS proof of the Central Limit Theorem?

1.1 History

We review here some of what is known about SOS proofs and SDP hierarchies; for a much more thorough
discussion we recommend the monograph by Laurent [38].

Throughout this work we write X = (X1, . . . , Xn) for a sequence of indeterminates, with the number n
being clear from context. We say that the real multivariate polynomial u ∈ R[X] is sum of squares (SOS) if
u = s2

1+· · ·+s2
m for some s1, . . . , sm ∈ R[X]. Any SOS polynomial is nonnegative on all ofRn; however,

as Hilbert [21] showed in 1888 there exist nonnegative polynomials which are not SOS. The first explicit
example,X2

1X
2
2 (X2

1 +X2
2−3)+1, was given by Motzkin in the mid-’60s. Hilbert’s 17th Problem [22] asks

whether every nonnegative polynomial q is the quotient of SOS polynomials; this was solved affirmatively
by Artin [1].

Artin’s result also follows from the Positivstellensatz, first proved (essentially) by Krivine [32] and then
later independently by Stengle [55]. Interestingly, Stengle’s motivation was the duality theory of linear
programming. We state a special case appearing in [6]:

Positivstellensatz. Let A be a finite set of real multivariate polynomial equations and inequalities,

A = {p1 = 0, p2 = 0, . . . , pm = 0} ∪ {q1 ≥ 0, q2 ≥ 0, . . . , qm′ ≥ 0},

with each pi, qj ∈ R[X]. Then A is infeasible if and only if there exist polynomials r1, . . . , rm and SOS
polynomials (uJ)J⊆[m′] inR[X] such that

− 1 =

m∑
i=1

ripi +
∑

J⊆[m′]

uJ
∏
j∈J

qj . (2)
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One interesting further special case occurs whenA contains only equations, not inequalities. In this case
the Positivstellensatz says that p1, . . . , pm have no common real roots if and only if the ideal they generate
contains 1 + u for some SOS u. This special case arises whenever one wants to show that a CSP (with
no global constraints) is not perfectly satisfiable. (As noted by Shor [53], one can actually reduce to this
case in general by replacing q ≥ 0 with q − Y 2 = 0, where Y is a new indeterminate; indeed, by further
substitutions of new indeterminates one can reduce to the case where all equations are quadratic.)

Proof complexity. Extending the Nullstellensatz proof system of Beame, Impagliazzo, Krajı́ček, Pitassi,
and Pudlák [5], Grigoriev and Vorobjov [19] proposed in 1999 the natural propositional proof system based
on the Positivstellensatz. The complexity measure is degree: i.e., maxi,J{ripi, uJ

∏
j∈J qj} in (2). This is

a static proof system, meaning that one simply exhibits the refutation (2).1 Grigoriev and Vorobjov showed
that refuting the single equation

(1−X0X1)2 + (X2
1 −X2)2 + (X2

2 −X3)2 + · · ·+ (X2
n−1 −Xn)2 +X2

n = 0

requires a proof of degree at least 2n−1. Relying on some ideas from the work of Buss, Grigoriev, Impagli-
azzo, and Pitassi [9], Grigoriev showed in 1999 [15, 17] that refuting any unsatisfiable system of F2-linear
equations requires degree at least D/2, where D is the least width needed to give a Resolution refutation.
As a consequence he showed that degree Ω(n) is necessary to prove Tseitin tautologies on n-vertex regular
expander graphs and to prove that the graph Kn has no perfect matching when n is odd. Grigoriev also
subsequently [16] showed that the “r-Knapsack tautology” requires a proof of degree n + 1 for any real
r ∈ (n2 −

1
2 ,

n
2 + 1

2); this is the infeasibility of the system

{X2
1 = X1, . . . , X

2
n = Xn, X1 + · · ·+Xn = r},

for r a non-integer. For more on algebraic proof complexity with inequalities, see e.g. [48, 18].

Optimization. We now discuss algorithmic issues. Let u ∈ R[x] be a real n-variate polynomial of de-
gree d. A most basic optimization problem is to determine infx∈Rn u(x). Roughly speaking, this is equiva-
lent (by binary search) to the problem of deciding whether u(x) ≥ α; further, there is no loss of generality
in assuming α = 0. Unfortunately, the problem of deciding whether u ≥ 0 is NP-hard as soon as d ≥ 4.
In 1987, Shor [54] pioneered the idea of replacing the condition u ≥ 0 with the stronger condition that u
is SOS, and noted that this can be tested in poly(nd) by solving an SDP feasibility problem. (Here we
ignore the issue of precision in solving SDPs; see Section 2 for more details.) Shor made the connection to
Hilbert’s 17th Problem but not to Positivstellensatz.

Beginning in 2000, Parrilo [47] and Lasserre [33, 34] independently published several works taking the
idea further. Parrilo emphasized the viewpoint of Positivstellensatz as a refutation system for polynomial
inequalities, while Lasserre focused significant attention on the dual SDP “problem of moments”. Both
proposed using poly(nd)-time SDPs to search for degree-d Positivstellensatz refutations, for larger and
larger d.

Lasserre also proposed using certain variant forms of Positivstellensatz. For example, if one is opti-
mizing a polynomial on a compact semialgebraic set K then one can use SDP optimization directly (as
opposed to using binary search and feasibility testing), thanks to a version of the Positivstellensatz due to
Schmüdgen [51]. Furthermore, Putinar [49] showed that if K is explicitly compact (“Archimedean”) —
say, one of its defining inequalities is

∑n
i=1X

2
i ≤ B — then the Positivstellensatz certificates (2) only

1Grigoriev and Vorobjov also proposed a certain dynamic version of the proof system, analogous to Polynomial Calculus [11].
Indeed, [39] had earlier proposed a dynamic proof system based on Positivstellensatz. We do not discuss dynamic proof systems
further in this paper.
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require uJ ’s with |J | ≤ 1. (Both [51, 49] contained a bug, fixed in [57].) On one hand, in practice there is
rarely any harm in adding an inequality

∑n
i=1X

2
i ≤ B with largeB; on the other hand, eliminating the uJ ’s

with |J | > 1 may cause the refutation degree to increase. In any case, Lasserre focused on the polynomial
optimization problem

inf{p(x) | x ∈ K}, K = {x ∈ Rn | q1(x) ≥ 0, . . . , qm(x) ≥ 0}, (3)

and proposed a hierarchy of SDP relaxations for increasing d,

inf{L(p) | L : R[X]d → R is a linear map, L(1) = 1, and L(u), L(uqi) ≥ 0 for all SOS u}, (4)

where R[X]d denotes the ring R[X] restricted to polynomials of degree at most d. This is a relaxation
because one can take L to be the evaluation map p 7→ p(x∗) for any optimal solution x∗. (In [3], L(p) is
written as Ẽ[p] and termed the “pseudo-expectation” of p.) We refer to (4) as the degree-d Lasserre moment
SDP; when d is even it is also known as the level-d/2 (or sometimes d/2− 1) Lasserre hierarchy SDP. The
semidefinite dual of (4) is

sup{β | p− β = u0 + u1q1 + · · ·+ umqm for some SOS u0, . . . , um with deg(u0), deg(uiqi) ≤ d}, (5)

which we refer to as the degree-d Lasserre SOS SDP. (One can also allow for polynomial equalities in the
description of K, either by replacing them with pairs of inequalities, extending the SDP formulations as
in (2), or by factoring out by the ideal they generate [37].) Assuming K is explicitly compact, Lasserre [34]
showed that the SOS SDP’s value tends to the optimal value as the degree increases. If furthermore K has
a nonempty interior then there is no duality gap between (4) and (5). Generally K has empty interior for
discrete optimization problems (e.g., if it includes the constraints X2

i = Xi); however, the duality gap issue
is algorithmically irrelevant since the Ellipsoid Algorithm can’t distinguish an empty interior from a small
interior anyway. This issue is discussed briefly in Section 2.

Prior optimization results. We conclude by mentioning some known positive and negative results for the
Lasserre moment SDP relaxation. Around 2001, Laurent [36] considered the Lasserre hierarchy for Max-
Cut with negative edge weights allowed (i.e., the 2Lin2 CSP). She showed that degree-2 Lasserre optimally
solves all instances whose underlying graph is a tree, and conversely that there are non-tree instances which
degree-2 Lasserre does not solve optimally. She similarly characterized the underlying graphs which degree-
4 Lasserre solves optimally: the K5-minor-free graphs. Around 2002, Laurent [35] showed that when n is
odd, the degree-(n−1) moment SDP relaxation for the Max-Cut problem onKn still has value n2

4 (whereas
the optimum value is n2−1

4 ); i.e., the dn+1
2 e

th level of the Lasserre hierarchy is required to obtain the optimal
solution. Around 2005, Cheung [10] considered the Knapsack problem and showed that in the optimization
problem

inf{X1 + · · ·+Xn | X2
i = Xi ∀i, X1 + · · ·+Xn ≥ r},

if r = r(n) ∈ (0, 1) is sufficiently small then the Lasserre moment SDP does not find the optimal solution
(namely, 1) until the degree is “maximal”, namely 2n + 2. In 2008, Schoenbeck essentially rediscovered
Grigoriev’s result on F2-linear equations from the moment side, showing that there are n-variable 3Lin2
instance of value 1

2 +on(1) for which the degree-Ω(n) Lasserre moment relaxation still has value 1. Building
on this work, Tulsiani [56] showed degree-Ω(n) integrality gap instances matching the known NP-hardness
factors for a number of CSPs. Guruswami, Sinop, and Zhou [20] showed a degree-Ω(n) integrality gap
instance for the Balanced-Separator problem with factor α > 1, even though this level of NP-hardness
is not known. They also showed a degree-Ω(n) integrality gap instance for the Max-Cut problem with
factor 17

18 . Around 2010, Karlin, Mathieu, and Nguyen [24] showed that the degree-2t Lasserre moment
relaxation achieves approximation ratio 1− 1

t for the general Knapsack problem.
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1.2 Our contributions: an outline of this work

Continuing a line of work begun in [3], we investigate whether the O(1)-degree SOS SDP hierarchy can
solve known integrality gap instances of problems that are essentially harder than Unique-Games. We focus
on two such problems: Balanced-Separator and Max-Cut.

Balanced-Separator. Building on work of Khot–Vishnoi [29] and Krauthgamer–Rabani [31], Devanur,
Khot, Saket, and Vishnoi (DKSV) [12] gave a family of n-vertex Balanced-Separator instances in which the
optimal balanced separator cuts an Ω( log logn

logn ) fraction of the edges, but for which the SDP with triangle
inequalities has value O( 1

logn). This is a factor-Θ(log log n) integrality gap. Raghavendra and Steurer [50]
show that a factor-(log log n)Ω(1) gap persists for these instances even for (log log n)Ω(1) rounds of the “LH
SDP hierarchy”. The key to analyzing the optimum value of their instances is the KKL Theorem [23] from
analysis of boolean functions. In this work we give a degree-4 SOS proof of the KKL Theorem. In turn, this
is used in Section 6 to show the following:

Theorem. The degree-4 SOS relaxation for the DKSV Balanced-Separator instances has value Ω( log logn
logn ).

Thus just the level-2 Lasserre SDP hierarchy (essentially) solves the DSKV Balanced-Separator instances.

Max-Cut. Khot and -Vishnoi [29] gave integrality gap instances for the Max-Cut problem, by composing
their Unique-Games instances with the Khot–Kindler–Mossel–O’Donnell [26] Max-Cut reduction. When
this reduction is executed with parameter ρ ∈ (−1, 0), one obtains n-vertex Max-Cut instances with optimal
value at most (arccos ρ)/π + on(1), but for which the SDP with triangle inequalities has value 1

2 −
1
2ρ −

on(1). In particular, for ρ = ρ0 ≈ −.689, this is a factor-.878 integrality gap (worst possible, by the
Goemans–Williamson algorithm [14]). Khot and Saket [28] subsequently showed that this gap persists even
for (log log log n)Ω(1) rounds of the Sherali–Adams SDP hierarchy. The key to analyzing the optimum value
of the KV Max-Cut instances is the Majority Is Stablest Theorem from [42]. This theorem is in turn based
on an Invariance Principle for nonlinear forms of random variables, together with a Gaussian isoperimetric
theorem of Borell [8]. We are able to “SOS-ize” Kindler–O’Donnell’s recent new proof of the latter [30]
(it essentially only needs the triangle inequality); however we do not know how to prove the former for
non-polynomial functionals. Thus we currently do not know how to give an SOS proof of the Majority Is
Stablest Theorem.

We turn then to a weaker version of Majority Is Stablest known as the “ 2
π Theorem”, proved in [25].

This proof relies on just the Central Limit Theorem (more precisely, the Berry–Esseen Theorem). We are
able to give an SOS proof of the CLT Theorem, although not with a fixed constant degree bound. Rather,
we are able to prove it up to an additive error of δ using an SOS proof of degree Õ(1/δ2). Using this, as
well as the SOS analysis of the KV Unique-Games instances due to [3], we are able to show the following
in Section 8:

Theorem. There exists a universal constant C ∈ N+ such that the degree-C SOS relaxation for the KV
Max-Cut instances (with parameter ρ0 ≈ −.689) is within a factor .952 (> .878) of the optimum value. For
general ρ, the relaxation is within a factor of .931 of the optimum.

A guide to the SOS proofs. Since even conceptually simple SOS proofs can sometimes look a little
complicated, we give here a brief guide to our SOS proofs. Both of our results rely on the hypercontractive
inequality for {−1, 1}n due to [7]. Barak et al. [3] already gave a degree-4 SOS proof of one form of this
inequality. The only trick is that to evade the use of Cauchy–Schwarz in the standard proofs one needs
to move to a “two-function” version of the inequality. We need SOS proofs of a few other forms of the
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hypercontractive inequality, which we provide in Section 4. Though the notation is heavy, the proofs are
essentially straightforward. On the other hand, we remark that we currently do not have an SOS proof of the
2→ 2k version of the inequality with sharp constant for any integer k > 2.

In KKL, hypercontractivity is used to prove the “Small-Set Expansion (SSE) in the Noisy Hypercube”
theorem. The usual proof of this is very short, but presents a couple of challenges for SOS proofs. One
challenge is the use of Hölder’s inequality with exponents 4, 4

3 . We are able to get around the fractional
powers with a couple of tricks, one which is the following: if one needs to SOS-prove, say, p ≤ √q for
some nonnegative polynomial q, instead prove that p ≤ ε

2 + 1
2ε · q for all real ε > 0. The other challenge

is that the standard proof of the SSE Theorem involves division by a polynomial quantity, something we
don’t see how to do with SOS proofs. Still, we manage to give a short SOS-proof of a weaker version of the
SSE Theorem which is good enough for our purposes. We remark that our proof is somewhat similar to the
Barak et al. analysis of the KV Unique-Games instances; however because we work on the SOS side rather
than the moment side, we need a few extra tricks. Finally, to obtain the Balanced-Separator result, the last
step is to SOS-prove the KKL Theorem. Even the statement of the theorem involves logarithms, which does
not look SOS-friendly. We get around this with a variant of the square-root trick just mentioned.

Moving to our proof of the 2
π Theorem, as stated, we need an SOS-proof of the Central Limit Theorem

(with error bounds). Alternately phrased, we need an Invariance Theorem for linear forms of polynomials,
specifically with the absolute-value functional. Although this functional is not polynomial, we can replace
the required statement with something that is: namely, when a1, . . . , an are indeterminates assumed to
satisfy a2

1 + · · ·+ a2
n = 1, we want to upper-bound

E
x∼{−1,1}n

[f(x)(a1x1 + · · ·+ anxn)] ≤
√

2

π
+ e,

where e is an error term involving
∑

i a
4
i , which is small when all ai’s are small. Our SOS proof of this

is somewhat technically difficult. To proceed, we upper-bound the absolute-value functional to within δ
by a polynomial Q of high degree; using real approximation theory, Õ(1/δ2) suffices. Then we prove an
Invariance Theorem for linear forms with a high-degree functional; this is feasible for linear forms (but
not higher-degree ones) because of their subgaussian tails. Unlike in the usual proof of the Berry–Esseen
Theorem, we need the hypercontractive inequality for high norms here.

2 The SOS proof system and the SDP hierarchy for optimization

In this section we give formal details of the Positivstellensatz proof system of Grigoriev–Vorobjov and the
associated hierarchy of SDP algorithms due to Lasserre and Parrilo. For brevity we refer to these as “SOS
proofs and hierarchies”.

Definition 2.1. Let X = (X1, . . . , Xn) be indeterminates, let q1, . . . , qm, r1, . . . , rm′ ∈ R[X], and let

A = {q1 ≥ 0, . . . , qm ≥ 0} ∪ {r1 = 0, . . . , rm′ = 0}.

Given p ∈ R[X] we say that A SOS-proves p ≥ 0 with degree k, written

A `k p ≥ 0,

whenever

∃v1, . . . , vm′ and SOS u0, u1, . . . , um such that

p = u0 +

m∑
i=1

uiqi +
m′∑
j=1

vjrj , with deg(u0),deg(uiqi),deg(vjrj) ≤ k ∀i ∈ [m], j ∈ [m′].
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(Recall we say that w ∈ R[X] is SOS if w = s2
1 + · · ·+ s2

t for some si ∈ R[X].)
We say that A has a degree-k SOS refutation if

A `k −1 ≥ 0.

Finally, when A = ∅ we will sometimes use the shorthand

`k p ≥ 0,

which simply means that p is SOS and deg(p) ≤ k.

Our notation here is suggestive of a dynamic proof system, and indeed it can be helpful to think of SOS
proofs this way. For example, adding deductions is not a problem:

Fact 2.2. If
A `k p ≥ 0, A′ `k′ p′ ≥ 0,

then
A ∪A′ `max(k,k′) p+ p′ ≥ 0.

However using transitivity or multiplying together two deductions leads to a worse degree bound when
applied generically:

Fact 2.3. Suppose that
A `k q′1 ≥ 0, . . . , q′` ≥ 0

(meaning A `k q′i ≥ 0 for each i ∈ [`]). Further suppose that

{q′1 ≥ 0, . . . , q′` ≥ 0} `k′ p ≥ 0.

Then
A `k+k′ p ≥ 0.

Fact 2.4. Let A = {q1 ≥ 0, . . . , qm ≥ 0}, A′ = {q′1 ≥ 0, . . . , q′m′ ≥ 0}. If

A `k p ≥ 0, A′ `k′ p′ ≥ 0,

then
A ∪A′ ∪ (A ·A′) `k+k′ p · p′ ≥ 0,

where A ·A′ denotes {qi · q′j ≥ 0 : i ∈ [m], j ∈ [m′]}.

Notice that in the above fact we had to explicitly include product inequalities into the hypotheses. This
is because in general we do not have {q ≥ 0, q′ ≥ 0} ` qq′ ≥ 0. For example:

Proposition 2.5. InR[Y,Z], for every k ∈ N ,

{Y ≥ 0, Z ≥ 0} 6`k Y Z ≥ 0.

Indeed, for all real β ≥ 0,
{Y ≥ 0, Z ≥ 0} 6`k Y Z ≥ −β.
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Proof. Suppose to the contrary that

Y Z + β = u1 + Y u2 + Zu3 (6)

for some SOS u1, u2, u3 ∈ R[Y,Z]. We think of the right-hand side of (6) as being in R[Z][Y ]. Let
kj be the degree of Y in uj for j = 1, 2, 3; note that k1, k3 are even and k2 is odd. Suppose first that
max{k1, k2, k3} = k1. Then we must in fact have k3 = k1 in order to cancel the Y k1 term in the RHS
of (6). But in fact such a cancelation is impossible because the coefficient on Y k1 in u1 will be an even-
degree polynomial in Z, but the coefficient on Y k3 in u3 will be an odd-degree polynomial in Z. The
remaining possibility is that k2 > k1, k3. In this case we must have k2 = 1, or else the degree of Y on the
RHS of (6) will exceed 1. Thus u1, u2, u3 depend only on Z; but then (6) forces u2 = Z, contradicting the
fact that u2 is SOS.

For more simple examples of the weakness of SOS proofs, see [41, Chap. 2.7]. Here is another one: we
cannot directly prove Y 4 ≥ 1⇒ Y 2 ≥ 1.

Proposition 2.6. InR[Y ], for every k ∈ N ,

Y 4 ≥ 1 6`k Y 2 ≥ 1.

Proof. Suppose to the contrary that one can write

Y 2 − 1 = u+ v(Y 4 − 1) (7)

with u, v ∈ R[Y ] being SOS. One cannot have v = 0 because Y 2 − 1 is not SOS (consider that 02 − 1 is
negative). Therefore the highest-degree term in v is of the form cY 2j for some real c > 0 and some integer j.
This gives a term cY 2j+4 on the right-hand side of (7) which must be canceled by u. This is impossible if
deg(u) = 2j + 4 because the leading coefficient on u will be positive too. So deg(u) > 2j + 4, but then its
highest-degree term remains uncanceled on the right-hand side of (7).

On the other hand, one can easily SOS-prove Y 4 ≤ 1 ⇒ Y 2 ≤ 1; see Fact 3.3. Furthermore, one can
Y 4 ≥ 1⇒ Y 2 ≥ 1 by contradiction:

Proposition 2.7. InR[Y ], for any ε > 0 we have

{Y 4 ≥ 1, Y 2 ≤ 1− ε} `4 −1 ≥ 0.

Proof. We leave the case of ε ≥ 1 to the reader. Otherwise, write c = 1− ε ∈ (0, 1); then

−1 = 1
1−c2 (c+ Y 2)(c− Y 2) + 1

1−c2 (Y 4 − 1)

and both 1
1−c2 (c+ Y 2) and 1

1−c2 are SOS.

These observations reveal that when fixing the degree of SOS proofs, the SDP simplifications explored
by Lasserre (see Section 1.1) can be damaging: it may help to multiply together constraint inequalities, and
direct optimization can be worse than binary searching for refutations. Thus we propose that for optimiza-
tions problems, one should generically use the SDP hierarchy proposed by Parrilo. I.e., for

inf{p(x) | x ∈ K}, K = {x ∈ Rn | q1(x) ≥ 0, . . . , qm(x) ≥ 0},

one should assume that K is “explicitly compact” (say, contains the inequality X2
1 + · · ·+X2

n ≤ 2poly(n))
and then use binary search to (approximately) find the largest β for which

{qi1qi2 · · · qit ≥ 0 : deg(qi1qi2 · · · · · qit) ≤ d} ∪ {p ≤ β} `d −1 ≥ 0. (8)

This can be carried out in poly(nd,m) time using the Ellipsoid Algorithm.2

2Determining (8) amounts to checking if a matrix of variables can be PSD while satisfying some equalities. One relaxes the
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3 A few simple SOS preliminaries

A well-known basic fact (following from the Fundamental Theorem of Algebra) is that every nonnegative
univariate polynomial is SOS:

Fact 3.1. Suppose p ∈ R[X1] is a univariate real polynomial such that p(t) ≥ 0 for all real t. Then p is
SOS; i.e., `deg(p) p ≥ 0.

The following related result is credited in [38] to Fekete and Markov–Lukács, with reference also to [41]:

Fact 3.2. Suppose p ∈ R[Y ] is a univariate real polynomial of degree k such that p(t) ≥ 0 for all real a ≤
t ≤ b.
If k is odd then

Y ≥ a, b ≥ Y `k p ≥ 0.

If k is even then
(b− Y )(Y − a) ≥ 0 `k p ≥ 0.

We now give some additional simple SOS proofs:

Fact 3.3. Y 2 ≤ 1 `2 Y ≤ 1, Y ≥ −1.

Proof. The first follows from 1 − Y = 1
2(1 − Y )2 + 1

2(1 − Y 2). The second follows by replacing Y
by −Y .

Fact 3.4. {Y ≤ 1, Y ≥ −1} `3 Y
2 ≤ 1.

Proof. 1− Y 2 = 1
2(1 + Y )2(1− Y ) + 1

2(1− Y )2(1 + Y ).

We will need an SOS proof of the fact that Y,Z ∈ {−1, 1} ⇒ Y−Z
2 ∈ {−1, 0, 1}:

Fact 3.5. Y 2 = 1, Z2 = 1 `3 (Y−Z2 ) = (Y−Z2 )3.

Proof. (Y−Z2 )− (Y−Z2 )3 = (3
8Z −

1
8Y )(Y 2 − 1) + (1

8Z −
3
8Y )(Z2 − 1).

Fact 3.6. Suppose that A `k Y ≥ −1, Y ≤ 1 and that B `` Z ≥ W,Z ≥ −W . Then A ∪ B `k+` Z ≥
YW .

Proof. Z − YW = 1
2(Z −W )(1 + Y ) + 1

2(Z +W )(1− Y ).

Fact 3.7. Suppose thatA `k Y ′ ≥ Y andB `` Z ′ ≥ Z. Further supposeA′ `k′ Y ′ ≥ 0 andB′ ``′ Z ≥ 0.
Then A ∪B ∪A′ ∪B′ `max{k+`′,k′+`} Y

′Z ′ ≥ Y Z.

Proof. This follows from Y ′Z ′ − Y Z = Y ′(Z ′ − Z) + Z(Y ′ − Y ).

We now move to Hölder-type inequalities.

Fact 3.8. `2 Y Z ≤ 1
2Y

2 + 1
2Z

2.

Proof. 1
2Y

2 + 1
2Z

2 − Y Z = 1
2(Y − Z)2.

More generally, by replacing Y with ε1/2Y and Z with ε−1/2Z, we obtain:

equalities to two-sided inequalities with some small tolerance δ = 2−poly(n), allowing one to run Ellipsoid. If Ellipsoid returns
a feasible solution it can be made truly PSD at the expense of adding slightly more slack in the equalities. By virtue of the
compactness, this can adjusted to give a valid SOS proof of −1 + δ′ ≥ 0.
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Fact 3.9. `2 Y Z ≤ ε
2Y

2 + 1
2εZ

2 for any real ε > 0.

We would also like Young’s inequality for conjugate Hölder exponents (4
3 , 4), but stating it needs a trick:

Fact 3.10. `4 Y
3Z ≤ 3

4Y
4 + 1

4Z
4.

Proof. 3
4Y

4 + 1
4Z

4 − Y 3Z = (3
4Y

2 + 1
2Y Z + 1

4Z
2)(Y − Z)2

= (1
2Y

2 + 1
4(Y + Z)2)(Y − Z)2 = 1

2Y
2(Y − Z)2 + 1

4(Y 2 − Z2)2.

By replacing Y with ε1/4Y and Z with ε−3/4Z, we obtain:

Fact 3.11. `4 Y
3Z ≤ 3ε

4 Y
4 + 1

4ε3
Z4 for any real ε > 0.

Fact 3.12. If A `k Y ≥ 0 and A `k Y ≤ Z, then A `2k Y
2 ≤ Z2.

Proof. We can deduce A `k Z ≥ 0 and therefore A `k Z + Y ≥ 0 using Fact 2.2. The result now follows
from Fact 2.4 applied to Z2 − Y 2 = (Z + Y )(Z − Y ).

Fact 3.13. `2 avgi∈[n][X
2
i ] ≥ (avgi∈[n][Xi])

2.

Proof. avgi∈[n][X
2
i ]− (avgi∈[n][Xi])

2 = avgi,j∈[n][
1
2(Xi −Xj)

2].

4 SOS proofs of hypercontractivity

In the remainder of the work we will use some standard notions from analysis of Boolean functions; see,
e.g., [46]. All of our main results will require SOS proofs of the well-known hypercontractivity theorems
on {−1, 1}n, first proved by Bonami [7]. To state them, recall that any function f : {−1, 1}n → R can be
viewed as a multilinear polynomial,

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi, where f̂(S) = E
x∼{−1,1}n

[f(x)
∏
i∈S
xi]. (9)

Then for ρ ∈ R, the linear operator Tρ is defined by mapping the above function to

Tρf(x) =
∑
S⊆[n]

ρ|S|f̂(S)
∏
i∈S

xi.

Now the p = 2, q ≥ 2 cases of hypercontractivity can be stated as follows:

Theorem 4.1. Let f : {−1, 1}n → R. Then for any real q ≥ 2,

E
x∼{−1,1}n

[|T 1√
q−1

f(x)|q] ≤ E
x∼{−1,1}n

[f(x)2]q/2.

Theorem 4.2. Let f : {−1, 1}n → R have degree at most k. Then for any real q ≥ 2,

E
x∼{−1,1}n

[|f(x)|q] ≤ (q − 1)(q/2)k · E
x∼{−1,1}n

[f(x)2]q/2.

Note that Theorem 4.2 follows immediately from Theorem 4.1 in case f is homogeneous of degree k.
It is also known that Theorem 4.1 and Theorem 4.2 (even its homogeneous version) are “equivalent”, in the
sense that one can be derived from the other using various analytic tricks.
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As mentioned, we would ideally like to give SOS proofs of these theorems. In order to even state the
theorems as polynomial inequalities it is required that q be an even integer. For example, when q = 4 we
may try to SOS-prove

E
x∼{−1,1}n

[(T 1√
q−1

f(x))4] ≤ E
x∼{−1,1}n

[f(x)2]2.

The meaning of this is that the 2n Fourier coefficients of f are the indeterminates; i.e., we work over the
ringR[f̂(∅), f̂({1}), . . . , f̂([n])] and would like to show that

E
x∼{−1,1}n

[f(x)2]2 − E
x∼{−1,1}n

[(T 1√
q−1

f(x))4]

is a sum of squares of polynomials over the indeterminates f̂(S). Sometimes we will instead use the 2n

indeterminates “f(x)” for x ∈ {−1, 1}n — note that this is completely equivalent because the f(x)’s are
homogeneous linear forms in the f̂(S)’s and vice versa; see (9).

When q is an even integer it is well known that Theorem 4.2 has a much simpler, “almost combinatorial”
proof. For example, Bonami’s original paper proved the homogeneous version of Theorem 4.2 for even
integer q using nothing more “analytic” than absolute values and Cauchy–Schwarz. (Her proof even obtains
a slightly sharper constant than (q − 1)(q/2)k.) The inductive proof of Theorem 4.2 for q = 4 presented
in [42] is simpler still, using only Cauchy–Schwarz. It is not hard to check that these remarks also apply to
Theorem 4.1.

Nevertheless, it’s not completely trivial to obtain SOS proofs of Theorems 4.1 and 4.2 when q is an
even integer, simply because the Cauchy–Schwarz inequality, E[fg] ≤

√
E[f2]

√
E[g2], has square-roots

in it. The natural substitute is the inequality E[fg] ≤ 1
2 E[f2] + 1

2 E[g2] (see Fact 3.8). However fitting this
into the known proof of, say, the q = 4 case of Theorem 4.2 seems to require an extra trick: moving to a
“two-function” version of the statement. This is what was done by Barak et al. in [3], wherein the following
was shown:

Theorem 4.3. (SOS proof of the two-function, q = 4 version of Theorem 4.2, [3].)
Let n, k1, k2 ∈ N. For each j = 1, 2 and each S ⊆ [n] of cardinality at most kj , introduce an

indeterminate f̂j(S). For x ∈ {−1, 1}n, let fj(x) denote
∑

S f̂j(S)
∏
i∈S xi. Then

`4 E
x∼{−1,1}n

[f1(x)2f2(x)2] ≤ 3k1+k2 · E
x∼{−1,1}n

[f1(x)2] · E
x∼{−1,1}n

[f2(x)2].

Here we similarly give an SOS proof of the q = 4 case of Theorem 4.1. We will need a more general
statement which allows for some of the ±1 random variables to be replaced by Gaussians; this idea is also
from [42].

Theorem 4.4. (SOS proof of the two-function, q = 4 version of Theorem 4.1.)
Let n ∈ N. For each j = 1, 2 and each S ⊆ [n], introduce an indeterminate f̂j(S). For each z =

(z1, . . . , zn) ∈ Rn, let

fj(z) =
∑
S⊆[n]

f̂j(S)
∏
i∈S

zi, T 1√
3
fj(z) =

∑
S⊆[n]

( 1√
3
)|S|f̂j(S)

∏
i∈S

zi;

these are homogeneous linear polynomials in the indeterminates. Let z = (z1, . . . ,zn) be a random vector
in which the components zi are independent and satisfy E[zi] = E[z3

i ] = 0, E[z2
i ] = 1, E[z4

i ] ≤ 9. (For
example, Rademachers and standard Gaussians qualify.) Then

`4 E
z

[(T 1√
3
f1(z))2 · (T 1√

3
f2(z))2] ≤ E

z
[f1(z)2] ·E

z
[f2(z)2].

In particular,
`4 E

z
[(T 1√

3
f1(z))4] ≤ E

z
[f1(z)2]2.
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Proof. The proof of the theorem is by induction on n. For n = 0 we need to show `4 f̂1(∅)2f̂2(∅)2 ≤
f̂1(∅)2f̂2(∅)2, which is trivial. For general n ≥ 1 and (z1, . . . , zn) ∈ Rn we can express fj(z1, . . . , zn) =
zndj(z

′) + ej(z
′), where z′ ∈ Rn−1 denotes (z1, . . . , zn−1),

dj(z
′) =

∑
S3n

f̂j(S)
∏

i∈S\{n}
zi,

ej(z
′) =

∑
S 63n

f̂j(S)
∏
i∈S

zi.

Now

E
x∼{−1,1}n

[(T 1√
3
f1(z))2 · (T 1√

3
f2(z))2]

= E
z

[(
1√
3
zn · T 1√

3
d1(z′) + T 1√

3
e1(z′)

)2(
1√
3
zn · T 1√

3
d2(z′) + T 1√

3
e2(z′)

)2
]

= E
z

[(
1
3z

2
n(Td1)2 + 2√

3
zn(Td1)(Te1) + (Te1)2

)(
1
3z

2
n(Td2)2 + 2√

3
zn(Td2)(Te2) + (Te2)2

)]
,

where we introduced the shorthand (Tdj) for T 1√
3
dj(z

′) (and similarly for ej). We continue by expanding

the product and using linearity of expectation, E[zn] = E[z3
n] = 0, E[z2

n] = 1; thus the above equals

1
9 E[z4

n]E
z′

[(Td1)2(Td2)2] + 1
3 Ez′

[(Td1)2(Te2)2] + 1
3 Ez′

[(Td2)2(Te1)2] + E
z′

[(Te1)2(Te2)2]

+ 4
3 Ez′

[(Td1)(Te2) · (Td2)(Te1)].

Using Fact 3.8 we have

`4
4
3 Ez′

[(Td1)(Te2) · (Td2)(Te1)] ≤ 2
3 Ez′

[(Td1)2(Te2)2] + 2
3 Ez′

[(Td2)2(Te1)2].

By our assumption E[z2
n] ≤ 9 we have `4

1
9 E[z4

n]Ez′ [(Td1)2(Td2)2] ≤ Ez′ [(Td1)2(Td2)2]; here we are
using the fact that Ez′ [(Td1)2(Td2)2] is SOS.3 Thus we have shown

`4 E
z

[(T 1√
3
f1(z))2 · (T 1√

3
f2(z))2]

≤ E
z′

[(Td1)2(Td2)2] + E
z′

[(Td1)2(Te2)2] + E
z′

[(Td2)2(Te1)2] + E
z′

[(Te1)2(Tde)
2].

We use induction on each of the four terms above and deduce

`4 E
z

[(T 1√
3
f1(z))2 · (T 1√

3
f2(z))2]

≤ E
z′

[d1(z′)2]E
z′

[d2(z′)2] + E
z′

[d1(z′)2]E
z′

[e2(z′)2] + E
z′

[d2(z′)2]E
z′

[e1(z′)2] + E
z′

[e1(z′)2]E
z′

[e2(z′)2]

= E
z′

[d1(z′)2 + e1(z′)2] ·E
z′

[d1(z′)2 + e1(z′)2]

But it is easily verified that Ez[fj(z)2] = Ez′ [dj(z
′)2 + ej(z

′)2], completing the induction.

3When z′ is a discrete random vector this is obvious. In the general case, note that the coefficients of the polynomial in question
are finite mixed moments of z′. By Carathéodory’s convex hull theorem we can match any finite number of moments of z′ using
some discrete random vector z′′, thereby reducing SOS-verification to the discrete case. We will use this observation in the sequel
without additional comment.
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From this we can deduce Theorem 4.3 with the more general class of random variables. (Alternately, it
is not hard to obtain the following by generalizing the proof in [3].)

Corollary 4.5. Theorem 4.3 also holds with the more general type of random vector z from Theorem 4.4 in
place of x ∼ {−1, 1}n.

Proof. Begin by defining

ĝj(S) =

{
0 if |S| > kj ,√

3
|S|
f̂j(S) if |S| ≤ kj

for j = 1, 2, and then applying Theorem 4.4 to g1, g2. This yields

`4 E
z

[f1(z)2f2(z)2] ≤ E
z

[T√3f1(z)2] ·E
z

[T√3f2(z)2].

By a standard computation we have

E
z

[T√3fj(z)2] =

kj∑
i=0

3i ·W=i
j , where W=i

j =
∑
|S|=i

f̂j(S)2, j = 1, 2.

We also have Ez[fj(z)2] =
∑kj

i=0W
=i
j . Thus to complete the proof it remains to show

`4

( k1∑
i=0

3i ·W=i
1

)( k2∑
i′=0

3i
′ ·W=i′

2

)
≤
( k1∑
i=0

3k1 ·W=i
1

)( k2∑
i′=0

3k2 ·W=i′
2

)
.

But after distributing out both products, this is immediate from

`4 3i+i
′ ·W=i

1 ·W=i′
2 ≤ 3k1+k2 ·W=i

1 ·W=i′
2

for each 0 ≤ i ≤ k1, 0 ≤ i′ ≤ k2.

We would also like to have an SOS proof of Theorem 4.2 for even integers q > 4. We content ourselves
with the following slightly weaker result, the proof of which follows easily from Corollary 4.5:

Theorem 4.6. (SOS proof of a weakened version of the two-function, even integer q case of Theorem 4.2.)
Let n, r, k1, k2, . . . , k2r ∈ N. For each j ∈ [2r] and each S ⊆ [n] of cardinality at most kj , introduce

an indeterminate f̂j(S). Let f1(z), . . . , f2r(z) and random vector z be as in Theorem 4.4. Then

`2r+1 E
z

 2r∏
j=1

fj(z)2

 ≤ 3r(k1+···+k2r ) ·
2r∏
j=1

E
z

[fj(z)2].

Proof. The proof is by induction on r. The r = 0 case is trivial. For r ≥ 1, define

F1(z) =

2r−1∏
j=1

fj(z), F2(z) =

2r∏
j=2r−1+1

fj(z).

Note these are degree-2r−1 in the indeterminates. Further, one may express

F1(z) =
∑
T⊆[n]

|T |≤k1+···+k2r−1

f̂(T )
∏
i∈T

zi,
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where f̂(T ) denotes a degree-2r−1 polynomial in the indeterminates, and similarly for F2. Thus we may
apply Corollary 4.5 to F1 and F2 and deduce

`2r+1 E
z

 2r∏
j=1

fj(z)2

 ≤ 3k1+···+k2r ·E
z

2r−1∏
j=1

fj(z)2

 ·E
z

 2r∏
j=2r−1+1

fj(z)2

 . (10)

By induction we have

`2r E
z

2r−1∏
j=1

fj(z)2

 ≤ 3(r−1)(k1+···+k2r−1 ) ·
2r−1∏
j=1

E
z

[fj(z)2],

`2r E
z

 2r∏
j=2r−1+1

fj(z)2

 ≤ 3(r−1)(k2r−1+1+···+k2r ) ·
2r∏

j=2r−1+1

E
z

[fj(z)2],

and all four expressions above are SOS of degree 2r. Combining these via Fact 3.7 yields

`2r+1 E
z

2r−1∏
j=1

fj(x)2

·E
z

 2r∏
j=2r−1+1

fj(x)2

 ≤ 3(r−1)(k1+···+k2r )·
2r−1∏
j=1

E
z

[fj(z)2]·
2r∏

j=2r−1+1

E
z

[fj(z)2],

which taken together with (10) completes the induction.

Corollary 4.7. (SOS proof of a weakened version of the even integer q case of Theorem 4.2.)
Let n, k ∈ N. For each S ⊆ [n] of cardinality at most k, introduce an indeterminate f̂(S). Let f(z) and

random vector z be as in Theorem 4.4. Then for any even integer q ≥ 2,

`2dlog2 qe E
z

[f(z)q] ≤
√

3
(qdlog2 qe−q)k ·E

z
[fj(z)2]q/2.

Proof. Take r = dlog2 qe − 1, f1 = · · · = fq/2 = f , fq/2+1 = · · · = f2r = 1 in Theorem 4.6.

5 SOS proofs of SSE in the Noisy Hypercube, and KKL

5.1 An SOS proof of small-set expansion in the noisy hypercube

The following well-known theorem concerning small-set expansion (SSE) in the hypercube is due to Kahn,
Kalai, and Linial [23]:

Noisy Hypercube SSE Theorem. Let f : {−1, 1}n → {−1, 0, 1}. Then for any 0 ≤ ρ ≤ 1,

Stabρ[f ] ≤ E[f2]2/(1+ρ),

where Stabρ[f ] denotes 〈f,Tρf〉 = ‖T√ρf‖22.

Proof.
Stabρ[f ] = ‖T√ρf‖22 ≤ ‖f‖21+ρ = E[|f |1+ρ]2/(1+ρ) = E[f2]2/(1+ρ),

where the inequality is hypercontractivity (the Hölder dual of Theorem 4.1).
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We remark on two special cases:

Stab 1
3
[f ] ≤ E[f2]3/2, Stab 1√

3
[f ] ≤ E[f2]3−

√
3 ≤ E[f2]1.2679.

We do not know how to obtain a low-degree SOS proof of either inequality. Nevertheless, we come close in
the following theorem. We remark again that its proofs bears some similarities to the Barak et al. analysis
of the KV Unique-games instances [3].

Theorem 5.1. (SOS proof of a weakened special case of the Noisy Hypercube SSE Theorem.)
Let n ∈ N, and for each x ∈ {−1, 1}n let f(x) be an indeterminate. Then for any real ε > 0,

{f(x) = f(x)3 : ∀x} `4 Stab 1√
3
[f ] ≤ E

x
[f(x)2]

(
3ε
4 + 1

4ε3
E[f(x)2]

)
.

Remark 5.2. From this we can deduce that if f : {−1, 1}n → {−1, 0, 1} is an ordinary function then
Stab 1√

3
[f ] ≤ E[f(x)2]5/4, by taking ε = E[f(x)2]1/4.

Proof. From Fact 3.11 (and the trivial fact Y = Y 3 `4 Y p
2 = Y 4) we may easily deduce

Y = Y 3 `4 Y Z ≤ 3ε
4 Y

2 + 1
4ε3
Z4.

Since Stab 1√
3
[f ] = Ex[f(x)T 1√

3
f(x)] we may therefore obtain

{f(x) = f(x)3 : ∀x} `4 Stab 1√
3
[f ] ≤ 3ε

4 E
x

[f(x)2] + 1
4ε3

E
x

[T 1√
3
f(x)4].

The result now follows from Theorem 4.4.

5.2 The KKL Theorem

With the Noisy Hypercube SSE Theorem in hand, we can now give an SOS proof of the famed KKL Theo-
rem [23], the key ingredient in the analysis of the DKSV Balanced-Separator instances.

Theorem 5.3. (SOS proof of the KKL Theorem.)
Let n ∈ N, and for each x ∈ {−1, 1}n let f(x) be an indeterminate. Let τ be an indeterminate. Then

for any reals ε > 0, K ≥ 2,

{f(x)2 = 1 : ∀x} ∪ {Inf i[f ] ≤ τ : ∀i ∈ [n]} `4 Var[f ] ≤
(√

3
K−1

K

(
3ε
4 + τ

4ε3

)
+ 1

K

)
I[f ].

Remark 5.4. From this we can deduce that if f : {−1, 1}n → {−1, 1} is an ordinary function and τ ≤ 1
9

is a positive real such that Inf i[f ] ≤ τ for all i, then I[f ] ≥ 1
2 log9( 9

τ ) · Var[f ]. This follows by taking
ε = τ1/4 and K = log9( 9

τ ).

Proof. We may apply Theorem 5.1 to each of the derivative “functions”

Dif(x) =
f(x(i 7→1))− f(x(i 7→−1))

2
.

(These are actually sets of indeterminates, each of which is a homogeneous linear form in the indetermi-
nates f(x).) We can obtain the hypothesis Dif(x) = Dif(x)3 from the hypotheses f(x)2 = 1 via Fact 3.5.
We deduce

{f(x)2 = 1 : ∀x} `4 Stab 1√
3
[Dif ] ≤ E

x
[Dif(x)2]

(
3ε
4 + 1

4ε3
E[Dif(x)2]

)
⇔

∑
S3i

( 1√
3
)|S|−1f̂(S)2 ≤ Inf i[f ]

(
3ε
4 + 1

4ε3
Inf i[f ]

)
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for each i ∈ [n]. Further, since Inf i[f ] is SOS and of degree 2 we have

Inf i[f ] ≤ τ `4 Inf i[f ] · ( τ
4ε3
− 1

4ε3
Inf i[f ]) ≥ 0.

Adding the previous two deductions yields

{f(x)2 = 1 : ∀x} ∪ {Inf i[f ] ≤ τ : ∀i ∈ [n]} `4

∑
S3i

( 1√
3
)|S|−1f̂(S)2 ≤ Inf i[f ] ·

(
3ε
4 + τ

4ε3

)
for each i. Now adding over all i ∈ [n] gives

{f(x)2 = 1 : ∀x} ∪ {Inf i[f ] ≤ τ : ∀i ∈ [n]} `4

∑
S⊆[n]

|S|( 1√
3
)|S|−1f̂(S)2 ≤

(
3ε
4 + τ

4ε3

)
I[f ].

Moreover, since s( 1√
3
)s−1 ≥ K( 1√

3
)K−1 − s( 1√

3
)K−1 holds for all s ∈ [n] (consider s ≤ K and s ≥ K),

it follows that

`2

∑
S⊆[n]

|S|( 1√
3
)|S|−1f̂(S)2 ≥ K√

3
K−1 Var[f ]− 1√

3
K−1 I[f ].

By combining the previous two deductions and doing some rearranging, we obtain

{f(x)2 = 1 : ∀x} ∪ {Inf i[f ] ≤ τ : ∀i ∈ [n]} `4 Var[f ] ≤
(√

3
K−1

K

(
3ε
4 + τ

4ε3

)
+ 1

K

)
I[f ],

as claimed.

We can now easily deduce (an SOS proof of) the fact that if f : {−1, 1}n → {−1, 1} has constant
variance and all its influences equal then its total influence is Ω(log n). For the application to Balanced-
Separator, we will in fact need a slightly more technical statement:

Corollary 5.5. (SOS proof of KKL for equal-influence functions.)
Let n ≥ 81 be an integer and for each x ∈ {−1, 1}n let f(x) be an indeterminate. Define

A = {f(x)2 = 1 : ∀x} ∪ {Inf i[f ] ≤ τ : ∀i ∈ [n]}
∪ {Inf i[f ] = Inf j [f ] : ∀i, j ∈ [n]} ∪ {Var[f ] ≥ 3

4} ∪ {I[f ] ≤ 1
20 lnn}.

Then A `4 −1 ≥ 0.
In fact, the result holds even if we change the equal-influences assumption {Inf i[f ] = Inf j [f ] : ∀i, j ∈

[n]} to the weaker pair of assumptions {Inf i[f ] = Inf j [f ] : ∀i, j ≤ n/2} and {Inf i′ [f ] = Inf j′ [f ] :
∀i′, j′ > n/2} (assume n even).

Proof. We will prove the “in fact” statement, assuming n is even. (The reader will see why the original
statement is also true when n is odd.) Define I(1)[f ] =

∑
i≤n/2 Inf i[f ] and I(2)[f ] =

∑
i>n/2 Inf i[f ], so

I[f ] = I(1)[f ] + I(2)[f ]. Note that

{Inf i[f ] = Inf j [f ] : ∀i, j ≤ n/2} `2 Inf i[f ] = 2
nI

(1)[f ]

for each i ≤ n/2, and similarly for i > n/2. Since I(1)[f ], I(2)[f ] are themselves SOS and of degree 2, we
get

{Inf i[f ] = Inf j [f ] : ∀i, j ≤ n/2 & ∀i, j > n/2} `2 Inf i[f ] ≤ 2
nI

(1)[f ] + 2
nI

(2)[f ] = 2
nI[f ]
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for each i ∈ [n]. (Note that with the basic equal-influences assumption we can obtain the even stronger
conclusion Inf i[f ] = 1

nI[f ] for each i ∈ [n].) We can now employ Theorem 5.3, replacing τ by 2
nI[f ].

Using also Var[f ] ≥ 3
4 , we obtain that for any reals ε > 0, K ≥ 2,

A \ {I[f ] ≤ 1
20 lnn} `4

3
4 ≤

(√
3
K−1

K

(
3ε
4 + 1

2ε3n
I[f ]

)
+ 1

K

)
I[f ].

Select K = log9(9n1/2) and ε = n−1/8 to obtain

A \ {I[f ] ≤ 1
20 lnn} `4

3
4 ≤

(
n1/8

log9(9n1/2)

(
3
4n
−1/8 + 1

2n
−5/8I[f ]

)
+ 1

log9(9n1/2)

)
I[f ]

= 7
2 log9(81n)I[f ] + 1

n1/2 log9(81n)
I[f ]2. (11)

We now employ I[f ] ≤ 1
20 lnn. Since I[f ] is SOS and of degree 2 we also have

I[f ] ≤ 1
20 lnn `4 I[f ]2 ≤ 1

400 ln2 n.

Substituting this into (11) yields

A `4
3
4 ≤

7
2 log9(81n) ·

1
20 lnn+ 1

n1/2 log9(81n)
· 1

400 ln2 n ≤ 7
20 ln(3) ≤ 0.4,

whence A `4 −1 ≥ 0.

6 Analysis of the DKSV Balanced-Separator instances

We recall the Balanced-Separator problem: Given is an undirected multigraph G = (V,E). It is required
to find a cut S ⊆ V with 1

3 ≤
|S|
|V | ≤

2
3 so as to minimize E(S,S)

|E| . The natural polynomial optimization
formulation has an indeterminate f(x) for each vertex x ∈ V :

min 1
|E|

∑
(x,y)∈E

(
f(x)−f(y)

2

)2

s.t. f(x)2 = 1 ∀x ∈ V,(
1
|V |

∑
x∈V

f(x)

)2

≤ 1
9 .

Thus as discussed in Section 2, the degree-4 SOS SDP hierarchy will use binary search to compute the
largest β for which

{f(x)2 = 1 : ∀x ∈ V } ∪
{(

1
|V |

∑
x∈V

f(x)

)2

≤ 1
9

}
∪
{

1
|E|

∑
(x,y)∈E

(
f(x)−f(y)

2

)2
≤ β

}
`4 −1 ≥ 0.

The DKSV instances. We now recall the DKSV Balanced-Separator instances [12]. The instances G =
(V,E) = (VN , EN ) are parameterized by primes N . Let F = {−1, 1}N × {−1, 1}N , thought of as
the 2N -dimensional hypercube graph. Let σ act on elements (x, y) ∈ F by cyclic rotation of both halves:
σ(x, y) = (xN , x1, . . . , xN−1, yN , y1, . . . , yN−1). The elements σ, σ2, . . . , σN = id form a group acting on
F , partitioning it into orbitsO1, . . . ,Om; 4 of these orbits have cardinality 1 and the remaining (22N−4)/N
have cardinality N . A cardinality-N orbitO is called “nearly orthogonal” if for all distinct (x, y), (x′, y′) ∈
O it holds that |〈(x, y), (x′, y′)〉| ≤ 8

√
N logN . Presuming that N is sufficiently large, [12] shows that the
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number n of nearly orthogonal orbits satisfies (1− 4/N2)m ≤ n ≤ m. (This implies N = Θ(log n).) For
typographic simplicity the nearly orthogonal orbits are assumed to be {O1, . . . ,On}, and this set is taken to
be the vertex set V . We write L ⊆ F for the “leftover” elements contained in orbitsOn+1, . . . ,Om; writing
ε = |L|

22N
we have ε = O(1/N2). The edges E in G are given by the usual hypercube edges in F . More

precisely, any pair O,O′ ∈ V have either N or 0 edges between them, according to whether or not there
exist (x, y) ∈ O, (x′, y′) ∈ O′ at Hamming distance 1 in F . There are no self-loops in G because of the
near orthogonality property. The set of edges E is in one-to-one correspondence with a subset of (almost
all the) hypercube edges in F ; specifically, all those not incident on L. The authors of [12] use the KKL
Theorem to prove:

Theorem 6.1. The DKSV Balanced-Separator instances have optimum value Ω( log logn
logn ).

(Although we haven’t formally verified it, it’s very likely that the optimum value of these instances is also
O( log logn

logn ), at least for infinitely manyN . The reason is that there is a σ-invariant function f : F → {−1, 1}
of constant variance and total influence Ω(logN); namely, f(x, y) = 1 if x ∈ {−1, 1}N contains a “run”
(with wraparound) of length blog2N − log2 log logNc.)

On the other hand, the main result of [12] is the following:

Theorem 6.2. The standard SDP relaxation with triangle inequalities for the DKSV Balanced-Separator
instances has value O( 1

logn).

We show here that this factor Θ(log log n) gap is eliminated when the degree-4 SOS relaxation is used.

Theorem 6.3. The degree-4 SOS relaxation for the DKSV Balanced-Separator instances has value Ω( log logn
logn ).

Proof. We need to show

{f(O)2 = 1 : ∀O ∈ V } ∪
{(

1
n

∑
O∈V

f(O)

)2

≤ 1
9 ,

1
|E|

∑
(O,O′)∈E

(
f(O)−f(O′)

2

)2
≤ c log logn

logn

}
`4 −1 ≥ 0

(12)
for some constant c > 0 (and N sufficiently large).

Introduce indeterminates g(x) for all x ∈ F = {−1, 1}N × {−1, 1}N . By Corollary 5.5 it is possible
to write

−1 = u0+
∑
x∈F

vx(g(x)2−1)+
∑

1≤i<j≤N
N+1≤i<j≤2N

wij(Inf i[g]−Inf j [g])+u1(Var[g]− 3
4)+u2( 1

20 ln(2N)−I[g]),

(13)
where u0, u1, u2 are SOS (in the variables g(x)) and all summands have degree at most 4. Now substitute
into this identity g(x) = f(O) for each x ∈ O ∈ V , and also substitute g(x) = 1 for each x ∈ F which is
not contained in any O ∈ V . We now consider what happens to each term in (13).

First, we notice that the degree of each term cannot increase. The polynomial u0 (now over indetermi-
nates f(O)) remains SOS. The next term,

∑
x∈F vx(g(x)2−1), becomes of the form

∑
O∈V v

′
O(f(O)2−1)

for some polynomials v′O. We claim that each summand wij(Inf i[g] − Inf j [g]) in the next term drops out
entirely. This is because when g is viewed as mapping from F to the set of homogeneous degree-1 poly-
nomials in the f(O)’s, it is invariant under the action of σ, by construction. From this it follows that
Inf i[g] = Inf j [g] formally as polynomials for all 1 ≤ i < j ≤ N and N + 1 ≤ i < j ≤ 2N .

Next we come to the term u1(Var[g]− 3
4). We have

Var[g]− 3
4 = E

x∈F
[g(x)2]− 3

4 − E
x∈F

[g(x)]2.
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Even after our substitution, Ex∈F [g(x)2] − 3
4 will provably equal 1

4 under the assumption {f(O)2 = 1 :
∀O ∈ V }, so it remains to focus on

E
x∈F

[g(x)]2 =

(
ε+ (1− ε) 1

n

∑
O∈V

f(O)

)2

.

Recalling that `2 (Y + Z)2 ≤ 2Y 2 + 2Z2, we deduce(
1
n

∑
O∈V

f(O)

)2

≤ 1
9 `2

(
ε+ (1− ε) 1

n

∑
O∈V

f(O)

)2

≤ 2ε2 + 2(1− ε)2 · 1
9 ≤

1
4

(for N sufficiently large, since ε = O(1/N2)), as needed.
Finally we come to the term u2( 1

20 ln(2N) − I[g]). Let ε′ denote the fraction of hypercube edges in F
which are incident on L; note that ε′ ≤ 2ε = O(1/N2). After our substitution, we have

1
20 ln(2N)− I[g] = 1

20 ln(2N)− (2N) E
edge (x,y)

in F

[(
g(x)−g(y)

2

)2
]

= 1
20 ln(2N)− (2N)(1− ε′) · 1

|E|

∑
(O,O′)∈E

(
f(O)−f(O′)

2

)2
− ε′ · (∗), (14)

where (∗) is the average of a number of terms, some of which are (1−1
2 )2 = 0 and some of which are of the

form (
f(Oi)−1

2

)2
= 1 + 1

2(f(Oi)2 − 1)− 1
4(f(Oi) + 1)2.

The above shows that {f(O)2 = 1 : ∀O ∈ V } `2

(
f(Oi)−1

2

)2
≤ 1. Hence

{f(O)2 = 1 : ∀O ∈ V } ∪
{

1
|E|

∑
(O,O′)∈E

(
f(O)−f(O′)

2

)2
≤ c log logn

logn

}
`2 (14) ≥ 1

20 ln(2N)− (2N)(1− ε′) · c log logn
logn − ε

′,

which is nonnegative for c sufficiently small, since N = Θ(log n) and ε′ = O(1/N2). Thus we have
verified (12).

7 SOS proofs of the CLT and the 2
π Theorem

7.1 An invariance theorem for polynomials of linear forms

Theorem 7.1. (SOS proof of an Invariance Theorem for polynomials of linear forms.)
Let a1, . . . , an be indeterminates. For any real vector z = (z1, . . . , zn), let `(z) denote the homogeneous

linear polynomial `(z) = a1z1 + · · ·+ anzn. Then for any even integer k ≥ 4 we have

a2
1 + · · ·+ a2

n ≤ 1 `2k E
G

[`(G)k]− kO(k)
n∑
i=1

a4
i ≤ E

x
[`(x)k] ≤ E

G
[`(G)k],

whereG = (G1, . . . ,Gn) ∼ N(0, 1)n and x ∼ {−1, 1}n is uniform.

Remark 7.2. It is easy to see that Ex[`(x)k] = EG[`(G)k] formally as polynomials for k = 0, 1, 2, 3, and
any odd integer k > 3.
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Proof. For each integer 0 ≤ i ≤ n, define the polynomial

Pi = E[`(G1, · · · ,Gi,xi+1, · · · ,xn)k].

We will show for each 1 ≤ i ≤ n that

a2
1 + · · ·+ a2

n ≤ 1 `2k Pi − kO(k)a4
i ≤ Pi−1 ≤ Pi. (15)

The desired result then follows by summing over i. So fix 1 ≤ i ≤ n and write `(z) = `′(z′) + aizi, where
z′ = (z1, . . . , zi−1, zi+1, zn) and

`′(z′) = a1z1 + · · ·+ ai−1zi−1 + ai+1zi+1 + · · ·+ anzn

does not depend on the indeterminate ai. Denoting Z ′ = (G1, . . . ,Gi−1,xi+1, . . . ,xn) we have

Pi − Pi−1 = E
Z′

[
E

Gi,xi

[(`′(Z ′) + aiGi)
k − (`′(Z ′) + aixi)

k]

]

=

k/2∑
j=2

(
k

2j

)
((2j − 1)!!− 1) a2j

i E
Z′

[`′(Z ′)k−2j ] (16)

where we used E[Gr
i ] = E[xri ] = 0 for r odd and E[Gr

i ] = (r − 1)!!, E[xri ] = 1, for r even. The above
polynomial is evidently SOS, justifying the second inequality in (15). As for the first inequality in (15), we
have

a2
1 + · · ·+ a2

n ≤ 1 `2j a2j
i ≤ a

4
i (17)

for each i ∈ [n] and 2 ≤ j ≤ k/2 because

a4
i − a

2j
i = (1− a2

i )(a
4
i + a6

i + a8
i + · · ·+ a2j−2

i )

=

(
(1−

n∑
i′=1

a2
i′) +

∑
i′ 6=i

a2
i′

)
(a4
i + a6

i + a8
i + · · ·+ a2j−2

i );

and, we have

a2
1 + · · ·+ a2

n ≤ 1 `2(k−2j) E
Z′

[`′(Z ′)k−2j ] ≤ kO(k) E
Z′

[`′(Z ′)2]k/2−j

= kO(k)(a2
1 + · · ·+ a2

n)k/2−j ≤ kO(k) (18)

by Corollary 4.7, the second inequality’s SOS proof being

1− (
∑
a2
i′)
k/2−j = 1 + (

∑
a2
i′) + (

∑
a2
i′)

2 + (
∑
a2
i′)

3 + · · ·+ (
∑
a2
i′)
k/2−j−1.

Combining (17) and (18) via Fact 2.4

a2
1 + · · ·+ a2

n ≤ 1 `2k a2j
i E
Z′

[`′(Z ′)k−2j ] ≤ kO(k)a4
i .

Using this in (16), along with
(
k
2j

)
((2j − 1)!!− 1) ≤ kO(k) for each j, yields the first inequality in (15),

completing the proof.
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7.2 An SOS proof of the 2
π

Theorem

We require the below technical lemma giving a polynomial approximator to the absolute-value function.
The proof uses some standard methods in approximation theory and is deferred to Appendix A.

Lemma 7.3. For any sufficiently small parameter δ > 0, there exists a univariate, real, even polynomial
P (t) = Q(t2) of degree at most Õ(1/δ2) such that:

1. P (t) ≥ |t| for all t ∈ R;

2. E[P (σg)] ≤
√

2
π · σ + δ ≤

(
1
2σ

2 + 1
π

)
+ δ for all 0 ≤ σ ≤ 1, where g ∼ N(0, 1);

3. Each coefficient of P is at most 2O(d) in absolute value.

It is not hard to show that among degree-2 polynomials P (t) with P (t) ≥ |t|, the lowest possible value
of E[P (g)] is 1, achieved by P (t) = 1

2 + 1
2 t

2. Interestingly, this is also the lowest possible value even when
degree-4 is allowed:

Theorem 7.4. Suppose P (t) is a univariate real polynomial of degree at most 4 satisfying P (t) ≥ |t| for all
real t. Then Eg∼N(0,1)[P (g)] ≥ 1.

Proof. Replacing P (t) by 1
2(P (t) + P (−t)) if necessary, we may assume P (t) is even; i.e., P (t) = a +

bt2 + ct4 for some real a, b, c. For any M > 0 we have

1
M2 × (P (0) ≥ 0) + M2−3

M2−1
× (P (1) ≥ 1) + 2

(M2−1)M2 × (P (M) ≥M)

⇒ 1
M2 × (a ≥ 0) + M2−3

M2−1
× (a+ b+ c ≥ 1) + 2

(M2−1)M2 ×
(
a+M2b+M4c ≥M

)
⇒ a+ b+ 3c ≥ 1− 2

M(M+1) .

This completes the proof because E[P (g)] = a+ b+ 3c and M may be arbitrarily large.

Remark 7.5. Once we allow degree 6 it is possible to obtain a bound strictly smaller than 1. For example,
P (t) = .333 + .815t2 − .136t4 + .01t6 ≥ |t| pointwise, and E[P (g)] = .89.

The following “ 2
π Theorem”, due to [26], is essentially the special case of the Majority Is Stablest

Theorem in which ρ→ 0+. We reproduce the proof.

Theorem 7.6. Let f : {−1, 1}n → [−1, 1] and assume |f̂(i)| ≤ ε for all i ∈ [n]. Then
∑n

i=1 f̂(i)2 ≤
2
π +O(ε).

Proof. Let ` : {−1, 1}n → R be `(x) =
∑n

i=1 f̂(i)xi and let σ =

√∑n
i=1 f̂(i)2. Then

σ2 = E
x∼{−1,1}n

[f(x)`(x)] ≤ E
x

[|`(x)|] ≤ σ E
g∼N(0,1)

[|g|] +O(σε) = σ

(√
2
π +O(ε)

)
,

the inequality being Berry–Esseen. The result follows after dividing by σ and squaring.

Theorem 7.7. (SOS proof of the Berry–Esseen Theorem with `1 functional.)
Let a1, . . . , an be indeterminates, and for each x ∈ {−1, 1}n, let f(x) be an indeterminate. Let

A = {f(x) ≥ −1, f(x) ≤ 1 : ∀x} ∪ {a2
1 + · · ·+ a2

n ≤ 1}.
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Then for any small real δ > 0,

A `
Õ(1/δ2)

E
x∼{−1,1}n

[f(x)(a1x1 + · · ·+ anxn)] ≤ b+ δ + 2Õ(1/δ2)
n∑
i=1

a4
i ,

where we may choose either

b =
√

2
π or b = 1

2(a2
1 + · · ·+ a2

n) + 1
π .

Proof. For each x ∈ {−1, 1}n, let `(x) denote a1x1 + · · ·+ anxn, a homogeneous linear polynomial in the
indeterminates ai. Let P (t) = Q(t2) =

∑
k=0,2,4,...,d

ckt
k be the univariate real polynomial in Lemma 7.3,

where d = deg(P ) ≤ Õ(1/δ2). Since P (t) ≥ ±t for all real t, Fact 3.1 tells us that `d P (t) ≥ ±t in R[t].
Using Fact 3.6 and substituting t = `(x) we deduce

{f(x) ≥ −1, f(x) ≤ 1} `d+1 f(x)`(x) ≤ P (`(x)).

Averaging over x yields

{f(x) ≥ −1, f(x) ≤ 1 : ∀x} `d+1 E
x

[f(x)(a1x1+· · ·+anxn)] ≤ E
x

[P (`(x))] =
∑

k=0,2,4,...,d

E
x

[ck`(x)k].

(19)
For each even 0 ≤ k ≤ d, regardless of the sign of ck, Theorem 7.1 implies that

a2
1 + · · ·+ a2

n ≤ 1 `2d E
x

[ck`(x)k] ≤ E
G

[ck`(G)k] + |ck|kO(k)
n∑
i=1

a4
i .

Summing this over k, using
∑

k |ck|kO(k) ≤ dO(d), and combining with (19) yields

A `2d E
x

[f(x)(a1x1 + · · ·+ anxn)] ≤ E
G

[P (`(G))] + dO(d)
n∑
i=1

a4
i . (20)

Let σ2 be shorthand for
∑n

i=1 a
2
i . Note that if we treat a1, . . . , an as arbitrary real numbers, we have

E
G

[P (`(G))] = E
g∼N(0,1)

[P (σg)] = E
g∼N(0,1)

[Q(σ2g2)], (21)

by the rotational symmetry of multivariate Gaussians. Since the left and right sides are polynomials in
a1, . . . , an, it follows that (21) also holds as a formal polynomial identity over the indeterminates a1, . . . , an.
Now temporarily view σ2 as an indeterminate. From Lemma 7.3 we have that Eg∼N(0,1)[Q(σ2g2)] is upper-

bounded by both
√

2
π + δ and 1

2σ
2 + 1

π + δ for all real numbers 0 ≤ σ2 ≤ 1. Thus from Fact 3.2 we have
the following univariate SOS proof(s):

(1− σ2)σ2 ≥ 0 `d/2 E
g∼N(0,1)

[Q(σ2g2)] ≤
√

2
π + δ, 1

2σ
2 +

1

π
+ δ

(note that Q has even degree). Letting σ2 =
∑n

i=1 a
2
i again, we deduce that for either choice of b,(

1−
n∑
i=1

a2
i

)(
n∑
i=1

a2
i

)
≥ 0 `d E

g∼N(0,1)
[Q(σ2g2)] ≤ b+ δ

⇔ a2
1 + · · ·+ a2

n ≤ 1 `d E
G

[P (`(G))] ≤ b+ δ,
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using (21) and the fact that
∑n

i=1 a
2
i is already SOS. Combining this with (20) yields

A `2d E
x

[f(x)(a1x1 + · · ·+ anxn)] ≤ b+ δ + dO(d)
n∑
i=1

a4
i ,

as needed.

Corollary 7.8. (SOS proof of the 2
π Theorem.)

For each x ∈ {−1, 1}n, let f(x) be an indeterminate. Define f̂(S) as usual and write f̂(i) = f̂({i})
for short. Let

A = {f(x) ≥ −1, f(x) ≤ 1 : ∀x}.

Then for each small real δ > 0,

A `
Õ(1/δ2)

n∑
i=1

f̂(i)2 ≤ 2
π + δ + 2Õ(1/δ2)

n∑
i=1

f̂(i)4,

A ∪ {f̂(i)2 ≤ τ : ∀i ∈ [n]} `
Õ(1/δ2)

n∑
i=1

f̂(i)2 ≤ 2
π + δ + 2Õ(1/δ2) · τ.

Proof. We wish to apply Theorem 7.7 with ai = f̂(i) for each i ∈ [n]. A standard proof shows that∑
S⊆[n]

f̂(S)2 = E
x∼{−1,1}n

[f(x)2]

and hence, using Fact 3.4,

`3

n∑
i=1

f̂(i)2 ≤ 1. (22)

We may therefore employ Theorem 7.7 (with δ/2 instead of δ) to obtain

A `
Õ(1/δ2)

E
x∼{−1,1}n

[f(x)(f̂(1)x1 + · · ·+ f̂(n)xn)] ≤ 1
2

n∑
i=1

f̂(i)2 + 1
π + δ

2 + 2Õ(1/δ2)
n∑
i=1

f̂(i)4.

But

E
x∼{−1,1}n

[f(x)(f̂(1)x1 + · · ·+ f̂(n)xn)] =

n∑
i=1

f̂(i)2

is a polynomial identity so we deduce

A `
Õ(1/δ2)

n∑
i=1

f̂(i)2 ≤ 1
2

n∑
i=1

f̂(i)2 + 1
π + δ

2 + 2Õ(1/δ2)
n∑
i=1

f̂(i)4

⇔
n∑
i=1

f̂(i)2 ≤ 2
π + δ + 2Õ(1/δ2)

n∑
i=1

f̂(i)4,

completing the first part of the proof. Now adding the assumptions f̂(i)2 ≤ τ easily yields

A ∪ {f̂(i)2 ≤ τ : ∀i ∈ [n]} `4

n∑
i=1

f̂(i)4 ≤ τ
n∑
i=1

f̂(i)2 ≤ τ

using (22) again. The proof is complete.
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8 Analysis of the KV Max-Cut instances

We recall the Max-Cut problem: Given is an undirected weighted graph G on vertex set V in which the
nonnegative edge weights sum to 1. We write (x,y) ∼ E to denote that (x,y) is a random edge chosen with
probability equal to the edge weight. It is required to find a cut S ⊆ V so as to maximize Pr(x,y)∼E [x ∈
S,y 6∈ S or vice versa]. The natural polynomial optimization formulation has an indeterminate f(x) for
each vertex x ∈ V :

max E
(x,y)∼E

[1
2 −

1
2f(x)f(y)]

s.t. f(x)2 = 1 ∀x ∈ V.

Thus as discussed in Section 2, the degree-d SOS SDP hierarchy will use binary search to compute the
smallest β for which

{f(x)2 = 1 : ∀x ∈ V } ∪
{

E
(x,y)∼E

[1
2 −

1
2f(x)f(y)] ≥ β

}
`d −1 ≥ 0.

Unique-Games. The Khot–Vishoi (KV) instances of Max-Cut [29] are given by composing the KKMO
“noise stability” reduction from [26] with the KV integrality gap instances for Unique-Games (UG). Our
SOS proof of the 2

π Theorem gives us a “black-box” analysis of the KKMO reduction which can essentially
be “plugged in” to a sufficiently strong SOS analysis of UG instances. Let us now recall the Unique-Games
problem with label-size k ∈ N+. Given is a regular weighted graph G = (V, E) (self-loops allowed) with
weights summing to 1. Also, given for each edge (u, v) is a permutation πuv : [k] → [k]. We write
(u,v,π) ∼ E to denote that edge (u,v) with permutation π = πuv is chosen with probability equal to its
edge weight. The goal is to give a labeling F : V → [k] so as to maximize Pr(u,v,π)∼E [π(F (u)) = F (v)].
The natural polynomial optimization formulation has an indeterminate Xu,i for each u ∈ V, i ∈ [k]:

max E
(u,v,π)∼E

[ k∑
i=1

Xu,iXv,π(i)

]
= E
u∈V

[ k∑
i=1

Xu,i · E
(v,π)∼u

[Xv,π(i)]
]

s.t. X2
u,i = Xu,i ∀u ∈ V, i ∈ [k]

k∑
i=1

Xu,i = 1 ∀u ∈ V,

where we write (v,π) ∼ u in place of (u,v,π) ∼ E|u=u for brevity. Thus the degree-d SOS SDP hierarchy
will use binary search to compute the smallest β for which

{X2
u,i = Xu,i : ∀u ∈ V, i ∈ [k]} ∪ {

k∑
i=1

Xu,i = 1 : ∀u ∈ V}

∪
{

E
u∈V

[ k∑
i=1

Xu,i · E
(v,π)∼u

[Xv,π(i)]
]
≥ β

}
`d −1 ≥ 0.

Barak et al. [3] have shown that the degree-4 moment SDP proves that the KV family of UG instances
has a very low optimum value. In fact they show something stronger; one only needs the hypotheses X2

u,i ≤
Xu,i and (avgu,iXu,i)

2 ≤ 1/k2. Let us make a somewhat more general definition which applies to SOS-
refutations of any UG instances:
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Definition 8.1. Given a UG instance G = (V, E) with label-size k, we say there is a degree-d SOS refutation
that the fractional assignment optimum is at least β if

{Xu,i ≥ 0 : ∀u ∈ V, i ∈ [k]} ∪ {
k∑
i=1

Xu,i ≤ 1 : ∀u ∈ V}

∪
{

E
u∈V

[ k∑
i=1

Xu,i · E
(v,π)∼u

[Xv,π(i)]
]
≥ β

}
`d −1 ≥ 0.

The above definition is slightly more demanding than the most natural one, in which the hypotheses
X2
u,i = Xu,i are granted. As mentioned, Barak et al. establish something noticeably stronger anyway: the

following theorem is essentially proved in [3, Theorem 6.6]:4

Theorem 8.2. Let G = G(N, η) = (V, E) be the Khot–Vishnoi instance of Unique-Games parameterized by
N (a power of 2) and η ∈ (0, 1), which has 2N/N vertices, label-size N , and optimum value at most N−η.
Then there is a degree-4 SOS refutation that its fractional assignment optimum is at least N−Ω(η).

We now recall the KKMO [26] reduction from UG to Max-Cut, which is parameterized by ρ ∈ (−1, 0).
Given a UG instance G with label-size N , the reduction creates a vertex set V with a vertex wu,x for each
u ∈ V and each x ∈ {−1, 1}N . The probability distribution E on edges for the Max-Cut instance is given
as follows:

• draw u ∼ V;

• independently draw (u,v1,π1) and (u,v2,π2) from the marginal of E which has first vertex u;

• draw “ρ-correlated strings” (x,y) from {−1, 1}N ;

• output the edge (wu1,x◦π1 , wu2,y◦π2).

KKMO make the following easy observation:

Proposition 8.3. Consider any cut V → {−1, 1} in the above-described Max-Cut instance (V,E); specif-
ically, let us write it as a collection of functions fv : {−1, 1}N → {−1, 1}, one for each v ∈ V . Then the
value of this cut is

1
2 −

1
2 E
u∼V

[Stabρ[gu]],

where gu : {−1, 1}N → [−1, 1] is defined by gu(x) = E
(u,v,π)∼E|u=u

[fv(x ◦ π)].

As mentioned, the KV Max-Cut instances are formed by composing the KKMO reduction with the KV
UG instances. Khot and Vishnoi show that for any fixed η ∈ (0, 1), the optimum value of the resulting
Max-Cut instance is at most (arccos ρ)/π + oN (1). Further, using “Majority cuts” it’s easy to show (using,
e.g. [45, Theorem 3.4.2]) that the optimum values is at least (arccos ρ)/π − oN (1).

The main result of this section is the following:

Theorem 8.4. Fix any small ε, δ > 0. Let G = (V, E) be a UG instance with label-size N for which there
is a degree-d SOS proof (d ≥ 2) that its fractional assignment optimum is at most ε. Let G = (V,E)
be the Max-Cut instance resulting from applying the KKMO reduction with parameter ρ ∈ (−1, 0) to G.
Then there is a degree d + Õ(1/δ2) SOS refutation of the claim that the optimum value of G is at least
1
2 −

1
πρ− (1

2 −
1
π )ρ3 + δ + ε · 2Õ(1/δ2).

4Take k = 2 therein, in which case Lemma 6.2 is obviated. This still only proves that optimum value of the degree-4 moment
SDP is small. To get the fact that the optimum value is of the degree-4 SOS SDP is small (and hence that there is a refutation),
one can either argue that there is no duality gap using ideas from the footnote in Section 2; or, one can use ideas from our proof of
Theorem 5.1 to reprove their result from the SOS side.
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Together with Theorem 8.2 this implies:

Corollary 8.5. Fix any small δ > 0. Let G = (V, E) be a Khot-Vishnoi UG instance with label-size N and
noise parameter η. Let G = (V,E) be the Max-Cut instance resulting from applying the KKMO reduction
with parameter ρ ∈ (−1, 0) to G. Then there is a degree Õ(1/δ2) SOS refutation of the claim that the
optimum value of G is at least 1

2 −
1
πρ− (1

2 −
1
π )ρ3 + δ + 2Õ(1/δ2) ·N−Ω(η).

Corollary 8.6. Consider the KV Max-Cut instances with parameter ρ0 ≈ −.689. The degree-O(1) SOS
SDP certifies they have value at most .779, which is within a factor .952 of the optimum. For general ρ, the
degree-O(1) SOS SDP certifies a value for the KV Max-Cut instances which is within a factor .931 of the
optimum, where

.931 ≈ min
ρ∈(−1,0)

(arccos ρ)/π
1
2 −

1
πρ− (1

2 −
1
π )ρ3

.

Before proving Theorem 8.4 we prove a lemma which gives an alternative way to refute a UG instance
having a good solution: roughly, for most vertices v ∈ V , its neighbors cannot agree well on what v’s label
should be.

Lemma 8.7. Let G = (V, E) be a UG instance with label-size N and suppose there is a degree-d SOS
refutation that its fractional assignment optimum is at least ε. Then also

A ∪
{

E
u∼V

[
N∑
i=1

(
E

(v,π)∼v
[Xv,π(i)]

)2
]
≥ 4ε

}
`d −1 ≥ 0,

where

A = {Xu,i ≥ 0 : ∀x ∈ V, i ∈ [N ]} ∪ {
N∑
i=1

Xu,i ≤ 1 : ∀x ∈ V}.

Proof. Given the indeterminates Xu,i, define for each u ∈ V and i ∈ [N ] the homogeneous linear forms

Yu,i = 1
2Xu,i + 1

2 E
(v,π)∼u

[Xv,π(i)].

We will apply the assumption regarding the degree-d SOS refutation for G to the Yu,i’s. Certainly we have

A `1 Yu,i ≥ 0,
N∑
j=1

Yu,j ≤ 1

for every u ∈ V , i ∈ [N ]. Indeed, it’s not hard to check that to complete the proof we need only verify

A `2 E
u∼V

[
N∑
i=1

Yu,i · E
(v,π)∼u

[Yv,π(i)]

]
≥ 1

4 E
u∼V

[
N∑
i=1

(
E

(v,π)∼v
[Xv,π(i)]

)2
]
.

But this follows from

E
u

[∑
i
Yu,i · E

(v,π)∼u
[Yv,π(i)]

]
= 1

2 Eu

[∑
i
Xu,i · E

(v,π)∼u
[Yv,π(i)]

]
+ 1

2 Eu

[∑
i

E
(v,π)∼u

[Xv,π(i)] · E
(v,π)∼u

[Yv,π(i)]

]
= 1

2 Eu

[∑
i
Xu,i · E

(v,π)∼u
[Yv,π(i)]

]
+ 1

4 Eu

[∑
i

E
(v,π)∼u

[Xv,π(i)] · E
(v′,π′)∼v

[Xv′,π′(i)]

]
+ 1

4 Eu

[∑
i

(
E

(v,π)∼u
[Xv,π(i)]

2
)]

(where we do not even need the assumptions
∑N

i=1Xu,i ≤ 1).
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We now give the proof of Theorem 8.4.

Proof. It is not hard to deduce the following result from Corollary 7.8:

Corollary 8.8. In the setting of Corollary 7.8, for any ρ ∈ (−1, 0) we have

A `
Õ(1/δ2)

Stabρ[f ] ≥ 2
π · ρ+ (1− 2

π ) · ρ3 − δ − 2Õ(1/δ2) ·
n∑
i=1

f̂(i)4.

It is also easy to check using Fact 3.3 that

{fv(x)2 = 1 : ∀v ∈ V, x ∈ {−1, 1}N} `4 gv(x) ≥ −1, gv(x) ≤ 1

for all v ∈ V , x ∈ {−1, 1}N . Thus using the above corollary and Proposition 8.3 we obtain

{fv(x)2 = 1 : ∀v ∈ V, x ∈ {−1, 1}N}

`
Õ(1/δ2)

1
2 −

1
2 E
u∼V

[Stabρ[gu]] ≤ 1
2 −

1
πρ− (1

2 −
1
π )ρ3 + δ + 2Õ(1/δ2) · E

u∼V

[ N∑
i=1

ĝu(i)4
]
. (23)

Now we bound the error term 2Õ(1/δ2) · Eu∼V [
∑N

i=1 ĝu(i)4] as follows. Using the polynomial identity
ĝu(i) = E(v,π)∼u[f̂v(π(i))] together with Fact 3.12 and Fact 3.13, we have

`4 E
u∼V

[ N∑
i=1

ĝv(i)4
]
≤ E
u∼V

[
N∑
i=1

(
E

(v,π)∼u
[f̂v(π(i))2]

)2
]
. (24)

On the other hand, it is easy to check that for all i ∈ [N ] and v ∈ V , we have

{fv(x)2 = 1 : ∀x ∈ {−1, 1}N} `2 f̂v(i)
2 ≥ 0,

N∑
i=1

f̂v(i)
2 ≤ 1. (25)

Since there is a degree-d refutation for G having a fractional assignment of value at least ε, implementing
Lemma 8.7 with Xv,i = f̂v(i)

2, we have

{f̂u(i)2 ≥ 0 : ∀x ∈ V, i ∈ [N ]} ∪ {
N∑
i=1

f̂u(i)2 ≤ 1 : ∀x ∈ V}

∪
{

E
u∼V

[
N∑
i=1

(
E

(v,π)∼u
f̂v(π(i))2

)2
]
≥ 4ε

}
`d+2 −1 ≥ 0. (26)

By Fact 2.3, (25) and (26) give

{fv(x)2 = 1 : ∀v ∈ V, x ∈ {−1, 1}N} ∪
{

E
u∼V

[
N∑
i=1

(
E

(v,π)∼u
f̂v(π(i))2

)2
]
≥ 4ε

}
`d+4 −1 ≥ 0.

(27)

Combining (27) and (24), we get

{fv(x)2 = 1 : ∀v ∈ V, x ∈ {−1, 1}N} ∪
{

E
u∼V

[ N∑
i=1

ĝv(i)4
]
≥ 4ε

}
`d+2 −1 ≥ 0. (28)

Finally, combining (28) and (23), we get

{fv(x)2 = 1 : ∀v ∈ V, x ∈ {−1, 1}N}

∪ {1
2 −

1
2 E
u∼V

[Stabρ[gu]] ≥ 1
2 −

1
πρ− (1

2 −
1
π )ρ3 + δ + 2Õ(1/δ2)} `d+Õ(1/δ2) −1 ≥ 0.
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A An approximator for the absolute-value function

Here we restate and prove Lemma 7.3. A key tool will be the polynomial approximator to the sgn function
constructed in [13].

Lemma 7.3. For any sufficiently small parameter δ > 0, there exists a univariate, real, even polynomial
P (t) = Q(t2) of degree at most Õ(1/δ2) such that:

1. P (t) ≥ |t| for all t ∈ R;

2. E[P (σg)] ≤
√

2
π · σ + δ ≤

(
1
2σ

2 + 1
π

)
+ δ for all 0 ≤ σ ≤ 1, where g ∼ N(0, 1);

3. Each coefficient of P is at most 2O(deg(P )) in absolute value.

Proof. We will use the following result from [13, Theorem 3.10]:

Theorem A.1. For every 0 < ε < .1 there is an odd integer d = d(ε) = Θ(log2(1/ε)/ε) and a univariate
polynomial p(t) of degree d satisfying:
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• p(t) ∈ [sgn(t)− ε, sgn(t) + ε] for all |t| ∈ [ε, 1];

• p(t) ∈ [−1− ε, 1 + ε] for all |t| ≤ ε;

• p(t) is monotonically increasing on the intervals (−∞,−1] and [1,+∞).

We can assume without loss of generality that p(t) is odd since the odd part of p(t) (i.e. (p(t)− p(−t))/2)
also satisfies the properties in Theorem A.1.

Given p(t) as in Theorem A.1, define

p0(t) = (1 + 2ε)p(t/M), where M =
c logc(1/ε)√

ε

and c > 1 is a universal constant to be chosen later. The polynomial p0(t) has the following properties:

• p0(t) ∈ [1, 1 + 4ε] when t ∈ [Mε,M ], p0(t) ∈ [−(1 + 4ε),−1] when t ∈ [−M,−Mε];

• p0(t) ∈ [−(1 + 4ε), 1 + 4ε] for all |t| ≤Mε;

• p0(t) ≥ 1 when t ≥M , p0(t) ≤ 1 when t ≤ −M .

Finally, define

P (t) =

∫ t

0
p0(x)dx+ 2Mε.

an even polynomial of degree d + 1. We will show that the following hold assuming c is taken sufficiently
large and then ε is sufficiently small:

(a) P (t) ≥ |t| for all t ∈ R;

(b) E[P (σg)] ≤
√

2
π · σ +O(Mε) for all 0 ≤ σ ≤ 1;

(c) Each coefficient of P is at most 2O(d) in absolute value.

The proof is then completed by taking ε = δ2/polylog(1/δ).

Properties (a) follows easily from the definition of P (t). It also follows easily from the definition that
|P (t)| ≤ 1 + O(Mε) ≤ 2 for all |t| ≤ 1. It is a standard fact in approximation theory (see, e.g., [52, 43])
that if P is a degree d + 1 polynomial satisfying |P (t)| ≤ b for all |t| ≤ 1 then each coefficient of P (t) is
at most, say, b(4e)d+1 = 2O(d) in magnitude. This verifies (c). It remains to establish property (b). For this
we have

E[P (σg)] = E[P (σg) · 1{|σg| ≤M}] + E[P (σg) · 1{|σg| > M}] (29)

Regarding the first term in (29) we use that for |t| ≤M we have |p0(t)| ≤ 1 + 4ε and hence

P (t) ≤ (1 + 4ε)|t|+ 2Mε = |t|+O(Mε) ∀|t| ≤M. (30)

Thus

E[P (σg) · 1{|σg| ≤M}] ≤ E[|σg| · 1{|σg| ≤M}] +O(Mε) ≤ E[|σg|] +O(Mε) =
√

2
π · σ +O(Mε).

To complete the verification of (b) it therefore suffices to bound the second term in (29) by O(Mε). In fact
we will show

E[P (σg) · 1{|σg| > M}]�Mε. (31)
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Using evenness of P and the fact that it is evidently increasing on [M,∞) we have

E[P (σg) · 1{|σg| > M}] = 2E[P (σg) · 1{σg > M}] ≤ 2E[P (g) · 1{g > M}]. (32)

We upper-bound P ’s value on large inputs using a well-known fact from approximation theory (and a corol-
lary of the theorem in §33 of [40]):

Fact A.2. Let q(t) be a polynomial of degree at most k satisfying |q(t)| ≤ b for all |t| ≤ 1. Then |q(t)| ≤
b |3t|k for all |t| ≥ 1.

Applying this fact to p(t) we obtain p(t) ≤ (1 + ε)(3t)d for all t ≥ 1, whence p0(t) ≤ 2(3t/M)d for all
t ≥M , whence

P (t) =

∫ t

0
p0(x)dx+ 2Mε ≤ O(M) + t · 2(3t/M)d ≤ O(1) · (3t/M)d+1

for all t ≥M (we also used M = o(2d)). Thus

(32) ≤ O( 3
M )d+1 ·E[gd+1 · 1{g > M}] ≤ O( 3

M )d+1 ·O(dM)d+1 exp(−M2/2)

≤ 2polylog(1/ε)/ε exp(−M2/2) = 2polylog(1/ε)/ε exp(−c2 log2c(1/ε)/2ε)�Mε

if we choose c to be a large enough universal constant. This completes the justification of (31) and the
overall proof.
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