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Abstract

We provide more sample-efficient versions of some basic routines in quantum data
analysis, along with simpler proofs. Particularly, we give a quantum “Threshold Search”
algorithm that requires only O((log2 m)/ǫ2) samples of a d-dimensional state ρ. That
is, given observables 0 ≤ A1, A2, . . . , Am ≤ 1 such that tr(ρAi) ≥ 1/2 for at least
one i, the algorithm finds j with tr(ρAj) ≥ 1/2 − ǫ. As a consequence, we obtain

a Shadow Tomography algorithm requiring only Õ((log2 m)(log d)/ǫ4) samples, which
simultaneously achieves the best known dependence on each parameter m,d, ǫ. This
yields the same sample complexity for quantum Hypothesis Selection among m states;
we also give an alternative Hypothesis Selection method using Õ((log3m)/ǫ2) samples.

1 Introduction

Some of the most basic problems in statistics, unsupervised learning, and property testing
involve the following scenario: One can observe data that are assumed to be drawn indepen-
dently from an unknown probability distribution p; say that p is discrete and supported on
[d] = {1, 2, . . . , d}. The task is to learn, test, or estimate some properties of p. Completely
estimating p up to error ǫ (in, say, total variation distance) requires Θ(d/ǫ2) samples, so
when d is very large one may seek to only learn or test partial aspects of p. For exam-
ple, one might only want to estimate the means of some known, fixed random variables
a1, . . . , am : [d] → [0, 1] (sometimes called “statistical queries” in the learning/privacy liter-
ature). Or, one might want to perform Hypothesis Selection over some set of two or more
hypothesis distributions q1, . . . , qm on [d]. It is generally fairly straightforward to determine
the optimal sample complexity needed for these tasks. For example, it’s easy to show that
one can simultaneously estimate all expectations Ep[a1], . . . ,Ep[am] to accuracy ±ǫ using a
batch of n = O((logm)/ǫ2) samples (independent of d): one simply computes the empirical
mean for each ai, reusing the batch of samples in each computation.
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and ARO grant W911NF2110001. This material is based upon work supported by the National Science
Foundation under grant numbers listed above. Any opinions, findings and conclusions or recommendations
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These kinds of questions become much more difficult to analyze when the classical source
of randomness p is replaced by a quantum source of randomness, namely a d-dimensional
quantum state ρ ∈ Cd×d (satisfying ρ ≥ 0, tr(ρ) = 1). The difficulties here are that: (i) one
cannot directly observe “outcomes” for ρ, one can only measure it; (ii) measuring the state ρ
inherently alters it, hence reusing samples (i.e., copies of ρ) is problematic. For example,
suppose we now have some known, fixed observables A1, . . . , Am ∈ C

d×d with 0 ≤ Ai ≤ 1 and
we wish to estimate each expectation Eρ[Ai] := tr(ρAi) to within ±ǫ. This is the “Shadow
Tomography” problem introduced by Aaronson in [Aar16] (see [Aar20] for applications to,
e.g., quantum money). We do not know if this is similarly possible using n = O((logm)/ǫ2)
copies of ρ; indeed, prior to this work the best known upper bound was

n = min
{
Õ((log4m)(log d)/ǫ4), Õ((log2m)(log2 d)/ǫ8)

}
.

Here the sample complexity on the left is from [Aar20], combining a “Gentle Search” routine
with an online learning algorithm for quantum states from [ACH+19]. The sample complexity
on the right was obtained by Aaronson and Rothblum [AR19] by drawing inspiration and
techniques from the field of Differential Privacy.1

In fact, we propose that — rather than Differential Privacy — a closer classical match for
the Shadow Tomography problem is the task known as Adaptive Data Analysis, introduced
by [DFH+15]. In this problem, the random variables (“statistical queries”) a1, . . . , am are not
fixed in advance for the learner, but are rather received one at a time, with the crucial feature
that each at may adaptively depend on the preceding estimates of Ep[a1], . . . ,Ep[at−1] output
by the learner. In this case, conditioning on these output estimates skews the underlying
i.i.d. product distribution p⊗n — reminiscent of the way measuring a quantum state affects
it — and this prevents naive reuse of the sample data. Indeed, it’s far from obvious that
the Adaptive Data Analysis task is doable with poly(logm, log d, 1/ǫ) samples; however this

was shown by [DFH+15], who achieved complexity n = Õ((logm)3/2(log d)1/2/ǫ7/2), and this

was later improved by [BNS+21] to n = Õ((logm)(log d)1/2/ǫ3)). While Differential Privacy
tools have been an ingredient in some Adaptive Data Analysis routines, the topics are not
inherently linked; e.g., a viewpoint based on “KL-stability” is emphasized in [BNS+21].

1.1 Our work

1.1.1 Threshold Search

The first main result in our work concerns what we will call the quantum “Threshold Search”
problem.2 We state the problem here in a general form (recalling our notation Eρ[Ai] =
tr(ρAi)):

1See also [HKP20] for sample complexity bounds that can be better for special kinds of Ai’s.
2Originally called the “Secret Acceptor” problem when it was introduced by Aaronson [Aar16]. Later

he called it “Gentle Search” [Aar20], but we find this name unsatisfactory as it is not necessary that a
successful algorithm be “gentle”. In the Differential Privacy literature, it is sometimes called “Report Noisy
Max” (offline case) or “Above Threshold” (online case) [DR13].

2



Quantum Threshold Search problem: Given:

1. Parameters 0 < ǫ, δ < 1
2
.

2. Access to unentangled copies of an unknown d-dimensional quantum state ρ.

3. A list of d-dimensional observables 0 ≤ A1, . . . , Am ≤ 1.

4. A list of thresholds 0 ≤ θ1, . . . , θm ≤ 1.

The algorithm should either output:

• “Eρ[Aj ] > θj − ǫ” for some particular j; or else,

• “Eρ[Ai] ≤ θi for all i”.

The output of the algorithm is a sample from a distribution over indices j such that
“Eρ[Aj] > θj − ǫ” or “Eρ[Ai] ≤ θi for all i” if no such j exists. The task is to minimize the
number n of copies that are used, while ensuring the probability of a false output statement
is at most δ.

We remark that all of the difficulty of the problem is contained in the case where ǫ = δ = 1
4

and θj = 3
4

for all j (see Section 4.1). In this case, Aaronson [Aar16] originally showed that

the Threshold Search problem can be solved using n = Õ(log4m) copies of ρ. In the present
paper, we improve this result quadratically:

Theorem 1.1. The quantum Threshold Search problem can be solved using

n = nTS(m, ǫ, δ) =
log2m + l

ǫ2
· O(l) (l = log(1/δ))

copies of ρ. Furthermore, this solution is online in the sense that:

• The algorithm is initially given only m, ǫ, δ. It then selects n and obtains ρ⊗n.

• Next, observable/threshold pairs (A1, θ1), (A2, θ2), . . . are presented to the algorithm in
sequence. When each (At, θt) is presented, the algorithm must either “pass”, or else
halt and output “Eρ[At] > θt − ǫ”.

• If the algorithm passes on all (At, θt) pairs, then it ends by outputting “Eρ[Ai] ≤ θi for
all i”.

Incidentally, the (offline) quantum Threshold Decision problem, where the algorithm only
needs to report “∃j : Eρ[Aj ] > θj − ǫ” without actually specifying j, is known to be solvable
using just n = O(log(m) log(1/δ)/ǫ2) copies [Aar20]. We review the proof in Appendix A,
tightening/simplifying some quantitative aspects of the underlying theorem of Harrow, Lin,
and Montanaro [HLM17]. In particular, our tightenings let us slightly improve the copy
complexity to n = O(log(m/δ)/ǫ2).
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1.1.2 χ2-stable threshold reporting

The most important technical ingredient going into our proof of Theorem 1.1 is a new,
purely classical statistical result fitting into the Adaptive Data Analysis framework (see,
e.g., [Smi17] for some background). In that setting one might describe our result as follows:
“adding exponential noise provides a (composably) χ2-stable mechanism for reporting if a
distribution’s mean is above a given threshold”. In more detail, the result says that given
a Sample S consisting of the sum of n draws from a Bernoulli(p) distribution (i.e., S ∼
Binomial(n, p)), if we add independent exponential noise X and then check the event B that
S+X exceeds some large threshold θn, then conditioning on B not occurring hardly changes
the distribution of S, provided E[X ] ≫ stddev[S]. Here the phrase “hardly changes”
is in two very strong senses: (i) we show the random variables S | B and S are close
even in χ2-divergence, which is a more stringent measure than KL-divergence (or Hellinger
distance, or total variation distance) — that is, the test is “χ2-stable”; (ii) the χ2-divergence
is not just absolutely small, but is even a small fraction of P[B]2 itself (hence the total
variation closeness is a small fraction of P[B]). This allows a kind of composition (as in
the “Sparse Vector” mechanism [DR13] from the Differential Privacy literature) in which
the same quantum sample can be reused for repeated “above threshold” tests, up until the
point where having at least one “above threshold” outcome becomes likely. Precisely, our
result is the following (refer to Section 2.1 for the definition and notation of the quantities
used below):

Theorem 1.2. Let S ∼ Binomial(n, p). Assume that X is an independent Exponential
random variable with mean at least stddev[S] =

√
p(1 − p)n (and also at least 1). Let B

be the event that S + X > θn, and assume that P[B] < 1
4
. Then

dχ2((S | B),S) .

(
P[B] · stddev[S]

E[X]

)2

≤ P[B]2 · (n/E[X]2).

(Above we are using the notation Y . Z to mean Y ≤ C · Z for some universal constant C.
We are also abusing notation by writing the χ2-divergence between two random variables to
mean the χ2-divergence between their underlying distributions.)

Corollary 1.3. Writing S
′ for S | B, standard inequalities for f -divergences [GS02] imply

dTV(S′,S) ≤ dH(S′,S) ≤
√
dKL(S′,S) ≤

√
dχ2(S′,S) . P[B] · stddev[S]

E[X ]
≤ P[B] ·

√
n

E[X ]
.

Let us remark that our Theorem 1.2 is similar to results appearing previously in the
Differential Privacy/Adaptive Data Analysis literature; in particular, it is quite similar to
(and inspired by) a theorem (“Claim 41”) of Aaronson and Rothblum [AR19]. Although this
Claim 41 is presented in a quantum context, the essence of it is a theorem comparable to our
Theorem 1.2, with the following main differences: (i) it bounds the weaker KL-divergence
(though for our applications, this is acceptable); (ii) the proof is significantly more involved.
(Minor differences include: (i) their result uses two-sided exponential noise for a two-sided
threshold event; (ii) our bound has the stronger factor stddev[S] instead of just

√
n.)
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1.1.3 Applications: Shadow Tomography and Hypothesis Selection

Given our improved Threshold Search algorithm, we present two applications in quantum
data analysis. The first is to the aforementioned Shadow Tomography problem, where we
obtain a sample complexity that simultaneously achieves the best known dependence on all
three parameters m, d, and ǫ. Furthermore, our algorithm is online, as in the Adaptive Data
Analysis setting.

Theorem 1.4. There is a quantum algorithm that, given parameters m ∈ N, 0 < ǫ < 1
2
, and

access to unentangled copies of a state ρ ∈ Cd×d, uses

n =
(log2m + l)(log d)

ǫ4
·O(l) (l = log( log d

δǫ
))

copies of ρ and then has the following behavior: When any (adversarially/adaptively cho-
sen) sequence of observables A1, A2, . . . , Am ∈ Cd×d with 0 ≤ Ai ≤ 1 is presented to the
algorithm one-by-one, once At is presented the algorithm responds with an estimate µ̂i of
Eρ[At] = tr(ρAt). Except with probability at most δ (over the algorithm’s measurements), all
m estimates satisfy |µ̂i − Eρ[At]| ≤ ǫ.

The proof of this theorem is almost immediate from our Threshold Search algorithm,
using a known [Aar20] black-box reduction to the mistake-bounded online quantum state
learning algorithm of Aaronson, Chen, Hazan, Kale, and Nayak [ACH+19].

Let us philosophically remark that we believe the importance of the parameters, in in-
creasing order, is d, then ǫ, then m. Regarding d, “in practice” one may expect that log d, the
number of qubits in the unknown state, is not likely to be particularly large. Indeed, many
problems in quantum learning/tomography/statistics [HM02, CM06, MW16, OW15, OW16,
HHJ+17,OW17,AISW19,BOW19,Yu20a,Yu20b,BCL20,Yu23] have polynomial dependence
on d, so factors of polylog d seem of lesser importance. Regarding ǫ, “in practice” this might
be the most important parameter, as even with a very mild value like ǫ = .1, a dependence
of 1/ǫ4 is challenging. It’s peculiar that all works on Shadow Tomography have achieved
atypical ǫ-dependence like 1/ǫ4, 1/ǫ5, and 1/ǫ8, instead of the “expected” 1/ǫ2; on the other
hand, this peculiarity also seems to occur in the Adaptive Data Analysis literature. Finally,
we feel that the dependence on m is of the most interest (theoretical interest, at least), and
it would be extremely compelling if we could reduce the dependence from log2m to logm.
Our reason is related to quantum Hypothesis Selection, which we now discuss.

Hypothesis Selection. The classical (multiple) Hypothesis Selection problem [Yat85,
DL96,DL97] is as follows: Given are m fixed “hypothesis” probability distributions q1, . . . , qm
on [d], as well as a parameter ǫ and access to samples from an unknown distribution p on [d].
The task is to find (with probability at least 1− δ) a qj which is, roughly, closest to p, while
minimizing the number of samples drawn from p. More precisely, if η = mini{dTV(p, qi)}, the
algorithm should output a hypothesis qj with dTV(p, qj) ≤ Cη + ǫ for some fixed small con-
stant C. There are a variety of solutions known to this problem, with standard ones [DL01,
Chap. 6] achieving n = O((logm)/ǫ2) (and best constant C = 3). There are also numer-
ous variations, including handling different distance measures besides dTV [BV08], the easier
(“realizable/non-robust”) case when η = 0, and the case when there is a unique answer (as
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when the hypotheses qj are pairwise far apart). We emphasize that our focus is on the
non-asymptotic regime, where we would like an explicit sample bound n = n(m, d, ǫ, δ) hold-
ing for all values of m, d, ǫ, δ.3 One particularly useful application of Hypothesis Selection
is to learning an unknown probability distribution p from a class C (even “agnostically”).
Roughly speaking, if C has an ǫ-cover of size m = m(ǫ), then one can learn p to accuracy
O(ǫ) using a Hypothesis Selection over m hypotheses; i.e., with O((logm)/ǫ2) samples in
the classical case. For further discussion of the problem, see e.g. [MŠ07]; for Differentially
Private Hypothesis Selection, see [BKSW21,GKK+20]; for fast classical Hypothesis Selection
with a quantum computer, see [QCR20].

The quantum Hypothesis Selection problem is the natural analogue in which probability
distributions are replaced by quantum states, and total variation distance is replaced by trace
distance. As with Shadow Tomography (and Differentially Private Hypothesis Selection), it
is nontrivial to upgrade classical algorithms due to the fact that samples cannot be naively
reused. We show that one can use Shadow Tomography as a black box to solve quantum
Hypothesis Testing. We also give a different method based on Threshold Search that achieves
an incomparable copy complexity, with a better dependence on ǫ but a worse dependence
on m: roughly (log3m)/ǫ2, versus the (log2 m)/ǫ4 of Shadow Tomography. Finally, we show
that if the hypothesis states are pairwise far apart, we can match the optimal bound from
the classical case.

Theorem 1.5. There is a quantum algorithm that, givenm fixed hypothesis states σ1, . . . σm ∈
Cd×d, parameters 0 < ǫ, δ < 1

2
, and access to unentangled copies of a state ρ ∈ Cd×d, uses

n = min

{
(log2m + l1)(log d)

ǫ4
· O(l1),

log3m + log(l2/δ) · logm

ǫ2
· O(l2 · log(l2/δ))

}

copies of ρ (where l1 = log( log d
δǫ

) and l2 = log(1/max{η, ǫ})) and has the following guarantee:
except with probability at most δ, it outputs k such that

dtr(ρ, σk) ≤ 3.01η + ǫ, where η = min
i
{dtr(ρ, σi)}.

Further, assuming η < 1
2
(mini 6=j{dtr(σi, σj)} − ǫ) (so there is a unique σi near ρ), one

can find the σk achieving dtr(ρ, σk) = η (except with probability at most δ) using only n =
O(log(m/δ)/ǫ2) copies of ρ.

The fact that quantum Hypothesis Selection black-box reduces to Shadow Tomography
provides significant motivation for trying to prove (or disprove) that Shadow Tomography
can be done with O(logm) · poly((log d)/ǫ) copies; i.e., that the power on logm can be
reduced to 1. If this were possible, then as in the classical case we would be able to learn
a quantum state ρ ∈ C

d×d in a class C (to constant trace distance accuracy, say) using
log(|cover(C)|) · polylog(d) copies, where cover(C) denotes a set of states that form a (trace-
distance) cover for C. It’s easy to see that the class C of all states has a cover of size at
most O(d)d

2

, and hence Shadow Tomography with a logm dependence would yield a full

3This is as opposed to the asymptotic regime. There, one focuses on achieving δ ≤ exp(−C(m, d, ǫ)n) for
all n ≥ n0(m, d, ǫ), where the rate function C(m, d, ǫ) should be as large as possible, but where n0 may be a
completely uncontrolled function of m, d, ǫ. See, e.g., [NS11].
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quantum tomography algorithm with copy complexity Õ(d2), bypassing the sophisticated
representation-theory methods of [OW16, HHJ+17, OW17]. One might also hope for more
efficient learning of other interesting subclasses of states; e.g., the class separable states.

2 Preliminaries

2.1 Classical probability distributions and distances

Let p = (p1, . . . , pd) denote a probability distribution on [d] = {1, . . . , d}. We consider
A : [d] → R to be a random variable on [d], and write

E
p
[A] = E

i∼p
[A(i)] =

d∑

i=1

piA(i).

In particular, if A : [d] → {0, 1} we may think of it as an event A ⊆ [d].
Given another probability distribution q on [d], there are a variety of important dis-

tances/divergences between p and q. We now recall all those appearing in Theorem 1.2 and
Corollary 1.3.

The total variation distance dTV(p, q) between p and q is defined by

dTV(p, q) =
1

2

d∑

i=1

|pi − qi| = max
A⊆[d]

∣∣∣∣Ep [A] −E
q
[A]

∣∣∣∣.

The Bhattacharyya coefficient BC(p, q) (an affinity between p and q, rather than a distance)
is defined by

BC(p, q) =

d∑

i=1

√
piqi.

This can be used to define squared Hellinger distance dH(p, q)2 = dH2(p, q), viz.,

dH2(p, q) = 2(1 − BC(p, q)) =

d∑

i=1

(
√
pi −

√
qi)

2.

The KL-divergence dKL(p, q) between p and q is defined by

dKL(p, q) =

d∑

i=1

pi ln(pi/qi) = E
i∼p

ln(pi/qi).

Finally, the χ2-divergence dχ2(p, q) between p and q is defined by

dχ2(p, q) =
d∑

i=1

qi

(
1 − pi

qi

)2

= E
i∼q

[(
1 − pi

qi

)2
]
.
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2.2 Quantum states and measurements

A matrix A ∈ Cd×d is said to be Hermitian, or self-adjoint, if A† = A; here A† denotes the
conjugate transpose of A. We write A ≥ 0 to denote that A is self-adjoint and positive
semidefinite; e.g., B†B ≥ 0 always. In general, we write A ≥ B to mean A − B ≥ 0.
Recall that a positive semidefinite matrix A ≥ 0 has a unique positive semidefinite square
root

√
A ≥ 0. We write 1 for the identity matrix (where the dimension is understood from

context).
A d-dimensional quantum state is any ρ ∈ C

d× d satisfying ρ ≥ 0 and tr ρ = 1; physically
speaking, this is the state of a d-level quantum system, such as log2 d qubits. A d-dimensional
observable is any self-adjoint A ∈ Cd×d; physically speaking, this is any real-valued property
of the system. One can build an associated measuring device that takes in a quantum
system in state ρ, and reads out a (stochastic) real number; we denote its expected value,
the expectation of A with respect to ρ, by

E
ρ

[A] = tr(ρA).

It is a basic fact of linear algebra that Eρ[A] ≥ 0 whenever A ≥ 0.
Note that if ρ and A are diagonal matrices then we reduce to the classical case, where

the diagonal elements of ρ form a probability distribution on [d] and the diagonal elements
of A give a real-valued random variable.

We will use the term quantum event4 for an observable A ∈ C
d×d with 0 ≤ A ≤ 1; i.e.,

a self-adjoint operator with all its eigenvalues between 0 and 1. A state ρ ∈ Cd×d assigns
a probability 0 ≤ Eρ[A] ≤ 1 to each event. We reserve the term projector for the special
case when A2 = A; i.e., when all of A’s eigenvalues are either 0 or 1. Note that we have not
exactly paralleled the classical terminology, where an “event” is a random variable with all
its values equal to 0 or 1, but: (i) it’s convenient to have a brief term for observables A with
0 ≤ A ≤ 1; (ii) the terminology “projector” is very standard. Of course, by the spectral
theorem, every quantum event A may be written as

A =
r∑

i=1

λiΠi, where each 0 ≤ λi ≤ 1, and Πi’s are pairwise orthogonal projectors. (1)

A quantum measurement M, also known as a positive-operator valued measure (POVM),
is a sequence M = (A1, . . . , Ak) of quantum events with A1 + · · · + Ak = 1. Since

E
ρ

[A1] + · · · + E
ρ

[Ak] = E
ρ

[A1 + · · · + Ak] = E
ρ

[1] = 1,

a state ρ and a measurement M determine a probability distribution p on [k] defined by
pi = Eρ[Ai] for i = 1, . . . , k. A common scenario is that of a two-outcome measurement,
associated to any quantum event A; this is the measurement M = (A,A), where A = 1−A.

For any quantum measurement M, one can physically implement a measuring device
that, given ρ, reports i ∈ [k] distributed according to p. Mathematically, an implementation
of M = (A1, . . . , Ak) is a sequence of d-column matrices M1, . . . ,Mk with M †

i Mi = Ai for

4Also known as a POVM element in the quantum information literature.
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i = 1, . . . , k. Under this implementation, conditioned on the readout being i = i, the state ρ
collapses to the new state ρ|Mi

, defined as follows:

ρ|Mi
=

MiρM
†
i

Eρ[M
†
i Mi]

=
MiρM

†
i

Eρ[Ai]
.

Given M, we will define the canonical implementation to be the one in which Mi =
√
Ai.

In particular, if we have any quantum event A and we canonically implement the associated
two-outcome measurement (A,A), then measuring ρ and conditioning on A occurring yields
the new state

ρ|√A =

√
Aρ

√
A

Eρ[A]
.

More generally, we have the mathematical notion of a quantum operation S on d-dimensional
states, defined by d-column matrices M1, . . . ,Mk such that

M †
1M1 + · · · + M †

kMk ≤ 1.

The result of applying S to a state ρ is (the sub-normalized state)

S(ρ) = M1ρM
†
1 + · · · + MkρM

†
k .

An operation S defines a measurement

MS = (M †
1M1,M

†
2M2, . . . ,M

†
kMk,1−(M †

1M1 + · · · + M †
kMk)).

In Section 2.5 below, we will use the following terminology: we say a quantum operation S
rejects a state ρ if the outcome of measuring ρ according to MS corresponds to the quantum
event 1−(M †

1M1 + · · · + M †
kMk); otherwise, we say S accepts ρ.

Finally, we will use the following special case of the well-known Naimark dilation theorem:

Theorem 2.1 (Naimark). If A ∈ Cd×d is a quantum event, then there exists a projector Π
operating on the space C2d such that, for any ρ ∈ Cd×d,

E
ρ⊗|0〉〈0|

[Π] = E
ρ

[A].

2.3 Quantum state distances

Just as with classical probability distributions, there are a variety of distances/divergences
between two quantum states ρ, σ ∈ Cd×d. In fact, for every classical “f -divergence” there is a
corresponding “measured quantum f -divergence”, which is the maximal classical divergence
that can be achieved by performing the same measurement on ρ and σ. In this way, classical
total variation distance precisely corresponds to quantum trace distance, the Bhattacharyya
coefficient precisely corresponds to quantum fidelity, etc. See, e.g., [BOW19, Sec. 3.1.2] for
further review; here we will simply directly define some quantum distances.

The trace distance dtr(ρ, σ) between states ρ and σ is defined by

dtr(ρ, σ) =
1

2
‖ρ− σ‖1 = max

0≤A≤1
|E
ρ

[A] − E
σ

[A]|.
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Here the second equality is known as the Holevo–Helstrom theorem [Hol73,Hel76], and the
maximum is over all quantum events A ∈ Cd× d. Moreover, the maximum is achieved by a
projector. The fidelity F(ρ, σ) between states ρ and σ is defined by

F(ρ, σ) = ‖√ρ
√
σ‖1 = tr

√√
ρσ

√
ρ. (2)

This can be used to define the squared Bures distance dBures(ρ, σ)2 = dBures2(ρ, σ), viz.,

dBures2(ρ, σ) = 2(1 − F(ρ, σ)).

It follows from the work of Fuchs and Caves [FC95] that 1
2
dBures2(ρ, σ) ≤ dtr(ρ, σ) ≤

dBures(ρ, σ) for all states ρ and σ.
Below we give a simpler formula for fidelity in the case when σ is a conditioned version

of ρ (such results are sometimes known under the name “gentle measurement”; see [Wat18,
Cor. 3.15]):

Proposition 2.2. Let ρ ∈ C
d×d and M ∈ C

d×d an observable. Then F(ρ, ρ|M)2 =
Eρ[M ]2

Eρ[M2]
.

In particular, for a projector Π we get F(ρ, ρ|Π) =
√
Eρ[Π], and for conditioning on the oc-

currence of a quantum event A (under the canonical implementation), F(ρ, ρ|√A) =
Eρ[

√
A]√

Eρ[A]
.

Proof. Using the definition of ρ|M and the second formula for fidelity in Equation (2),

F(ρ, ρ|M)2 =
tr
(√√

ρMρM †√ρ
)2

Eρ[M †M ]
=

tr
(√√

ρM
√
ρ
√
ρM

√
ρ
)2

Eρ[M2]
=

tr
(√

ρM
√
ρ
)2

Eρ[M2]
=

Eρ[M ]2

Eρ[M2]
.

Below we give a further formula for F(ρ, ρ|√A) using the spectral decomposition of A. (We
remark that it may be obtained as a special case of the theorem of Fuchs and Caves [FC95].)

Proposition 2.3. Let ρ ∈ Cd×d be a quantum state, and let A ∈ Cd×d be a quantum event
with spectral decomposition A =

∑r
i=1 λiΠi as in Equation (1). Let p be the probability

distribution on [r] determined by measurement M = (Π1, . . . ,Πr) on ρ, and let q be the one
determined by M on ρ|√A. Then F(ρ, ρ|√A) = BC(p, q).

Proof. By definition,

E
ρ|√

A

[Πi] ·E
ρ

[A] = tr(
√
Aρ

√
AΠi) = E

ρ
[
√
AΠi

√
A] = E

ρ
[λiΠi] = λipi,

and hence qi = λipi/Eρ[A]. It follows that

BC(p, q) =

∑
i

√
λipi√

Eρ[A]
=

Eρ[
√
A]√

Eρ[A]
,

and the proof is complete by Proposition 2.2.
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2.4 Naive expectation estimation

Lemma 2.4. Let E ∈ Cd×d be a quantum event and let 0 < ǫ, δ < 1
2
. Then there exists

n = O(log(1/δ)/ǫ2) (not depending on E) and a measurement M = (A0, . . . , An) such that,
for any quantum state ρ ∈ Cd×d,

P

[∣∣∣∣
k

n
− tr(ρE)

∣∣∣∣ > ǫ

]
≤ δ,

where k ∈ {0, . . . , n} is the random outcome of the measurement M applied to the state ρ⊗n.
Moreover, for any parameters 0 ≤ τ, c ≤ 1, there exists a quantum event B such that

|tr(ρE) − τ | > c + ǫ =⇒ E
ρ⊗n

[B] ≥ 1 − δ and

|tr(ρE) − τ | ≤ c− ǫ =⇒ E
ρ⊗n

[B] ≤ δ.

Additionally, if E is a projector, then so is B.

Proof. Let E1 = E and E0 = 1 − E. For all x ∈ {0, 1}n, let Ex ∈ (Cd×d)⊗n be defined by
Ex = Ex1

⊗ Ex2
⊗ · · · ⊗ Exn

. For k = 0, . . . , n, let Ak ∈ (Cd×d)⊗n be the quantum event
defined by

Ak =
∑

x∈{0,1}n
|x|=k

Ex.

Let M be the measurement defined by M = {A0, . . . , An}.
Thus, if k ∈ {0, . . . , n} is the random outcome of measuring ρ⊗n according to M, then

k is distributed as Binomial(n, tr(ρE)). Hence, if n = O(log(1/δ)/ǫ2), then, by Hoeffding’s
inequality,

P

[∣∣∣∣
k

n
− tr(ρE)

∣∣∣∣ ≥ ǫ

]
≤ 2 exp(−2nǫ2) ≤ δ.

Let parameters τ, c ∈ [0, 1] be given and let the function f : [0, 1] → {0, 1} be defined by

f(t) =

{
1, |t− τ | ≥ c,

0, otherwise.

Finally, let the quantum event B be defined by

B =
n∑

k=0

f(k/n)Ak.

Thus, if k ∼ Binomial(n, tr(ρE)), then

E
ρ⊗n

[B] =

n∑

k=0

P[k = k] · f(k/n) = E[f(k/n)] = P

[∣∣∣∣
k

n
− τ

∣∣∣∣ ≥ c

]
.

11



If c + ǫ ≤ |tr(ρE) − τ |, then |tr(ρE) − k/n| < ǫ implies |k/n− τ | ≥ c. Hence,

E
ρ⊗n

[B] = P

[∣∣∣∣
k

n
− τ

∣∣∣∣ ≥ c

]
≥ P

[∣∣∣∣
k

n
− tr(ρE)

∣∣∣∣ < ǫ

]
≥ 1 − δ.

If c− ǫ ≥ |tr(ρE) − τ |, then |tr(ρE) − k/n| < ǫ implies |k/n− τ | < c. Hence,

E
ρ⊗n

[B] = P

[∣∣∣∣
k

n
− τ

∣∣∣∣ < c

]
≥ P

[∣∣∣∣
k

n
− tr(ρE)

∣∣∣∣ < ǫ

]
≥ 1 − δ.

If E is a projector, then Ak is a projector and AkAℓ = AℓAk = 0 for all k, ℓ ∈ {0, . . . , n}.
Since B is a sum of orthogonal projectors Ak with k ∈ {0, . . . , n}, it follows that B is a
projector.

2.5 Quantum union bound-style results

The following result is part of the “Damage Lemma” of Aaronson and Rothblum [AR19,
Lemma 17]. Since the original proof of the “Damage Lemma” was found to be incor-
rect [Lei22], we provide a slightly different proof by induction below:

Lemma 2.5. Let S1, . . . , Sm be arbitrary quantum operations on d-dimensional quantum
states. Let ρ be a quantum state on Cd with pi = tr(Si(ρ)) > 0 for all i ∈ [m]. It holds that

|tr(Sm(· · ·S1(ρ))) − p1 · · · pm| ≤ 2 ·
m−1∑

k=1

p1 · · · pk · dtr
(

Sk(ρ)

tr(Sk(ρ))
, ρ

)
.

Proof. For all k ∈ [m], let p[k] = p1 · · · pk and σk = Sk(ρ)/ tr(Sk(ρ)). For all self-adjoint
matrices X , |tr(X)| ≤ ‖X‖1 and ‖S(X)‖1 ≤ ‖X‖1 for all quantum operations S. Hence,

|tr(Sm(· · ·S1(ρ))) − p[m]| = |tr(Sm(· · ·S1(ρ))) − p[m−1] tr(Sm(ρ))|
= |tr(Sm(· · ·S1(ρ)) − p[m−1]Sm(ρ))|
= |tr(Sm(Sm−1(· · ·S1(ρ)) − p[m−1]ρ))|
≤ ‖Sm(Sm−1(· · ·S1(ρ)) − p[m−1]ρ)‖1
≤ ‖Sm−1(· · ·S1(ρ)) − p[m−1]ρ‖1
≤ ‖Sm−1(· · ·S1(ρ)) − p[m−1]σm−1‖1 + ‖p[m−1]σm−1 − p[m−1]ρ‖1
= ‖Sm−1(· · ·S1(ρ)) − p[m−2]Sm−1(ρ)‖1 + 2p[m−1]dtr(σm−1, ρ)

≤ ‖Sm−2(· · ·S1(ρ)) − p[m−2]ρ‖1 + 2p[m−1]dtr(σm−1, ρ).

Note that ‖S1(ρ) − p1ρ‖1 = p1‖σ1 − ρ‖1 = 2p[1]dtr(σ1, ρ). Therefore, by induction,

|tr(Sm(· · ·S1(ρ))) − p[m]| ≤ 2 ·
m−1∑

k=1

p[k] · dtr(σk, ρ).

Lemma 2.5 compares the probability tr(S1(ρ)) · · · tr(Sm(ρ)) that the operations S1, . . . , Sm

accept the same state ρ independently with the probability tr(Sm(· · ·S1(ρ))) that all S1, . . . , Sm

accept when applied sequentially to the initial state ρ.
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The following inequality, which appears in the proof of [OV22, Theorem 1.3], will be used
to show that when S1, . . . , Sm are applied sequentially to the initial state ρ, the probability
of observing S1, . . . , St−1 accept and St reject for certain “good” values of t ∈ [m] is bounded
below by a positive constant for specific ρ and S1, . . . , Sm (see proof of Lemma 4.2).

Lemma 2.6. Let ρ be a mixed quantum state and let A1, . . . , Am denote quantum events
on Cd with Eρ[Ai] > 0 for all i ∈ [m]. Let p0 = 1, q0 = 1, ρ0 = ρ, pi = 1 − Eρ[Ai], and
ρi = ρi−1|√Ai

for all i ∈ [m].

Suppose the measurements (A1, A1), . . . , (Am, Am) are applied to ρ sequentially; for all
t ∈ [m], let qt denote the probability of observing outcomes A1, . . . , At and let st denote the
probability of observing outcomes A1, . . . , At−1, At. It holds that

1 ≤ √
qm F(ρ, ρm) +

m∑

i=1

√
si
√
pi.

Proof. Since 1 = q0 F(ρ, ρ0) and qi = qi−1 · Eρi−1
[Ai] for all i ∈ [m],

1 −√
qm F(ρ, ρm) =

m∑

i=1

(
√
qi−1 F(ρ, ρi−1) −

√
qi F(ρ, ρi))

=

m∑

i=1

(
√
qi−1 F(ρ, ρi−1) −

√
qi−1

√
E

ρi−1

[Ai] F(ρ, ρi)

)

=

m∑

i=1

√
qi−1

(
F(ρ, ρi−1) −

√
E

ρi−1

[Ai] F(ρ, ρi)

)
.

By [OV22, Lemma 2.1] and the inequality 1−
√
Ai ≤ Ai,

F(ρ, ρi−1) −
√

E
ρi−1

[Ai] F(ρ, ρi) ≤
√

E
ρ

[1−
√

Ai]

√
E

ρi−1

[1−
√

Ai] ≤
√
E
ρ

[Ai]

√
E

ρi−1

[Ai].

Hence,

1 −√
qm F(ρ, ρm) ≤

m∑

i=1

√
qi−1

√
E
ρ

[Ai]

√
E

ρi−1

[Ai] ≤
m∑

i=1

√
si
√
pi.

Finally, for the “unique decoding” part of our Hypothesis Selection routine we will use a
related result, Gao’s quantum Union Bound [Gao15]:

Lemma 2.7. For each of i = 1, . . . , m, let Π1
i ∈ C

d× d be a projector and write Π0
i = 1−Π1

i .
Then for any quantum state ρ ∈ Cd× d,

E
ρ

[(Π1
1 · · ·Π1

m)(Π1
1 · · ·Π1

m)†] ≥ 1 − 4
m∑

i=1

E
ρ

[Π0
i ].

Corollary 2.8. In the setting of Lemma 2.7, suppose that x ∈ {0, 1}m is such that Eρ[Π
xi

i ] ≥
1 − ǫ for all 1 ≤ i ≤ m. If an algorithm sequentially measures ρ with (Π0

1,Π
1
1), measures

the resulting state with (Π0
2,Π

1
2), measures the resulting state with (Π0

3,Π
1
3), etc., then the

probability that the measurement outcomes are precisely x1, x2, . . . , xm is at least 1 − 4ǫm.
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3 χ2-stable Threshold Reporting

Our goal in this section is to prove Theorem 1.2 and to show how this classical result applies
to quantum states and measurements. We begin with some preparatory facts.

The following is well known [Ber95]:

Proposition 3.1. For S a random variable and f : R → R 1-Lipschitz, Var[f(S)] ≤
Var[S].

Proof. Let S
′ be an independent copy of S. Since the function f is 1-Lipschitz, we always

have 1
2
(f(S) − f(S′))2 ≤ 1

2
(S − S

′)2. The result follows by taking expectations of both
sides.

We will also use the following simple numerical inequality:

Lemma 3.2. Fix 0 ≤ p ≤ 1, q = 1 − p. Then for C = (e− 1)2 ≤ 3, we have

q + pe2λ ≤ (1 + Cpqλ2) · (q + peλ)2 ∀λ ∈ [0, 1].

Proof. Since (q + peλ)2 ≥ (q + p)2 = 1 for λ ≥ 0, it suffices to show

q + pe2λ ≤ (q + peλ)2 + Cpqλ2 ∀λ ∈ [0, 1].

But (q + pΛ2) − (q + pΛ)2 = pq(Λ − 1)2 when p + q = 1, so it is further equivalent to show

(eλ − 1)2 ≤ Cλ2 ∀λ ∈ [0, 1].

But this indeed holds with C = (e − 1)2, as it is equivalent to eλ ≤ 1 + (e − 1)λ on [0, 1],
which follows from convexity of λ 7→ eλ.

We now do a simple calculation showing how much a random variable changes (in χ2-
divergence) when conditioning on an event. In using the below, the typical mindset is that B
is an event that “rarely” occurs, so P[B] is close to 1.

Proposition 3.3. Let S be a discrete random variable, and let B be an event on the same
probability space with P[B] < 1. For each outcome s of S, define f(s) = P[B | S = s]. Then

dχ2((S | B),S) = Var[f(S)]
/
P[B]2.

Proof. We have the likelihood ratio P[S = s | B]
/
P[S = s] = (1 − f(s))

/
P[B], by Bayes’

theorem. Hence,

dχ2((S | B),S) = E

[(
1 − 1 − f(S)

P[B]

)2
]

=
1

P[B]2
E
[
(f(S) −P[B])2

]
= Var[f(S)]

/
P[B]2,

where the last step uses E[f(S)] = P[B].

We can now prove Theorem 1.2, which we restate for convenience:
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Theorem (Theorem 1.2, restated). Fix a threshold θ ∈ [0, 1]. Let S ∼ Binomial(n, p) and
write q = 1 − p. Assume that X is an independent Exponential random variable with mean
at least stddev[S] =

√
pqn (and also at least 1). Let B be the event that S + X > θn, and

assume that P[B] < 1
4
. Then

dχ2((S | B),S) .

(
P[B] · stddev[S]

E[X]

)2

.

Proof. Write λ = 1/E[X], so X ∼ Exponential(λ) and we have the assumptions λ ≤ 1√
pqn

and λ ≤ 1. Using Proposition 3.3 and P[B] > 3
4
, it suffices to show

Var[f(S)] . P[B]2 · pqnλ2,

where
f(s) = P[X > θn− s] = min(1, g(s)), g(s) = exp(−λ(θn− s)).

Since y 7→ min(1, y) is 1-Lipschitz, Proposition 3.1 tells us that Var[f(S)] ≤ Var[g(S)].
Var[g(S)] can be computed using the moment-generating function of S ∼ Binomial(n, p),
namely E[exp(tS)] = (q + pet)n:

E[g(S)] = E[exp(−λ(θn− S))] = exp(−λθn) · (q + peλ)n,

E[g(S)2] = E[exp(−2λ(θn− S))] = exp(−2λθn) · (q + pe2λ)n.

Thus

Var[g(S)] = E[g(S)]2 ·
(
E[g(S)2]

E[g(S)]2
− 1

)
= E[g(S)]2 ·

((
q + pe2λ

(q + peλ)2

)n

− 1

)

≤ E[g(S)]2 ·
(
(1 + 3pqλ2)n − 1

)
(Lemma 3.2)

. E[g(S)]2 · pqnλ2 (as λ2 ≤ 1
pqn

)

and it therefore remains to establish

E[g(S)] = exp(−λθn) · (q + peλ)n . P[B]. (3)

Intuitively this holds because g(s) should not be much different than f(s), and E[f(S)] =
P[B] by definition. Formally, we consider two cases: p ≥ 1

n
(intuitively, the main case) and

p ≤ 1
n
.

Case 1: p ≥ 1
n
. In this case we use that P[S > pn] ≥ 1

4
(see, e.g., [Doe18]), and hence:

(i) it must be that θ ≥ p, since we are assuming P[B] = P[S + X > θn] < 1
4
; and,

(ii) P[B] ≥ P[S > pn] · P[X ≥ (θ − p)n] ≥ 1
4

exp(−λ(θ − p)n), where the first inequality
used independence of S and X and the second inequality used (θ − p)n ≥ 0 (by (i)). Thus
to establish Inequality (3), it remains to show exp(−λθn) · (q + peλ)n . exp(−λ(θ − p)n).

Since 0 < λ ≤ 1,

eλ − 1 =
∑

i≥1

λi

i!
= λ + λ2

∑

i≥2

λi−2

i!
≤ λ + λ2

∑

i≥2

1

i!
≤ λ + λ2e.
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By a similar argument, e−λ − 1 ≤ −λ+ λ2e. Using these two inequalities and 1 + x ≤ ex for
x ∈ R, we obtain

(q + peλ)n = (1 + p(eλ − 1))n ≤ exp(p(eλ − 1)n) ≤ exp(λpn) exp(eλ2 · p · n) and

(q + peλ)n = exp(λn)(p + qe−λ)n = exp(λn)(1 + q(e−λ − 1))n

≤ exp(λn) exp(q(e−λ − 1)n) ≤ exp(λpn) exp(eλ2 · q · n).

Hence, (q + peλ)n ≤ exp(λpn) exp(eλ2 · min{p, q} · n). Since, λ2 ≤ 1/pqn, by assumption, it
follows that λ2 min{p, q}n ≤ 1/max{p, q} ≤ 2, so

(q + peλ)n ≤ exp(λpn) exp(e/max{p, q}) ≤ exp(λpn) exp(2e).

Therefore, exp(−λθn) · (q + peλ)n . exp(−λθn) exp(λpn) = exp(−λ(θ − p)n), as needed.

Case 2: p ≤ 1
n
. Since λ ∈ (0, 1], we have eλ ≤ 1 + 2λ. Hence, q + peλ ≤ 1 + 2pλ ≤ 1 + 2

n
,

and so (q + peλ)n . 1, meaning that Inequality (3) follows from P[B] ≥ P[X > θn] =
exp(−λθn).

3.1 The quantum version

Having established Theorem 1.2, we now show how this result applies to quantum states
and measurements. Specifically, we prove that for any quantum event A ∈ C

d×d, there
exists a corresponding event B ∈ (Cd×d)⊗n which exhibits the same statistics as the classical
event S + X > θn from Theorem 1.2 with S ∼ Binomial(n, tr(ρA)) when ρ⊗n is measured
according to B. Moreover, we also relate the fidelity between the states ρ⊗n and ρ⊗n|√

1−B

(i.e. the state ρ⊗n conditioned on the event 1−B) to the Bhattacharyya coefficient between
S and (S | S + X ≤ θn) (i.e. S conditioned on the event S + X ≤ θn).

Lemma 3.4. Let ρ ∈ Cd×d represent an unknown quantum state and let A ∈ Cd×d be a
projector. Let n ∈ N, let λ > 0, and let θ ∈ [0, 1] be an arbitrary threshold. Let S and
X be classical random variables with distributions defined by S ∼ Binomial(n,Eρ[A]) and
X ∼ Exponential(λ). There exists a quantum event B ∈ (Cd×d)⊗n such that Eρ⊗n [B] =
P[S + X > θn] and

F
(
ρ⊗n, ρ⊗n

∣∣√
1−B

)
= BC((S | S + X ≤ θn),S).

Proof. Let ̺ = ρ⊗n. Let A1 = A and A0 = 1 − A. For all x ∈ {0, 1}n, let Ax ∈ (Cd×d)⊗n

denote the event defined by Ax = Ax1
⊗Ax2

⊗· · ·⊗Axn
. For k ∈ {0, . . . , n}, let Ek ∈ (Cd×d)⊗n

be the event defined by

Ek =
∑

x∈{0,1}n
|x|=k

Ax.

Since A is a projector, Ax is also a projector and AxAy = AyAx = 0 for all x, y ∈ {0, 1}n
with x 6= y. Thus, each Ek is a sum of orthogonal projectors, so Ek is a projector as well
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and EkEℓ = EℓEk = 0 for all k, ℓ ∈ {0, . . . , n} with k 6= ℓ. Moreover,

n∑

k=0

Ek =
∑

x∈{0,1}n
Ax = 1.

Let B ∈ (Cd×d)⊗n denote the quantum event defined by

B =
n∑

k=0

P[X + k > θn] · Ek.

The statistics of the measurement {Ek | k = 0, . . . , n} applied to ̺ are distributed as
Binomial(n, tr(ρA)), so E̺[Ek] = P[S = k]. Hence,

E
̺

[B] =

n∑

k=0

P[X + k > θn] · E
̺

[Ek] =

n∑

k=0

P[X + k > θn] ·P[S = k] = P[S + X > θn].

For all ℓ ∈ {0, . . . , n},

√
1− B · Eℓ = Eℓ ·

√
1− B =

√
P[X + ℓ ≤ θn] · Eℓ.

Hence,

tr
(
̺|√

1−B · Eℓ

)
=

1

E̺[B]
· tr(

√
1− B · ̺ ·

√
1−B ·Eℓ)

=
1

E̺[B]
· tr(Eℓ ·

√
1−B · ̺ ·

√
1− B · Eℓ)

=
P[X + ℓ ≤ θn]

E̺[B]
· tr(Eℓ · ̺ ·Eℓ)

=
P[X + ℓ ≤ θn]

E̺[B]
· E

̺
[Eℓ]

=
P[X + ℓ ≤ θn]

P[S + X ≤ θn]
·P[S = ℓ].

Thus, the measurement {Ek | k = 0, . . . , n} applied to ̺|√
1−B yields statistics distributed as

(S | B). Therefore, by Proposition 2.3,

F
(
̺, ̺|√

1−B

)
=

n∑

k=0

√
tr(̺ · Ek)

√
tr
(
̺|√

1−B · Ek

)
= BC((S | S + X ≤ θn),S).

Using Lemma 3.4, we obtain the following “quantum version” of Theorem 1.2:

Corollary 3.5. Let ρ ∈ Cd×d represent an unknown quantum state and let A ∈ Cd×d be a
projector. Let n ∈ N, let λ > 0, and let θ ∈ [0, 1] be an arbitrary threshold. Fix p = Eρ[A]
and let S and X be defined as in Theorem 1.2. If p, λ, n, and θ satisfy the conditions
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of Theorem 1.2, then there exists a quantum event B ∈ (Cd×d)⊗n such that Eρ⊗n [B] =
P[S + X > θn] and

dBures

(
ρ⊗n, ρ⊗n

∣∣√
1−B

)
. E

ρ⊗n
[B] · stddev[S]

E[X]
.

Moreover,

E
ρ⊗n

[B] ≤ exp(−nλ(θ − (e− 1)E
ρ

[A])).

Proof. Let ̺ = ρ⊗n. By Lemma 3.4, there exists a quantum event B ∈ (Cd×d)⊗n such that
E̺[B] = P[S + X > θn] and F

(
̺, ̺|√

1−B

)
= BC((S | S + X ≤ θn),S). Note that, for all

distributions µ and ν, 1 − BC(µ, ν) ≤ dχ2(µ, ν). Hence, by Lemma 3.4 and Corollary 1.3, it
follows that

dBures

(
ρ⊗n, ρ⊗n

∣∣√
1−B

)
=
√

2
(
1 − F

(
̺, ̺|√

1−B

))

=
√

2(1 − BC((S | S + X ≤ θn),S))

= dH((S | S + X ≤ θn),S)

≤
√

dχ2((S | S + X ≤ θn),S)

. E
ρ⊗n

[B] · stddev[S]

E[X]

Since E̺[B] = P[S + X > θn],

E
̺

[B] = P[S + X > θn]

≤ E[exp(−λ(θn− S))] (by P[X > t] ≤ exp(−λt))

= exp(−λθn)E[exp(λS)]

= exp(−λθn)(1 − p + peλ)n (E[exp(λS)] is the m.g.f. of S)

= exp(−λθn)(1 + p(eλ − 1))n

≤ exp(−λθn)(1 + p(e− 1)λ)n (by ex ≤ 1 + (e− 1)x for x ∈ [0, 1])

≤ exp(−λθn) exp((e− 1)nλp) (by 1 + x ≤ ex for x ∈ R)

= exp(−nλ(θ − (e− 1)p)).

4 Threshold Search

In this section, we prove Theorem 1.1.

4.1 Preliminary reductions

We begin with several reductions that allow us to reduce to the case of projectors, and to
the case when ǫ, δ, and the θi’s are all fixed constants.

18



Reduction to projectors. Let ρ ∈ C
d×d denote the unknown quantum state and let

A1, . . . , Am ∈ Cd×d be the observables in the quantum Threshold Search problem (which
we assume are given in an online fashion). If we extend the unknown state ρ to ρ ⊗ |0〉〈0|,
then by Naimark’s Theorem 2.1, there exists a projector Πi ∈ Cd×d ⊗C2×2 for each Ai such
that Eρ⊗|0〉〈0|[Πi] = Eρ[Ai] for all i = 1, . . . , m. Since the state ρ ⊗ |0〉〈0| can be prepared
without knowing ρ and this extension increases the dimension of the quantum system only
by a constant factor, by replacing ρ by ρ ⊗ |0〉〈0| and each Ai by the corresponding Πi, it
follows that we can assume, without loss of generality, that the observables A1, . . . , Am are
projectors.

Reduction to 3/4 vs. 1/4. Let 0 < ǫ < 1
2

be given, and recall that in the Threshold Search
problem the algorithm is presented with a stream of projector/threshold pairs (Ai, θi), with
the goal of distinguishing the cases Eρ[Ai] > θi and Eρ[Ai] ≤ θi − ǫ. We may have the
algorithm use Lemma 2.4 (the latter part, with τ = 0, c = θi − ǫ/2, δ = 1/4, and ǫ replaced
by ǫ/2), which establishes that for some n0 = O(1/ǫ2), each Ai may be replaced with a
projector Bi ∈ (Cd×d)⊗n0 satisfying

i. if Eρ[Ai] > θi, then Eρ⊗n0 [Bi] > 3/4;

ii. if Eρ[Ai] ≤ θi − ǫ, then Eρ⊗n0 [Bi] ≤ 1/4.

Thus we can reduce to the “3/4 vs. 1/4” version of Threshold Search at the expense of
paying an extra factor of n0 = O(1/ǫ2) in the copy complexity. Note that the parameter d
has increased to dn0, as well, but (crucially) our Theorem 1.1 has no dependence on the
dimension parameter.

Reduction to a promise-problem version, with fixed δ. So far we have reduced
proving Theorem 1.1 to proving the following:

Theorem 4.1. There is an algorithm that, given m ∈ N and 0 < δ < 1
2
, first obtains n∗ =

O(log2m + log(1/δ)) · log(1/δ) copies ρ⊗n∗
of an unknown state ρ ∈ Cd×d. Next, a sequence

of projectors A1, . . . Am ∈ C
d×d is presented to the algorithm (possibly adaptively). After

each At, the algorithm may either select t, meaning halt and output the claim “Eρ[At] > 1/4”,
or else pass to the next projector. If the algorithm passes on all m projectors, the algorithm
must claim “Eρ[Ai] ≤ 3/4 for all i”. Except with probability at most δ, the algorithm’s
output is correct.

The main work we will do is to show the following similar result:

Lemma 4.2. There is an algorithm that, given m ∈ N, first obtains n = O(log2m) copies
ρ⊗n of an unknown state ρ ∈ Cd×d. Next, a sequence of projectors A1, . . .Am ∈ Cd×d, obeying
the promise that Eρ[Aj] > 3/4 for at least one j, is presented to the algorithm. After each At,
the algorithm may either halt and select t, or else pass to the next projector. With probability
at least 0.01, the algorithm selects a t with Eρ[At] ≥ 1/3.

One needs a slight bit of care to reduce Theorem 4.1 to Lemma 4.2 while maintaining
the online nature of the algorithm:
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Proof of Theorem 4.1, assuming Lemma 4.2. We will use the algorithm in Lemma 4.2 as a
kind of “subroutine” for the main theorem. Our first step is to augment this subroutine in
the following way:

• Given parameter δ for the main theorem, the subroutine will use a parameter δ′ =
δ/(C log(1/δ)), where C is a universal constant to be chosen later.

• n is increased from O(log2m) to n′ = O(log2m)+O(log(1/δ′)), where the first O(log2m)
copies of ρ are used as usual, and the additional O(log(1/δ′)) copies are reserved as a
“holdout”.

• If ever the subroutine is about to halt and select t, it first performs a “failsafe” check:
It applies Lemma 2.4 with τ = 0, c = .3, ǫ = .03, δ = δ′, and measures with the
holdout copies. (Note that c + ǫ < 1/3 and also c − ǫ > 1/4.) If event “B” as
defined in Lemma 3.4 occurs, the subroutine goes ahead and selects t; otherwise, the
algorithm not only passes, but it “aborts”, meaning that it automatically passes on all
subsequent Ai’s without considering them.

We make two observations about this augmented subroutine:

• When run under the promise that Eρ[Aj ] > 3/4 for at least one j, it still selects a t
satisfying Eρ[At] ≥ 1/3 with probability at least 0.005. This is because the “failsafe”
causes an erroneous change of mind with probability at most δ′, and we may assume
δ′ ≤ 0.005 (taking C large enough).

• When run without the promise that Eρ[Aj] > 3/4 for at least one j, the failsafe implies
that the probability the algorithm ever selects a t with Eρ[At] < 1/4 is at most δ′.

With the augmented subroutine in hand, we can now give the algorithm that achieves
Theorem 4.1. The algorithm will obtain n∗ = n′ · L copies of ρ, where L = O(log(1/δ));
these are thought of as L “batches”, each with of n′ copies. As the projectors Ai are pre-
sented to the algorithm, it will run the augmented subroutine “in parallel” on each batch.
If any batch wants to halt accept a certain At, then the overall algorithm halts and outputs
“Eρ[At] > 1/4”. Otherwise, if all the batches pass on At, so too does the overall algorithm.
Of course, if the overall algorithm passes on all Ai’s, it outputs “Eρ[Ai] ≤ 3/4 for all i”.

We now verify the correctness of this algorithm. First, if there exists some Aj with
Eρ[Aj ] > 3/4, the probability of the algorithm wrongly outputting “Eρ[Ai] ≤ 3/4 for all i”
is at most (1 − .005)L, which can be made smaller than δ by taking the hidden constant
in L = O(log(1/δ)) suitably large. On the other hand, thanks to the “failsafe” and a
union bound, the probability the algorithm ever wrongly outputs “Eρ[At] > 1/4” is at
most Lδ′ = L · δ/(C log(1/δ)), which is again at most δ provided C is taken large enough.

4.2 The main algorithm (proof of Lemma 4.2)

In this section, we will prove Lemma 4.2. Let n = n(m) and λ = λ(m) be parameters to be
fixed later and let θ = 2/3. As stated in Lemma 4.2, we may explicitly assume there exists
i ∈ [m] with Eρ[Ai] ≥ 3/4. For each projector Ai, let Bi denote the event obtained from
Lemma 3.4. The algorithm proceeds as follows:
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Let ̺ denote the current quantum state, with ̺ = ρ⊗n initially. Given projector Ai,
let Bi be the event obtained from Lemma 3.4. Measure the current state ̺ with (Bi, Bi)
using the canonical implementation. If Bi occurs, halt and select i; otherwise, pass.

Note that the n copies of ρ are only prepared once and reused, and that the current state ̺
collapses to a new state after each measurement.

The algorithm has the following modes of failure:

(FN) the algorithm passes on every observable because the event Bi occurs for every i ∈ [m];

(FP) the algorithm picks an observable Aj with Eρ[Aj ] < 1/3.

We want to show that the algorithm does not make errors of type FP or FN with proba-
bility at least 0.1. To this end, we introduce the following notation.

Notation 4.3. For i = 1, . . . , m, let:

1. Si be a random variable distributed as Binomial(n,Eρ[Ai]);

2. pi = Eρ⊗n[Bi] be the probability that Bi would occur if ρ⊗n were measured with
(Bi, Bi);

3. ̺0 = ρ⊗n and let ̺i be the quantum state after the ith measurement, conditioned on
the event Bj occurring for all 1 ≤ j ≤ i;

4. ri = E̺i−1
[Bi] be the probability that the event Bi occurs assuming all the events Bj

with 1 ≤ j ≤ i− 1 occurred;

5. qi = r1 · · · ri be the probability that all of the events Bj with 1 ≤ j ≤ i occur;

6. si = qi−1 · E̺i−1
[Bi] be the probability of observing outcomes B1, . . . , Bi−1, Bi.

Note that the pi’s refer to a “hypothetical,” whereas the ri’s, qi’s, and si’s concern what
actually happens over the course of the algorithm. In particular, qm is the probability that
the algorithm passes on every observable. The following claim shows that, as long as the
noise expectation E[X] = 1/λ used in Lemma 3.4 is sufficiently large, the probability of a
false negative (FN) is bounded above by 4/5:

Claim 4.4. For E[X] = Ω(
√
n), there exists t ∈ [m] such that qt ≤ 4/5. Moreover, if t > 1,

then qt−1 ≥ 3/4 and p1 + · · · + pt−1 ≤ 1/4.

Proof. By Lemma 3.4, pi = Eρ⊗n[Bi] = P[Si + X > θn]. Let k ∈ [m] be such that
Eρ[Ak] ≥ 3/4. Thus, Sk is a binomial random variable with mean at least 3/4. Since
θ = 2/3 < 3/4, if n is taken to be a sufficiently large constant,

pk = P[Sk + X > θn] ≥ P[Sk > (2/3)n] ≥ 1 − exp(−1/4).
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Therefore, there exists a minimal t ∈ [m] such that (1 − p1) · · · (1 − pt) ≤ exp(−1/4). If
t = 1, then q1 = 1 − p1 ≤ exp(−1/4) ≤ 4/5. Otherwise, since t is minimal, it follows that
(1 − p1) · · · (1 − pt−1) ≥ exp(−1/4). Hence,

exp(−1/4) ≤ (1 − p1) · · · (1 − pt−1) ≤ exp(−(p1 + · · · + pt−1)),

whence p1 + · · · + pt−1 ≤ 1/4. Thus, by Lemma 2.5 and Corollary 3.5,

|(1 − p1) · · · (1 − pt) − qt| ≤ 2

t−1∑

i=1

dtr

(
ρ⊗n, ρ⊗n

∣∣√
1−Bi

)

.

t−1∑

i=1

E
ρ⊗n

[Bi] ·
stddev[Si]

E[X]
≤

√
n

E[X]
· (p1 + . . . + pt−1) ≤

1

4
·

√
n

E[X]
.

By a similar argument,

|(1 − p1) · · · (1 − pt−1) − qt−1| .
√
n

E[X]
· (p1 + . . . + pt−2) ≤

1

4
·

√
n

E[X]
.

Therefore, since 3/4 < exp(−1/4) < 4/5, we have qt ≤ 4/5 and qt−1 ≥ 3/4, for E[X] =
Ω(

√
n).

Assuming E[X ] = Ω(
√
n), let t ∈ [m] be as in Claim 4.4. Since qm ≤ qt ≤ 4/5, it follows

that the probability the algorithm makes an FN error is at most 4/5. In fact, since qt ≤ 4/5,
the algorithm will pick an index i ≤ t with probability at least 1/5. Thus, to show that the
algorithm succeeds w.p. at least 0.1, it suffices to show that w.h.p. the algorithm does not
pick an index i ∈ B, where B ⊆ [m] is the subset defined by

B = {i ∈ [m] | 1 ≤ i ≤ t and E
ρ

[Ai] < 1/3}.

First, we show that an event Bi with i ∈ B is unlikely to occur when the initial state ρ⊗n is
measured according to (Bi, Bi):

Claim 4.5. Let η ∈ (0, 1], to be specified later. If n is of order O(log2(m/η)), then pi ≤
(η/m)2 for all i ∈ B.

Proof. By Corollary 3.5, for all i ∈ [m],

pi = E
ρ⊗n

[Bi] ≤ exp(−nλ(θ − (e− 1)E
ρ

[Ai])).

Since θ = 2/3 and i ∈ B, we have Eρ[Ai] < 1/3 and θ − (e − 1)Eρ[Ai] ≥ 0.09. Since
nλ = Ω(

√
n), there exists a constant C > 0 such that nλ ≥ C

√
n. Thus,

pi = E
ρ⊗n

[Bi] ≤ exp(−0.09C
√
n).

Therefore, if n ≥ log2((m/η)2)/(0.09C)2, then pi ≤ (η/m)2.

22



Next, we show that the algorithm picks an index i ∈ [t] such that Eρ[Ai] ≥ 1/3 with
probability at least 0.03, proving Lemma 4.2.

Proof of Lemma 4.2. Fix η = 0.01, so that indeed n = O(log2m) as promised. By Lemma 2.6,

1 ≤ √
qt F(ρ⊗n, ̺t) +

t∑

i=1

√
si
√
pi.

By Claim 4.5 and the Cauchy–Schwarz inequality,

t∑

i=1

√
si
√
pi ≤

η

m

∑

i∈B

√
si +

∑

i 6∈B

√
si
√
pi ≤ η +

√∑

i 6∈B
si

√∑

i 6∈B
pi,

where i 6∈ B denotes i ∈ [t] \ B. By Claim 4.4, p1 + · · · + pt ≤ 1/4. Hence,

1 −√
qt F(ρ⊗n, ̺t) − η ≤

√∑

i 6∈B
si

√∑

i 6∈B
pi ≤

1

2

√∑

i 6∈B
si.

Since F(ρ⊗n, ̺t) ≤ 1, η = 0.01, and, by Claim 4.4, qt ≤ 4/5, it follows that

1

2

√∑

i 6∈B
si ≥ 0.99 −

√
4/5 =⇒

∑

i 6∈B
si ≥ 4 · (0.99 −

√
4/5)2 ≥ 0.03.

Since
∑

i 6∈B si is the probability that the algorithm returns an index i ∈ [t] with Eρ[Ai] ≥ 1/3,
it follows that the algorithm is correct with probability at least 0.03.

5 Shadow Tomography and Hypothesis Selection

5.1 Shadow Tomography

We begin by describing how to deduce our online Shadow Tomography result, Theorem 1.4,
from our online Threshold Search result, Theorem 1.1. As mentioned earlier, this deduction
is known [Aar20] to follow almost immediately from a mistake-bounded learning algorithm
for quantum states due to Aaronson, Chen, Hazan, Kale, and Nayak [ACH+19], described
below. We will fill in a few details that are not spelled out in [Aar20].

Mistake-bounded learning scenario. Consider the following kind of interaction be-
tween a “student” and a “teacher”, given parameters d ∈ N and 0 < ǫ < 1

2
. There is a

quantum state ρ ∈ C
d×d that is unknown to the student (and possibly also unknown to

the teacher). The teacher presents a sequence of quantum events A1, A2, A3, . . . (possibly
adaptively) to the student. Upon receiving At, the student must output a prediction µ̂t of
µt = Eρ[At]. After each prediction, the teacher must either “pass”, or else declare a “mistake”
and supply a value µ′

t.

Theorem 5.1 ([ACH+19]). Assume the following Teacher Properties hold for each t:
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• If |µ̂t − µt| > ǫ, the teacher always declares “mistake”.

• If |µ̂t − µt| ≤ 3
4
ǫ, the teacher always passes.

• If the teacher ever declares “mistake”, the supplied value µ′
t always satisfies |µ′

t−µt| ≤
1
4
ǫ.

• (If 3
4
ǫ < |µ̂t − µt| ≤ ǫ, the teacher may either pass or declare a mistake; but, if the

latter, recall that |µ′
t − µt| ≤ 1

4
ǫ.)

Then there is an algorithm for the student that causes at most C0(log d)/ǫ2 “mistakes” (no
matter how many events are presented), where C0 is a universal constant.

The above theorem is similar to, but not quite the same, as “Theorem 1” in [ACH+19].
However it is easy to check that [ACH+19]’s Section 3.3 (“Proof of Theorem 1”) applies
equally well to establish Theorem 5.1 above.5

To use this theorem for the online Shadow Tomography problem, it only remains for the
Shadow Tomography algorithm to implement the teacher’s role itself, given copies of ρ. This
will be done using our Threshold Search algorithm; let us first slightly upgrade it so that
(i) it is concerned with Eρ[Ai] ≈ θi rather than Eρ[Ai] < θi; (ii) if it finds j with Eρ[Aj ] 6≈ θj ,
then it also reports a very good estimate of Eρ[Aj].

Lemma 5.2. Consider the version of quantum Threshold Search where the inputs are the
same, but the algorithm should correctly (except with probability at most δ) output:

• “ |Eρ[Aj ]−θj | > 3
4
ǫ, and in fact |Eρ[Aj ]−µ′

j| ≤ 1
4
ǫ”, for some particular j and value µ′

j;
or else,

• “ |Eρ[Ai] − θi| ≤ ǫ for all i”.

Then as in Theorem 1.1, the problem can be solved in an online fashion using

n′
TS(m, ǫ, δ) =

log2m + l

ǫ2
·O(l) (l = log(1/δ))

copies of ρ.

Proof. Given m, ǫ, δ, we obtain n = nTS(2m, 1
4
ǫ, δ/2) + c log(1/δ)/ǫ2 copies of ρ, where c is a

universal constant to be specified later. This n indeed has the asymptotic form of n′
TS given

above. We save the c log(1/δ)/ǫ2 copies as a “holdout”, and use the remaining copies to apply
Theorem 1.1 (with parameters 2m, 1

4
ǫ, δ/2), converting our given observable/threshold pairs

(A1, θ1), . . . , (Am, θm) to a “simulated input” of

(A1, θ1 + ǫ), (1− A1, 1 − θ1 + ǫ), . . . , (Am, θm + ǫ), (1− Am, 1 − θm + ǫ).

5Briefly: the RTFL/MMW algorithm will only do an update in the “mistake” rounds. The loss is taken
to be |µ̂t − µ′

t
|. On any mistake, we have |µ̂t − µt| > 3

4
ǫ and |µ′

t
− µt| ≤ 1

4
ǫ, hence the student incurs loss

at least 1

2
ǫ. On the other hand, answering according to the true µt would only incur loss at most 1

4
ǫ. The

regret calculation bounding the number of mistakes is now the same.
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Except with probability at most δ/2 we get a correct answer from the simulation, from which
we can derive a correct final output as described below.

If the simulation passes on all 2m pairs, then Theorem 1.1 tells us that we must have

E
ρ

[Ai] ≤ θi + ǫ and E
ρ

[1−Ai] ≤ 1 − θi + ǫ

for all i, and therefore we may correctly output “ |Eρ[Ai] − θi| ≤ ǫ for all i”.
On the other hand, suppose the simulation halts by outputting

“E
ρ

[Aj] > θj + ǫ− 1
4
ǫ” or “E

ρ
[1−Aj ] > 1 − θj + ǫ− 1

4
ǫ”

for some particular j. Then our algorithm can correctly output “ |Eρ[Aj ] − θj | > 3
4
ǫ”. Fur-

thermore, at this point the algorithm may use the holdout copies of ρ to obtain an estimate
µ′
j of Eρ[Aj ] (in the naive way) that satisfies |Eρ[Aj ] − µ′

j| ≤ 1
4
ǫ except with probability at

most δ/2, provided c is large enough.

With Lemma 5.2 in place, we can obtain our online Shadow Tomography algorithm:

Proof of Theorem 1.4. Define

R = ⌈C0(log d)/ǫ2⌉ + 1, δ0 = δ/R, n0 = n′
TS(m, ǫ, δ0).

The number of copies of ρ used by our online Shadow Tomography algorithm will be n = Rn0,
which is indeed

n =
(log2m + l)(log d)

ǫ4
·O(l)

for l = log( log d
δǫ

), as claimed.
Upon receiving n copies of ρ, our Shadow Tomography algorithm partitions it into R

“batches” of size n0 each. The idea is that each batch will be devoted to (up to) one “mistake”
of the “student”. We now describe the algorithm, and then give its analysis.

To begin, recall that our Shadow Tomography algorithm receives quantum events A1, A2, . . .
in an online fashion. As it receives them, it will run the following online algorithms concur-
rently:

• the mistake-bounded learning algorithm of Theorem 5.1 (implementing the student’s
algorithm);

• the Threshold Search algorithm from Lemma 5.2 (to implement the teacher), initially
using only the first batch of ρ⊗n0.

The algorithm simulates both the teacher and student roles of the mistake-bounded
setting of [ACH+19] and runs in rounds. A new round is started whenever the teacher
declares a mistake and a fresh batch of n0 copies of the state ρ is used by the teacher in
each round. When it receives input At, the algorithm runs the next iteration of the mistake-
bounded learning algorithm of Theorem 5.1 to get the student’s prediction µ̂t. Then it runs
the next iteration of the Threshold Search algorithm from Lemma 5.2 with input (At, µ̂t);
the estimates µ̂t output by the student serve as the θt threshold values used in Lemma 5.2.
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Whenever the Threshold Search algorithm “passes” on an (At, µ̂t) pair, the teacher also
“passes”, and µ̂t serves as the Shadow Tomography algorithm’s final estimate for Eρ[At]. On
the other hand, if the Threshold Search algorithm outputs “ |Eρ[At] − µ̂t| > 3

4
ǫ, and in fact

|Eρ[At] − µ′
t| ≤ 1

4
ǫ”, then the teacher will declare a “mistake” and supply the value µ′

t to
the student. This µ′

t will also serve as the Shadow Tomography algorithm’s final estimate
for Eρ[At]. Furthermore, at this point the teacher will abandon any remaining copies of ρ
in the current batch, and will use a “fresh” batch ρ⊗n0 for the subsequent application of
Lemma 5.2. We refer to this as moving on to the next “round”.

Let us now show that with high probability there are at most R− 1 mistakes and hence
at most R rounds. (If the Shadow Tomography algorithm tries to proceed to an (R + 1)th
round, and thereby runs out of copies of ρ, we simply declare an overall failure.)

The total probability of error made by the Threshold Search algorithm within each round
is bounded by δ0. By a union bound, the probability of any incorrect answer over all R rounds
is at most Rδ0, i.e., at most δ. Below we will show that if there are no incorrect answers, then
the “Teacher Properties” of Theorem 5.1 hold, and therefore the total number of mistakes
is indeed at most ⌈C0(log d)/ǫ2⌉ = R− 1 with probability at least 1 − δ.

It remains to verify that — assuming correct answers from all uses of Lemma 5.2 — our
Shadow Tomography algorithm satisfies the Teacher Properties of Theorem 5.1 and also that
all m estimates for Eρ[Ai] produced by the algorithm are correct to within an additive error ǫ.
Let us first note that within each round of the Shadow Tomography algorithm, we never
supply more than m quantum events to the Threshold Search algorithm from Lemma 5.2.
The main point to observe is that if our Threshold Search routine from Lemma 5.2 ever
passes on some (At, µ̂t) pair, it must be that |Eρ[At] − µ̂t| ≤ ǫ; the reason is that passing
implies the Threshold Search algorithm is prepared to output “ |Eρ[Ai] − θi| ≤ ǫ for all i”.
On the other hand, it’s immediate from Lemma 5.2 that if the teacher declares “mistake” on
some (At, µ̂t) pair, then indeed we have |Eρ[At] − µ̂t| > 3

4
ǫ, and the supplied correction µ′

t

satisfies |Eρ[At] − µ′
t| ≤ 1

4
ǫ (as is necessary for the Teacher Properties, and is more than

sufficient for the Shadow Tomography guarantee).

5.2 Hypothesis Selection

In this section we establish our quantum Hypothesis Selection result, Theorem 1.5. This
theorem effectively has three different bounds, and we prove them via Propositions 5.3, 5.5
and 5.6.

Recall that in the Hypothesis Selection problem there are given fixed hypothesis states
σ1, . . . , σm ∈ Cd×d, as well as access to copies of an unknown state ρ ∈ Cd×d. We write

η = min
i
{dtr(ρ, σi)}, i∗ = argmin

i
{dtr(ρ, σi)},

with the quantity η being unknown to the algorithm. Recall that the Holevo–Helstrom
theorem implies that for each pair i 6= j, there is a quantum event Aij such that

E
σi

[Aij] −E
σj

[Aij ] = dtr(σi, σj),

and furthermore we may take Aji = Aij = 1−Aij . These events are known to the algorithm.
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One way to solve the quantum Hypothesis Selection problem is to simply use Shadow
Tomography as a black box. Given parameters 0 < ǫ, δ < 1

2
for the former problem, we can

run Shadow Tomography with parameters ǫ/2, δ, and the
(
m
2

)
quantum events (Aij : i < j).

Then except with probability at most δ, we obtain values µ̂ij with |Eρ[Aij ] − µ̂ij| ≤ ǫ/2 for
all i, j. Now we can essentially use any classical Hypothesis Selection algorithm; e.g., the
“minimum distance estimate” method of Yatracos [Yat85]. We select as our hypothesis σk,

where k = argminℓ ∆̂ℓ is a minimizer of

∆̂ℓ = max
i<j

|E
σℓ

[Aij] − µ̂ij|.

Recalling η = dtr(ρ, σi∗), we have

∆̂k ≤ ∆̂i∗ ≤ max
i<j

{|E
σi∗

[Aij ] −E
ρ

[Aij ]| + |E
ρ

[Aij ] − µ̂ij|} ≤ η + ǫ/2, (4)

where the last inequality used the Holevo–Helstrom theorem again, and the Shadow To-
mography guarantee. We now obtain the following result (with the proof being an almost
verbatim repeat of the one in [DL01, Thm. 6.3]):

Proposition 5.3. The above-described method selects σk with dtr(ρ, σk) ≤ 3η + ǫ (except
with probability at most δ), using a number of copies of ρ that is the same as in Shadow
Tomography (up to constant factors).

Proof. By the triangle inequality for dtr we have

dtr(σk, ρ) ≤ η + dtr(σk, σi∗) = η + |E
σk

[Aki∗ ] − E
σi∗

[Aki∗ ]|

≤ η + |E
σk

[Aki∗ ] − µ̂ki∗| + |E
σi∗

[Aki∗ ] − µ̂ki∗| ≤ η + ∆̂k + ∆̂i∗ ,

and the result now follows from Inequality (4).

Now we give a different, incomparable method for Hypothesis Selection. It will use the
following “decision version” of quantum Threshold Search, which we prove at the end of
Appendix A (see Corollary A.4):

Corollary 5.4. Consider the scenario of quantum Threshold Search (i.e., one is given pa-
rameters 0 < ǫ0, δ0 <

1
2
, and m0 event/threshold pairs (Ai, θi)). Suppose one is further given

values η1, . . . , ηm0
. Then using just n0 = O(log(m0/δ0)/ǫ

2
0) copies of ρ, one can correctly

output (except with probability at most δ):

• “there exists j with |Eρ[Aj ] − θj | > ηj”; or else,

• “ |Eρ[Ai] − θi| ≤ ηi + ǫ for all i”.

Indeed, the algorithm can be implemented by a projector applied to ρ⊗n0.

Returning to Hypothesis Selection, let us define

∆k = max
i<j

|E
σk

[Aij ] −E
ρ

[Aij ]|,
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and note that ∆i∗ ≤ η, by the Holevo–Helstrom theorem. Let us also assume the algorithm
has a candidate upper bound η on η. Now suppose our algorithm is able to find ℓ with
∆ℓ ≤ η + ǫ. Then the proof of Proposition 5.3 similarly implies that σℓ satisfies dtr(σℓ, ρ) ≤
2η + η + ǫ.

Now let Tk denote the following Threshold Decision instance (as in Corollary 5.4): ǫ0 = ǫ,
δ0 = 1/3, m0 =

(
m
2

)
, the quantum events are all the Aij ’s, the thresholds are θij =

Eσk
[Aij ], each “ηij” is η. Then Corollary 5.4 gives us a projector Bk on (Cd)⊗n0 , where

n0 = O(log(m)/ǫ2), with the following property: When it is used to measure ̺ = ρ⊗n0 ,

∆k ≤ η =⇒ E
̺

[Bk] ≥ 2/3, E
̺

[Bk] > 1/3 =⇒ ∆k ≤ η + ǫ. (5)

We can now apply our Threshold Search routine to the Bk’s (with all thresholds θk = 1/2),
using nTS(m, 1/6, δ′) copies of ̺, for some δ′ ∈ (0, 1] to be specified shortly. Provided that
indeed η ≤ η, we know there is at least one k (namely k = i∗) with ∆k ≤ η; thus except
with probability at most δ′, the Threshold Search routine will find an ℓ with ∆ℓ ≤ η + ǫ.

If we wish to assume our Hypothesis Selection algorithm “knows” η, then we are done.
Otherwise, we can search for the approximate value of η, as follows: We perform the above
routine with η = 1, 1

2
, 1
4
, 1
8
, . . . , using fresh copies for each iteration and stopping either when

Threshold Search fails to find any ℓ or when η ≤ ǫ. If we stop for the first reason, we
know that our second-to-last η is at most 2η; if we stop for the second reason, we know
that η ≤ ǫ. Either way, assuming no failure on any of the Threshold Searches, we end
with a guarantee of dtr(σℓ, ρ) ≤ 4η + 2ǫ. To bound the overall failure probability we take
δ′ = δ/Θ(log(1/max{η, ǫ})). It’s easy to check that the geometric decrease of η means
we only use O(nTS(m, 1/6, δ′) · log(1/max{η, ǫ})) copies of ̺, which is O(nTS(m, 1/6, δ′) ·
log(1/max{η, ǫ}))n0 copies of ρ. Finally, by tuning the constants we can make the final
guarantee dtr(σℓ, ρ) ≤ 3.01η + ǫ. We conclude:

Proposition 5.5. The above-described method selects σℓ with dtr(ρ, σℓ) ≤ 3.01η + ǫ (except
with probability at most δ), using

n =
log3m + log(L/δ) · logm

ǫ2
· O(l · log(l/δ))

copies of ρ, where l = log(1/max{η, ǫ}).

It remains to establish the last part of Theorem 1.5, which operates under the assumption
that η < 1

2
(α − ǫ), where α = mini 6=j dtr(σi, σj). Writing η = 1

2
(α − ǫ) (which is a quantity

known to the algorithm), we have ∆i∗ ≤ η ≤ η, but ∆k > η + ǫ for all k 6= i∗; the reason for
this last claim is that

∆k ≥ |E
σk

[Ai∗k]−E
ρ

[Ai∗k]| ≥ |E
σk

[Ai∗k]−E
σi∗

[Ai∗k]|−η = dtr(σi∗ , σk)−η ≥ α−η = 2η+ǫ−η > η+ǫ

where the second inequality above used the Holevo–Helstrom theorem and η = dtr(ρ, σi∗) and
the last inequality used η > η. Now if we perform Threshold Search to achieve Inequality (5)
as before, except that we select δ0 = δ/(4m) rather than 1/3, we’ll get projectors B1, . . . , Bm

on (Cd)n for n = O(log(m/δ)/ǫ2) such that, for ̺ = ρ⊗n,

E
̺

[Bi∗ ] ≥ 1 − δ/(4m), E
̺

[Bk] ≤ δ/(4m) ∀k 6= i∗.
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It remains to apply the Quantum Union Bound (specifically, Corollary 2.8) to B1, . . . , Bm

and ̺ to pick out i∗ except with probability at most 4
∑

i δ/(4m) ≤ δ. We conclude:

Proposition 5.6. Using the assumption η < 1
2
(α−ǫ), where α = mini 6=j dtr(σi, σj), the above-

described method selects σi∗ (except with probability at most δ), using n = O(log(m/δ)/ǫ2)
copies of ρ.
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A The quantum Threshold Decision problem

As mentioned at the end of Section 1.1.1, Aaronson [Aar20] showed that the decision version
of quantum Threshold Search can be done with n = O(log(m) log(1/δ)/ǫ2) copies, through
the use of a theorem of Harrow, Lin, and Montanaro [HLM17, Cor. 11]. In Theorem A.2
below, we give a new version of the Harrow–Lin–Montanaro theorem, with a mild qualitative
improvement. This improvement also lets us improve the quantum Threshold Decision copy
complexity slightly, to n = O(log(m/δ)/ǫ2) (see Corollary A.4).

First, a lemma:

Lemma A.1. Let X, Y ∈ C
d×d, with X ≥ 0. Then

E
ρ

[XY ] ≤
√

E
ρ

[X ]
√

E
ρ
[Y †XY ].

Proof. This follows from the matrix form of Cauchy–Schwarz:

tr(ρXY ) = tr(
√
ρ
√
X ·

√
XY

√
ρ) ≤

√
tr(

√
X
√
ρ
√
ρ
√
X)

√
tr(

√
ρY †

√
X
√
XY

√
ρ)

=
√

tr(ρX)
√

tr(ρY †XY ).
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Theorem A.2. Let 0 ≤ A1, . . . , Am ≤ 1 be d-dimensional observables and define #A =
A1 + · · ·+Am. Let ν > 0 and let B be the orthogonal projector onto the span of eigenvectors
of #A with eigenvalue at least ν. Then for any state ρ ∈ Cd×d, writing pmax = maxi {Eρ[Ai]},
we have

pmax − 2
√
ν ≤ E

ρ
[B] ≤ E

ρ
[#A]/ν.

Remark A.3. One can read out a similar result in the work of Harrow, Lin, and Monta-
naro [HLM17, Cor. 11], except with a lower bound of Eρ[B] ≥ .632(pmax − ν)2. Note that
unlike our bound, their lower bound is never close to 1, even when pmax is very close to 1. It is
this difference that leads to our slight improvement for the Threshold Decision problem. We
speculate that the lower bound in our result can be sharpened further, to (1 − O(

√
ν))pmax.

Proof. The upper bound in the theorem is just “Markov’s inequality”; it follows immediately
from #A ≥ νB (and ρ ≥ 0). As for the lower bound, suppose pmax = Eρ[Aj] = 1 − δ. Using
the notation B = 1− B, and defining β = Eρ[BAjB], we have

β ≤ E
ρ

[B · #A · B] < ν,

since Aj ≤ #A and B · #A · B < ν1 by definition. On the other hand, write p = Eρ[B], so
our goal is to show p < δ + 2

√
ν. Then

p = E
ρ

[B] = E
ρ

[Aj · B] + E
ρ

[Aj ·B] ≤
√

E
ρ

[Aj]

√
E
ρ

[BAjB] +

√
E
ρ

[Aj ]

√
E
ρ

[BAjB]

=
√

1 − δ
√

β +
√
δ
√
p− β,

where the inequality is by Lemma A.1, and the subsequent equality uses p = Eρ[B(Aj+Aj)B].
The above deduction, together with β < ν, yields an upper bound on p. Eschewing the
tightest possible bound, we deduce from the above that

p ≤
√

β +
√
δ
√
p <

√
ν +

δ + p

2
=⇒ p ≤ 2

√
ν + δ.

Given Theorem A.2, it’s easy to obtain the following quantum Threshold Decision algo-
rithm, similar to [Aar20, Lem. 14]:

Corollary A.4. In the scenario of quantum Threshold Search, suppose one only wishes to
solve the decision problem, meaning the algorithm has only two possible outputs:

• “there exists j with Eρ[Aj] > θj − ǫ”; or else,

• “Eρ[Ai] ≤ θi for all i”.

This can be solved using just n = O(log(m/δ)/ǫ2) copies of ρ and probability of error at most
δ. The algorithm can be implemented by a projector applied to ρ⊗n.)
Furthermore, Corollary 5.4 holds.
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Proof. Writing ̺ = ρ⊗n, a standard Chernoff bound implies there are quantum events
A′

1, . . . , A
′
m satisfying

E
ρ

[Ai] > θ =⇒ E
̺

[A′
i] ≥ 1 − δ/2, E

ρ
[Ai] ≤ θ − ǫ =⇒ E

̺
[A′

i] ≤ δ3/(16m).

We apply Theorem A.2 to A′
1, . . . , A

′
m and ̺, with ν = δ2/16, obtaining the projector B with

max
i

{E
̺

[A′
i]} − δ/2 ≤ E

̺
[B] ≤ (16/δ2)E

̺
[#A′].

Now on one hand, if there exists j with Eρ[Aj] > θ, we conclude E̺[B] ≥ 1 − δ. On the
other hand, if Eρ[Ai] ≤ θ − ǫ for all i, then E̺[#A′] ≤ m · δ3/(16m) and hence E̺[B] ≤ δ.
Thus the algorithm can simply measure B with respect to ̺, reporting “there exists j with
Eρ[Aj ] > θ − ǫ” when B occurs, and “Eρ[Aj ] ≤ θ for all i” when B occurs. This completes
the main proof.

The “Furthermore” proof of Corollary 5.4 is exactly the same, except we let A′
i be the

quantum event that has

|E
ρ

[Ai] − θi| > ηi + ǫ =⇒ E
̺

[A′
i] ≥ 1 − δ/2, |E

ρ
[Ai] − θi| ≤ ηi =⇒ E

̺
[A′

i] ≤ δ3/(16m).
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