
Polynomial regression under arbitrary product distributions

Eric Blais and Ryan O’Donnell and Karl Wimmer
Carnegie Mellon University

Abstract

In recent work, Kalai, Klivans, Mansour, and Serve-
dio [KKMS05] studied a variant of the “Low-Degree
(Fourier) Algorithm” for learning under the uni-
form probability distribution on {0, 1}n. They showed
that the L1 polynomial regression algorithm yields
agnostic (tolerant to arbitrary noise) learning algo-
rithms with respect to the class of threshold func-
tions — under certain restricted instance distribu-
tions, including uniform on {0, 1}n and Gaussian
on Rn. In this work we show how all learning re-
sults based on the Low-Degree Algorithm can be
generalized to give almost identical agnostic guar-
antees under arbitrary product distributions on in-
stance spaces X1×· · ·×Xn. We also extend these
results to learning under mixtures of product distri-
butions.

The main technical innovation is the use of (Ho-
effding) orthogonal decomposition and the exten-
sion of the “noise sensitivity method” to arbitrary
product spaces. In particular, we give a very sim-
ple proof that threshold functions over arbitrary
product spaces have δ-noise sensitivity O(

√
δ), re-

solving an open problem suggested by Peres [Per04].

1 Introduction

In this paper we study binary classification learning prob-
lems over arbitrary instance spaces X = X1 × · · · ×Xn. In
other words, each instance has n “categorical attributes”, the
ith attribute taking values in the set Xi. For now we assume
that each Xi has cardinality at most poly(n).1

It is convenient for learning algorithms to encode instances
from X as vectors in {0, 1}|X1|+···+|Xn| via the “one-out-of-
k encoding”; e.g., an attribute from X1 = {red, green, blue}
is replaced by one of (1, 0, 0), (0, 1, 0), or (0, 0, 1). Consider
now the following familiar learning algorithm:

1Given real-valued attributes, the reader may think of bucketing
them into poly(n) buckets.

Given m examples of training data
(~x1, y1), . . . , (~xm, ym) ∈ X × {−1, 1},

1. Expand each instance ~xi into a vector
from {0, 1}|X1|+···+|Xn| via the “one-out-
of-k” encoding.

2. Consider “features” which are products of
up to d of the new 0-1 attributes.

3. Find the linear function W in the feature
space that best fits the training labels un-
der some loss measure `: e.g., squared
loss, hinge loss, or L1 loss.

4. Output the hypothesis sgn(W − θ), where
θ ∈ [−1, 1] is chosen to minimize the hy-
pothesis’ training error.

We will refer to this algorithm as “degree-d polynomial
regression (with loss `)”. When ` is the hinge loss, this
is equivalent to the soft margin SVM algorithm with the
degree-d polynomial kernel and no regularization [CV95].2
When ` is the squared loss and the data is drawn i.i.d. from
the uniform distribution on X = {0, 1}n, the algorithm is ef-
fectively equivalent to the Low-Degree Algorithm of Linial,
Mansour, and Nisan [LMN93] — see [KKMS05]. Using
techniques from convex optimization (indeed, linear program-
ming for L1 or hinge loss, and just basic linear algebra for
squared loss), it is known that the algorithm can be per-
formed in time poly(m,nd). For all known proofs of good
generalization for the algorithm, m = nΘ(d)/ε training ex-
amples are necessary (and sufficient). Hence we will view
the degree-d polynomial regression algorithm as requiring
poly(nd/ε) time and examples. (Because of this, whether or
not one uses the “kernel trick” is a moot point.)

Although SVM-based algorithms are very popular in prac-
tice, the scenarios in which they provably learn successfully
are relatively few (see Section 1.2 below) — especially when
there is error in the labels. Our goal in this paper is to broaden
the class of scenarios in which learning with polynomial re-
gression has provable, polynomial-time guarantees.

2Except for the minor difference of choosing an optimal θ rather
than fixing θ = 0.

1.1 The learning framework
We study binary classification learning in the natural “ag-
nostic model” [KSS94] (sometimes described as the model
with arbitrary classification noise). We assume access to
training data drawn i.i.d. from some distribution D on X ,
where the labels are provided by an arbitrary unknown “tar-
get” function t : X → {−1, 1}. The task is to output
a hypothesis h : X → {−1, 1} which is a good predic-
tor on future examples from D. We define the “error of
h” to be err(h) = Prx∼D[h(x) 6= t(x)].3 We compare
the error of an algorithm’s hypothesis with the best error
achievable among functions in a fixed class C of functions
X → {−1, 1}. Define Opt = inff∈C err(f). We say that an
algorithm A “agnostically learns with respect to C” if, given
ε > 0 and access to training data, it outputs a hypothesis
h which satisfies E[err(h)] ≤ Opt + ε. Here the expecta-
tion is with respect to the training data drawn.4 The running
time (and number of training examples) used are measured
as functions of n and ε.

Instead of an instance distributionD onX and a target t :
X → {−1, 1}, one can more generally allow a distribution
D′ onX×{−1, 1}; in this case, err(h) = Pr(x,y)∼D′ [h(x) 6=
y]. Our learning results also hold in this model just as in
[KKMS05]; however we use the simpler definition for ease
of presentation, except in Section 5.3.

In the special case when t is promised to be in C we are
in the scenario of PAC learning [Val84]. This corresponds to
the case Opt = 0. Since C is usually chosen (by necessity)
to be a relatively simple class, the PAC model’s assumption
that there is a perfect classifier in C is generally considered
somewhat unrealistic. This is why we work in the agnostic
model.

Finally, since strong hardness results are known [KSS94,
LBW95, KKMS05, GR06] for agnostic learning under gen-
eral distributions D, we are forced to make some distribu-
tional assumptions. The main assumption in this paper is
that D is a product probability distribution on X ; i.e., the n
attributes are independent. For a discussion of this assump-
tion and extensions, see Section 1.3.

1.2 When polynomial regression works
Although the SVM algorithm is very popular in practice, the
scenarios in which it provably learns successfully are rela-
tively few. Let us consider the SVM algorithm with degree-
d polynomial kernel. The traditional SVM analysis is pred-
icated on the assumption that the data is perfectly linearly
separable in the polynomial feature space. Indeed, the heuris-
tic arguments in support of good generalization are predi-
cated on the data being separable with large margin. Even
just the assumption of perfect separation may well be unrea-
sonable. For example, suppose the target t is the very simple

3In this paper, boldface denotes random variables.
4The definition of agnostic learning is sometimes taken to re-

quire error at most Opt + ε with high probability, rather than in
expectation. However this is known [KKMS05] to require almost
negligible additional overhead.

function given the by intersection of two homogeneous lin-
ear threshold functions over Rn; i.e.,

t : Rn → {−1, 1}, t(x) = sgn(w1 · x) ∧ sgn(w2 · x).

It is known [MP69] that this target cannot be classified by the
sign of a degree-d polynomial in the attributes for any finite
d; this holds even when n = 2. Alternatively, when t is the
intersection of two linear threshold functions over {0, 1}n, it
is not currently known if t can be classified by the sign of a
degree-d polynomial for any d < n− 1. [OS03]

Because of this problem, one usually considers the “soft
margin SVM algorithm” [CV95]. As mentioned, when this
is run with no “regularization”, the algorithm is essentially
equivalent to degree-d polynomial regression with hinge loss.
To show that this algorithm even has a chance of learning
efficiently, one must be able to show that simple target func-
tions can at least be approximately classified by the sign of
low-degree polynomials. Of course, even stating any such
result requires distributional assumptions. Let us make the
following definition:

Definition 1.1 LetD be a probability distribution on {0, 1}N

and let t : {0, 1}N → R. We say that t is ε-concentrated
up to degree d (under D) if there exists a polynomial p :
{0, 1}N → R of degree at most d which has squared loss at
most ε under D; i.e., Ex∼D[(p(x)− t(x))2] ≤ ε.

It is well known that under the above conditions, h := sgn(p)
has classification error at most ε under D. Further, it is rel-
atively easy to show that if C is a class of functions each
of which is ε-concentrated up to degree d, then the degree-d
polynomial regression algorithm with squared loss will PAC-
learn C to accuracy O(ε) under D.

The first result along these lines was due to Linial, Man-
sour, and Nisan [LMN93] who introduced the “Low-Degree
Algorithm” for PAC-learning under the uniform distribution
on {0, 1}n. They showed that if f : {0, 1}n → {−1, 1}
is computed by a circuit of size s and depth c then it is ε-
concentrated up to degree (O(log(s/ε)))c under the uniform
distribution. Some generalizations of this result [FJS91, Hås01]
are discussed in Section 4.

Another result using this idea was due to Klivans, O’Donnell,
and Servedio [KOS04]. They introduced the “noise sensi-
tivity method” for showing concentration results under the
uniform distribution on {0, 1}n. In particular, they showed
that any t : {0, 1}n → {−1, 1} expressible as a function of
k linear threshold functions is ε-concentrated up to degree
O(k2/ε2) under the uniform distribution.

These works obtained PAC learning guarantees for the
the polynomial regression algorithm — i.e., guarantees only
holding under the somewhat unrealistic assumption that Opt =
0. A significant step towards handling noise was taken in
[KKMS05]. Therein it was observed that low-degree L2

2-
approximability bounds imply L1-approximability bounds
(and hinge loss bounds), and further, such bounds imply that
the polynomial regression algorithm works in the agnostic
learning model. Specifically, their work contains the follow-
ing theorem:

Theorem 1.2 ([KKMS05]) LetD be a distribution on {0, 1}N

and let C be a class of functions {0, 1}N → {−1, 1} each
of which is ε2-concentrated up to degree d under D. Then
the degree-d polynomial regression algorithm with L1 loss
(or hinge loss [Kal06]) uses poly(Nd/ε) time and examples,
and agnostically learns with respect to C under D.

Thus one gets agnostic learning algorithms under the uni-
form distribution on {0, 1}n with respect to the class of AC0

circuits (time npolylog(n/ε)) and the class of functions of k

thresholds (time nO(k2/ε4)) — note that the latter is poly-
nomial time assuming k and ε are constants. Kalai et al.
also obtained related results for agnostically learning with
respect to single threshold functions under Gaussian and log-
concave distributions on Rn.

1.3 Overview of our learning results
We view the work of [KKMS05] as the first provable guaran-
tee that one can learn interesting, broad classes of functions
under the realistic noise model of agnostic learning (and in
particular, that SVM-type methods can have this guarantee).
One shortcoming of the present state of knowledge is that we
have good concentration bounds for classes essentially only
with respect to the uniform distribution on {0, 1}n and the
Gaussian distribution on Rn.5

In this work we significantly broaden the class of distri-
butions for which we can prove good concentration bounds,
and hence for which we can prove the polynomial regres-
sion algorithm performs well. Roughly speaking, we show
how to generalize any concentration result for the uniform
distribution on {0, 1}n into the same concentration result for
arbitrary product distributions D on instance spaces X =
X1 × · · · ×Xn.

We believe this is a significant generalization for several
reasons. First, even just for the instance space {0, 1}n the
class of arbitrary product distributions is much more reason-
able than the single distribution in which each attribute is 0 or
1 with probability exactly 1/2. Our results are even stronger
than this, though: they give on algorithm that works simulta-
neously for any product distribution over any instance space
X = X1 × · · · ×Xn where each |Xi| ≤ poly(n).

Because we can handle non-binary attributes, the restric-
tion to product spaces becomes much less severe. A com-
mon criticism of learning results under the uniform distri-
bution or product distributions on {0, 1}n is that they make
the potentially unreasonable assumption that attributes are
independent. However with our results, one can somewhat
circumvent this. Suppose one believes that the attributes
X1, . . . , Xn are mostly independent, but some groups of them
(e.g., height and weight) have mutual dependencies. One
can then simply group together any dependent attribute sets
Xi1 , . . . , Xit

into a single “super-attribute” set (Xi1 × · · · ×
Xit

). Assuming that this eliminates dependencies — i.e., the
new (super-)attributes are all independent — and that each

5[FJS91] gives bounds for AC0 under constant-bounded product
distributions on {0, 1}n; [KKMS05] gives inexplicit bounds for a
single threshold function under log-concave distributions on Rn.

|Xi1 × · · · × Xit | is still at most poly(n), one can proceed
to use the polynomial regression algorithm. Here we see the
usefulness of being able to handle arbitrary product distribu-
tions on arbitrary product sets.

In many reasonable cases our results can also tolerate
the attribute sets Xi having superpolynomial size. What is
really necessary is that the probability distribution on each
Xi is mostly concentrated on polynomially many attributes.
Indeed, we can further handle the common case when at-
tributes are real-valued. As long as the probability distri-
butions on real-valued attributes are not extremely skewed
(e.g., Gaussian, exponential, Laplace, Pareto, chi-square, . . .)
our learning results go through after doing a naive “bucket-
ing” scheme.

Finally, being able to learn under arbitrary product dis-
tributions opens the door to learning under mixtures of prod-
uct distributions. Such mixtures — especially mixtures of
Gaussians — are widely used as data distribution models
in learning theory. We show that agnostic learning under
mixtures can be reduced to agnostic learning under single
product distributions. If the mixture distribution is precisely
known to the algorithm, it can learn even under a mixture of
polynomially many product distributions. Otherwise, when
the mixture is unknown, we first need to use an algorithm
for learning (or clustering) a mixture of product distributions
from unlabeled examples. This is a difficult but well-studied
problem. Using results of Feldman, O’Donnell, and Serve-
dio [FOS05, FOS06] we can extend all of our agnostic learn-
ing results to learning under mixtures of constantly many
product distributions with each |Xi| ≤ O(1) and constantly
many (axis-aligned) Gaussian distributions.

1.4 Outline of technical results

In Section 2 we recall the orthogonal decomposition of func-
tions on product spaces, as well as the more recently-studied
notions of concentration and noise sensitivity on such spaces.
In particular, we observe that if one can prove a good noise
sensitivity bound for a class C under a product distribution
Π, then [KKMS05] implies that the polynomial regression
algorithm yields a good agnostic learner with respect to C
under Π.

Section 3 contains the key reduction from noise sensi-
tivity in general product spaces to noise sensitivity under the
uniform distribution on {0, 1}n. It is carried out in the model
case of linear threshold functions, which Peres [Per04] proved
have δ-noise sensitivity at most O(

√
δ). We give a surpris-

ingly simple proof of the following:

Theorem 3.2 Let f : X → {−1, 1} be a linear threshold
function, where X = X1 × · · · ×Xn has the product distri-
bution Π = π1 × · · · × πn. Then NSδ(f) ≤ O(

√
δ).

Proving this just in the case of a p-biased distribution on
{0, 1}n was an open problem suggested in [Per04]. This
noise sensitivity bound thus gives us the following learning
result:

Theorem 3.4 Let Π = π1 × · · · × πn be any product dis-
tribution over an instance space X = X1×· · ·×Xn, where
we assume |Xi| ≤ poly(n) for each i. Let C denote the
class of functions of k linear threshold functions over X .
Taking d = O(k2/ε4), the degree-d polynomial regression
algorithm with L1 loss (or hinge loss) uses nO(k2/ε4) time
and examples and agnostically learns with respect to C.

In Section 4 we discuss how to extend concentration re-
sults for other concept classes from uniform on {0, 1}n to
arbitrary product distributions on product spaces X = X1 ×
· · · ×Xn. Of course, it’s not immediately clear, given a con-
cept class C of functions on {0, 1}n, what it even means for it
to be generalized to functions on X . We discuss a reasonable
such notion based on one-out-of-k encoding, and illustrate it
in the case of AC0 functions. The idea in this section is sim-
ple: any concentration result under uniform on {0, 1}n eas-
ily implies a (slightly weaker) noise sensitivity bound; this
can be translated into the same noise sensitivity bound under
any product distribution using the methods of Section 3. In
turn, that implies a concentration bound in the general prod-
uct space. As an example, we prove the following:

Theorem 4.2 Let C be the class of functions X1 × · · · ×
Xn → {−1, 1} computed by unbounded fan-in circuit of
size at most s and depth at most c (under the one-out-of-k
encoding). Assume |Xi| ≤ poly(n) for each i. Let Π be any
product distribution on X1 × · · · × Xn. Then polynomial
regression agnostically learns with respect to C under arbi-
trary product distributions in time n(O(log(s/ε)))c−1/ε2 .

Section 5 describes extensions of our learning algorithm
to cases beyond those in which one has exactly a product
distribution on an instance space X = X1 × · · · ×Xn with
each |Xi| ≤ poly(n): these extensions include distributions
“bounded by” or “close to” product distributions, as well as
certain cases when the Xi’s have superpolynomial cardinal-
ity or are R. We end Section 5 with a discussion of learning
under mixtures of product distributions. Here there is a dis-
tinction between learning when the mixture distribution is
known to the algorithm and when it is unknown. In the for-
mer case we prove, e.g.:

Theorem 5.16 Let D be any known mixture of poly(n)
product distributions over an instance spaceX = X1×· · ·×
Xn, where we assume |Xi| ≤ poly(n) for each i. Then there
is a nO(k2/ε4)-time algorithm for agnostically learning with
respect to the class of functions of k linear threshold func-
tions over X under D.

In the latter case, by relying on algorithms for learning
mixture distributions from unlabeled data, we prove:

Theorem 5.18 Let D be any unknown mixture of O(1)
product distributions over an instance spaceX = X1×· · ·×
Xn, where we assume either: a) |Xi| ≤ O(1) for each i; or
b) each Xi = R and each product distribution is a mixture of
axis-aligned (poly(n)-bounded) Gaussians. Then there is a
nO(k2/ε4)-time algorithm for agnostically learning with re-
spect to the class of functions of k linear threshold functions
over X under D.

2 Product probability spaces
In this section we consider functions f : X → R, where
X = X1×· · ·×Xn is a product set. We will also assume X
is endowed with some product probability distribution Π =
π1 × · · · × πn. All occurrences of Pr[·] and E[·] are with
respect to this distribution unless otherwise noted, and we
usually write x for a random element of X drawn from Π.
For simplicity we assume that each set Xi is finite.6 The
vector space L2(X ,Π) of all functions f : X → R is viewed
as an inner product space under the inner product 〈f, g〉 =
E[f(x)g(x)]. We will also use the notation

‖f‖2 =
√
〈f, f〉 =

√
E[f(x)2].

2.1 Orthogonal decomposition
As each Xi is just an abstract set, there is not an inher-
ent notion of a degree-d polynomial on X . Ultimately the
polynomial regression algorithm identifies X with a subset
of {0, 1}|X1|+···+|Xn| via the“one-out-of-k encoding” and
works with polynomials over this space. However to prove
concentration results, we need to take a more abstract ap-
proach and consider the “(Hoeffding) orthogonal decompo-
sition” of functions on product spaces; see [vM47, Hoe48,
KR82, Ste86]. In this section we recall this notion with our
own notation.

Definition 2.1 We say a function f : X1 × · · · × Xn → R
is a simple function of order d if it depends on at most d
coordinates.

Definition 2.2 We say a function f : X1 × · · · × Xn → R
is a function of order d if it is a linear combination of simple
functions of order d. The set of all such functions is a linear
subspace of L2(X ,Π) and we denote it by H≤d(X ,Π).

Definition 2.3 We say a function f : X1× · · ·×Xn → R is
a function of order exactly d if it is a function of order d and
it is orthogonal to all functions of order d−1; i.e., 〈f, g〉 = 0
for all g ∈ H≤d−1(X ,Π). This is again a linear subspace
of L2(X ,Π) and we denote it by H=d(X ,Π).

Proposition 2.4 The space L2(X ,Π) is the orthogonal di-
rect sum of the H=d(X ,Π) spaces,

L2(X ,Π) =
n⊕

d=0

H=d(X ,Π).

Definition 2.5 By virtue of the previous proposition, every
function f : X1 × · · · ×Xn → R can be uniquely expressed
as

f = f=0 + f=1 + f=2 + · · ·+ f=n,

where f=d : X1×· · ·×Xn → R denotes the projection of f
into H=d(X ,Π). We call f=d the order d part of f . We will
also write

f≤d = f=0 + f=1 + f=2 + · · ·+ f=d.

6In fact, we will only need that each L2(Xi, πi) has a countable
basis.

In the sequel we will write simplyH=d in place ofH=d(X ,Π),
etc. Although we will not need it, we recall a further refine-
ment of this decomposition:

Definition 2.6 For each S ⊆ [n] we define H≤S to be the
subspace consisting of all functions depending only on the
coordinates in S. We define HS to be the further subspace
consisting of those functions in H≤S that are orthogonal to
all functions in H≤R for each R (S.

Proposition 2.7 The space L2(X ,Π) is the orthogonal di-
rect sum of theHS spaces, L2(X ,Π) =

⊕
S⊆[n]HS . Hence

every function f : X1 × · · · ×Xn → R can be uniquely ex-
pressed as f =

∑
S⊆[n] f

S , where fS : X1×· · ·×Xn → R
denotes the projection of f into HS . Denoting also f≤S =∑

R⊆S fR for the projection of f into H≤S , we have the
following interpretations:

f≤S(y1, . . . , yn) = E[f(x1, . . . ,xn) | xi = yi ∀ i ∈ S];

fS(x1, . . . , xn) =
∑
R⊆S

(−1)|S|−|R|f≤R.

Finally, we connect the orthogonal decomposition of func-
tions f : X → R with their analogue under the one-out-of-k
encoding:

Proposition 2.8 A function f : X → R is of order d if and
only if its analogue f : {0, 1}|X1|+···+|Xn| → R under the
one-out-of-k encoding is expressible as a polynomial of de-
gree at most d.

2.2 Low-order concentration
As in the previous section we consider functions f : X → R
under a product distribution Π. We will be especially inter-
ested in classifiers, functions f : X → {−1, 1}. Our goal
is to understand and develop conditions under which such f
can be approximated in squared loss by low-degree polyno-
mials.

By basic linear algebra, we have the following:

Proposition 2.9 Given f : X → R, the best order-d ap-
proximator to f under squared loss is f≤d. I.e.,

min
g of order d

E[(f(x)−g(x))2] = ‖f−f≤d‖22 =
n∑

i=d+1

‖f=i‖22.

Definition 2.10 Given f : X → R we say that f is ε-
concentrated up to order d if

∑n
i=d+1 ‖f=i‖22 ≤ ε.

By Proposition 2.8 we conclude the following:

Proposition 2.11 Let f : X → R and identify f with a func-
tion {0, 1}N → R under the one-out-of-k encoding. Then
there exists a polynomial p : {0, 1}N → R of degree at most
d which ε-approximates f in squared loss under Π if and
only if f is ε-concentrated up to order d.

Combining this with the KKMS Theorem 1.2, we get the
following learning result about polynomial regression:

Theorem 2.12 Let Π = π1 × · · · × πn be a product dis-
tribution on X = X1 × · · · × Xn. Write N for the total
number of possible attribute values, N = |X1|+ · · ·+ |Xn|.
Let C be a class of functions X → {−1, 1} each of which is
ε2-concentrated up to order d under Π. Then the degree-d
polynomial regression algorithm with L1 loss (or hinge loss)
uses poly(Nd/ε) time and examples, and agnostically learns
with respect to C under Π.

We will now show how to prove low-order concentration
results by extending the “noise sensitivity method” of [KOS04]
to general product spaces.

2.3 Noise sensitivity
We recall the generalization of noise sensitivity [BKS99] to
general product spaces, described in [MOO05].

Definition 2.13 Given x ∈ X1 × · · · ×Xn and 0 ≤ ρ ≤ 1,
we define a ρ-noisy copy of x to be a random variable y
with distribution Nρ(x), where this denotes that each yi is
chosen to equal xi with probability ρ and to be randomly
drawn from πi with probability 1 − ρ, independently across
i.

Definition 2.14 The noise operator Tρ on functions f : X →
R is given by

(Tρf)(x) = Ey∼Nρ(x)[f(y)].
The noise stability of f at ρ is

Sρ(f) = 〈f, Tρf〉.
When f : X → {−1, 1} we also define the noise sensitivity
of f at δ ∈ [0, 1] to be

NSδ(f) = 1
2 −

1
2S1−δ(f) = Pr

x∼Π
y∼N1−δ(x)

[f(x) 6= f(y)].

The connection between noise stability, sensitivity, and
concentration comes from the following two facts:

Proposition 2.15 ([MOO05]) For any f : X → R,

Sρ(f) =
n∑

i=0

ρi‖f=i‖22.

Proposition 2.16 ([KOS04]) Suppose NSδ(f) ≤ ε. Then f
is 2

1−1/eε-concentrated up to order 1/δ.

For example, Peres proved the following theorem:

Theorem 2.17 ([Per04]) If f : {0, 1}n → {−1, 1} is a lin-
ear threshold function then

NSδ(f) ≤ O(1)
√

δ

(under the uniform distribution on {0, 1}n). From [O’D03]
we have that the O(1) can be taken to be 5

4 for every value
of n and δ.

It clearly follows that if f is any function of k linear thresh-
old functions then NSδ(f) ≤ 5

4k
√

δ. Combining this with
Proposition 2.16:

Theorem 2.18 ([KOS04]) Let f : {0, 1}n → {−1, 1} be
any function of k linear threshold functions. Then f is (4k/

√
d)-

concentrated up to order d under the uniform distribution,
for any d ≥ 1. In particular, f is ε2-concentrated up to or-
der O(k2/ε4).

3 Noise sensitivity of threshold functions in
product spaces

In this section we show that Peres’s theorem can be extended
to hold for linear threshold functions in all product spaces.

Definition 3.1 We say a function f : X1 × · · · × Xn →
{−1, 1} is a linear threshold function if its analogue f :
{0, 1}N → {−1, 1} under one-out-of-k encoding is express-
ible as a linear threshold function. Equivalently, f is a linear
threshold function if there exist weight functions wi : Xi →
R, i = 1 . . . n, and a number θ ∈ R such that

f(x1, . . . , xn) = sgn

(
n∑

i=1

wi(xi)− θ

)
.

No version of Peres’s Theorem 2.17 was previously known
to hold even in the simple case of linear threshold func-
tions on {0, 1}n under a p-biased product distribution with
p 6= 1/2. Understanding just this nonsymmetric case was
left as an open question in [Per04]. We now show that thresh-
old functions over general product spaces are no more noise
sensitive than threshold functions over {0, 1}n under the uni-
form distribution.

Theorem 3.2 Let f : X → {−1, 1} be a linear threshold
function, where X = X1 × · · · ×Xn has the product distri-
bution Π = π1 × · · · × πn. Then NSδ(f) ≤ 5

4

√
δ.

Proof: For a pair of instances z0, z1 ∈ X and a vector
x ∈ {0, 1}n, we introduce the notation zx for the instance
whose ith attribute (zx)i is the ith attribute of zxi

. For any
fixed z0, z1 ∈ X we can define gz0,z1 : {0, 1}n → {−1, 1}
such that gz0,z1(x) = f(zx). Note that this function is a lin-
ear threshold function in the traditional binary sense.

Let z0,z1 now denote independent random draws from
Π, and let x denote a uniformly random vector from {0, 1}n.
We have that zx is distributed as a random draw from Π.
Further pick y ∈ {0, 1}n to be a δ-noisy copy of x, i.e.
y ∼ Nδ(x). Then zy is distributed as Nδ(zx). We now
have

NSδ(f) = Pr
z0,z1,x,y

[f(zx) 6= f(zy)]

= E
z0,z1

[
Pr
x,y

[f(zx) 6= f(zy)]
]

= E
z0,z1

[
Pr
x,y

[gz0,z1(x) 6= gz0,z1(y)]
]

.

Once z0 and z1 are fixed, the quantity in the expectation is
just the noise sensitivity at δ of the binary linear threshold
function gz0,z1) which we can bound by 5

4

√
δ using Theo-

rem 2.17. So

NSδ(f) = E
z0,z1

[
Pr
x,y

[gz0,z1(x) 6= gz0,z1(y)]
]

≤ E
z0,z1

[
5
4

√
δ
]

= 5
4

√
δ,

which is what we wanted to show. 2

As with Theorem 2.18, we conclude:

Theorem 3.3 Let f : X → {−1, 1} be any function of k
linear threshold functions, whereX = X1×· · ·×Xn has the
product distribution Π = π1×· · ·×πn. Then f is (4k/

√
d)-

concentrated up to order d, for any d ≥ 1. In particular, f is
ε2-concentrated up to order O(k2/ε4).

By combining Theorem 3.3 with our main learning theo-
rem, Theorem 2.12, we conclude:

Theorem 3.4 Let Π = π1 × · · · × πn be any product distri-
bution over an instance space X = X1 × · · · × Xn, where
we assume |Xi| ≤ poly(n) for each i. Let C denote the
class of functions of k linear threshold functions over X .
Taking d = O(k2/ε4), the degree-d polynomial regression
algorithm with L1 loss (or hinge loss) uses nO(k2/ε4) time
and examples and agnostically learns with respect to C.

4 Concentration for other classes under
product distributions

In this section we illustrate how essentially any result about
ε-concentration of classes of functions under the uniform dis-
tribution on {0, 1}n can be translated into a similar result for
general product distributions. Besides linear threshold func-
tions, the other main example of concentration comes from
the original application of the Low Degree Algorithm [LMN93]:
learning AC0 functions in quasipolynomial time. Recall that
AC0 is the class of functions computed by unbounded fan-in
circuits of constant depth and polynomial size. We will use
this as a running example.

Suppose C is a class of functions X → {−1, 1}, where
X = X1 × · · · ×Xn. As usual, under the one-out-of-k en-
coding we can think of C as a class of functions {0, 1}N →
{−1, 1}. In our example, this gives a reasonable notion of
“AC0 circuits on general product sets X ”. Suppose further
that C ⊇ C is any class of functions {0, 1}N → {−1, 1}
which is closed under negation of inputs and closed under
fixing inputs to 0 or 1. In our example, the class of AC0

circuits indeed has this basic property (as does the more pre-
cisely specified class of all circuits with size at most s and
depth at most c).

Now by repeating the proof of Theorem 3.2, it is easy
to see that any upper bound one can prove on the noise sen-
sitivity of functions in C under the uniform distribution on
{0, 1}N immediately translates an identical bound on the
noise sensitivity of functions in C on X under any product
distribution. The only thing to notice is that the functions
gz0,z1 arising in that proof will be in the class C. Thus we
are reduced to proving noise sensitivity bounds for functions
on {0, 1}n under the uniform distribution.

Furthermore, any result on ε-concentration of functions
on {0, 1}n under the uniform distribution can be easily trans-
lated into a noise sensitivity bound which is not much worse:

Proposition 4.1 Suppose that f : {0, 1}n → {−1, 1} is ε-
concentrated up to degree d under the uniform distribution
on {0, 1}n. Then NSε/d(f) ≤ ε.

Proof: Using traditional Fourier notation instead of orthog-
onal decomposition notation, we have

S1−ε/d(f) =
∑

S⊆[n]

(1− ε/d)|S|f̂(S)2

≥ (1− ε/d)d(1− ε) ≥ (1− ε)2,

where the first inequality used the fact that f is ε-concentrated
up to degree d. Thus

NS1−ε/d(f) = 1
2 −

1
2S1−ε/d(f) ≤ 1

2 −
1
2 (1− ε)2 ≤ ε.

2

Finally, applying Proposition 2.16, we get O(ε)-concentration
up to order d/ε for the original class C of functions X →
{−1, 1}, under any product distribution on X . This leads to
an agnostic learning result for C under arbitrary product dis-
tributions which is the same as the one would get for C under
the uniform distribution on {0, 1}n, except for an extra fac-
tor of ε in the running time’s exponent.

For example, with regard to AC0 functions, [LMN93,
Hås01] proved the following:

Theorem 4.2 Let f : {0, 1}n → {−1, 1} be computable
by an unbounded fan-in circuit of size at most s and depth at
most c. Then f is ε-concentrated up to degree
d = (O(log(s/ε)))c−1.

We therefore may conclude:

Theorem 4.3 Let C be the class of functions X1 × · · · ×
Xn → {−1, 1} computed by unbounded fan-in circuit of
size at most s and depth at most c (under the one-out-of-k
encoding). Assume |Xi| ≤ poly(n) for each i. Let Π be any
product distribution on X1 × · · · ×Xn. Then every f ∈ C is

2
1−1/eε-concentrated up to order d = (O(log(s/ε)))c−1/ε.
As a consequence, polynomial regression agnostically learns
with respect to C under arbitrary product distributions in
time n(O(log(s/ε)))c−1/ε2 .

This result should be compared to the following theorem
from Furst, Jackson, and Smith [FJS91] for PAC-learning
under bounded product distributions on {0, 1}n:

Theorem 4.4 ([FJS91]) The class C of functions {0, 1}n →
{−1, 1} computed by unbounded fan-in circuit of size at most
s and depth at most c can be PAC-learned under any product
distribution in time n(O((1/p) log(s/ε)))c+O(1)

, assuming the
mean of each coordinate is in the range [p, 1− p].

The advantage of the result from [FJS91] is that it does
not pay the extra 1/ε2 in the exponent. The advantages of
our result is that it holds under arbitrary product distributions
on product sets. (Our result is in the agnostic model, but
the result of [FJS91] could also be by applying the results
of [KKMS05].)

5 Extensions
5.1 Distributions close to or dominated by product

distributions
We begin with some simple observations showing that the
underlying distribution need not be precisely a product distri-
bution. First, the following fact can be considered standard:

Proposition 5.1 Suppose that under distribution D, algo-
rithm A agnostically learns with respect to class C, using m
examples to achieve error ε. If D′ is any distribution satisfy-
ing ‖D′−D‖1 ≤ ε/m, thenA also agnostically learns under
D′, using m examples to achieve error 2ε + 2ε/m ≤ 4ε.

Proof: The key fact we use is that if X is a random variable
with |X| ≤ 1 always, then |ED′ [X] − ED[X]| ≤ ‖D′ −
D‖1. This implies that for any hypothesis h, |errD′(h) −
errD(h)| ≤ ε/m. In particular, it follows that OptD′ ≤
OptD+ ε/m. Further, let h be the random variable denoting
the hypothesisA produces when given examples fromD⊗m.
By assumption, we have

E
D⊗m

[errD(h)] ≤ OptD + ε

which is at most OptD′+ε+ε/m. Since ‖D′⊗m−D⊗m‖1 ≤
m(ε/m) = ε, the key fact applied to errD(h) implies

E
D′⊗m

[errD(h)] ≤ OptD′ + ε + ε/m + ε.

Finally, as we saw, errD′(h) ≤ errD(h)+ε/m always. Thus

E
D′⊗m

[errD′(h)] ≤ OptD′ + 2ε + 2ε/m,

completing the proof. 2

We will use the above result later when learning under
mixtures of product distributions.

A simple extension to the case when the distribution is
“dominated” by a product distribution was already pointed
out in [KKMS05]:

Observation 5.2 Let D be a distribution on X which is “C-
dominated” by a product probability distribution Π = π1 ×
· · · × πn; i.e., for all x ∈ X , D(x) ≤ CΠ(x). If f is ε-
concentrated up to degree d under Π, then f is Cε-concentrated
up to degree d under D.

Hence:

Theorem 5.3 Suppose we are in the setting of Theorem 3.4
except that Π is any distribution which is C-dominated by
a product probability distribution. Then the degree-d poly-
nomial regression algorithm learns with respect to C with
d = O(C2k2/ε4) and hence nO(C2k2/ε4) time and exam-
ples.

5.2 Larger attribute domains
So far we have assumed that each attribute space Xi is only
of polynomial cardinality. This can fairly easily be relaxed
to the assumption that most of the probability mass in each
(Xi, πi) is concentrated on polynomially many atoms. Let
us begin with some basic preliminaries:

Notation 5.4 Given a distribution π on a set X , as well as a
subset X ′ ⊆ X , we use the notation π′ for the distribution on
X ′ given by conditioning π on this set. (We always assume
π(X ′) 6= 0.)

Fact 5.5 Let X = X1×· · ·×Xn and let Π = π1×· · ·×πn

be a product distribution on X . Let X ′
i ⊆ Xi, i = 1 . . . n,

and write Π′ for the distribution Π conditioned on the set
X ′ = X ′

1 × · · · × X ′
n. Then Π′ is the product distribution

π′1 × · · · × π′n.

We now observe that if X ′ is a “large” subset of X , then
any two functions which are close in L2(X ,Π) are also close
in L2(X ′,Π′):

Proposition 5.6 In the setting of Fact 5.5, suppose that
Prxi∼πi

[xi 6∈ X ′
i] ≤ 1/(2n) for all i. Then for any two

functions f : X → R and g : X → R,

‖f |X ′ − g|X ′‖22,Π′ ≤ 2 · ‖f − g‖22,Π

where f |X ′ : X ′ → R denotes the restriction of f to X ′, and
similarly for g|X ′ .

Proof: Writing h = f − g, we have

‖h‖22,Π = E
x∼Π

[h(x)2]

= Pr
x∼Π

[x ∈ X ′] · E
x∼Π

[h(x)2 | x ∈ X ′]

+ Pr
x∼Π

[x /∈ X ′] · E
x∼Π

[h(x)2 | x /∈ X ′].

Using Ex∼Π[h(x) | x /∈ X ′] ≥ 0, we have

‖h‖22,Π ≥ Pr
x∼Π

[x ∈ X ′] · E
x∼Π

[h(x)2 | x ∈ X ′]

= Pr
x∼Π

[x ∈ X ′] · E
x∼Π′

[h(x)2].

But by the union bound

Pr
x∼Π

[x /∈ X ′] ≤
n∑

i=1

Pr
xi∼Πi

[xi /∈ X ′
i] ≤ n · 1/(2n) = 1/2,

so Prx∼Π[x ∈ X ′] ≥ 1/2. Thus

2 · ‖h‖22,Π ≥ E
x∼Π′

[h(x)2] = ‖f |X ′ − g|X ′‖22,Π′ ,

completing the proof. 2

Corollary 5.7 In the setting of the previous proposition, if
f is ε-concentrated up to order d under Π, then f |X ′ is 2ε-
concentrated up to order d under Π′.

Proof: It suffices to observe that if g : X → R is a function
of order d, then g|X ′ is also a function of order d. 2

We can now describe an extended learning algorithm which
works when the attribute spaces are mostly supported on sets
of polynomial cardinality:

Definition 5.8 We say that a finite probability space (X, π)
is (η, r)-bounded if there exists a subset X ′ ⊆ X of cardi-
nality at most |X ′| ≤ r such that Prx∼π[x /∈ X ′] ≤ η.

Our algorithm will learn whenever all n attribute sets are,
say, (ε/n, poly(n))-bounded. The first step of the algorithm
will be to determine a set of attribute values which contain
almost all of the probability mass.

Lemma 5.9 Let (X, π) be an (η, r)-bounded probability
space. Let Z be a set of m = r ln(r/δ)/η samples drawn
independently from π. Define Y to be the set {x ∈ X :
x was sampled in Z}. Then with probability at least 1 − δ,
the set Y satisfies Prx∼π[x /∈ Y] ≤ 2η.

Proof: In fact, we will prove the slightly stronger state-
ment that with probability at least 1 − δ the set Y satisfies
Prx∼π[x /∈ Y ∩X ′] ≤ 2η, where X ′ is any set fulfilling the
(η, r)-boundedness condition of (X, π).

To prove the claim, we split the sampling procedure into
r epochs, where we draw ln(r/δ)/η samples in each epoch.
Let Yi be the set of all atoms in X sampled among the first
i epochs, with Y0 denoting the empty set. We will prove
that with probability at least 1 − δ, the following holds for
all epochs i ∈ [r]: either Yi−1 satisfies Prx∼π[x /∈ Yi−1 ∩
X ′] ≤ 2η, or (Yi∩X ′)\Yi−1 6= ∅ (i.e., we see a “new” atom
from X ′ in the ith epoch).

Let’s first note that satisfying the above conditions im-
plies that in the end Prx∼π[x /∈ Y ∩ X ′] ≤ 2η. This is
straightforward: if at any epoch Yi−1 satisfies Prx∼π[x /∈
Yi−1∩X ′] ≤ 2η then we’re done because Y ⊇ Yi−1. Other-
wise, in all r epochs we see a new atom from X ′, and hence
at the end of the sampling we will have seen r distinct atoms
of X ′; then |X ′| ≤ r implies that our final Y ⊇ X ′.

Now to complete the proof let us bound the probability
that for a given i ∈ [r] the Yi−1 does not satisfy Prx∼π[x /∈
Yi−1 ∩X ′] ≤ 2η and we do not see a new element of X ′ in
the ith epoch. Note that if Prx∼π[x /∈ Yi−1∩X ′] > 2η, then
the fact that Prx∼π[x /∈ X ′] ≤ η implies that Prx∼π[x ∈
X ′ \ Yi−1] > η. So the probability that we do not observe
any element of X ′ \ Yi−1 in ln(r/δ)/η samples is

Pr
x∼π

[x /∈ X ′ \ Yi−1]ln(r/δ)/η ≤ (1− η)ln(r/δ)/η

≤ e−η·ln(r/δ)/η = δ/r.

By applying the union bound, we see that there is probability
at most δ that any of the r epochs fails, so we’re done. 2

We now give our extended learning algorithm:

1. Draw a set Z1 of m1 unlabeled examples.

2. Draw a set Z2 of m2 labeled examples.

3. Delete from Z2 any instance/label pair
where the instance contains an attribute
value not appearing in Z1.

4. Run the degree-d polynomial regression
algorithm on Z2.

Theorem 5.10 Let Π = π1×· · ·×πn be a product distribu-
tion on the set X = X1 × · · · ×Xn and assume each prob-
ability space (Xi, πi) is (ε/n, r)-bounded. Write N = nr.
Let C be a class of functions X → {−1, 1} each of which
is ε2-concentrated up to order d. Set m1 = poly(N/ε) and
m2 = poly(Nd/ε). The above algorithm uses poly(Nd/ε)
time and examples and agnostically learns with respect to C
under Π.

Proof: For simplicity we will equivalently prove that the al-
gorithm outputs a hypothesis with error at most Opt+O(ε),
rather than Opt + ε.

We first want to establish that with probability at least
1− ε, the set of attributes observed in the sample Z1 covers
almost all of the probability mass of Π. For each i ∈ [n],
let X ′

i be the set of attribute values from Xi observed in at
least one of the samples in Z1. Using the fact that each
(Xi, πi) is (ε/n, r)-bounded, Lemma 5.9 implies that for
sufficiently large m1 = poly(N/ε) log(1/ε), each X ′

i will
satisfy Prxi∼πi [xi /∈ X ′

i] ≤ 2ε/n except with probability at
most ε/n. Applying the union bound, all X ′

i simultaneously
satisfy the condition with probability at least 1−ε. We hence-
forth assume this happens. Writing X ′ = X ′

1 × · · · × X ′
n,

we note that, by the union bound, Prx∼Π[x 6∈ X ′] ≤ 2ε.

The second thing we establish is that we do not throw
away too many examples in Step 3 of the algorithm. We
have just observed that the probability a given example in
Z2 is deleted is at most 2ε. We may assume 2ε ≤ 1/2, and
then a Chernoff bound (and m2 � log(1/ε)) easily implies
that with probability at least 1 − ε, at most, say, two-thirds
of all examples are deleted. Assuming this happens, we have
that even after deletion, Z2 still contains at least poly(Nd/ε)
many examples.

We now come to the main part of the proof, which is
based on the observation that the undeleted examples in Z2

are distributed as i.i.d. draws from the restricted product dis-
tribution Π′ gotten by conditioning Π on X ′. Thus we are in
a position to apply our main learning result, Theorem 2.12.
The polynomial regression part of the above algorithm in-
deed uses poly(Nd/ε) time and examples, and it remains to
analyze the error of the hypothesis it outputs.

First, we use the fact that each function f in C is ε2-
concentrated up to order d to conclude that each function
f |X ′ in “C|X ′” is 2ε2-concentrated up to order d. This uses
Proposition 5.6 and the fact that we may assume 2ε ≤ 1/2.
Next, the guarantee of Theorem 2.12 is that when learning
the target classifier t (viewed as a function X → {−1, 1} or
X ′ → {−1, 1}), the expected error under Π′ of the hypothe-
sis h produced is at most Opt′ + O(ε), where

Opt′ = min
f ′∈C|X′

Pr
x∼Π′

[f ′(x) 6= t(x)].

By definition, there is a function f ∈ C satisfying

Pr
x∼Π

[f(x) 6= t(x)] = Opt.

Since Prx∼Π[x /∈ X ′] ≤ 2ε, it is easy to see that f |X ′ has
error at most Opt+2ε on t under Π′. Thus Opt′ ≤ Opt+2ε,

and we conclude that the expected error under Π′ of h on t is
at most Opt + 2ε + O(ε) = Opt + O(ε). Finally, the same
observation implies that the expected error under Π of h on
t is at most Opt + 2ε + O(ε) = Opt + O(ε).

We have thus established that with probability at least
1−2ε, the polynomial regression part of the above algorithm
outputs a hypothesis with expected error at most Opt+O(ε).
It follows that the overall expected error is at most Opt +
O(ε), as desired. 2

5.3 Real-valued attributes
We next consider the particular case of learning with re-
spect to linear threshold functions, but when some of the at-
tributes are real-valued. This case is relatively easily handled
by discretizing the ranges of the distributions and using the
previously discussed techniques. Our approach works for a
very wide variety of distributions on R; these distributions
need not even be continuous. We only need the distributions
to satisfy “polynomial boundedness and anti-concentration”
bounds.

Definition 5.11 We say that a distribution D over R is B-
polynomially bounded if for all η > 0, there is an interval I
of length at most poly(B/η) such that Prx∼D[x 6∈ I] ≤ η.

Definition 5.12 Given a real-valued random variable x with
distributionD, recall that the Lévy (anti-)concentration func-
tion Q(x;λ) is defined by

Q(x;λ) = sup
t∈R

Pr
x∼D

[x ∈ [t− λ/2, t + λ/2]] .

We say thatD has B-polynomial anti-concentration if Q(D;λ) ≤
poly(B) ·λc for some positive c > 0. Note that ifD is a con-
tinuous distribution with pdf everywhere at most B then it
has B-polynomial anti-concentration (with c = 1 in fact).

Having polynomial boundedness and concentration is an
extremely mild condition; for example, the following famil-
iar continuous distributions are all B-polynomial bounded
and have B-polynomial anti-concentration: Gaussians with
1/B ≤ σ2 ≤ B; exponential distributions with 1/B ≤
λ ≤ B; Laplace distributions with scale parameter with
1/B ≤ b ≤ B; Pareto distributions with shape param-
eter 1/B ≤ k ≤ B; chi-square distributions with vari-
ance 1/B ≤ σ2 ≤ B (for 1 degree of freedom, the anti-
concentration “c” needs to be 1/2); etc.

(Furthermore, in most cases even the condition on the
parameter being in [1/B,B] can be eliminated. For exam-
ple, suppose the first coordinate has a Gaussian distribution
with standard deviation σ. With O(log(1/δ)) examples, one
can with probability at least 1 − δ estimate σ to within a
multiplicative factor of 2. Having done so, one can multi-
ply all examples’ first coordinate by an appropriate constant
so as to get a Gaussian distribution with standard deviation
in [1/2, 2]. Further, this does not change the underlying ag-
nostic learning problem, since the class of linear threshold
functions is closed under scaling a coordinate. For clarity of
exposition, we leave further considerations of this sort to the

reader.)

We now describe the effect that discretizing a real-valued
distribution can have with respect to functions of linear thresh-
old functions. It is convenient to switch from working with
a distribution on X and target function X → {−1, 1} to just
having a distributionD onX×{−1, 1}— see the discussion
after definition of agnostic learning in Section 1.1. As usual,
assume that X = X1×· · ·×Xn is a product set and that the
marginal distribution of D on X is a product distribution.

Suppose we have one coordinate with a real-valued dis-
tribution; without loss of generality, say X1 = R, and write
D1 for the marginal distribution of D on X1. When we re-
fer to a “linear threshold function” on X , we assume that the
“weight function” w1 : X1 → R for coordinate 1 is just
w1(x1) = c1x1 for some nonzero constant c1.

Lemma 5.13 Let C denote the class of functions of k linear
threshold functions over X . As usual, write

Opt = inf
f∈C

errD(f), where errD(f) = Pr
(x,y)∼D

[f(x) 6= y].

Consider discretizing X1 = R by mapping each x1 ∈ R to
rdτ (x1), the nearest integer multiple of τ to xi. Write X ′

1 =
τZ and letD′ denote the distribution on X ′

1×X2×· · ·Xn×
{−1, 1} induced from D by the discretization.7 Write Opt′

for the quantity analogous to Opt for D′. Then if D1 has B-
polynomial anti-concentration, it holds that Opt′ ≤ Opt +
k · poly(B) · τΩ(1).

Proof: It suffices to show that for any f ∈ C,

k · poly(B) · τΩ(1) ≥ |errD(f)− errD′(f)|

=
∣∣∣∣ Pr
(x,y)∼D

[f(x) 6= y]− Pr
(x,y)∼D′

[f(x) 6= y]
∣∣∣∣ .

Writing Π for the marginal of D on X , we can prove the
above by proving

Pr
x∼Π

[f(x) 6= f(rdτ (x1),x2, . . . ,xn)] ≤ k ·poly(B) ·τΩ(1).

Since f is a function of some k linear threshold functions,
by the union bound it suffices to show

Pr
x∼Π

[h(x) 6= h(rdτ (x1),x2, . . . ,xn)] ≤ poly(B) · τΩ(1)

for any linear threshold function h. We can do this by show-
ing

Pr
x1∼D1

Y

[sgn(c1x1+Y) 6= sgn(c1rdτ (x1)+Y)] ≤ poly(B)·τΩ(1),

where Y is the random variable distributed according to the
other part of the linear threshold function h. Note that Y and
x1 are independent because Π is a product distribution. Now
since |x1−rdτ (x1)| is always at most τ/2, we can only have
sgn(c1x1 + Y) 6= sgn(c1rdτ (x1) + Y) if

|c1x1 + Y | ≤ |c1|τ/2 ⇔ |x1 + Y /c1| ≤ τ/2.

7This can lead to inconsistent labels, which is why we switched
to D rather than have a target function.

It is an easy and well-known fact that if x and y are indepen-
dent random variables then Q(x + y;λ) ≤ Q(x;λ); hence

Pr
x1∼D1

Y

[|x1 + Y /c1| ≤ τ/2] ≤ Q(x1; τ/2).

ButD1 has B-polynomial anti-concentration, so Q(x1; τ/t) ≤
poly(B) · τΩ(1), as needed. 2

By repeating this lemma up to n times, it follows that
even if all n coordinate distributions are real-valued, so long
as they have poly(n)-polynomial anti-concentration we will
suffer little error. Specifically (assuming k ≤ poly(n) as
well), by taking τ = poly(ε/n) we get that discretization
only leads to an additional error of ε.

Finally, note that if a distributionDi is poly(n)-polynomially
bounded then its discretized version is (ε/n, poly(n/ε))-bounded
in the sense of Section 5.2; this lets us apply Theorem 5.10.
Summarizing:

Theorem 5.14 Let Π = π1×· · ·×πn be a product distribu-
tion on the set X = X1 × · · · ×Xn. For the finite Xi’s, as-
sume each is (ε/n, poly(n/ε))-bounded. For the real Xi’s,
assume the associated πi is poly(n)-polynomially bounded
and has poly(n)-polynomial anti-concentration. Let C de-
note the class of functions of at most k ≤ poly(n) linear
threshold functions over X . Then there is a poly(n/ε)k2/ε4

time algorithm which agnostically learns with respect to C
under Π.

5.4 Mixtures of product distributions
So far we have only considered learning under distributions
D that are product distributions. In this section we show how
to handle the commonly-studied case of mixtures of product
distributions.

The first step is to show a generic learning-theoretic re-
duction: Roughly speaking, if we can agnostically learn with
respect to any one of a family of distributions, then we can
agnostically learn with respect to a known mixture of distri-
butions from this family — even a mixture of polynomially
many such distributions. (In our application the family of
distributions will be the product distributions, but our reduc-
tion does not rely on this.) Although the following theorem
uses relatively standard ideas, we do not know if it has ap-
peared previously in the literature:

Theorem 5.15 Let D be a family of distributions over an
instance space X . There is a generic reduction from the
problem of agnostically learning under a known mixture of
c distributions from D to the problem of agnostically learn-
ing under a single known distribution from D. The reduction
incurs a running time slowdown of poly(cT)/γ for an addi-
tional error of γ, where T denotes the maximum time needed
to compute D(x) for a mixture component D.

Proof: Suppose we are agnostically learning (with respect to
some class C) under the distribution D which is a mixture of
c distributions D1, . . . ,Dc with mixing weights p1, . . . , pc.
We make the assumption that the learning algorithm knows
each of the mixing weights pi, each of the distributions Di,

and can compute any of the probabilities Di(x) in time T .
We assume in the following that the Di’s are discrete distri-
butions, but the case of absolutely continuous distributions
could be treated in essentially the same way.

First, we claim that the algorithm can simulate learn-
ing under any of the single distributions Di, with slowdown
poly(cT)/pi. This is a standard proof based on rejection
sampling: given an example x, the algorithm retains it with
probability

ri(x) := pi
Di(x)
D(x)

, (1)

a quantity the algorithm can compute in time poly(cT). One
can check that this leads to the correct distribution Di on in-
stances. The probability of retaining an example is easy seen
to be precisely 1/pi, leading to the stated slowdown.

The main part of the proof now involves showing that
if the algorithm agnostically learns under each Di, it can
combine the hypotheses produced into an overall hypothe-
sis which is good under D. We will deal with the issue of
running time (in particular, very small pi’s) at the end of the
proof. Let Opt denote the minimal error achievable among
functions in C under D, and write Opti for the analogous
quantity under Di, i = 1 . . . c. Since one could use the same
f ∈ C for each Di, clearly Opt ≥

∑c
i=1 piOpti. By reduc-

tion, the algorithm produces hypotheses h1, . . . ,hc satisfy-
ing E[errDi

(hi)] ≤ Opti + ε.

We allow our overall algorithm to output a randomized
hypothesis h. We will then show that E[errD(h)] ≤ Opt+ε.
where the expectation is over the subalgorithms’ production
of the hi’s plus the “internal coins” of h. Having shown this,
it follows that our algorithm could equally well produce a de-
terministic hypothesis, just by (randomly) fixing a setting of
h’s internal coins as its last step.

Assume for a moment that the subalgorithms’ hypothe-
ses are fixed, h1, . . . , hc. The randomized overall hypothesis
h : X → {−1, 1} is defined by taking h(x) = hi(x) with
probability exactly ri(x), where the probabilities ri(x) are as
defined in (1). (Note that they indeed sum to 1 and are com-
putable in time poly(cT).) Writing t for the target function,
we compute:

E
h’s coins

[errD(h)]

= E
x∼D

[Pr
h’s coins

[h(x) 6= t(x)]]

= E
x∼D

 ∑
i:hi(x) 6=t(x)

ri(x)


= E

x∼D

 ∑
i:hi(x) 6=t(x)

pi(x)
Di(x)
D(x)


=

∑
x∈X

∑
i:hi(x) 6=t(x)

pi(x)Di(x)

=
c∑

i=1

pi

∑
x:hi(x) 6=t(x)

Di(x) =
c∑

i=1

pierrDi
(hi).

We now take the expectation over the production of the sub-
hypotheses and conclude

E
h
[errD(h)] =

c∑
i=1

piE[errDi(hi)] ≤
c∑

i=1

pi(Opti + ε)

=
c∑

i=1

piOpti + ε ≤ Opt + ε, (2)

as claimed.

It remains to deal with small pi’s and analyze the run-
ning time slowdown. We modify the overall algorithm so
that it only simulates and learns under Di if pi ≥ γ/c. Thus
the simulation slowdown we incur is only poly(cT)/γ, as
desired. For any i with pi < γ/c we use an arbitrary hypoth-
esis hi in the above analysis and assume only errDi

(hi) ≤ 1.
It is easy to see that this incurs an additional error in (2) of at
most

∑
i:pi<γ/c pi ≤ γ, as necessary. 2

Combining Theorem 5.15 with, say, Theorem 3.4 (for
simplicity), we may conclude:

Theorem 5.16 LetD be any known mixture of poly(n) prod-
uct distributions over an instance space X = X1×· · ·×Xn,
where we assume |Xi| ≤ poly(n) for each i. Then there is a
nO(k2/ε4)-time algorithm for agnostically learning with re-
spect to the class of functions of k linear threshold functions
over X under D.

When the mixture of product distributions is not known
a priori, we can first run an algorithm for learning mixtures
of product distributions from unlabeled examples. For ex-
ample, Feldman, O’Donnell, and Servedio [FOS05] proved
the following:

Theorem 5.17 ([FOS05]) Let D be an unknown mixture of
c = O(1) many product distributions over an instance space
X = X1 × · · · × Xn, where we assume |Xi| ≤ O(1) for
each i. There is an algorithm which, given i.i.d. examples
fromD and η > 0, runs in time poly(n/η) log(1/δ) and with
probability at least 1−δ outputs the parameters of a mixture
of c product distributions D′ satisfying ‖D′ −D‖1 ≤ η.

(The theorem was originally stated in terms of KL-divergence
but also holds with L1-distance [FOS05].) In [FOS06] the
same authors gave an analogous result for the case when each
Xi = R and each product distribution is a product of Gaus-
sians with means and variances in [1/poly(n),poly(n)].

We conclude:

Theorem 5.18 LetD be any unknown mixture of O(1) prod-
uct distributions over an instance space X = X1×· · ·×Xn,
where we assume either: a) |Xi| ≤ O(1) for each i; or b)
each Xi = R and each product distribution is a mixture of
axis-aligned (poly(n)-bounded) Gaussians. Then there is a
nO(k2/ε4)-time algorithm for agnostically learning with re-
spect to the class of functions of k linear threshold functions
over X under D.

Proof: First use the results of [FOS05, FOS06] with η =
ε/nO(k2/ε4), producing a known mixture distributionD′ with
‖D′ − D‖1 ≤ ε/nO(k2/ε4). Then run the algorithm from
Theorem 5.18. The conclusion now follows from Proposi-
tion 5.1. 2

6 Conclusions
In this work, we have shown how to perform agnostic learn-
ing under arbitrary product distributions and even under lim-
ited mixtures of product distributions. The main technique
was showing that noise sensitivity bounds under the uni-
form distribution on {0, 1}n yield the same noise sensitivity
bounds under arbitrary product distributions. The running
time and examples required by our algorithm are virtually
the same as those required for learning under the uniform
distribution on {0, 1}n.

While we have established many interesting scenarios for
which polynomial regression works, there is still significant
room for extension. One direction is to seek out new concept
classes and/or distributions for which polynomial regression
achieves polynomial-time agnostic learning. Our work has
dealt mostly in the case where all the attributes are mutually
independent; it would be especially interesting to get learn-
ing under discrete distributions that are far removed from this
assumption.

References
[BKS99] Itai Benjamini, Gil Kalai, and Oded Schramm.

Noise sensitivity of Boolean functions and ap-
plications to percolation. Publ. Math. de
l’IHÉS, 90(1):5–43, 1999.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-
vector networks. Machine Learning, 20(3):273–
297, 1995.

[FJS91] Merrick Furst, Jeffrey Jackson, and Sean Smith.
Improved learning of AC0 functions. In
Proc. 4th Workshop on Comp. Learning Theory,
pages 317–325, 1991.

[FOS05] Jonathan Feldman, Ryan O’Donnell, and Rocco
Servedio. Learning mixtures of product distri-
butions over discrete domains. In Proc. 46th
IEEE Symp. on Foundations of Comp. Sci.,
pages 501–510, 2005.

[FOS06] Jonathan Feldman, Ryan O’Donnell, and Rocco
Servedio. Pac learning mixtures of gaussians
with no separation assumption. In Proc. 19th
Workshop on Comp. Learning Theory, pages
20–34, 2006.

[GR06] Venkatesan Guruswami and Prasad Raghaven-
dra. Hardness of learning halfspaces with noise.
In Proc. 47th IEEE Symp. on Foundations of
Comp. Sci., pages 543–552, 2006.

[Hås01] J. Håstad. A slight sharpening of LMN. J. of
Computing and Sys. Sci., 63(3):498–508, 2001.

[Hoe48] Wassily Hoeffding. A class of statistics with
asymptotically normal distribution. Ann. Math.
Stat., 19(3):293–325, 1948.

[Kal06] Adam Kalai. Machine learning theory course
notes. http://www.cc.gatech.edu/∼atk/teaching/
mlt06/lectures/mlt-06-10.pdf, 2006.

[KKMS05] Adam Kalai, Adam Klivans, Yishay Mansour,
and Rocco Servedio. Agnostically learning
halfspaces. In Proc. 46th IEEE Symp. on Foun-
dations of Comp. Sci., pages 11–20, 2005.

[KOS04] Adam Klivans, Ryan O’Donnell, and Rocco
Servedio. Learning intersections and thresholds
of halfspaces. J. of Computing and Sys. Sci.,
68(4):808–840, 2004.

[KR82] Samuel Karlin and Yosef Rinott. Applications
of Anova type decompositions for comparisons
of conditional variance statistics including jack-
knife estimates. Ann. Stat., 10(2):485–501,
1982.

[KSS94] Michael Kearns, Robert Schapire, and Linda
Sellie. Toward efficient agnostic learning. Ma-
chine Learning, 17(2):115–141, 1994.

[LBW95] Wee Sun Lee, Peter Bartlett, and Robert
Williamson. On efficient agnostic learning
of linear combinations of basis functions. In
Proc. 8th Workshop on Comp. Learning Theory,
pages 369–376, 1995.

[LMN93] Nathan Linial, Yishay Mansour, and Noam
Nisan. Constant depth circuits, Fourier trans-
form, and learnability. Journal of the ACM,
40(3):607–620, 1993.

[MOO05] Elchanan Mossel, Ryan O’Donnell, and
Krzysztof Oleszkiewicz. Noise stability of
functions with low influences: invariance and
optimality. In Proc. 46th IEEE Symp. on
Foundations of Comp. Sci., pages 21–30, 2005.

[MP69] Marvin Minsky and Symour Papert. Percep-
trons. MIT Press, 1969.

[O’D03] Ryan O’Donnell. Computational aspects of
noise sensitivity. PhD thesis, MIT, 2003.

[OS03] Ryan O’Donnell and Rocco Servedio. New de-
gree bounds for polynomial threshold functions.
In Proc. 35th ACM Symp. on the Theory of Com-
puting, pages 325–334, 2003.

[Per04] Y. Peres. Noise stability of weighted majority.
arXiv:math/0412377v1, 2004.

[Ste86] J. Michael Steele. An Efron-Stein inequality for
nonsymmetric statistics. Ann. Stat., 14(2):753–
758, 1986.

[Val84] Leslie Valiant. A theory of the learnable. Comm.
of the ACM, 27(11):1134–1142, 1984.

[vM47] Richard von Mises. On the asymptotic distribu-
tion of differentiable statistical functions. Ann.
Math. Stat., 18(3):309–348, 1947.

