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Abstract

Let G be an undirected graph for which the standard Max-Cut SDP relaxation achieves at least a c

fraction of the total edge weight, 1

2
≤ c ≤ 1. If the actual optimal cut for G is at most an s fraction of the

total edge weight, we say that (c, s) is an SDP gap. We define the SDP gap curve GapSDP : [ 1
2
, 1] → [ 1

2
, 1]

by
Gap

SDP
(c) = inf{s : (c, s) is an SDP gap}.

In this paper we complete a long line of work [DP93b, DP93a, GW95, Zwi99, FS02, FL06, CW04, KO06]
by determining the entire SDP gap curve; we show Gap

SDP
(c) = S(c) for a certain explicit (but compli-

cated to state) function S. In particular, our lower bound GapSDP(c) ≥ S(c) is proved via a polynomial-
time ‘RPR2’ algorithm. Thus we have given an efficient, optimal SDP-rounding algorithm for Max-Cut.
The fact that it is RPR2 confirms a conjecture of Feige and Langberg [FL06].

We also describe and analyze the tight connection between SDP gaps and Long Code tests (and the
constructions of [Kar99, AS00, ASZ02]). Using this connection, we give optimal Long Code tests for
Max-Cut. Combining these with results implicit in [KKMO07, KV05] and ideas from [FS02], we derive
the following conclusions:

• The Max-Cut SDP gap curve subject to triangle inequalities is also given by S(c).

• No RPR2 algorithm can be guaranteed to find cuts of value larger than S(c) in graphs where the
optimal cut is c. (Contrast this with the fact that in the graphs exhibiting the c vs. S(c) SDP gap,
our RPR2 algorithm actually finds the optimal cut.)

• Further, no polynomial-time algorithm of any kind can have such a guarantee, assuming P 6= NP
and the Unique Games Conjecture.



1 Introduction

Given an undirected graph G = (V, E), the Max-Cut problem asks for a partition of the vertices into two
sets so as to maximize the number of edges connecting the two sets. It is one of the classic NP-complete
problems from Karp’s list of 21 [Kar72] and is arguably the simplest NP-hard problem, being the binary
constraint satisfaction problem with only ‘6=’ constraints. The Max-Cut problem has applications from VLSI
to statistical physics [BGJR88] and has attracted a tremendous amount of interest both in theory and in
practice. For a survey, see Poljak and Tuza [PT95] and to cite just one contemporary paper on practical
heuristics, see Rendl, Rinaldi, and Wiegele [RRW07].

To cope with NP-hardness and to understand hard instances, researchers have to turned to approxima-
tion algorithms. The greedy algorithm (or the random-assignment algorithm) is easily shown to have an
approximation ratio of 1

2 (see [SG76]). In a breakthrough affecting both theory and practice, Goemans and
Williamson [GW95] gave a semidefinite programming (SDP) rounding algorithm achieving a .878 approxi-
mation ratio.1 Since the early ’90s, there has been a tremendous amount of theoretical interest in the SDP
relaxation, in approximation algorithms, and in hardness of approximation for Max-Cut [DP93b, DP93a,
GW95, Kar99, Zwi99, AS00, FL06, FKL02, FS02, ASZ02, HLZ04, KKMO07, CW04, AZ05, KV05, KO06].
In this work, we build on the results in many of these papers and determine an essentially complete picture
of the algorithms, SDP gaps, Long Code tests, and UGC-hardness for Max-Cut.

1.1 Definitions

We begin with the basic definitions. We generally work with edge-weighted, undirected graphs G = (V, E, w),
where w : E → R≥0 gives the nonnegative edge weights. The issue of self-loops turns out to be a nuisance;
our policy will be to disallow them unless otherwise specified. Without loss of generality, we will always
assume the edge weights sum to 1; i.e.,

∑
e∈E w(e) = 1. Thus we can think of the weights as giving a

probability distribution on edges; we will therefore omit w and think of E as a (symmetric) probability
distribution on edges, writing (u, v) ∼ E to denote a draw from this distribution.2

Definition 1.1 A (proper) cut in G is a partition of the vertices into two parts, h : V → {−1, 1}. The
value of the cut is

valG(h) = Pr
(u,v)∼E

[h(u) 6= h(v)] = E
(u,v)∼E

[ 12 − 1
2h(u)h(v)].

The Max-Cut problem is the following: Given G, find a proper cut h with as large a value as possible.

In general, we prefer the second definition of value given above, since it generalizes to fractional cuts :

Definition 1.2 A fractional cut in G is a function h : V → [−1, 1]. The value of the fractional cut is

valG(h) = E
(u,v)∼E

[ 12 − 1
2h(u)h(v)].

Given a fractional cut h, we can randomly produce a proper cut h′ by setting each value h′(v) to be 1
with probability 1

2 + 1
2h(v) and −1 with probability 1

2 − 1
2h(v), independently across v’s. In this way,

E[h′(v)] = h(v). It follows that E[valG(h′)] = valG(h) (although this uses the fact that G has no self-loops).
Hence there always exists a proper cut h′ with value at least valh(G), and furthermore such a cut can easily
be found deterministically from h using the method of conditional expectations. For these reasons, we will
henceforth treat the Max-Cut problem as being about finding a fractional cut with as large a value as
possible, and we will refer to fractional cuts simply as ‘cuts’.

Definition 1.3 The optimum cut value, or Max-Cut, for G is denoted

Opt(G) = sup
h:V →[−1,1]

valG(h).

Note that the optimum is always at most 1 and at least 1
2 (since the fractional cut h ≡ 0 is always available).

1The SDP relaxation itself was given earlier by Delorme and Poljak [DP93b], who noted it was polynomial-time computable.
2Throughout this paper we use boldface to indicate random variables.
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1.2 On approximation algorithms

Let A be a polynomial-time (fractional) cut-finding algorithm, and let AlgA(G) denote the value of the cut
output by A on G. We allow A to be randomized, in which case we let AlgA(G) denote the expected value
of the cut output by A. (The deterministic/randomized distinction is well known to be of little importance;
see Appendix C for details.)

The traditional way to measure the quality of an approximation algorithm is to look at the worst-case
ratio AlgA(G)/Opt(G), over G. For example, the Goemans-Williamson (GW) algorithm has a guarantee
that this ratio is always at least .878. However this guarantee is not very good for graphs G with only
moderately large maximum cuts. For example, if Opt(G) = .55 then the GW algorithm may [ASZ02] only
find a cut with value .878 · .55 < .49, which is worse than the trivial fractional cut. On the other hand,
Goemans and Williamson showed [GW95] that when Opt(G) = .95, their algorithm finds a cut with value
at least .90, which is significantly better than .878 · .95.

We believe it is essential to measure the quality of an approximation algorithm not with a single ratio
but with a curve.

Definition 1.4 We say that algorithm A achieves approximation curve ApxA : [12 , 1] → [ 12 , 1] if

AlgA(G) ≥ ApxA(Opt(G)) for all G.

For example, the GW guarantee is usually described as achieving approximation curve c 7→ .878c, but in
fact Goemans and Williamson achieve the guarantee3

ApxGW (c) ≥
{

1
π arccos(1 − 2c) if c ≥ .844,

.878c if c ≤ .844.
(1)

1.3 Semidefinite programming relaxations and gaps

All of the best approximation guarantees for Max-Cut currently known are achieved by algorithms using the
semidefinite programming (SDP) relaxation [FL92, DP93b, PR95, GW95]:

Definition 1.5 The (Max-Cut) SDP value of a graph G is

Sdp(G) = max
g:V →Bn

E
(u,v)∼E

[ 12 − 1
2g(u) · g(v)], (2)

where n = |V | and Bn denotes {x ∈ Rn : ‖x‖ ≤ 1}. Note that Sdp(G) ≥ Opt(G), as g can always be taken
to map into [−1, 1].

The utility of this relaxation is that we can actually find an essentially optimal embedding g in polynomial
time (more precisely, we can find a g achieving at least Sdp(G) − ǫ in time poly(n) · log(1/ǫ); see [GW95]).
We should note that for graphs without self-loops, it is easy to see that the optimal embedding maps all
vertices to the boundary of the ball, Sn−1 = {x ∈ Rn : ‖x‖ = 1}.

Triangle inequalities. One can also consider strengthening the SDP by adding the ‘triangle inequalities’:
i.e., enforcing

g(v1) · g(v2) − g(v2) · g(v3) − g(v1) · g(v3) ≥ −1,

g(v1) · g(v2) + g(v2) · g(v3) + g(v1) · g(v3) ≥ −1,

for all v1, v2, v3 ∈ V . All of our positive results (rounding algorithms) will hold without the triangle inequali-
ties, and we focus attention in this work almost exclusively on the basic SDP (2). However, we will also show
that all of our negative results (SDP gaps, algorithmic limitations) hold even with the triangle inequalities.

3Here and throughout, .844 and .878 are shorthand for 1

2
−

1

2
θ∗ and 2

π
csc θ∗, where θ∗ is the positive solution of θ = tan( θ

2
).
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In evaluating approximation algorithms, we would like to compare the cut-values found by an algorithm
A to the maximum cut values. However doing this directly is difficult — roughly because Max-Cut is hard,
and therefore we don’t analytically have access to Opt(G). The approximation guarantees of SDP-based
algorithms are actually based on comparing the value of the cuts found to the SDP value:

Definition 1.6 We say that algorithm A achieves SDP-approximation curve SdpApxA : [12 , 1] → [ 12 , 1] if

AlgA(G) ≥ SdpApxA(Sdp(G)) for all G.

For example, the GW algorithm actually has SDP -approximation curve given by the curve in (1).

There is an obvious barrier to how good SDP-approximation guarantees can be: If there exists a graph
G with Sdp(G) ≥ c and Opt(G) ≤ s then of course no algorithm could have an SDP-approximation curve
SdpApx with SdpApx(c) > s. This leads us to the notion of the ‘SDP gap curve’, generalizing the usual
SDP gap ratio:

Definition 1.7 For 1
2 ≤ s ≤ c ≤ 1, we call the pair (c, s) an SDP gap if there exists a graph G with

Sdp(G) ≥ c and Opt(G) ≤ s. We define the SDP gap curve by

GapSDP(c) = inf{s : (c, s) is an SDP gap}.

We analogously define the curve Gap△SDP for the SDP with the triangle inequalities. Of course, we have
Gap△SDP(c) ≥ GapSDP(c) for all c.

In Appendix A we show that GapSDP must be a continuous, strictly increasing function.

1.4 RPR2 algorithms

Generalizing the GW algorithm, Feige and Langberg [FL06] introduced the ‘RPR2’ (Randomized Projection,
Randomized Rounding) framework for rounding the solutions of semidefinite programming relaxations:

Definition 1.8 An RPR2 algorithm for Max-Cut is defined by a rounding function, r : R → [−1, 1]. Given
a graph G, the steps of the algorithm are as follows:

1. Use semidefinite programming to find an optimal embedding g : V → Sn−1 for the SDP (2).

2. Choose a random vector ~Z ∈ Rn according to the n-dimensional Gaussian distribution.

3. Output the (fractional) cut h : V → [−1, 1] defined by h(v) = r(g(v) · ~Z).

(Certain implementation details of the RPR2 method are discussed in Appendix C.)

All of the known lower bounds for GapSDP(c) fall into the RPR2 framework. For example, the GW
algorithm is RPR2 with rounding function r(x) = sgn(x); the random-assignment algorithm is RPR2 with
rounding function r(x) ≡ 0. Zwick’s algorithm [Zwi99] is not obviously RPR2, but it is shown to be so
by Feige and Langberg [FL06]. In that paper, the authors suggest using ‘s-linear’ rounding functions: i.e.,
functions of the form r(t) = t/s if −s ≤ t ≤ s, r(t) = 1 if t ≥ s, r(t) = −1 if t ≤ −s. Charikar and Wirth’s
analysis [CW04] of GapSDP(c) near c = 1

2 indeed uses RPR2 with s-linear rounding functions.

We conclude the discussion of RPR2 algorithms by mentioning that, given an input graph G, it can be
advantageous to try several different rounding functions r. It is well known (as discussed in Appendix C)
that given a collection R of rounding functions, one can achieve the performance of the best of them with
running time slowdown only O(|R| log |R|). Indeed, Feige and Langberg even suggested the idea of trying
‘all’ possible rounding functions, up to some ǫ-discretization. Whether or not this achieves the performance
of the ‘optimal’ rounding function up to an additive ǫ is a tricky issue which we discuss further in Section 3.2.
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1.5 Long Code tests

‘Long Code tests’ are certain kinds of Property Testing algorithms, operating on boolean functions f :
{−1, 1}n → {−1, 1}. Specifically, they test for the property of being a ‘Dictator’ function; i.e., one of the
n functions defined by f(x) = xi, for i ∈ [n]. Long Code tests were first studied by Bellare, Goldreich,
and Sudan [BGS98] for the purposes of proving inapproximability results; the connection was significantly
extended by H̊astad [H̊as01]. The general idea is that to show an inapproximability result for the constraint
satisfaction problem with constraints of type Φ, one tries to construct a Long Code test whose acceptance
predicate is of type Φ. In particular, for Max-Cut one needs a test making only 2 queries and testing
f(x) 6= f(y). The rule of thumb is that giving a such a test with ‘completeness’ c and ‘soundness’ s may
allow one to derive a c vs. s inapproximability result. (We give concrete theorems along these lines later in
this section.) Thus it is natural to investigate, for each c, what the minimum achievable value of s is.

Let us briefly introduce some of the relevant definitions:

Definition 1.9 A 2-query, 6=-based Long Code test for functions f : {−1, 1}n → {−1, 1} is a randomized
procedure for choosing two strings x, y ∈ {−1, 1}n. We think of the test as querying f(x) and f(y), and
then accepting when f(x) 6= f(y), and rejecting otherwise.

Definition 1.10 The completeness of a Long Code test T for n-bit functions is

Completeness(T ) = min
i∈[n]

{Pr[T accepts χi]},

where χi : {−1, 1}n → {−1, 1} is the ith ‘Dictator’ function, χi(x) = xi.

As for ‘soundness’, Property Testing definitions would normally require a Long Code test to reject with
large probability any function ǫ-far from being a Dictator. However since our Long Code tests T only
make 2 queries, we could never achieve soundness smaller than Completeness(T ) − 2ǫ under this definition.
Fortunately, key applications of Long Code tests only require certain relaxed soundness conditions. A useful
such relaxation was introduced by Khot, Kindler, Mossel, and O’Donnell [KKMO07]. It only requires the
test to reject functions that have sufficiently small ‘low-degree influences’ — or, essentially equivalently,
functions that are sufficiently ‘Gaussianic’. We defer the formal explanation to Section 8; for now, suffice it
to say we make a definition along the following lines:

Definition 1.11 (informal) The soundness of a Long Code test T for functions f : {−1, 1}n → [−1, 1] is

Soundness(T ) = max{Pr[T accepts f ] : f is ‘Gaussianic’}.

In addition to the unspecified notion ‘Gaussianic’, the reader will notice that we have generalized to testing
functions whose range is [−1, 1] rather than {−1, 1}. The reason for doing this is that all the applications we
present require this generalized setting. The distinction is similar to the one between proper and fractional
cuts. Again, formal definitions appear in Section 8.

To emphasize the definitions of completeness and soundness, we will henceforth refer to our Long Code
tests as Dictator-vs.-Gaussianic tests. It is a natural question in Property Testing to ask how far apart
completeness and soundness can be for Dictator-vs.-Gaussianic tests. To formalize the question, we can
introduce the notion of the Dictator-vs.-Gaussianic gap curve:

Definition 1.12 (informal) We call the pair (c, s) a Dictator-vs.-Gaussianic gap if for all η > 0, for
sufficiently large n there is a Dictator-vs.-Gaussianic test T (n) for functions f : {−1, 1}n → [−1, 1] with
Completeness(T (n)) ≥ c and Soundness(T (n)) ≤ s + η. We define the Dictator-vs.-Gaussianic gap curve by

GapTest(c) = inf{s : (c, s) is a Dictator-vs.-Gaussianic gap}.

As mentioned, our interest in Dictator-vs.-Gaussianic tests comes from their application to algorithmic
hardness results. We give three such applications here. The first is the original application, implicitly proved
in [KKMO07]:
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Theorem 1.13 ([KKMO07]) Suppose (c, s) is a Dictator-vs.-Gaussianic gap, and η > 0. Then the Unique
Games Conjecture (UGC) implies that it is NP-hard to distinguish Max-Cut instances with value at least
c − η from instances with value at most s + η. I.e., assuming the UGC and P 6= NP we essentially have
ApxA(c) ≤ GapTest(c) for all efficient algorithms A and all c.

(The ‘essentially’ here refers to the fact that we really only have ApxA(c − η) ≤ GapTest(c) for all η > 0.
Ultimately we will show that GapTest is continuous, so this distinction is irrelevant.)

Combining the reduction used to prove Theorem 1.13 with an SDP integrality gap instance for the Unique
Games problem with several special properties, Khot and Vishnoi implicitly showed the following application:

Theorem 1.14 ([KV05]) If (c, s) is a Dictator-vs.-Gaussianic gap, then (c − η, s) is also an SDP gap for
all η > 0 — even for the SDP with triangle inequalities. I.e., essentially Gap△SDP(c) ≤ GapTest(c) for all c.

Finally, in Section 11 of this paper we show how to extend a result of Feige and Schechtman [FS02],
itself based on work of Karloff [Kar99], Alon and Sudakov [AS00], and Alon, Sudakov, and Zwick [ASZ02],
as follows:

Theorem 1.15 Suppose (c, s) is a Dictator-vs.-Gaussianic gap. Fix any rounding function r, and let A
be the RPR2 algorithm which solves the SDP with triangle inequalities and randomly rounds using h(v) =

r(g(v) · ~Z). Then ApxA(c) ≤ s. Further, this holds even if A is not required to choose ~Z to be a random

n-dimensional Gaussian, but rather is allowed to deterministically select the best ~Z satisfying ‖~Z‖2 = Θ(
√

n).

2 Our results, and prior work

2.1 Statement of main results

Our first result, from which the remaining results derive, is a complete determination of the SDP gap curve.
We introduce an explicit function S : [ 12 , 1] → [ 12 , 1], and show that GapSDP(c) = S(c) for all c. In par-
ticular, the proof of the lower bound, GapSDP(c) ≥ S(c), is achieved via a poly(n)-time RPR2 algorithm.
Thus we have an efficient algorithm for Max-Cut which has optimal SDP-approximation curve. The fact
that an RPR2 algorithm achieves the SDP gap confirms a conjecture suggested by Feige and Langberg [FL06].

Next, we show how to transform the SDP results into Dictator-vs.-Gaussianic testing results. Specifically,
we are able to show that the Dictator-vs.-Gaussianic gap curve is identical to the SDP gap curve; i.e,
GapTest(c) = S(c) for all c ∈ [ 12 , 1]. This result gives us optimal Dictator-vs.-Gaussianic tests. Substituting
these into Theorems 1.14, 1.15, and 1.13 yields the following conclusions:

• The SDP gap curve with triangle inequalities, Gap△SDP, is also identical to the curve S.

• If A is any RPR2 algorithm then ApxA(c) ≤ S(c) for all c, even assuming both of the following:

(i) A uses the SDP with triangle inequalities; (ii) A is not required to choose ~Z to be a random n-

dimensional Gaussian, but rather is allowed to deterministically select the best ~Z satisfying ‖~Z‖ =
Θ(

√
n). (Contrast this with the fact that in graphs exhibiting the c vs. S(c) SDP gap, our RPR2

algorithm actually finds an essentially optimal cut.)

• If A is any polynomial-time algorithm then ApxA(c) ≤ S(c) for all c, assuming P 6= NP and the UGC.

2.2 The critical curve, S

At this point the reader might wish to know the identity of this critical curve S(c). Unfortunately, there is
no ‘nice’ formula for it. Rather, it is defined as follows:

S(c) = inf
(1, ρ0)-distributions P

with mean 1 − 2c

sup
r:R→[−1,1]

increasing, odd

valGP
(r). (3)

5



Not all of the expressions above have even been defined yet — in particular ‘(1, ρ0)-distribution’ (a certain
simple kind of probability distribution on [−1, 1]) and ‘GP ’ (a certain infinite graph). Further, on the face
of it this definition does not look very ‘explicit’, especially since the inf and sup are both over infinite sets.
Nevertheless, in Section 6 we prove the following:

Theorem 2.1 There is an algorithm that, on input c ∈ [ 12 , 1] and ǫ > 0, runs in time poly(1/ǫ) and computes
S(c) to within ±ǫ.

We believe this justifies our claim that S is ‘explicitly given’. A brief discussion of this point appears in
Section 7.1.

In fact, as we will describe in the next section, significant portions of S(c) can be described or estimated
more simply. For c ≥ .844, S(c) agrees with the Goemans-Williamson SDP-approximation curve, 1

π arccos(1−
2c). For c = 1

2 + ǫ, S(c) ≈ 1
2 + 1

2 · ǫ/ ln(1/ǫ) up to lower-order terms (this is proved in Appendix D, tightening
the asymptotics of [CW04, KO06]). A plot of S(c) versus c appears in Appendix ??.

2.3 Prior work

Surveying the entirety of the previous work on approximation algorithms, SDP gaps, and hardness results
for Max-Cut would take several pages, so we restrict ourselves to briefly summarizing the best results known
prior to this work.

SDP and Long Code testing gaps. Combining prior work of many authors yields the following:

1. For c ≥ .844: GapSDP(c) = Gap△SDP(c) = GapTest(c) = 1
π arccos(1 − 2c).

2. For c = 1
2 + ǫ: GapSDP(c), Gap△SDP(c), and GapTest(c) all have asymptotics 1

2 + Θ(ǫ/ ln(1/ǫ)).

As can be seen, this already pins down substantial portions of these curves fairly well. In the next section
we will argue the merits of pinning them down precisely.

The lower bound GapSDP(c) ≥ 1
π arccos(1 − 2c) for c ≥ .844 is, as mentioned, due to Goemans and

Williamson [GW95], using RPR2 with the rounding function sgn. The matching upper bound is due to
Feige and Schechtman [FS02], using infinite graphs with vertex set Sn−1 and edge set connecting all vectors
with inner product at most 1 − 2c. The lower bound GapSDP(c) ≥ 1

2 + Ω(ǫ/ ln(1/ǫ)) is due to Charikar and
Wirth [CW04], using RPR2 with s-linear rounding functions, as suggested by Feige and Langberg [FL06].
The upper bound GapSDP(c) ≤ 1

2 + O(ǫ/ ln(1/ǫ)) is due to Khot and O’Donnell [KO06], using mixtures
of correlated Gaussian graphs (described in Section 3.2). As mentioned, we tighten the asymptotics of the
previous two results in Appendix D. Finally, Feige and Langberg showed some additional numerical lower
bounds for GapSDP(c), via RPR2 with s-linear rounding functions; e.g., GapSDP(.6) ≥ .5477.

The upper bound GapTest(c) ≤ 1
π arccos(1 − 2c) actually holds for all c ∈ [ 12 , 1]; this was conjectured by

Khot, Kindler, Mossel, and O’Donnell [KKMO07] and proved by Mossel, O’Donnell, and Oleszkiewicz [MOO05].
The ‘noise sensitivity’ test from [KKMO07] involves choosing x ∈ {−1, 1}n uniformly at random and choos-
ing y by flipping each coordinate of x with probability c. (As we will discuss in Section 11, this construction
is quite similar to one introduced by Karloff [Kar99] and analyzed further in [AS00, ASZ02].) The upper
bound GapTest(

1
2 +ǫ) ≤ 1

2 +O(ǫ/ ln(1/ǫ)) was proved by Khot and O’Donnell [KO06], by mixing together two
tests of the type in [KKMO07]. The remaining parts of the above statements implicitly follow from Khot and
Vishnoi [KV05], specifically, from Theorem 1.14’s statement that GapTest(c) ≥ Gap△SDP(c) ≥ GapSDP(c).
Interestingly, although proving lower bounds for GapTest(c) is a very natural problem from the point of view
of Property Testing, it doesn’t seem to have been explicitly been considered in the literature. Indeed, using
the Khot-Vishnoi result is a very circuitous way to prove Long Code testing lower bounds. We discuss this
point further in Section 10.
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Algorithmic hardness. Early results on algorithmic hardness involved showing upper bounds on the
approximation curve of specific algorithms. In particular, work of Karloff [Kar99], Alon and Sudakov [AS00],
and Alon, Sudakov, and Zwick [ASZ02] showed that for the GW algorithm, ApxGW (c) ≤ 1

π arccos(1 − 2c),

where ApxGW (c) denotes the expected performance, over ~Z, of the GW algorithm. Further, this result
holds even if one adds all ‘valid’ constraints to the SDP. As we describe in Section 11, these results can
be seen as very weak forms of Dictator-vs.-Gaussianic tests. Feige and Schechtman [FS02] extended these
results in the manner of Theorem 1.15, to the case where the algorithm can pick any halfspace cut (although
only under the triangle inequalities, not any valid constraints). Assuming the Unique Games Conjecture,
[KKMO07]’s Theorem 1.13 implies NP-hardness of achieving approximation curve exceeding GapTest(c).
The best unconditional NP-hardness result is much weaker: H̊astad [H̊as01] together with Trevisan, Sorkin,
Sudan, and Williamson [TSSW00] showed that achieving Apx(17

21 ) > 16
21 is NP-hard; it is easy to translate

this into hardness of Apx(1
2 + ǫ) > 1

2 + 11
13ǫ for ǫ ≤ 13

42 and hardness of Apx(1 − ǫ) > 1 − 5
4ǫ for ǫ ≤ 4

21 .

2.4 Motivation and discussion

In this section we discuss the motivation and merits of pinning down the approximability of Max-Cut pre-
cisely for all values of c.

First, Max-Cut is a fundamental algorithmic problem; indeed, it is arguably the simplest NP optimiza-
tion problem. For the reasons discussed in Section 1.2, we feel that understanding its approximability for
the entire range of c is important. We are hardly alone in this regard; for example, in 2001 Feige and
Langberg [FL06] wrote that they were “trying to extend the techniques of [FS02] in order to prove [that
RPR2 algorithms can match the SDP gap curve for values of c < .844]”. Besides the algorithmic work on
the Max-Cut curve we’ve already described [GW95, Zwi99, FL06, CW04], there has also been a great deal of
work recently on the very related problem of the Max-2Lin [BBC04, HV04, AN06, AMMN06, ABH+05]. For
example the Grothendieck/Quadratic Programming results of [AN06, AMMN06, CW04] are nothing more
than analysis of the Max-2Lin approximability curve at 1

2 + ǫ — with the underlying graph structure fixed to
be bipartite, in the Grothendieck case. Further, analyzing the Max-Cut/Max-2Lin approximability curves
at 1 − ǫ for subconstant ǫ is very strongly related to analyzing Sparsest-Cut approximability.

Further, the fundamental nature of the Max-Cut problem makes our inability to understand its compu-
tational complexity all the more galling. Recall that every value of c for which we don’t know the largest
efficiently achievable value of ApxA(c) yields a basic, natural problem not known to be in P and not known
to be NP-hard: e.g., “Given a graph with a cut of size 60%, find a cut of size 55%”. Without the Unique
Games Conjecture, it seems we have no idea how to prove sharp inapproximability results, although in this
paper we did the best we could by ruling out RPR2 algorithms from achieving Apx(c) > S(c). Assuming
the Unique Games Conjecture, though, the present work completely closes the Max-Cut problem. Even if
one does not believe the UGC, there are several takeaways: First, we’ve shown that the UGC cannot be
disproved by giving good Max-Cut SDP rounding algorithms, for any value of c. Second, our work gives an
improved approximation algorithm inspired by UGC/Dictator-vs.-Gaussianic test considerations.

Next, the present work develops a framework for studying SDP gaps, algorithms, and Dictator-vs.-
Gaussianic tests, which we believe explains away some of the seeming coincidences in previous work. For
example, in the next section we explain why the worst SDP gaps for Max-Cut can always be based on
symmetric infinite graphs on the surface of the sphere, as they are in [FS02]; we further explain how one nat-
urally derives the mixtures of correlated Gaussian graphs used for SDP gaps in [KO06]. Next, we essentially
explain why the SDP gap curve and the Dictator-vs.-Gaussianic curve are identical: why SDP gaps trans-
late into Dictator-vs.-Gaussianic tests and why RPR2 algorithms can be viewed as Dictator-vs.-Gaussianic
testing lower bounds. Finally, we explain the connection between Dictator-vs.-Gaussianic tests and the con-
structions of Karloff, Alon-Sudakov, and Alon-Sudakov-Zwick [Kar99, AS00, ASZ02], showing that these
constructions can be viewed as Dictator-vs.-Gaussianic tests with extremely weak soundness guarantees.

Finally, we hope that the methods developed in this paper — specifically, the use of Hermite analysis,
von Neumann’s Minimax Theorem, Borell’s rearrangement inequality [Bor85], and the Karush-Kuhn-Tucker
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conditions — can be used to make progress on understanding SDP gaps and approximability of other
fundamental problems. Specifically, we believe our methods should be useful for attacking Max-2Sat and
other 2-CSPs (some indication of this is given already in the recent work of Austrin [Aus07a, Aus07b]),
3-CSPs, and perhaps even for determining the Grothendieck constant [Gro53].

3 Proof ideas

In this section we describe the ideas and intuition underlying the determination of GapSDP. By the end of
the section we will also have defined all the terms necessary for the definition (3) of the curve S(c).

3.1 Embedded graphs

The first idea is to slightly shift the way one looks at SDP gaps for Max-Cut. Usually one thinks of first
finding a graph G, then showing Sdp(G) is large and Opt(G) is small. But suppose one determines that
Sdp(G) is large for some graph G; then one may as well identify G with its optimal SDP embedding on the
sphere.

Definition 3.1 An (n-dimensional) embedded graph G is one whose vertex set V is a subset of Sn−1.
For embedded graphs, we explicitly allow self-loops.4 The ρ-distribution of the embedded graph, denoted
P = P (G), is the discrete probability distribution on [−1, 1] given by the distribution of u·v when (u, v) ∼ E.
We define the spread of G (which we also call the spread of P ) to be

Spread(G) = Spread(P ) = E
ρ∼P

[ 12 − 1
2ρ] ∈ [0, 1].

Thinking about embedded graphs leads to some important observations. The first is that we can
symmetrize any SDP gap instance. Specifically, let G be an embedded graph with Spread(G) = c and
Opt(G) ≤ s. Suppose O is any rotation of space; then it is clear that the rotated embedded graph OG also
satisfies Spread(OG) = c and Opt(OG) ≤ s, and is thus an equally good gap instance. Further, if one takes
a mixture H = λG + (1 − λ)G′ of any two embedded graphs G and G′ with Spread(G) = Spread(G′) = c
and Opt(G), Opt(G′) ≤ s, then Spread(H) is again c, and also Opt(H) ≤ s by a simple averaging argument.
Hence we can average an SDP gap instance G over all rotations of space, and preserve the gap. When we
do this we get an ‘infinite embedded graph’ whose vertex set is all of Sn−1 and whose edge distribution is
‘symmetric’, in the sense that the density on the pair (u, v) depends only on the inner product u · v. In fact,
the ‘ρ-distribution’ of the symmetrized graph is precisely the original ρ-distribution P (G).

Definition 3.2 Let P denote any discrete probability distribution on [−1, 1]. We define the d-dimensional

symmetric embedded graph S(d)
P to be the embedded graph with vertex set Sd−1 and edge distribution over

Sd−1 × Sd−1 given by drawing a random pair of unit vectors with inner product ρ, where ρ itself is drawn
from P .

Thus we have reduced the search for graphs with large SDP gap to the search for ρ-distributions P such

that Spread(P ) = c (i.e., the mean of P is 1 − 2c) but Opt(S(d)
P ) is small. Indeed, Feige and Schechtman’s

SDP gap instance [FS02] is precisely of this form; roughly speaking, they take P to be the distribution with
all of its mass concentrated on 1 − 2c.

Unfortunately, analyzing Opt(S(d)
P ) is not so easy; we will come back to the problem later. For now let us

move to the algorithmic side of things. We have seen that we can reduce the problem of finding large SDP
gaps to studying symmetric embedded graphs. Can we similarly reduce the problem of finding large cuts in
arbitrary graphs to studying symmetric embedded graphs? The observation here is that, in some sense, this
is just what the RPR2 algorithm is doing. Consider the steps of the algorithm from Definition 1.8. RPR2

algorithms do not use the fact that the SDP solution they operate on is optimal; hence we can mentally
dispense with Step 1 (semidefinite programming) and view RPR2 algorithms as simply taking an embedded

4Although we disallow self-loops in Max-Cut inputs, we allow them in embedded graphs. One reason for this is that there
is no guarantee that every optimal SDP embedding g : V → Sn−1 is injective.
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graph G as input and trying to find a large cut in it. Next, recalling that the d-dimensional Gaussian
distribution is spherically symmetric, we see that the RPR2 algorithm can, at a rough level, be thought of
as: (i) implicitly constructing the symmetrized version of G; and then, (ii) outputting the ‘one-dimensional’
fractional cut r. We will make this idea more precise in the next section. For now, we note that if RPR2

algorithms are to achieve the SDP gap, it must in some sense be the case that optimal cuts in symmetric

embedded graphs S(d)
P are ‘one-dimensional’. The key to our determination of GapSDP(c) is showing that

this statement is sufficiently true.

3.2 Gaussian mixture graphs

By now our analysis is heavily dependent on understanding Opt(S(d)
P ), where P is a distribution with mean

1 − 2c. I.e., we want to determine

sup
h:Sd−1→[−1,1]

E
ρ∼P

E
(u,v)∼Sd−1×Sd−1

with 〈u, v〉 = ρ

[ 12 − 1
2h(u) · h(v)].

This is somewhat complicated by the fact the distribution on vertices — i.e., the uniform distribution on the
surface of the sphere — is not a product distribution, and depends in a nontrivial way on the dimension d.
It is possible to at once avoid this difficulty and hew much more closely to the RPR2 framework by replacing
the uniform distribution on Sd−1 by the d-dimensional Gaussian distribution.

Definition 3.3 Let P denote any discrete probability distribution on [−1, 1]. We define the d-dimensional

Gaussian mixture graph G(d)
P to be the probability measure on R

d×R
d given by drawing a pair of ‘ρ-correlated

d-dimensional Gaussians’, where ρ itself is drawn from P . In the case d = 1, we simply write GP . By ρ-
correlated d-dimensional Gaussians we mean a pair (~x, ~y), where ~x is a standard d-dimensional Gaussian

and ~y ∼ ρ~x +
√

1 − ρ2~Z, with ~Z being another d-dimensional Gaussian independent of ~x. Note that this
distribution is symmetric in ~x and ~y.

Gaussian mixture graphs, with P concentrated on 1 and − 1
2 , were introduced in [KO06] to show SDP gaps

for c near 1
2 .

Regarding the effect of switching from S(d)
P to G(d)

P , recall that the Gaussian distribution in a high

dimension d is very similar to the uniform distribution on the sphere of radius
√

d. Using this fact, it is not

too hard to show that when Spread(P ) = c we have Sdp(G(d)
P ) ≥ c − od(1), via the embedding x 7→ x/‖x‖.

Thus we can equally well search for SDP gaps based on Gaussian mixture graphs. As for algorithms, the
RPR2 framework now has a very simple interpretation: Given an embedded graph G with ρ-distribution P ,
the RPR2 algorithm implicitly converts it to GP and cuts it with the rounding function r. More specifically,
the expected value of the cut produced by RPR2 on graph G is:

AlgRPR2(G) = E
~Z

[
E

(u,v)∼E
[12 − 1

2r(u · ~Z)r(v · ~Z)]

]

= E
ρ∼P (G)

E
(x,y) ρ-corr’d

1-dim Gaussians

[ 12 − 1
2r(x)r(y)] = valG(1)

P

(r). (4)

The reader can now see that given G, an RPR2 algorithm should strive to take r to be the optimal cut

r : R → [−1, 1] for GP (i.e., G(1)
P ). This leads us to two questions:

1. Can we algorithmically determine an r which gives a near-optimal cut for GP ?

2. Whether or not we can, would this be enough to match the SDP gap? In other words, is it true that
for all ρ-distributions P with spread c ∈ [ 12 , 1],

Opt(GP ) ≥ inf
P ′ with mean 1 − 2c

Opt(G(d)
P ′ )? (5)

Here the left-hand side represents what we hope to achieve algorithmically with RPR2, and the right-hand
side represents the upper-bound on GapSDP(c) we can achieve using Gaussian mixture graphs.

9



Question 2 above is the heart of the matter; we describe its affirmative answer in the next section. For
now, let us discuss Question 1. Although analytically we don’t know the optimal cut for GP , there is a
feeling that one could algorithmically find an r coming within ǫ of the optimum by using the Feige-Langberg
idea of trying ‘all’ possible r, suitably discretized. Indeed, Feige and Langberg wrote that if one only
considers ‘well-behaved’ rounding functions r (suggesting piecewise differentiable functions with bounded
derivatives) then one can construct a collection of 2poly(1/ǫ) many discretized rounding functions such that
one of them achieves a cut in GP that is within ǫ of that achieved by the best well-behaved rounding function.

Unfortunately, there is no guarantee that the optimal cut for GP is is ‘well-behaved’. Even if it were
guaranteed to be piecewise differentiable, we have no way of proving that its derivatives don’t depend on ‘n’;
i.e., the number of points in P ’s support. Thus we do not know of any way of efficiently (in n) discretizing
the search space for the optimal rounding function of a given GP . But luckily, in the next section we will
see that for the ‘worst’ P , there is a relatively well-behaved optimal cut r; specifically, there is an increasing
optimal cut. The fact that increasing functions are O(1/ǫ)-Lipschitz except on a set of measure ǫ means it
will be sufficient to discretize the set of rounding functions r in a way depending only on ǫ and not on n.
Indeed, our actual algorithm for finding cuts of size at least S(c) − ǫ in graphs G with Sdp(G) ≥ c is:

Algorithm 3.4 Perform the RPR2 algorithm, trying out all 2Õ(1/ǫ2) possible ‘ǫ-discretized’ rounding func-
tions r.

The definition of ‘ǫ-discretized’ is given in Section 5. A discussion of the running time, poly(|V |) · 2Õ(1/ǫ2),
appears in Section 7.2.

3.3 Hermite analysis, Minimax, and Borell’s Gaussian rearrangement

We now come to the main conceptual part of the determination of GapSDP, namely proving (5). Suppose

we could show that for every P ′, there was an optimal cut f for G(d)
P ′ that was ‘one-dimensional’ — i.e., of

the form f(~x) = r(~u · ~x), where r : R → [−1, 1] and ~u is any unit vector. It’s easy to see that the value of f

in G(d)
P ′ is just valG

P ′
(r); hence we would show Opt(G(d)

P ′ ) = Opt(GP ′), proving (5). Unfortunately, we do not

know whether this is the case. What we will show, though, is that when P ′ is the ‘worst’ distribution, G(d)
P ′

has an optimal one-dimensional (and increasing, as promised) cut.

To start, we take advantage of our switch to Gaussian graphs; this allows us to express the value of cuts
f : Rd → [−1, 1] using ‘Hermite analysis’ (akin to Fourier analysis over {−1, 1}n). Specifically, given a cut
f one has

valG(d)
P

(f) = 1
2 − 1

2 E
ρ∼P


∑

S∈Nd

f̂(S)2ρ|S|


 , (6)

where each f̂(S) ∈ R is a ‘Hermite coefficient’, and |S| denotes
∑d

i=1 Si. Using this formula one can easily
show that any optimal cut f may as well be odd; i.e., satisfy f(−~x) = −f(~x). Further, when f is odd, the
sum in (6) can be restricted to only be over S’s such that |S| is odd.

We now make the following observation: For fixed odd f , the expression Sf (ρ) :=
∑

|S| odd f̂(S)2ρ|S| is a

polynomial in ρ (power series, actually) with nonnegative coefficients and only odd powers. This means that
it is convex for ρ ≥ 0 and concave for ρ ≤ 0. Now suppose we keep f fixed but vary the ρ-distribution P ,
subject only to it having mean 1− 2c. Using formula (6), one sees that we can make valG(d)

P

(f) as low as the

value of the convex lower envelope of 1
2 − 1

2Sf (ρ) at 1 − 2c. Further, by the convexity/concavity described,
one achieves this by concentrating all of P ’s probability mass on at most two points: some negative number
ρ0, and possibly also 1.

Definition 3.5 We call a discrete probability distribution P on [−1, 1] a (1, ρ0)-distribution if P puts positive
probability on some −1 ≤ ρ0 ≤ 0, nonnegative probability on 1, and zero probability on all other values in
[−1, 1].5

5At this point we have defined all of the terms necessary for the definition (3) of S(c).
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These considerations suggest that the Gaussian mixture graphs with lowest Max-Cut are those based on
(1, ρ0)-distributions. This doesn’t constitute a proof, though, because we fixed the cut and the graph in the
wrong order: we are supposed to fix the distribution P first and then choose the optimal cut. Ultimately,
though, we prove that (1, ρ0)-distributions are the worst case for Gaussian mixture graphs by using the von
Neumann Minimax Theorem: we can reverse the order of fixing the distribution and the cut if we allow the
‘cut Player’ to choose a distribution on cuts. Fortunately, the convex combination of Sf (ρ) polynomials has
the same convexity/concavity properties as a single one, so the previous argument goes through. Unfortu-
nately, one also has to overcome some rather severe discretization/compactness complications to use the von
Neumann Theorem in this infinitary setting.

At this point we essentially have that the Gaussian mixture graphs with smallest Max-Cut are those
based on (1, ρ0)-distributions. Finally, we are able to deduce that in such graphs there are optimal, one-
dimensional, increasing cuts through the use of Borell’s rearrangement inequality for Gaussian space [Bor85].
Borell’s theorem implies that for ρ ∈ [0, 1], the quantity Sf (ρ) can only increase if one ‘rearranges’ f ’s values

into an increasing, one-dimensional function. If G = G(d)
P is a Gaussian mixture graph with P a (1, ρ0)-

distribution, then formula (6) tells us that valG(f) is (up to an additive 1
2 ) a negative linear combination

of Sf (1) and Sf (ρ0). It turns out that Sf (1) is just E[f2], which doesn’t change under rearrangement, and
when f is odd Sf (ρ0) = −Sf(−ρ0); hence Borell implies that this quantity decreases under rearrangement.
This proves that indeed there is a one-dimensional and increasing optimal cut.

Thus we establish that (5) holds and that the right-hand side in that inequality is precisely S(c).

3.4 The remaining proofs

As for the remaining proofs in the paper: the construction of optimal Dictator-vs.-Gaussianic tests from
Gaussian mixture graphs mimics the proof of the Majority Is Stablest theorem using the ‘Invariance Principle’
from [MOO05]; the poly(1/ǫ)-time algorithm for computing S(c) within ǫ, promised in Theorem 2.1, involves
combining the Karush-Kuhn-Tucker conditions with Borell’s theorem; and, the remaining work involves
careful discretization arguments.
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4 GapSDP(c) ≤ S(c): Hermite analysis and Borell’s rearrangement

In this section we prove GapSDP(c) ≤ S(c); i.e., we show that for each c ∈ [ 12 , 1] and η > 0, there exists a
graph G exhibiting a large SDP gap: Sdp(G) ≥ c and Opt(G) ≤ S(c) + η. We remind the reader here of the
definition of S(c):

S(c) = inf
(1, ρ0)-distributions P

with mean 1 − 2c

sup
r:R→[−1,1]

increasing, odd

valGP
(r).

4.1 SDP gaps via Gaussian mixture graphs

As described in Sections 3.2 and 3.3, the graphs we use to exhibit SDP gaps will be high-dimensional Gaussian
mixture graphs based on (1, ρ0)-distributions. Since these are infinite graphs, we will need to extend a number
of our basic definitions, including ‘Sdp(G)’ and ‘Opt(G)’. The reader may object that these will not proper
SDP gap examples because the graphs are infinite and also have self-loops (one might even object that the
graphs are weighted). However in Appendix B we show that these issues can be circumvented:

Proposition 4.1 Suppose G = G(d)
P is a Gaussian mixture graph with Sdp(G) ≥ c and Opt(G) ≤ s.

Then for any ǫ > 0, there is a finite, self-loopless, unweighted graph G′ (with n = (1/ǫ)O(d) vertices)
with Sdp(G′) ≥ c − ǫ and Opt(G′) ≤ s + ǫ.

The proof of this proposition essentially only uses straightforward, already-known ideas [FS02, ABH+05,
KO06]. The reader should also note that arbitrarily small losses in c are also immaterial, since we can show
(essentially a priori) that GapSDP(c) is continuous:

Proposition 4.2 The function GapSDP is continuous on [ 12 , 1], and strictly increasing from 1
2 to 1.

The proof of this proposition is in Appendix A.

Extending the basic Max-Cut definitions to infinite graphs is quite straightforward; see [KO06]. Here we
will just treat the special case of Gaussian mixture graphs, which require a little extra care due to the fact

that they can have ‘self-loops’. To begin, we define cuts and value as before: A (fractional) cut for G(d)
P is

any measurable function f : Rd → [−1, 1], and

valG(d)
P

(f) = E
ρ∼P

E
(~x,~y) ρ-corr’d

d-dim. Gaussians

[12 − 1
2f(~x)f(~y)].

Since we allow ‘self-loops’ (i.e., P ’s with probability mass on 1), one should note that we can’t necessarily

find ‘proper’ cuts with value at least that of fractional cuts. We define Opt(G(d)
P ) to be the supremum of the

value over all fractional cuts.

Second, we define Sdp(G(d)
P ) essentially as in the SDP (2):

Sdp(G(d)
P ) = sup

g:Rd→Bd

E
(u,v)

[12 − 1
2g(u) · g(v)].

Some comments on this definition: Again, because of self-loops, it is not necessarily true that the optimal
embedding g maps into the surface of the ball Sd−1. As it happens, though, we are only concerned with

proving lower bounds on Sdp(G(d)
P ), and the embeddings we will use happen to map into Sd−1 anyway.

Second, the most natural definition of Sdp(G) for an ‘infinite graph’ G would allow embeddings into Bm and
have an additional sup over m ∈ N. But again, we will end up only considering embeddings Rd → Sd−1 for

G(d)
P , so we choose to make the above simpler definition.

Having made these definitions, the goal of this section is to prove the following two theorems:

Theorem 4.3 Let G = G(d)
P be a d-dimensional Gaussian mixture graph, and let c = Spread(P ) = Eρ∼P [ 12−

1
2ρ]. Then Sdp(G) ≥ c − O(

√
log d/d), via the embedding g : Rd → Sd−1 mapping x to x/‖x‖.6

6g(0) can be set arbitrarily.
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Theorem 4.4 Let G = G(d)
P be a d-dimensional Gaussian mixture graph for which P is a (1, ρ0)-distribution.

Then the optimal fractional cut for G is achieved by an increasing, odd, ‘one-dimensional’ cut; i.e., a function
s : Rd → [−1, 1] of the form s(x) = r(x1), where r : R → [−1, 1] is increasing and odd.

Theorem 4.3 is just a calculation; the heart of the matter is Theorem 4.4.

Before proving these theorems, let us see how together they imply GapSDP(c) ≤ S(c). Let P be a (1, ρ0)-

distribution achieving the inf in the definition of S(c) to within ǫ. Now consider G = G(d)
P . By Theorem 4.3,

Sdp(G) ≥ c − O(
√

log d/d). On the other hand, Theorem 4.4 implies that

Opt(G) ≤ sup
s:Rd→[−1,1]

one-dimensional, increasing, odd

valG(s).

But when s is one-dimensional, s(x) = r(x1), it’s immediate from the definitions that valG(s) = valG(1)
P

(r).

Thus we have Opt(G) ≤ S(c) + ǫ.

Having determined this Gaussian mixture graph G with Sdp(G) ≥ c − O(
√

log d/d) and Opt(G) ≤
S(c) + ǫ, we are essentially done. Using Proposition 4.1 we can convert G to a finite, self-loopless graph
G′ with Sdp(G′) ≥ c − O(

√
log d/d) and Opt(G) ≤ S(c) + 2ǫ; since ǫ > 0 is arbitrary this proves that

GapSDP(c − O(
√

log d/d)) ≤ S(c). Now by the continuity of GapSDP (Proposition 4.2), we conclude that
GapSDP(c) ≤ S(c).

4.2 Proof of Theorem 4.3

Theorem 4.3 Let G = G(d)
P be a d-dimensional Gaussian mixture graph, and let c = Spread(P ) =

Eρ∼P [ 12 − 1
2ρ]. Then Sdp(G) ≥ c − O(

√
log d/d), via the embedding g : Rd → Sd−1 mapping x to x/‖x‖.

Proof: As stated, let g(x) = x/‖x‖, which maps Rd onto Sd−1. (The value of g(0) may be set arbitrarily

since the probability that one of G(d)
P ’s ‘edges’ involves 0 is 0.) We need to show:

E
ρ∼P

E
(~x,~y) ρ-corr’d

d-dim, Gaussians

[
1

2
− 1

2

~x

‖~x‖ · ~y

‖~y‖

]
≥ E

ρ∼P
[ 12 − 1

2ρ] − O(
√

log d/d).

Clearly it suffices to prove the following:

for all ρ ∈ [−1, 1], E
(~x,~y) ρ-corr’d

d-dim, Gaussians

[
~x

‖~x‖ · ~y

‖~y‖

]
≤ ρ + O(

√
log d/d). (7)

This can be considered a standard probability result. Inside the expectation, in the numerator, we have

~x · ~y =
n∑

i=1

xiyi,

and the summands xiyi are i.i.d. real-valued random variables. The expectation of xiyi is ρ, and the variance
and third absolute moment are bounded by absolute constants. Thus the Berry-Esseen theorem implies that
x · y will be in the range ρd±O(

√
d log d) except with probability at most O(1/

√
d). In the denominator, it

is well-known (and a similar argument shows) that ‖~x‖ and ‖~y‖ will each be in the range
√

d ± O(
√

log d)
except with probability at most O(1/

√
d). Hence except with probability at most O(1/

√
d) we have that

~x

‖~x‖ · ~y

‖~y‖ ≤ ρd + O(
√

d log d)

(
√

d − O(
√

log d))(
√

d − O(
√

log d))
≤ ρ + O(

√
log d/d).

Since ~x
‖~x‖ ·

~y
‖~y‖ is bounded above by 1 always, we gain at most O(1/

√
d) in the exceptional cases, and conclude

that (7) indeed holds. 2
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4.3 Proof of Theorem 4.4

Before proceeding with the proof of Theorem 4.4 we record here the basic facts from ‘Hermite analysis’ we
will use throughout this work.

The space of functions L2(Rd) under the Gaussian distribution has a countable orthonormal basis given
by products of normalized Hermite polynomials. These products are indexed by vectors S ∈ Nd; we use the
notation |S| for

∑d
i=1 Si, which is also the degree of the product polynomial HS . We can express any such

function f via its ‘Hermite expansion’,

f(x) =
∑

S∈Nd

f̂(S)HS(x),

with convergence in L2-norm. We make frequent use of the following definition:

Definition 4.5 Given f ∈ L2(Rd) and ρ ∈ [−1, 1], the noise stability of f at ρ is

Sρ(f) = E
(~x,~y) ρ-corr’d

d-dim. Gaussians

[f(~x)f(~y)].

(Note that we reversed the notational position of ρ and g in Section 3.3 for clarity of exposition.) The
following basic facts about Hermite expansions are well known; see, e.g., [KO06] and the references therein.

Proposition 4.6

1. Sρ(f) =
∑

S∈Nd ρ|S|f̂(S)2.

2. S1(f) =
∑

S∈Nd f̂(S)2 = E[f2].

3. If f is an odd function (i.e., f(−x) = −f(x)), then f̂(S) = 0 unless |S| is odd.

4. If f is an odd function then S−ρ(f) = −Sρ(f).

We also immediately deduce the following fact:

Proposition 4.7 Assume f is an odd function. Then as a function of ρ, Sρ(f) is a power series with
nonnegative coefficients, odd powers of ρ only, and radius of convergence at least 1. In particular it is an
odd function of ρ, strictly increasing on [−1, 1], 0 at 0, concave on [−1, 0], and convex on [0, 1].

We now proceed with the proof:

Theorem 4.4 Let G = G(d)
P be a d-dimensional Gaussian mixture graph for which P is a (1, ρ0)-

distribution. Then the optimal fractional cut for G is achieved by an increasing, odd, ‘one-dimensional’
cut; i.e., a function s : Rd → [−1, 1] of the form s(x) = r(x1), where r : R → [−1, 1] is increasing and odd.

Proof: Suppose P has weight p on the point −1 ≤ ρ0 ≤ 0 and weight 1 − p on the point 1. Let (fi) be a
sequence of measurable fractional cuts, fi : Rd → [−1, 1], for which valG(fi) ր Opt(G). We have

valG(fi) = E
ρ∼P

E
(~x,~y) ρ-corr’d

d-dim. Gaussians

[ 12 − 1
2fi(~x)fi(~y)] = 1

2 − 1
2 E

ρ∼P
[Sρ(fi)],

and hence
1 − 2valG(fi) = (1 − p)S1(fi) + pSρ0(fi). (8)

Consider now replacing fi by fodd
i , the function Rd → [−1, 1] given by fodd

i (x) = (fi(x) − fi(−x))/2. It is

well known that f̂odd
i (S) equals f̂i(S) for odd |S| and is 0 for even |S|. Thus when we make this replacement,

S1(fi) =
∑

S f̂i(S)2 only decreases, and similarly Sρ0(fi) =
∑

S f̂i(S)2ρ
|S|
0 only decreases (using the fact that
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ρ0 ≤ 0). Thus (8) only decreases, and hence valG(fi) can only increase. Thus we may assume each fi is odd.

Given this assumption and using Proposition 4.6.4,

1 − 2valG(fi) = (8) = (1 − p)E[f2
i ] − pS−ρ0(fi). (9)

We now appeal to the Gaussian rearrangement inequality of Borell [Bor85], which implies that for any
function fi ∈ L2(Rd) and any nonnegative ρ,

Sρ(fi) ≤ Sρ(f
∗
i );

here f∗
i is the Gaussian rearrangement of fi, an increasing, one-dimensional function.7 Suppose then we

replace each fi by f∗
i . Since it holds that E[(f∗

i )2] = E[f2
i ], the first term in (9) does not change. But

−ρ0 is nonnegative, so we can use Borell’s result to conclude that the second term S−ρ0(fi) only increases.
Hence (9) only decreases under Gaussian rearrangement and thus valG(fi) only increases. Thus we may
replace all of the fi’s by their Gaussian rearrangements. Note that an odd function, when rearranged, is still
odd.

We now have a sequence of one-dimensional, odd, increasing functions ri : R → [−1, 1], with valG(ri) ր
Opt(G) (we abuse notation here slightly instead of writing valG(si) where si : Rd → [−1, 1] is defined by
si(x) = r(x1)). It is well known that using a Helly-type proof we can pass to a subsequence that converges
a.e. to an increasing, one-dimensional function r, which must also be odd. Dominated convergence then
implies that valG(r) = Opt(G). 2

5 GapSDP(c) ≥ S(c): Discretized RPR2 and Minimax

In this section we show that GapSDP(c) ≥ S(c). As described in Section 3.2, the idea will be to randomly find
cuts in a given embedded graph by trying the RPR2 algorithm with ‘all’ increasing, odd rounding functions.
Of course, we actually only try ‘all’ such functions up to some discretization. Specifically:

Definition 5.1 Given ǫ > 0, let Iǫ denote the partition of R \ {0} into intervals,

Iǫ = {±(−∞,−B],±(−B,−B + ǫ2],±(−B + ǫ2,−B + 2ǫ2], . . . ,±(−2ǫ2, ǫ2],±(−ǫ2, ǫ2)},

where B = B(ǫ) is the smallest integer multiple of ǫ2 exceeding
√

2 ln(1/ǫ). We say that a function r : R →
[−1, 1] is ǫ-discretized if the following hold:

• r is identically −1 on (−∞,−B], 0 at 0, and identically 1 on [B,∞).

• r’s values on the finite intervals in Iǫ are from the set ǫZ ∩ (−1, 1).

Note that the number of different ǫ-discretized r’s is 2Õ(1/ǫ2).

The main theorem we prove in this section is the following:

Theorem 5.2 There is a universal constant8 K < ∞ such that for all c ∈ [ 12 , 1],

inf
discrete dists P on [−1, 1]

with mean 1 − 2c

max
ǫ-discretized r:R→[−1,1]

increasing, odd

valGP
(r) (10)

is within ±Kǫ of
S(c) = inf

(1, ρ0)-distributions P
with mean 1 − 2c

sup
r:R→[−1,1]

increasing, odd

valGP
(r).

7Borell only proves this for fi Lipschitz and nonnegative, but both conditions are inessential; the first can be removed by
standard approximation arguments and the second simply by adding a sufficiently large constant. Alternatively, one can use
the alternate proof of Borell’s theorem due to Beckner [Bec92].

8In future results in this section, different K’s may have different values; however they never depend on c or ǫ.
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Aside from discretization issues, the main idea here is using Hermite analysis and the von Neumann Minimax
Theorem to show that ‘worst’ ρ-distribution is a (1, ρ0)-distribution. Incidentally, the discretization issues
are not just necessary because we want a finitary algorithm; in fact, discretization is also necessary for the
employ of the Minimax Theorem (which also requires a finitary setting, or at least some kind of continuity
and compactness).

Let us explain how we can use Theorem 5.2 algorithmically:

Theorem 5.3 Let G be any (discrete) embedded graph with spread c. If we run Algorithm 3.4 on G, trying
RPR2 on G with all possible increasing, odd ǫ-discretized rounding functions r, then at least one will achieve,
in expectation, a cut of value at least S(c) − O(ǫ). In particular, there exists a cut in G with value at least
S(c).

Proof: Given any r, the observation (4) from Section 3.2 implies that AlgRPR2(G) = valGP
(r). Thus the

suggested algorithm achieves at least (10), which by Theorem 5.2 is at least S(c) − Kǫ. As for the last
statement in the theorem, we’ve in particular shown that there exists some cut fǫ : V → [−1, 1] with value
at least S(c) − Kǫ. Taking ǫ → 0 we can get a sequence of cuts fi with lim sup valG(fi) ≥ S(c). But since
each cut is just a point in the compact, finite-dimensional cube [−1, 1]|V | and since valG(·) is continuous, we
can extract a limiting cut f with value at least S(c). 2

Corollary 5.4 For each c ∈ [ 12 , 1] it holds that GapSDP(c) ≥ S(c). Indeed, there is an algorithm which,

given any graph G with Sdp(G) ≥ c and any ǫ > 0, runs in time poly(|V |) ·2Õ(1/ǫ2) and with high probability
outputs a proper cut in G with value at least S(c) − ǫ.

Proof: Given G, we can solve the semidefinite program and find an isomorphic embedded graph G′ with
spread at least c. It is quite easy to decrease the spread of an embedded graph arbitrarily; for example,
map each x ∈ Sn−1 to (tx,

√
1 − t2) ∈ Sn for a t ∈ [0, 1] of one’s choosing. Thus we may assume that G′

has spread exactly c. Now the algorithm from Theorem 5.3 (which has the dominating running time stated)
is used to obtain a cut with value at least S(c) − O(ǫ). As ǫ > 0 can be arbitrarily small, this establishes
GapSDP(c) ≥ S(c).

Some minor algorithmic details are discussed more carefully in Appendix C. One we need to mention
explicitly is that our algorithm cannot solve the SDP exactly. Instead, we can use it to find an isomorphic
graph with spread exactly c − ǫ2. Then the algorithm will find a cut with value at least S(c − ǫ2) − O(ǫ).
Since we now know S = GapSDP, we can inspect the proof of Proposition 4.2 and conclude that S(c− ǫ2) ≥
S(c)−O(ǫ2) if c is bounded away from 1, and we can use the fact that GapSDP(1−δ) = 1−arccos(−1+2δ)/π =
1 − Θ(

√
δ) (from Goemans-Williamson) to conclude that S(c − ǫ2) ≥ S(c) − O(ǫ) if c is close to 1. 2

We discuss the issue of the running time’s dependence of ǫ in Section 7.2.

Combining Corollary 5.4 with the results of Section 4 completes the proof that

GapSDP(c) = S(c).

The remainder of this section is devoted to proving Theorem 5.2. The proof will proceed by transforming (10)
into S(c) in several steps. Each step will modify the range of either the inf or sup, while changing the overall
value by at most Kǫ.

5.1 Discretizing distributions

The first step involves showing we can discretize the distributions P appearing in (10). This will facilitate
our application of the Minimax Theorem.

Definition 5.5 Let c ∈ [ 12 , 1] be given and fixed. We say that a discrete distribution P on [−1, 1] is η-
discretized if its support is contained in ηZ ∪ {−1, 1}.
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Lemma 5.6 There is a universal constant K < ∞ such that for each c ∈ [ 12 , 1],

(10) = inf
discrete dists P on [−1, 1]

with mean 1 − 2c

max
ǫ-discretized r:R→[−1,1]

increasing, odd

valGP
(r)

is within ±Kǫ of
inf

ǫ7-discretized dists P
with mean 1 − 2c

max
ǫ-discretized r:R→[−1,1]

increasing, odd

valGP
(r). (11)

Proof: In fact, (11) is clearly at least (10), since the inf is over a smaller set. To show the difference is at
most O(ǫ) it suffices to show that every discrete distribution P on [−1, 1] with mean 1− 2c can be converted
into an ǫ7-discretized distribution P ′ with mean 1 − 2c such that

∣∣valGP
(r) − valG

P ′
(r)
∣∣ ≤ O(ǫ)

⇔

∣∣∣∣∣∣
E

ρ∼P
E

(x,y) ρ-corr’d
Gaussians

[r(x)r(y)] − E
ρ∼P ′

E
(x,y) ρ-corr’d

Gaussians

[r(x)r(y)]

∣∣∣∣∣∣
≤ O(ǫ) (12)

holds for for every ǫ-discretized, increasing, odd r.

The conversion of P to P ′ proceeds as follows. For each atom ρi of P , choose ρ′i ≤ ρ′′i to be the two values
in ǫ7Z ∪ {−1, 1} which straddle ρi as closely as possible. Write also ρi = λiρ

′
i + (1 − λi)ρ

′′
i , λi ∈ [0, 1]. We

form P ′ be replacing each atom ρi with probability mass pi in P with the pair of atoms ρ′i, ρ′′i with masses
piλi, pi(1 − λi), respectively. We have that P ′ is indeed an ǫ7-discretized distribution with the same mean
as P , namely 1 − 2c.

Note that |ρ′i − ρi|, |ρ′′i − ρi| ≤ ǫ7 always. It’s easy now to see that (12) will follow if we can show

∣∣∣∣∣∣
E

(x,y) ρ′

i
-corr’d

Gaussians

[r(x)r(y)] − E
(x,y) ρi-corr’d

Gaussians

[r(x)r(y)]

∣∣∣∣∣∣
≤ O(ǫ) (13)

holds for all ǫ-discretized increasing odd r, using only |ρ′i − ρi| ≤ ǫ7. Now the left side of (13) is equal to
|Sρ′

i
(r) − Sρi

(r)|, and r here is odd. Thus by the increasing/concavity/convexity properties of Sρ(r) given
in Proposition 4.7, we immediately see that the largest possible of |Sρ′

i
(r) − Sρi

(r)| value would occur when

ρ′i = 1 and ρi = 1 − ǫ7 (or equivalently, ρ′i = −1, ρi = −1 + ǫ7). Thus the proof of (13) and hence the
theorem follows Claim 5.7 below. 2

Claim 5.7 For every fixed ǫ-discretized, increasing, odd r,
∣∣∣∣∣∣

E
(x,y) 1-corr’d

Gaussians

[r(x)r(y)] − E
(x,y) (1 − ǫ7)-corr’d

Gaussians

[r(x)r(y)]

∣∣∣∣∣∣
≤ O(ǫ).

Proof: Write η = ǫ7. Since 1-correlated Gaussians are identical, we are comparing

E
(x,y) (1 − η)-corr’d

Gaussians

[r(x)r(y)]

with E[r(x)2]. Using the fact that r is ǫ-discretized, it suffices to show that when (x, y) is a pair of (1− η)-
correlated Gaussians, the probability that x and y land in different intervals from Iǫ (recall Definition 5.1)
is at most O(ǫ). We will first give up on the half-infinite intervals in Iǫ; using the fact that x and y are both
individually distributed as Gaussians, the probability that either of them ends up at least B ≥

√
2 ln(1/ǫ)

in absolute value is at most O(ǫ) anyway. Also, the probability that either lands on 0 is 0. It remains to
consider the intervals of the form I = [t, t + ǫ2), where 0 ≤ t < B (the case of negative intervals will be the
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same). The probability density function for x is nearly constant over the interval I; in particular, the ratio
between its values at t and t + ǫ2 is exp(ǫ2t + ǫ4/2), which is close to 1 (since t < B = O(

√
log(1/ǫ))). Even

just using that it is at most 2, we conclude that conditioned on x falling into I, the probability that x falls
into [t + 2ǫ3, t + ǫ2 − ǫ3] is at least 1 − O(3ǫ3/ǫ2) = 1 − O(ǫ).

By losing O(ǫ) probability, we will assume this happens. In this case, y is distributed as (1 − η)x +√
1 − (1 − η)2N(0, 1), where N(0, 1) is a standard normal. Note that (1− η)x = x− ηx ≥ x− ηB ≥ x− ǫ3,

since ηx ≤ ǫ7B ≪ ǫ3. Hence we have (1 − η)x ∈ [t + ǫ3, t + ǫ2 − ǫ3]. Given this, the conditional probability
that y won’t also fall into I is at most the probability that

√
1 − (1 − η)2N(0, 1) will exceed ǫ3 in absolute

value. But the standard deviation of this normal is O(
√

η) = O(ǫ3.5), so the probability it will exceed ǫ3 in
absolute value is exponentially small in ǫ, certainly smaller than O(ǫ). Thus we’ve shown that except with
probability at most O(ǫ), x and y will fall into the same interval from Iǫ, and this completes the proof of
the claim. 2

5.2 Minimax

The next step in the proof of Theorem 5.2 is to reinterpret the space of ǫ7-discretized distributions P with
mean 1 − 2c:

Fact 5.8 Any ǫ7-discretized distribution P with mean 1 − 2c can be expressed as a convex combination of
2-point ǫ7-discretized distributions each with mean 1 − 2c (and vice versa, clearly).

Here, by a ‘2-point distribution’ we mean one whose support is on at most two points (i.e., either one or two
points).

Proof: This fact can be considered standard. One proof sketch is the following: Given any ǫ7-discretized
P with mean 1 − 2c, pick any two points which straddle 1 − 2c and on which P has positive probability
mass (the two points may coincide in case P has mass on 1 − 2c). Such a pair must exist because P has
mean 1 − 2c. Take the mean-(1 − 2c) probability distribution over this pair and ‘remove it from P ’ (i.e.,
subtract and rescale) to the greatest extent possible. This will preserve the mean of P being 1 − 2c, and it
will also cause P to have support on (at least) one fewer point. Repeat this process until P is empty; the
pairs extracted give the required combination of 2-point distributions. 2

The next step is to reverse the inf/min and max in (11) using the von Neumann Minimax theorem.

Lemma 5.9

(11) = min
ǫ7-discretized dists P

with mean 1 − 2c

max
ǫ-discretized r:R→[−1,1]

increasing, odd

valGP
(r) (14)

= max
probability distributions R over

ǫ-discretized, increasing
odd r:R→[−1,1]

min
2-point ǫ7-discretized dists P

with mean 1 − 2c

E
r∼R

[valGP
(r)]. (15)

Proof: Note that (11), which has an inf, is not precisely the same as (14), which has a min. We will show
that (11) equals (15) using the Minimax theorem. Since a corollary of the Minimax theorem is that the inf’s
and sup’s involved are achieved, this will imply that (11) is equal to (14) and that we can write min and
max everywhere.

Consider a zero-sum game between a ‘Distribution Player’ and a ‘Function Player’. Acting simultane-
ously, the Distribution Player chooses a 2-point ǫ7-discretized probability distribution P with mean 1 − 2c,
and the Function Player chooses an increasing, odd, ǫ-discretized r : R → [−1, 1]. The payoff is valGP

(r) to
the Function Player from the Distribution Player.

Note that both players choose from a finite set of strategies; for the Distribution Player, this uses the
fact that for any pair of discretized points, there is at most one distribution with mean 1− 2c supported on
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this pair. Therefore we may apply the von Neumann Minimax theorem. We conclude that the game has
some value, which is achieved in both of the following scenarios: (a) the Function Player goes first and gets
to choose a mixed strategy, and then the Distribution Player goes second and gets to choose a pure strategy;
and, (b) the Distribution Player goes first and gets to choose a mixed strategy, and the Function Player
goes second and gets to choose a pure strategy. The value in (a) is clearly (15). As for the value in (b), we
claim it equals (14). This follows from Fact 5.8, along with the fact that if we identify a P with a convex
combination of 2-point distributions Q, then for any r,

E
Q∼P

[valGQ
(r)] = E

Q∼P
E

ρ∼Q
E

(x,y) ρ-corr’d
Gaussians

[ 12 − 1
2r(x)r(y)]

= E
ρ∼P

E
(x,y) ρ-corr’d

Gaussians

[ 12 − 1
2r(x)r(y)] = valGP

(r).

Hence (14) equals (15) and the proof is complete. 2

5.3 More Minimax; Convexity and Concavity

In the next step, we use the special properties of Sρ(r) for odd r given in Proposition 4.7, along with
further Minimax-based reasoning, to deduce that the ‘Distribution Player’ essentially may as well use a
(1, ρ0)-distribution. This idea was discussed in Section 3.3.

Definition 5.10 We say an ǫ7-discretized distribution P is almost-(1, ρ0) if it is the mixture of two (1, ρ0)-
distributions for which the two ρ0 values are neighboring (or equal) discretized values.

Lemma 5.11

(14) = min
ǫ7-discretized dists P

with mean 1 − 2c

max
ǫ-discretized r:R→[−1,1]

increasing, odd

valGP
(r)

= min
ǫ7-discretized almost-(1, ρ0)-dists P

with mean 1 − 2c

max
ǫ-discretized r:R→[−1,1]

increasing, odd

valGP
(r). (16)

Proof: Let P ∗ denote an ǫ7-discretized distribution with mean 1 − 2c achieving the min in (14); i.e.,
an optimal mixed strategy for the Distribution Player. Let R∗ denote a distribution over ǫ-discretized,
increasing, odd r achieving the max in (15); i.e., an optimal mixed strategy for the Function Player. The
Minimax Theorem further implies that P ∗ is an optimal strategy for the Distribution Player given that the
Function Player uses R∗. I.e., P ∗ is a minimizing choice for P in the following:

min
ǫ7-discretized dists P

with mean 1 − 2c

E
r∼R∗

[valGP
(r)].

Now

E
r∼R∗

[valGP
(r)] = E

r∼R∗

E
ρ∼P

E
(x,y) ρ-corr’d

Gaussians

[12 − 1
2r(x)r(y)] = 1

2 − 1
2 E

ρ∼P
E

r∼R∗

[Sρ(r)],

and so it follows that P ∗ is a maximizing choice for P in the following:

max
ǫ7-discretized dists P

with mean 1 − 2c

E
ρ∼P

E
r∼R∗

[Sρ(r)].

Suppose we fix a particular odd r. We now have the special properties of Sρ(r) as a function of ρ given
in Proposition 4.7. We also claim that the convexity and concavity of this function are essentially strict ;

i.e., Sρ(r) is not linear on any open interval. For otherwise, by analyticity, d2

dρ2 Sρ(r) would have to be 0

everywhere on [−1, 1], implying that r is equal (in the L2 sense) to a linear function. But an ǫ-discretized
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function cannot be linear, since it is constantly −1 on (−∞,−B] and constantly 1 on [B,∞).

Next, note that all of the properties mentioned in Proposition 4.7 are maintained under finite convex
combinations, in particular because first and second derivatives are linear. Hence if we define

q(ρ) = E
r∼R∗

[Sρ(r)],

we conclude that q(ρ) is also an odd function of ρ, strictly increasing on [−1, 1], 0 at 0, concave on [−1, 0],
convex on [0, 1], and not linear on any open interval. An illustration of what q may look like is given in
Figure 1.

Figure 1: Illustrative q(ρ), with least concave upper bound q(ρ).

Recall now that P ∗ is a maximizing choice for P in

max
ǫ7-discretized dists P

with mean 1 − 2c

E
ρ∼P

[q(ρ)].

To complete the proof, we will show that this forces P ∗ to be almost-(1, ρ0). Suppose we first disregard
the constraint of being ǫ7-discretized. Then it is easy to see that the maximum value in the above is equal
to q(1 − 2c), where q denotes the least concave upper bound of the function q. We have that q equals q
on some interval [−1, ρ0], where ρ0 < 0, and is a straight line joining q(ρ0) and q(1) on [ρ0, 1]. Further, in
this case there would be a unique maximizing P ∗: either the 1-point distribution concentrated on 1 − 2c, if
1 − 2c ≤ ρ0, or the (1, ρ0)-distribution with mean 1 − 2c, if 1 − 2c ≥ ρ0.

Now we reintroduce the constraint that P ∗ must be ǫ7-discretized. Let q̃ denote the piecewise linear
function which interpolates q’s values on the discretized points ǫ7Z. We now have that the maximum value
of Eρ∼P [q(ρ)] is equal to q̃(1 − 2c), where again q̃ is the least concave upper bound of q̃. The function q̃

is still odd, strictly increasing, concave on [−1, 0], and convex on [0, 1]; hence again the function q̃ equals
q̃ on some interval [−1, ρ0], where ρ0 < 0, and is a straight line joining q(ρ0) and q(1) on [ρ0, 1]. The only
difference now is that the point ρ0 is not necessarily unique; there may be two consecutive possibilities, if
the ‘secant’ at one of the possible ρ0’s is parallel to one of the line segments touching q(ρ0). (Note that there
cannot be more than two possible ρ0’s, since otherwise the graph of q would have three distinct collinear
points on [−1, 0] and would thus be linear on some open interval.) We conclude that any maximizing P ∗
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must have all of its support among 1 and the (at most) two discretized values that straddle ρ0; i.e., P ∗ must
be almost-(1, ρ0). 2

Finally, we can convert almost-(1, ρ0)-distributions to (1, ρ0)-distributions:

Lemma 5.12 There is a universal constant K < ∞ such that for each c ∈ [ 12 , 1],

(16) = min
ǫ7-discretized almost-(1, ρ0)-dists P

with mean 1 − 2c

max
ǫ-discretized r:R→[−1,1]

increasing, odd

valGP
(r)

is within ±Kǫ of
min

ǫ7-discretized (1, ρ0)-dists P
with mean 1 − 2c

max
ǫ-discretized r:R→[−1,1]

increasing, odd

valGP
(r). (17)

Proof: We sketch the proof, which uses the same ideas used in the proof of Lemma 5.6. We need to show
that any almost-(1, ρ0)-distribution P with mean 1− 2c can be converted into a (1, ρ0)-distribution P ′ with
mean 1 − 2c in a such a way that val(r) changes by at most O(ǫ) for every ǫ-discretized, increasing, odd
r. If P is already a (1, ρ0)-distribution then we are done. Otherwise, it has support on two neighboring
discretized values, say ρ′0 < ρ′′0 . Since the mean of P is 1 − 2c we must have ρ′0 < 1 − 2c. We now form
P ′ by pushing the weight λ that P gave to ρ′′0 onto ρ′0. This changes the mean by λ(ρ′′0 − ρ′0) ≤ ǫ7, but we
can compensate for this by shifting a small amount of weight (at most 2ǫ7) onto the support point 1. One
bounds the change in val(r) caused by these shifts by O(ǫ) + O(ǫ7) via |ρ′0 − ρ′′0 | ≤ ǫ7 and Claim 5.7. 2

5.4 Undiscretizing

We have now reached (17), which is very close to S(c); the only difference is that we have discretized
distributions and functions. We now ‘undiscretize’:

Lemma 5.13 There is a universal constant K < ∞ such that for each c ∈ [ 12 , 1],

(17) = min
ǫ7-discretized (1, ρ0)-dists P

with mean 1 − 2c

max
ǫ-discretized r:R→[−1,1]

increasing, odd

valGP
(r).

is within ±Kǫ of
inf

(1, ρ0)-distributions P
with mean 1 − 2c

sup
r:R→[−1,1]

increasing, odd

valGP
(r) = S(c). (18)

Proof: It is straightforward to see that the ideas from Lemma 5.6 can be used to replace the min in (17)
with the inf from (18), changing the value of (17) by at most O(ǫ). Thus we concentrate on discretizing the
functions. To that end, fix any (1, ρ0)-distribution P (in fact, our argument will hold for any distribution
on [−1, 1]). We will show that for any increasing, odd r : R → [−1, 1], there is an ǫ-discretized, increasing,
odd r′ : R → [−1, 1] with |valGP

(r) − valGP
(r′)| ≤ O(ǫ). This will complete the proof.

So let r be given. Define the increasing, odd, ǫ-discretized function r′ : R → [−1, 1] as follows: On each
finite interval I in Iǫ, we will take r′ to be identically equal to the value of r on the midpoint of I,9 rounded to
the nearest integer multiple of ǫ (or ±1, if one of these is closer). As necessary, we will also take r′ to be identi-
cally −1 on (−∞,−B] and identically 1 on [B,∞). We now argue that valGP

(r′) is within ±O(ǫ) of valGP
(r).

The idea is that |r − r′| ≤ ǫ except on a set of small Gaussian measure. We will give up on the two
half-infinite intervals and include them in the exceptional set. As for the finite intervals in Iǫ, since r is
increasing and bounded in [−1, 1], for at most 1/ǫ of these intervals can r increase by more than ǫ. On the
intervals where it increases by less than ǫ, we indeed have |r − r′| ≤ ǫ. Hence |r − r′| fails on at most 1/ǫ

9Since we are working in L2(R), technically here we mean the value of any increasing representative of r’s equivalence class.

23



intervals of width ǫ2, plus perhaps the two half-infinite intervals ±(−∞, B]. Note that the total Gaussian
measure of these intervals is at most O(ǫ). It is thus easy to see that

valGP
(r) = E

ρ∼P
E

(x,y) ρ-corr’d
Gaussians

[12 − 1
2r(x)r(y)]

is within ±O(ǫ) of valGP
(r′): The probability that either x or y falls into the ‘bad’ intervals is at most

2 · O(ǫ), since x and y are each individually distributed as standard Gaussians. In this case, the difference
in values is at most 1. Otherwise, we have that |r(x) − r′(x)|, |r(y) − r′(y)| ≤ ǫ, and then the difference in
values is at most O(ǫ). 2

Combining all of the Lemmas 5.6, 5.9, 5.11, 5.12, 5.13, we have proved Theorem 5.2.

We end with the following observation:

Corollary 5.14 Each sup in the definition of S(c), as well as the inf, is achieved. Hence

S(c) = min
(1, ρ0)-distributions P

with mean 1 − 2c

max
r:R→[−1,1]

increasing, odd

valGP
(r).

Proof: (Sketch.) The fact that the sup is achieved for each P is proved in Theorem 4.4. The fact that
the inf is achieved can be deduced by taking a converging subsequence of ρ0’s, and using the discretization
Lemmas 5.6 and 5.13 to show that the max’s for close values of ρ0 are close. 2

6 Estimating S(c) efficiently

This section is devoted to the proof of Theorem 2.1:

Theorem 2.1 There is an algorithm that, on input c ∈ [ 12 , 1] and ǫ > 0, runs in time poly(1/ǫ) and
computes S(c) to within ±ǫ.

As Lemma 5.13 shows, S(c) is within ±O(ǫ) of

(17) = min
ǫ7-discretized (1, ρ0)-dists P

with mean 1 − 2c

max
ǫ-discretized r:R→[−1,1]

increasing, odd

valGP
(r).

Since we can enumerate all poly(1/ǫ) many ǫ7-discretized (1, ρ0)-distributions, it is clearly sufficient to show
we can efficiently estimate

max
ǫ-discretized r:R→[−1,1]

increasing, odd

valGP
(r) (19)

for any (1, ρ0)-distribution P . In fact, for technical reasons, we will show how to estimate a slightly different
quantity. Specifically, instead of using the rounding function discretization described in Definition 5.1, we
will use a different one:

Definition 6.1 Let ǫ > 0 be such that 1/ǫ2 is an odd integer. We define Jǫ to be the partition of R into
1/ǫ2 intervals of equal Gaussian measure ǫ2.10 We say that a function r : R → [−1, 1] is ǫ2-equidiscretized
if r is constant on each of the intervals in Jǫ.

10Which partition points are included in which intervals is immaterial.

24



We will show how to estimate
sup

ǫ2-equidiscretized r:R→[−1,1]
increasing, odd

valGP
(r) (20)

to within ±O(ǫ) in time poly(1/ǫ), whenever P is a (1, ρ0)-distribution. Although this quantity is not directly
comparable to (19), nevertheless with only minor modifications to the proof of Lemma 5.13 one can show
that S(c) is also within ±O(ǫ) of

min
ǫ7-discretized (1, ρ0)-dists P

with mean 1 − 2c

sup
ǫ2-equidiscretized r:R→[−1,1]

increasing, odd

valGP
(r).

(To see this, first note that the function discretization step hardly changes. Second, the proof of Lemma 5.6
goes through with ǫ2-equidiscretized functions as well because the intervals in Jǫ are only wider than the
intervals in Iǫ.) Thus efficient estimation of (20) for (1, ρ0)-distributions is sufficient to establish Theorem 2.1.

The reason for our redefinition of discretization is the following: it allows us to drop the conditions
‘increasing, odd’ from the optimization problem (20). Specifically:

Proposition 6.2 Let P be a (1, ρ0)-distribution and consider the following optimization problem:

sup
ǫ2-equidiscretized r:R→[−1,1]

valGP
(r). (21)

There exists an optimal solution r∗ achieving the sup which is both increasing and odd.

Proof: The proof is essentially identical to that of Theorem 4.4; the key point is that performing Gaussian
rearrangement on an ǫ2-equidiscretized function yields another ǫ2-equidiscretized function. 2

We now consider (21). Suppose P has weight 1 − p on the point 1 and weight p on the point ρ0;
of course, p = 2c/(1 − ρ0). Let us index the intervals in Jǫ from left to right as I−m, . . . , Im, where
m = (1/ǫ2 − 1)/2. We identify an ǫ2-equidiscretized function r with the length-(2m + 1) vector giving its
value on each interval; we will write rj for the entry corresponding to Ij , −m ≤ j ≤ m. Finally, we write
Wρ for the (2m + 1) × (2m + 1) matrix whose (j, k) entry equals the probability that a ρ-correlated pair of
Gaussians (x, y) will satisfy x ∈ Ij , y ∈ Ik. Now

valGP
(r) = 1

2 − 1
2


(1 − p)

∑

−m≤j,k≤m

W1(j, k)rjrk + p
∑

−m≤j,k≤m

Wρ0(j, k)rjrk


 ,

and hence the optimization problem (21) is equivalent to the problem

minimize r⊤((1 − p)W1 + pWρ0)r,

subject to − 1 ≤ rj ≤ 1 for all −m ≤ j ≤ m.

We now consider the Karush-Kuhn-Tucker conditions for this quadratic program and conclude that any
optimal solution r must satisfy

∑

−m≤k≤m

((1 − p)W1(j, k) + pWρ0(j, k))rk = 0, for all j such that −1 < rj < 1. (22)

These necessary conditions for the optimality of a rounding function were already determined by Feige and
Langberg [FL06].

The key observation that lets us make efficient use of the conditions is that we know from Proposition 6.2
that there is an optimal increasing odd r∗. In particular, there is some 0 ≤ m0 ≤ m such that

r∗j = −1, for all j < −m0,
r∗j = 1, for all j > m0,

−1 < r∗j < 1, for all −m0 ≤ j ≤ m0.
(23)
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Thus algorithmically, we can try all possible values for m0, incurring only an O(1/ǫ2) factor slowdown. For
each choice, we assume an r∗ satisfying the conditions (23), and we solve (22) for the remaining unknown
values; i.e., we solve the square system

∑

−m0≤k≤m0

((1 − p)W1(j, k) + pWρ0(j, k))rk = bj for all −m0 ≤ j ≤ m0, (24)

where bj =
∑

k<−m0
((1−p)W1(j, k)+pWρ0 (j, k))−∑k>m0

((1−p)W1(j, k)+pWρ0 (j, k)). We are guaranteed
that there exists an optimal, feasible solution r∗ satisfying (24) for at least one value of m0.

6.1 Evading singularity

The above discussion suggests a poly(1/ǫ) time algorithm for computing (20) exactly. There are two prob-
lems we need to circumvent, however. The first problem is that, algorithmically, we cannot compute the
values Wρ(j, k) — or even the endpoints of the intervals in Jǫ — exactly. The more challenging problem is
that the square system (24) may be singular, in which case it may produce infinitely solutions that would
need to be tried. As we will see, once we take care of the latter problem, the former will follow.

Let us write the square system (24) more compactly as

((1 − p)M1,m0 + pMρ0,m0)s = b, (25)

where Mρ,m0 represents the square submatrix of Wρ corresponding to indices −m0 . . . m0, and s represents
the truncation of the vector r to these indices. We may assume here that m0 ≥ 1, since there is nothing to
solve for if m0 = 0 (note that r∗0 must be 0 by oddness). Write Mρ0,m0,p = (1 − p)M1,m0 + pMρ0,m0 .

We are concerned about the possibility that det(Mρ0,m0,p) = 0. More generally, we are concerned if
the condition number κ(Mρ0,m0,p) is very large, since in this case our inability to calculate the Mρ,m0

matrices precisely would lead to very inaccurate solutions to (25). Since the matrix Mρ0,m0,p is symmetric,
its condition number is

κ(Mρ0,m0,p) = |λmax(Mρ0,m0,p)|/|λmin(Mρ0,m0,p)|,
where λmax and λmin denote largest and smallest eigenvalues in absolute value. Since each Mρ,m0 is a
submatrix of the stochastic matrix Wρ, its maximum eigenvalue is at most 1; hence we need only worry
about the smallest eigenvalue of Mρ0,m0,p. Since M1,m0 is a multiple of the identity matrix, it can be
simultaneously diagonalized with Mρ0,m0 , and hence the eigenvalues of Mρ0,m0,p are precisely

{(1 − p) + pλρ0,m0(j)}−m0≤j≤m0 ,

where the λρ0,m0(j)’s are the eigenvalues of Mρ0,m0 . It is easy to see that for any particular λρ0,m0(j), the
set of p’s for which (1 − p) + pλρ0,m0(j) is in the range (−δ, δ) is an interval of width at most 2δ. Hence we
deduce the following:

Proposition 6.3 For each ρ0, the set

Bρ0 :=
⋃

1≤m0≤m

{p : κ(Mρ0,m0,p) > 1/δ}

is a collection of at most m · (2m + 1) = O(1/ǫ4) intervals of width at most 2δ each.

Our trick now will be to give up on these ‘bad’ p’s; or rather, the ‘bad’ c-values with which they are
associated. Recalling the relationship p = 2c/(1 − ρ0) ⇔ c = (1 − ρ0)p/2, we have that

C :=
⋃

ǫ7-discretizedρ0

{(1 − ρ0)p/2 : p ∈ Bρ0}

is a collection of at most O(1/ǫ11) intervals of width at most 2δ each. And, whenever c 6∈ C, we are assured
that the square system (25) has a matrix with condition number at most 1/δ.
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We now set δ = ǫ15 and use the following algorithm for estimating S(c). Given c, we try to estimate
S(c′) for all values c′ = c + tǫ14, for t an integer with |t| ≤ 1/ǫ12. If we manage to succeed for some c′, then
the resulting estimate for S(c′) will also be a ±O(ǫ) estimate for S(c), since |c′ − c| ≤ ǫ2 (and see the proof
of Corollary 5.4 regarding the continuity of S). There are at most O(1/ǫ11) ‘bad’ intervals comprising C,
and each has width at most 2δ. Since 2δ ≪ ǫ14, each such interval contains at most one possible c′; but,
there are 2/ǫ12 + 1 ≫ O(1/ǫ11) possible c′, and hence at least one choice must fall outside C. Hence we will
succeed for at least one c′.

7 On S(c) and running times

7.1 On S(c)

As we have shown, S(c) can be computed to within ±ǫ in time poly(1/ǫ); we believe this result justifies
our claim that S(c) is ‘explicit’. A reasonable way to understand the notion of ‘explicitness’ would be with
respect to the ‘bit model’ of Braverman and Cook [BC06]; in that setting, our poly(1/ǫ) time algorithm would
correspond to a fairly liberal notion of ‘explicit’, with a polylog(1/ǫ) time algorithm corresponding to a fairly
demanding notion of ‘explicit’. The latter notion is the level of explicitness one has for, e.g., ‘ 1

π arccos(1−2c)’.
On the other hand, some less explicit-looking bounds have been given for related problems; for example,
Haagerup’s bound [Haa87] for the complex Grothendieck constant is 8/π(k0 + 1), where k0 is the unique
solution of the equation

π(k + 1)

8k
=

∫ π/2

0

cos2 t√
1 − k2 sin2 t

dt

in the interval [0, 1]. This value can surely be computed to within ±ǫ in time poly(1/ǫ); it may well also be
computable in time polylog(1/ǫ) but this is, at least, not immediately obvious.

We in fact used the algorithm behind Theorem 2.1 to approximate S(c) for the values .505, .510, .515,
. . . , .840 (with the values S(.5) = .5 and S(c) = arccos(1 − 2c)/π for c ≥ .844 being already known).
The values we found are given in the table in Appendix ??. We were not completely formal about the
approximation process and thus the results in Appendix ?? should not be considered rigorous. In particular,
the approximations of the matrices Wρ were done numerically in Matlab; also, the problem of singularity
discussed in Section 6.1 did not seem to arise and so we disregarded it. We can also report that the best
rounding functions r arising in the algorithm were very close to being s-linear, in all cases; they became only
slightly rounded near ±s (convex near −s, concave near s).

7.2 On the running time of the rounding algorithm

As shown in Corollary 5.4, our Max-Cut rounding algorithm is efficient (polynomial) in terms of its de-
pendence on n, the number of vertices; indeed, the running time is dominated by the time for semidefinite
programming. To get a cut that is provably within ǫ of S(Opt(G)), however, our algorithm’s dependence

on ǫ is exponential, 2Õ(1/ǫ2). As we will discuss in Appendix C, all known RPR2 algorithms have at least
some ǫ dependence as well. This dependence is at least poly(1/ǫ), from converting expectation results to
high probability results; in some papers, it is exponential (as in the derandomized Goemans-Williamson
algorithm from [EIO02]).

In practice, we feel this issue is not very important. As mentioned in the previous section, we observed
that using RPR2 with s-linear rounding functions (as Feige and Langberg suggested) seems nearly optimal.
In particular, it seems to achieve cuts that are within about 10−4 of S(c), across all values of c. Further,
one can precompute a table of which value of ‘s’ to use for ‘each’ possible value of c (suitably discretized)
— and the algorithm knows what c is after solving the SDP. Thus in practice one can achieve within 10−4

of S(c) with no real running time overhead. If error smaller than 10−4 is desired, it seems one can perform
a local search for a better rounding function, starting from the appropriate s-linear function and modifying
it slightly near ±s.
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Finally, given our poly(1/ǫ) time algorithm for approximating S(c) to within ±ǫ, we believe that our
rounding algorithm should also be able to have this improved dependence. Since this is not the main focus
of our paper, we will only briefly describe the technicalities that would need to be overcome. Given an
embedded graph G with ρ-distribution P , the idea would not be to try to solve the Karush-Kuhn-Tucker
conditions for GP — since in general we have no promise that the optimal rounding function for GP is increas-
ing, we wouldn’t be able to effectively try all possibilities for where it is ±1. Instead, one might simply try
to use all of the rounding functions constructed in the determination of S(c). This seems as though it should
work: the proof of Theorem 5.2 using the Minimax Theorem seems to imply that a convex combination of
the optimal rounding functions for (1, ρ0)-distributions will achieve at least S(c) for GP .

Unfortunately, several technical problems crop up. First, the Minimax proof only implies that ‘nearly’
(1, ρ0)-distributions are the worst case, and it is unclear if we can effectively enumerate these, since the
weight to distribute to the three points is not completely determined by c. Second, even if we circumvent
this problem, the Minimax theorem only implies that some convex combination of all the optimal rounding
functions for (1, ρ0)-distribution will be good for GP ; however, our algorithm for computing S(c) only finds
the increasing ones. This problem too might be circumventable if one could prove strict increase in Borell’s
rearrangement inequality assuming the function is not already monotone. Such an ‘equality condition’ result
is probably true, but is currently unknown. Finally, even if both of these issues were fixed, we still have the
problem that the Karush-Kuhn-Tucker conditions might be a singular system and thus have multiple (and
possibly very many) solutions, all of which theoretically might need to be combined by the ‘Function Player’.

8 Dictator-vs.-Gaussianic tests

In this section we discuss Long Code tests and give the definitions necessary for our ‘Dictator-vs.-Gaussianic’
tests. The subsequent two sections are devoted to the proof that GapTest(c) = S(c).

We begin with an essential observation: 2-query Long Code tests are nothing more than embedded graphs
(see Definition 3.1), with the vertex set being further restricted to lie within the discrete cube. To make the
connection clearer, we treat the discrete cube as lying on the unit sphere:

Definition 8.1 We write Bn = {− 1√
n
, 1√

n
}n for the discrete cube, since it is convenient to have Bn ⊆ Sn−1.

Definition 1.9 defines a 2-query, 6=-based Long Code test to be a probability distribution on pairs (x, y) ∈
Bn × Bn. Since we think of the Long Code test as testing f(x) 6= f(y) and since 6= is symmetric, there
is no loss in generality if we insist that the probability distribution be symmetric in x and y. But such
a symmetric distribution on Bn × Bn is identical to a weighted undirected graph G on Bn, with self-loops
allowed. Note that this is an embedded graph, with the additional property that the vertex set is (a subset
of) Bn. Further, if f : Bn → {−1, 1} is the function being tested, then 1

2 − 1
2f(x)f(y) is 1 if f(x) 6= f(y)

and 0 if f(x) = f(y). Hence the probability that f passes the test is just valG(f). Extending this definition
to functions f : Bn → [−1, 1], we have the following:

Definition 8.2 A Dictator-vs.-Gaussianic test for n-bit functions f : B
n → [−1, 1] is an embedded graph

T whose vertex set is Bn. The value of the test on f is valT (f), and this is sometimes referred to as the
probability that T passes/accepts f .

Our notion of the ‘completeness’ of a Dictator-vs.-Gaussianic test is essentially as in Definition 1.10: the
least probability with which one of the Dictators passes:

Definition 8.3 The ith Dictator function χi : Bn → {−1, 1} is defined by χi(x) =
√

n · xi.

Definition 8.4 The completeness of an n-bit Dictator-vs.-Gaussianic test T is

Completeness(T ) = min
i∈[n]

{valT (χi)}

The average of the probabilities with which Dictators pass a test T is precisely its spread:
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Proposition 8.5 Given an n-bit Dictator-vs.-Gaussianic test T = (Bn, E), we have

Spread(T ) = avg
i∈[n]

{valT (χi)}.

Hence Spread(T ) ≥ Completeness(T ).

Proof:

Spread(T ) = E
(x,y)∼E

[ 12 − 1
2x · y] = E

(x,y)∼E
[ 12 − 1

2

∑n
i=1xiyi] = 1

n

∑n
i=1 E

(x,y)∼E
[12 − 1

2nxiyi] = avg
i∈[n]

{valT (χi)}.

2

As discussed in Section 1.5 we use a weakened soundness notion for Dictator-vs.-Gaussianic tests; specif-
ically, these tests only need to reject functions that are sufficiently ‘Gaussianic’. This soundness condition
allows us to get large completeness/soundness gaps despite using only 2 queries, and is also precisely what is
needed for Theorems 1.13, 1.14, and 1.15. The notion of being ‘Gaussianic’ is, for all intents and purposes,
the same as the notion of having small ‘low-degree influences’ introduced in [KKMO07] and used in previous
papers on Unique Games-hardness. We use the very slightly different notion of Gaussianic functions because
we feel it is more natural. To make this definition we need to recall the basics of Fourier analysis of boolean
functions.

Analogous to the Hermite analysis described in Section 4.3, the space of functions L2(Bn) under the
uniform distribution has a complete orthonormal basis given by the monomials (χS)S⊆[n]:

χS(x) =
∏

i∈S

(
√

n · xi).

One can uniquely express any function f : Bn → R via its Fourier expansion,

f =
∑

S⊆[n]

f̂(S)χS .

We now introduce Gaussianic functions:

Definition 8.6 For 0 ≤ ǫ, δ ≤ 1, we say a function f : Bn → [−1, 1] is (ǫ, δ)-Gaussianic if for each i ∈ [n],

Inf
(1−δ)
i (f) ≤ ǫ,

where we define the (1 − δ)-attenuated influence of i on f to be

Inf
(1−δ)
i (f) =

∑

S⊆[n]
i∈S

(1 − δ)|S|−1f̂(S)2.

Note that this definition becomes stricter when ǫ or δ decreases; we think of functions as being ‘more
Gaussianic’ when δ and (especially) ǫ are small. As an example, Dictator functions χi are the antithesis of
being Gaussianic; in particular, if ǫ < 1 then χi is not (ǫ, δ)-Gaussianic even for δ = 1.11 On the other hand,
the Majority function is extremely Gaussianic; specifically, (O( 1√

n
), 0)-Gaussianic. The name ‘Gaussianic’

was chosen based on the ‘Invariance Principle’ from [MOO05], which essentially states that if f : Bn → [−1, 1]
is very Gaussianic, then the distribution of

∑

S⊆[n]

f̂(S)
∏

i∈S

Xi

is nearly unchanged whether one takes the Xi’s to be independent ±1 bits or independent N(0, 1) Gaussians.

Having defined Gaussianic functions, we give the soundness notion for our tests:

11We take 00 = 1 in the definition.
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Definition 8.7 The (ǫ, δ)-soundness of a Dictator-vs.-Gaussianic test T for functions f : {−1, 1}n → [−1, 1]
is

Soundnessǫ,δ(T ) = max{valT (f) : f is (ǫ, δ)-Gaussianic}.
Given this definition, the most natural Property Testing question to ask is how far apart completeness

and soundness can be for Dictator-vs.-Gaussianic tests:

Definition 8.8 We call the pair (c, s) a Dictator-vs.-Gaussianic test (ǫ, δ)-gap if for all sufficiently large n,
there is a Dictator-vs.-Gaussianic test T (n) for functions f : Bn → [−1, 1] with Completeness(T (n)) ≥ c and
Soundnessǫ,δ(T

(n)) ≤ s. We call the pair (c, s) simply a Dictator-vs.-Gaussianic test gap if ∀ η > 0, ∃ ǫ, δ > 0
such that (c, s + η) is a Dictator-vs.-Gaussianic test (ǫ, δ)-gap.

Definition 8.9 The Dictator-vs.-Gaussianic gap curve is the function GapTest : [12 , 1] → [ 12 , 1] defined by

GapTest(c) = min{s : (c, s) is a Dictator-vs.-Gaussianic test gap}.

(It is immediate from the definitions that this min is achieved; i.e., we needn’t write inf.)

The reader is reminded that in Section 1.5 we described three applications of establishing a (c, s)
Dictator-vs.-Gaussianic test gap, Theorems 1.13, 1.14, and 1.15. In the next section we will show that
GapTest(c) ≤ S(c); substituting this into these theorems yields our results from Section 2; the subsequent sec-
tion will be devoted to the inequality GapTest(c) ≥ S(c), whose proof completes the result GapTest(c) = S(c).
Although the inequality GapTest(c) ≥ GapSDP(c) was already implicitly proved in [KV05], we will give an
alternate direct proof which clarifies the connection between SDP rounding algorithms and Dictator-vs.-
Gaussianic testing. Finally, in the last section we will connect Dictator-vs.-Gaussianic tests with the SDP-
hardness constructions in [Kar99, AS00, ASZ02] and prove Theorem 1.15, extending a result of Feige and
Schechtman [FS02].

9 GapTest(c) ≤ S(c): Invariance Principle

To upper-bound GapTest(c), we need to determine Dictator-vs.-Gaussianic tests with completeness at least
c for which all Gaussianic functions pass with small probability. Studying just how small this soundness
can be is very similar to searching for the largest possible SDP gap, discussed in Section 3. For example,
given a particular test T on Bn with Completeness(T ) ≥ c and Soundnessǫ,δ(T ) ≤ s, one can symmetrize
it with respect to all 2nn! symmetries of Bn, forming T ′. Then one still has Completeness(T ′) ≥ c and
Soundnessǫ,δ(T

′) ≤ s, and furthermore T ′ has the property that the probability of choosing a pair (x, y)

depends only on its Hamming distance; i.e., only on 〈x, y〉. Just as we switched from S(d)
P (which insisted on

〈x, y〉 being precisely ρ) to the analytically-easier G(d)
P , it is natural to switch to the version of symmetrized

tests with independence across coordinates:

Definition 9.1 We define the noise sensitivity mixture test T (n)
P on B

n by analogy with Gaussian mixture
graphs. In particular we define (x, y) to be ρ-correlated n-bit strings if x is drawn uniformly from Bn and
y is formed by taking yi = xi with probability 1

2 + 1
2ρ and yi = −xi with probability 1

2 − 1
2ρ, independently

across i.

We remark that a ρ-correlated pair (x, y) has 〈x, y〉 tightly concentrated around ρ, and that further:

Fact 9.2 Completeness(T (n)
P ) = Spread(P ) = Eρ∼P [ 12 − 1

2ρ].

Also, given f : Bn → R we use the notation

Sρ(f) = E
(x,y) ρ-corr’d
n-bit strings

[f(x)f(y)].

The reader is warned that we use the notation Sρ(f) for both f : Bn → R and f ∈ L2(Rn) with the Gaussian
distribution. For more on noise sensitivity tests, see [KKMO07].
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Having decided that the best Dictator-vs.-Gaussianic gaps will occur essentially with noise sensitivity
mixture tests, the ideas from Section 3.3 again apply. The Hermite and Fourier formulas for noise stability
are the same and we again conclude that the optimal mixture should come from a (1, ρ0)-distribution. This
provides an explanation for why such tests were useful in [KO06].

Finally, to upper-bound the value of Gaussianic functions on noise sensitivity (1, ρ0)-mixture tests, we use
the Invariance Principle of [MOO05] to reduce to the analysis of the Max-Cut in Gaussian mixture graphs.
Then Theorem 4.4 can be used to get an upper bound of S(c). More precisely, we prove the following
theorem:

Theorem 9.3 Let P be any (1, ρ0)-distribution and let T denote the Dictator-vs.-Gaussianic test T (n)
P .

Then for any τ > 0,

Soundnessτ,Ω(1/ log(1/τ))(T ) ≤ sup
r:R→[−1,1]

increasing, odd

valGP
(r) + O(log(1/τ)−1/8).

Before proving Theorem 9.3, let us see how it implies the desired result:

Corollary 9.4 GapTest(c) ≤ S(c).

Proof: Let P be the (1, ρ0)-distribution with mean 1−2c achieving the minimum in the definition of S(c) (or

rather, in Corollary 5.14). Writing T = T (n)
P , we have Completeness(T ) = c by Fact 9.2. Now by definition,

sup
r:R→[−1,1]

increasing, odd

valGP
(r)

is precisely S(c). Hence Theorem 9.3 implies that the (ǫ, δ)-soundness of T can be made at most S(c) plus
an arbitrarily small amount, by taking ǫ and δ sufficiently small. This establishes GapTest(c) ≤ S(c). 2

9.1 Proof of Theorem 9.3

The proof is an extension of the proof of the Majority Is Stablest theorem from [MOO05]. Let P , T , and τ
be as in the statement of the theorem, and let f : Bn → [−1, 1] be a (τ, Ω(1/ log(1/τ)))-Gaussianic function.
We need to show that

valT (f) = E
ρ∼P

E
(x,y) ρ-corr’d
n-bit strings

[ 12 − 1
2f(x)f(y)] = 1

2 − 1
2 E

ρ∼P
[Sρ(f)] ,

is, up to an additive O(log(1/τ)−1/8), at most

sup
r:R→[−1,1]

increasing, odd

valGP
(r) = sup

r:R→[−1,1]
increasing, odd

(
1
2 − 1

2 E
ρ∼P

[Sρ(r)]

)
.

Equivalently, we must show

E
ρ∼P

[Sρ(f)] ≥ inf
r:R→[−1,1]

increasing, odd

E
ρ∼P

[Sρ(r)] − O(log(1/τ)−1/8). (26)

Let us write p for the weight of P on ρ0. Then the left side of (26) is

(1 − p)E[f2] + pSρ0(f).

As in the proof of Theorem 4.4, this quantity can only decrease if we replace f by fodd, in which case it
becomes

(1 − p)E[f2] − pS−ρ0(f), (27)
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analogous to (9). (Note that a similar formula will arise on the right side of (26), since the r’s are odd.)
Since fodd has the same Fourier expansion as f except with the even-degree terms dropped, we have that

Inf
(1−δ)
i (fodd) ≤ Inf

(1−δ)
i (f), and hence f = fodd is still (ǫ, δ)-Gaussianic.

We now set γ = O
(

log log(1/τ)
log(1/τ)

)
and distinguish the two cases ρ0 ≤ −1 + 3γ and ρ0 > −1 + 3γ:

Case 1: ρ0 ≤ −1 + 3γ. In this case we use S−ρ0(f) ≤ S1(f) = E[f2] to deduce that (27) is at least 1− 2p.
On the other hand, by taking r = sgn (which is increasing and odd), we conclude that the term on the right
side of (26) satisfies

inf
r:R→[−1,1]

increasing, odd

E
ρ∼P

[Sρ(r)] ≤ (1 − p)E[sgn2] − pS−ρ0(sgn) = (1 − p) − p(1 − Θ(
√

γ)) = 1 − 2p + Θ(
√

γ),

where we used the estimate S1−δ(sgn) = 1 − Θ(
√

δ). Since Θ(
√

γ) ≪ O(log(1/τ)−1/8), the proof of (26) in
this case is complete.

Case 2: ρ0 > −1 + 3γ. In this case we follow the arguments from [MOO05]’s proof of the Majority Is
Stablest theorem. Write ρ = −ρ0 < 1−3γ, and express ρ = ρ′ ·(1−γ)2. We let g ∈ L2(Rn) be the multilinear
polynomial

g(x1, . . . , xn) =
∑

S⊆n

(1 − γ)|S|f̂(S)
∏

i∈S

xi,

and we let g̃ : Rn → [−1, 1] be the function defined by

g̃(~x) =

{
g(~x) if |g(~x)| ≤ 1,

sgn(g(~x)) else.

We note that f being odd implies that both g and g̃ are odd. Since

E[f2] =
∑

S⊆[n]

f̂(S)2 =
∑

S∈Nn

ĝ(S)2 = E[g2] ≥ E[g̃2],

we have
(27) ≥ (1 − p)E[g̃2] − pSρ(f).

Further, using the fact that f is (τ, Ω(1/ log(1/τ)))-Gaussianic, the Invariance Principle-based arguments
in [MOO05] imply that

|Sρ(f) − Sρ′ (g̃)| ≤ τΩ(γ).

Hence we have

(27) ≥ (1 − p)E[g̃2] − pSρ′(g̃) − τΩ(γ) = (1 − p)E[g̃2] + pS−ρ′(g̃) − τΩ(γ) =
(
1 − 2valG(n)

P ′

(g̃)
)
− τΩ(γ),

where the first equality uses the fact that g̃ is odd and where P ′ the probability distribution that puts weight
1 − p on 1 and weight p on −ρ′. But P ′ is a ‘(1, ρ0)-distribution’, and hence Theorem 4.4 implies that

valG(n)

P ′

(g̃) ≤ sup
r:R→[−1,1]

increasing, odd

valG
P ′

(r).

Thus we have
(27) ≥ inf

r:R→[−1,1]
increasing, odd

E
ρ∼P ′

[Sρ(r)] − τΩ(γ).

By taking the constant in the definition of γ large enough we get τΩ(γ) ≪ O(log(1/τ)−1/8). Thus to
complete the proof of (26), we only need to relate the inf with P to the inf with P ′, using the fact that
|(−ρ′) − ρ0| ≤ O(γ). This can be done by using the discretization Lemmas 5.6 and 5.13; the resulting error
term is at most O(γ1/7) ≤ O(log(1/τ)−1/8), as required.
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10 GapTest(c) ≥ S(c): RPR2 algorithms imply testing lower bounds

In this section we discuss ‘lower bounds’ for the Dictator-vs.-Gaussianic testing problem; i.e., proofs that
any test T with Completeness(T ) = c cannot have Soundnessǫ,δ(T ) which is too small. As mentioned ear-
lier, Khot and Vishnoi’s Theorem 1.14 can be used to get such lower bounds: it gives a long translation
of a (c, s) Dictator-vs.-Gaussianic test gap into a (c − η, s + η) SDP gap (with triangle inequality, even),
for arbitrarily small η. This means that an SDP-rounding guarantee can be used to rule out the existence
of strong Dictator-vs.-Gaussianic tests. A similar idea arises from the earlier Theorem 1.13, which shows
that a (c, s) Dictator-vs.-Gaussianic test gap can be translated into into a c − η vs. s + η UGC-hardness
result for Max-Cut. Since one feels it is unlikely that the Unique Games Conjecture would be disproved via
an elaborate reduction to Max-Cut followed by a too-strong SDP-rounding algorithm, Theorem 1.13 also
suggests that SDP-rounding algorithms should be able to prove Dictator-vs.-Gaussianic testing lower bounds.

In this section we show explicitly and directly that RPR2 algorithms give rise to Dictator-vs.-Gaussianic
testing lower bounds. More specifically, the following theorem implies (and indeed is slightly stronger than)
the result GapTest(c) ≥ S(c):

Theorem 10.1 Let ǫ > 0 be given. Then for all n ≥ O(1/ǫ7), if T is any Dictator-vs.-Gaussianic test for
functions f : Bn → [−1, 1] satisfying Completeness(T ) ≥ c, then Soundnessǫ,0(T ) ≥ S(c) − ǫ.

Proof: Let T be a such a test. As described in Section 8, T can be thought of as an embedded graph
on the vertex set Bn ⊆ Sn−1. Write P for the ρ-distribution of T , and recall from Proposition 8.5 that
Spread(P ) ≥ Completeness(T ) ≥ c.

Imagine we now run our RPR2 Algorithm 3.4 on T , with the discretization parameter set to ǫ′ := ǫ/K.
By Theorem 5.3, it will at some point hit upon an ǫ′-discretized, increasing, odd rounding function r∗ : R →
[−1, 1] which satisfies

AlgRPR2(T ) = valGP
(r∗) ≥ S(Spread(P )) − O(ǫ′) ≥ S(c) − ǫ/2, (28)

assuming K is a sufficiently large constant. (Here we also used that S is increasing.) Recall that when we

run the RPR2 algorithm with r∗, it chooses a random n-dimensional Gaussian ~Z and outputs the fractional
cut f~Z : Bn → [−1, 1] defined by

f~Z(x) = r∗(x · ~Z).

Thus (28) is equivalent to
E
~Z
[valT (f~Z)] ≥ S(c) − ǫ/2.

Our goal is now to show the intuitively plausible claim that that f~Z is very likely to be a Gaussianic boolean
function:

Claim 10.2 With probability at least 1−O(1/n) over over the choice of ~Z, the function f~Z is (O(
√

lnn/n)/ǫ′2, 0)-
Gaussianic.

With our choice of n ≥ O(1/ǫ7), this claim implies that with probability at least 1 − ǫ/2 the function f~Z is
(ǫ, 0)-Gaussianic. This in turn completes the proof of the theorem, since it implies

E
~Z
[valT (f~Z) | f~Z is (ǫ, 0)-Gaussianic] ≥ S(c) − ǫ/2 − ǫ/2.

Thus there must exist an (ǫ, 0)-Gaussianic f : Bn → [−1, 1] with valT (f) ≥ S(c) − ǫ, and we conclude that
Soundnessǫ,0(T ) ≥ S(c) − ǫ as needed.

Proof: (of Claim 10.2.) Given ~Z, let us write f = f~Z for notational simplicity. Let us also write γ =

O(
√

lnn/n)/ǫ′2. We need to show that with probability at least 1 − O(1/n),

γ ≥ Inf
(0)
i (f) = Infi(f) = E

x∈Bn

[(
(f(x(i=1)) − f(x(i=−1))

2

)2
]

for all 1 ≤ i ≤ n. (29)
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Here we have used the notation x(i=b) for the string x with the ith coordinate set to b/
√

n, along with the
well-known alternate definition of boolean influences (see [KKMO07]). In fact, we will show that (29) holds
whenever both of the following hold:

|Zi| ≤ 2
√

lnn for all 1 ≤ i ≤ n; (30)

1
2n ≤ ‖~Z‖2

2 ≤ 3
2n. (31)

Since |Zi| ≤ 2
√

lnn for each i except with probability at most O(1/n2), we get that (30) holds except with
probability O(1/n). It’s also well known (and the proof is sketched in the proof of Theorem 4.3) that (31)
holds except with exponentially small probability in n. Thus both (30) and (31) hold except with probability
at most O(1/n), as necessary.

Let us henceforth fix ~Z = ~Z satisfying (30) and (31). We wish to prove now that (29) holds. We will
show that it holds for i = n, and the fact that it holds for 1 ≤ i < n will follow by an identical argument.
So we must prove that

γ ≥ E
x∈Bn

[(
(f(x(n=1)) − f(x(n=−1))

2

)2
]

=
1

4
E

x∈Bn−1



(

r∗
(

n−1∑

i=1

Zixi +
Zi√
n

)
− r∗

(
n−1∑

i=1

Zixi −
Zi√
n

))2

 .

Using the fact that r is ǫ′-discretized, we can even show the following stronger result:

Pr
x∈Bn−1

[
n−1∑

i=1

Zixi ±
Zi√
n

fall into different intervals from Iǫ′

]
≤ γ. (32)

Let σ2 denote
∑n−1

i=1 Z2
i /n, which by (30) and (31) satisfies 1

3 ≤ σ2 ≤ 3
2 . Now the random variable∑n−1

i=1 Zixi has distribution close to that of a mean-zero Gaussian with variance σ2; more specifically, using
the Berry-Esseen Theorem we have that for every interval I,

∣∣∣∣∣Pr

[
n−1∑

i=1

Zixi ∈ I

]
− Pr[N(0, σ2) ∈ I]

∣∣∣∣∣ ≤ O

(
maxi |Zi|

σ
√

n

)
= O(

√
log n/n). (33)

The analysis is now very similar to the analysis in Claim 5.7. Given any interval J ∈ Iǫ′ , let J ′ denote
the subinterval gotten by moving the boundary points inwards by 3

√
lnn/n. The analysis from Claim 5.7

implies that a standard Gaussian will fall into one of the J ′ intervals except with probability O(
√

lnn/n/ǫ′2),
and only the constant in the O(·) changes if we consider instead a Gaussian with variance σ2 ∈ [ 13 , 3

2 ]. Hence

the same is true of the random variable
∑n−1

i=1 Zixi, using (33). But whenever this random variable falls

into some J ′, we get that
∑n−1

i=1 Zixi ± Zi√
n

are both in the associated J , since |Zi| ≤ 2
√

lnn. Since we took

γ = O(
√

lnn/n)/ǫ′2, we have that (32) indeed holds, as needed. 2

(Theorem 10.1) 2

11 Hardness results for RPR2 algorithms

In this section we revisit the constructions of Karloff [Kar99], Alon and Sudakov [AS00], and Alon, Sudakov,
and Zwick [ASZ02]. The purpose of these constructions is to demonstrate that the analysis of the Goemans-
Williamson approximation guarantee is tight (and likewise for the Zwick [Zwi99] approximation guarantee,
in the case of [ASZ02]). For now we discuss [Kar99, AS00], returning to [ASZ02] at the end of the section.
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The works [Kar99, AS00] consider the graph T on Bn in which a pair of vertices (x, y) is connected
if and only if the vertices’ inner product is exactly 1 − 2c; here c is any rational parameter in (1

2 , 1).12

The authors show (for infinitely many n) that the identity map is an optimal SDP embedding, and hence
Opt(T ) = Sdp(T ) = c. On the other hand, since every edge in the embedded graph connects vectors with
inner product 1 − 2c, the expected value of the cut output by the GW algorithm (RPR2 with the rounding
function sgn) is only arccos(1− 2c)/π. Thus (in expectation, at least) the GW approximation curve satisfies
ApxGW (c) ≤ arccos(1 − 2c)/π.

As the reader can clearly see, this construction can be viewed as a Dictator-vs.-Gaussianic test with
completeness c. Indeed, the noise sensitivity test of [KKMO07] is almost identical to it; the only difference
is that the noise sensitivity test picks edges with expected inner product 1 − 2c rather than precise inner
product 1 − 2c. The ‘soundness’ result used in [Kar99, AS00] is that the average value among ‘random

halfspace functions’ sgn(x · ~Z) is at most arccos(1− 2c)/π. As we saw in Section 10, these random halfspace
functions are almost surely Gaussianic.

The result from [Kar99, AS00] has some additional strengths and weaknesses. One strength is that the
SDP embedding used has all of its unit vectors on the discrete cube Bn; hence these points satisfy the
triangle inequalities, and indeed satisfy all ‘valid’ inequalities (see [Kar99]). Thus ApxGW (c) is still at most
arccos(1 − 2c)/π even if the SDP with triangle inequalities is used. A weakness of the original result was
that it only stated that the expected value of the cut GW produces is at most arccos(1 − 2c)/π; it said
nothing, e.g., about what happens if the GW algorithm is run several times and the best resulting cut is
selected. For the noise sensitivity version of the test, a result in [KKMO07] shows that GW achieves at most
arccos(1− 2c)/π+ o(1) with high probability. However, Feige and Schechtman [FS02] showed an even better
result:

Theorem 11.1 ([FS02]) For any rational c ∈ (1
2 , 1) and any η > 0, there are optimally embedded graphs

G, with arbitrarily large numbers of vertices, satisfying:

• Opt(G) = Sdp(G) = c;

• the vectors in G satisfy the triangle inequalities;

• every halfspace cut has value at most arccos(1 − 2c)/π + η.

The conclusion from this result is that running the RPR2 algorithm A with the rounding function sgn cannot
achieve ApxA(c) > arccos(1− 2c)/π, even if: (i) A uses the SDP with triangle inequalities; and, (ii) A is not

required to choose ~Z at random but is allowed to use the best possible ~Z of length
√

n. (When r = sgn, the

length of ~Z is irrelevant and may as well be fixed.)

Feige and Schechtman prove Theorem 11.1 (non-constructively) as follows: They begin with the embed-
ded graph T on Bn constructed in [Kar99, AS00]. They then essentially take G to consist of m disjoint
copies of T , each embedded in a random n-dimensional subspace of Rd. If d ≫ n2 log m, then the triangle
inequalities hold in G with high probability; on the other hand, if d is not too large then it can be shown
that every halfspace cut of G has value at most arccos(1 − 2c)/π + η.

We now prove a generalization of Theorem 11.1. We would like to emphasize that our proof follows
Feige and Schechtman’s extremely closely. The following theorem implies our promised Theorem 1.15 from
Section 1.5:

Theorem 11.2 Suppose (c, s) is a Dictator-vs.-Gaussianic gap, and η > 0. Fix any RPR2 rounding function
r which is piecewise constant.13 Then there are embedded graphs G in Sd−1, with arbitrarily large numbers
of vertices, satisfying:

• Opt(G) ≥ c;

12The earlier work of [Kar99] was slightly more complicated as it only included vertices with Hamming weight exactly n/2.
13As all functions implemented on a discrete computer must be.
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• the vectors in G satisfy the triangle inequalities;

• every fractional cut f~Z of the form f~Z(u) = r(u· ~Z) satisfies valG(f~Z) ≤ s+η, as long as ‖~Z‖2 = Θ(
√

d).

Proof: Select ǫ, δ > 0 and a family (T (n)) of Dictator-vs.-Gaussianic tests, with T (n) operating on B
n, such

that Completeness(T (n)) ≥ c and Soundnessǫ,δ(Tn) ≤ s + η/3, for all sufficiently large n. We would also
like to assume that each T (n) is regular, meaning that each x ∈ Bn participates in the test with the same
probability. We can ensure this by symmetrizing each T (n) with respect to the 2nn! symmetries of Bn, as
discussed in Section 9. (Alternatively, the Dictator-vs.-Gaussianic tests we will actually use, constructed in
Section 9, are already regular.)

As in [FS02], we take G to be m equally weighted disjoint copies of T (n), embedded on the unit d-
dimensional sphere Sd−1 with independent random orientations. Since Completeness(T (n)) ≥ c, certainly
Opt(G) = Opt(T (n)) ≥ c. Also, as shown in [FS02], if d ≫ n2 log m then the vectors in G satisfy the triangle
inequalities with high probability; this uses the fact that the vectors in T (n) satisfy the triangle inequalities.
It remains to analyze valG(f~Z) for all possible fractional cuts f~Z(u) := r(u · ~Z) where ‖~Z‖2 = Θ(

√
d). For

concreteness, assume that this means (1/c)
√

d ≤ ‖~Z‖2 ≤ c
√

d for some c > 0.

Let us consider the piecewise constant function r. Choose a small enough γ > 0 so that the set

B :=
⋃

{[t − γ, t + γ] : t is a point of discontinuity for r}

has total measure at most ǫη/O(
√

c). Following [FS02], we now take a γ-net N for the set {~Z1/c)
√

d ≤
‖~Z‖2 ≤ c

√
d}; this can have cardinality O(c

√
d/γ)d. We show that, with high probability over the orienta-

tions of G, both of the following hold for all ~v ∈ N :

1. valG(f~v) ≤ s + 2η/3;

2. the fraction of vertices ~u of G for which ~u · ~v ∈ B is at most η/6.

Having shown this, it follows that valG(f~Z) ≤ s + η for all (1/c)
√

d ≤ ‖~Z‖2 ≤ c
√

d. To see this for a given
~Z, take ~v to be the closest net point. Then for every ~u ∈ G we have |~u · ~Z − ~u · ~v| ≤ ‖u‖ · ‖~Z − ~v‖ ≤ γ.
It follows that f~Z(~u) = f~v(~u) except possibly when ~u · ~v ∈ B. But this occurs only for at most an η/6
fraction of vertices in G, and hence at most an η/6 fraction of edge weight, by regularity. It follows that
|valG(f~Z) − valG(f~v)| ≤ 2η/6, and hence valG(f~Z) ≤ s + η, as required.

It remains to prove that items (1) and (2) above indeed hold with high probability. Fix any ~v ∈ N and
let T1, . . . , Tm denote the randomly oriented copies of T (n) making up G. In analyzing some Ti vis-a-vis ~v,
we imagine instead that the orientation of Ti is fixed and ~v is chosen randomly from the surface of the sphere
of radius ‖~v‖2. In this framework, let ~Y denote the projection of the random ~v onto the n-dimensional
subspace containing Ti. Now the projection of a random vector from the surface of a sphere onto a lower-
dimensional subspace yields a distribution which is close to Gaussian. In particular, since we are already
assuming d ≫ n2 log m ≥ O(n2), the results in [DF87] imply that the variation distance between ~Y and
the n-dimensional Gaussian distribution with coordinate variances equal to ‖~v‖2/

√
d ∈ [1/c, c] is at most

O(n/d) = O(1/n). If ~Y were truly drawn from that Gaussian distribution, then we would have the following
(cf. the proof of Claim 10.2):

• the expected fraction of vertices ~u of Ti for which ~u · ~Y ∈ B is at most O(
√

c|B|);

• |Y i| ≤ O(
√

c lnn) for all 1 ≤ i ≤ n;

• 1
2cn ≤ ‖~Y ‖2

2 ≤ 3c
2 n.

Similar to the proof of Claim 10.2, the last two of these imply that f~v is a (ǫ, 0)-Gaussianic cut for Ti, as
long as O(

√
c lnn/n) ≤ γ and O(

√
c|B|) ≤ ǫ. The latter holds by design; the former holds so long as we take

n ≥ poly(c/γ). But when f~v is a (ǫ, 0)-Gaussianic cut for Ti, we have valTi
(f~v) ≤ s + η/3. Note also that
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O(
√

c|B|) ≤ η/24 by design.

Overall, we conclude that for each i independently we have valTi
(f~v) ≤ s + η/3, except with probability

at most O(1/n) over the choice of orientations. If we ensure that n ≥ O(1/η), we conclude that the expected
value of valTi

(f~v) is at most s + η/2. Similarly, we can conclude that the expected fraction of vertices ~u of
Ti for which ~u · ~v ∈ B is at most η/12. Since valG(f~v) = avgi∈[m] valTi

(f~v), a Chernoff bound implies that

item (1) above holds except with probability at most exp(−O(η2m)). Similarly, item (2) above holds except
with probability at most exp(−O(η2m)). If we take m ≫ d log d then this probability will be much smaller
than O(c

√
d/γ)−d (treating c, γ, and η as constants), and so we get that both items (1) and (2) hold with

high probability for all net points simultaneously, by a union bound.

As in [FS02], the overall constraints we have on m and d are that n2 log m ≪ d ≪ m/ logm, and this
can clearly be realized. 2

We end this section by discussing the issue of self-loops and the construction of Alon, Sudakov, and
Zwick [ASZ02]. If we use Theorem 1.15 with the noise sensitivity (1, ρ0)-mixture tests constructed in Sec-
tion 9, we get a hard instance for RPR2, but one that might be considered slightly unsatisfactory: this is
because the embedded graph G constructed has self-loops. However one can’t simply dismiss embedded
graphs with self-loops, because optimally embedded graphs can have self-loops. In fact, Alon, Sudakov,
and Zwick’s construction is the following: for each (1, ρ0)-mixture distribution, they construct a self-loopless
graph for which the optimal SDP embedding is essentially the noise sensitivity (1, ρ0)-mixture test. More
precisely, it is the version in which vertices are connected if their inner product is exactly ρ0 or 1. The
technique of [ASZ02] involves taking the (1, ρ0)-mixture test and replacing the self-loops by cliques, similar
to the self-loop removal technique discussed in Appendix B. Indeed, using Alon, Sudakov, and Zwick’s
construction, we can even ensure that the hard embedded graphs for RPR2 that we get from Theorem 1.15
are optimally embedded, as in Theorem 11.1.

Appendices

A GapSDP(c) is continuous

In this appendix we prove Proposition 4.2. The fact that GapSDP(c) is increasing on [12 , 1] is immediate
from the definition (since if c′ > c, the inf for c′ is over a subset of the inf for c). We mainly focus on the
proof that GapSDP(c) is continuous on (1

2 , 1); this requires only a simple trick — the use of the isolated edge.
The proof of continuity at 1 requires appealing to Goemans-Williamson, and the continuity at 1

2 is trivial.
Finally, the proof that GapSDP(c) is strictly increasing requires an isolated clique trick, plus an appeal to a
result of Zwick [Zwi99].

Definition A.1 Given a graph G and a parameter 0 ≤ ǫ ≤ 1, we define the graph G⊔ edgeǫ to be the graph
in which G’s edge-weights are scaled by a factor of 1 − ǫ, and then two new vertices are added, with an edge
between them of weight ǫ.

The following is easy to verify:

Proposition A.2 Sdp(G ⊔ edgeǫ) = (1 − ǫ)Sdp(G) + ǫ and Opt(G ⊔ edgeǫ) = (1 − ǫ)Opt(G) + ǫ.

We now prove:

Proposition A.3 GapSDP(c) is continuous on (1
2 , 1).
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Proof: We first prove right-continuity on (1
2 , 1). Suppose c ∈ (1

2 , 1), and let s = GapSDP(c). Given any
sufficiently small ǫ > 0, assume c < c′ < c + (1 − c)ǫ/2 < 1. By the definition of GapSDP(c) = s we

can find some graph G with Sdp(G) ≥ c and Opt(G) ≤ s + ǫ/2. Let G̃ = G ⊔ edgeǫ/2. Then we have

Sdp(G̃) ≥ (1 − ǫ/2)c + ǫ/2 = c + (1 − c)ǫ/2 > c′, and further, Opt(G̃) ≤ (1 − ǫ/2)(s + ǫ/2) + ǫ/2 ≤ s + ǫ.
This proves GapSDP(c′) ≤ s + ǫ. Since GapSDP is increasing, we have proven right-continuity at c.

The proof of left-continuity on (1
2 , 1) is similar. Suppose c ∈ (1

2 , 1), and let s = GapSDP(c). Given
any sufficiently small ǫ > 0, assume 1

2 < c − 2ǫ(1 − c) < c′ < c. For any graph G with Sdp(G) ≥ c′,

let G̃ = G ⊔ edge2ǫ. We have Sdp(G̃) ≥ (1 − 2ǫ)c′ + 2ǫ = c′ + 2ǫ(1 − c′) ≥ c′ + 2ǫ(1 − c) ≥ c and also

Opt(G̃) = (1 − 2ǫ)Opt(G) + 2ǫ. By the definition of GapSDP(c) = s, it holds that Opt(G̃) ≥ s. Hence
(1−2ǫ)Opt(G)+2ǫ ≥ s which implies Opt(G) ≥ s− (1−Opt(G))2ǫ ≥ s− ǫ. This proves GapSDP(c′) ≥ s− ǫ.
Since GapSDP is increasing, we have proven left-continuity at c. 2

We next check continuity at the endpoints, c = 1
2 , 1. It’s easy to see that if Sdp(G) = 1 then G

must be bipartite and so Opt(G) = 1. Hence GapSDP(1) = 1. Next, by taking the sequence of complete
graphs Km (each with total edge-weight 1), which satisfy Opt(Km) ≤ 1

2 + 1
m → 1

2 as m → ∞, we see that
GapSDP(1

2 ) = 1
2 . Thus to check continuity at the endpoints we need to show that limc→(1/2)+ GapSDP(c) = 1

2
and limc→1− GapSDP(c) = 1.

The first of these follows simply because GapSDP(c) is sandwiched between 1
2 and c for all c. For the sec-

ond of these, suppose G is any graph with Sdp(G) ≥ 1−ǫ. The analysis of Goemans and Williamson [GW95]
implies that one can find a cut in G with value at least 1 − O(

√
ǫ). Thus GapSDP(1 − ǫ) ≥ 1 − O(

√
ǫ), and

so limc→1− GapSDP(c) = 1 as claimed.

Finally, we check that GapSDP(c) is strictly increasing. For this we introduce isolated cliques:

Definition A.4 Given a graph G and two parameters m ∈ N and 0 ≤ ǫ ≤ 1, we define the graph G ⊔ Km,ǫ

to be the graph in which G’s edge-weights are scaled by a factor of 1 − ǫ, and then an isolated m-clique is
added, whose total edge-weight is ǫ.

Using the fact that Opt(Km,1) ≤ 1
2 + 1

m , one can check:

Proposition A.5 Sdp(G ⊔ Km,ǫ) ≥ (1 − ǫ)Sdp(G) + ǫ/2 and Opt(G ⊔ Km,ǫ) ≤ (1 − ǫ)Opt(G) + (1
2 + 1

m )ǫ.

We now have:

Proposition A.6 GapSDP(c) is strictly increasing on [ 12 , 1].

Proof: It’s enough to check this on (1
2 , 1). So suppose 1

2 < c < c′ < 1, and write s′ = GapSDP(c′).
Zwick [Zwi99] was the first to show that c′ > 1

2 implies s′ > 1
2 ; Charikar and Wirth [CW04] specifically

proved that Sdp(G) ≥ 1
2 +γ implies Opt(G) ≥ 1

2 +Ω(γ/ log(1/γ)). Thus we have s′ > 1
2 . Write ǫ = (c′−c)/c′.

Select m large enough that s′ − 1
2 − 1

m is still strictly positive. Finally, take δ > 0 so that δ < (s′ − 1
2 − 1

m )ǫ.
By definition of GapSDP(c′) = s′, we can find a graph G′ with Sdp(G′) ≥ c′ and Opt(G′) ≤ s′ + δ. Let

G = G′⊔Km,ǫ. Then Sdp(G) ≥ (1−ǫ)c′+ǫ/2 ≥ (1−ǫ)c′ = c. Further, Opt(G) ≤ (1−ǫ)(s′+δ)+(1
2 + 1

m)ǫ ≤
s′ + (1

2 + 1
m − s′)ǫ + δ < s′ − δ + δ = s′. We conclude that GapSDP(c) < s′ = GapSDP(c′). Thus GapSDP(c)

is indeed strictly increasing. 2

B SDP gaps based on infinite, self-looped graphs

In this appendix we prove Proposition 4.1.

Proof: Write G0 = G. We will transform G0 into G1, an infinite graph on vertex set Bd; then G1 into G2, a
finite graph (with self-loops); then G2 into G3, a self-loopless graph; then G3 into G4, an unweighted graph.
The desired graph will then be G′ = G4. The first transformation uses the idea of embedded graphs, and
the remaining transformations are all previously known.
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Let g : Rd → Bd achieving the sup in the definition of Sdp(G0) to within ǫ. Let G1 be the infinite graph
on Bd given by pushing forward G0 via g, i.e., G1(A, B) = G0(g

−1(A), g−1(B)) (here we’re identifying a graph
with the probability measure defining its ‘edge weights’). We immediately get E(x,y)∼G1

[ 12 − 1
2x · y] ≥ c− ǫ.

We can think of this as saying:
‘Sdp(G1)’ ≥ c − ǫ, (34)

with the identity mapping as the embedding. Further,

Opt(G1) ≤ s, (35)

because for any fractional cut h : Bd → [−1, 1] for G1, the cut h ◦ g : Rd → [−1, 1] for G0 achieves the same
value, E(x,y)∼G1

[12 − 1
2h(x)h(y)] = E(x,y)∼G0

[12 − 1
2 (h ◦ g(x))(h ◦ g(y))].

We next discretize G1 in the manner of, say, Feige and Schechtman [FS02]. Choose an ǫ-net N within
Bd of size at most O(1/ǫ)d. Further, partition Bd into Voronoi cells based on N , with a disjoint cell Cv for
each v ∈ N . Now define the (finite) graph G2 on N by taking G2(u, v) = G1(Cu, Cv) (again, we identify a
graph with its edge distribution). We claim

Sdp(G2) ≥ c − 3ǫ. (36)

To see this, recall that the identity embedding for G1 achieves E(x,y)∼G1
[ 12 − 1

2x · y] ≥ c − ǫ. Now if x is in
the cell Cu and y is in the cell Cy, then x · y = (u + η1) · (v + η2) for some vectors η1, η2 of length at most
ǫ; this implies |x · y − u · v| ≤ 3ǫ. Since we can draw from G2 by drawing (x, y) ∼ G1 and then taking (u, v)
such that x ∈ Cu and y ∈ Cv, we conclude that E(u,v)∼G2

[12 − 1
2u · v] ≥ c − ǫ − 3

2ǫ. We conclude that (36)
holds with the identity map as the embedding. The fact that

Opt(G2) ≤ s (37)

follows for the same reason as (35) — any cut for G2 can be extended to an equally good cut for G1.

We now eliminate self-loops from G2, forming G3, using the construction in the appendix of Khot and
O’Donnell [KO06], which itself is based on a trick of Arora, Berger, Hazan, Kindler, and Safra [ABH+05].
It is shown therein that for any ǫ > 0, we can take G3 to have O(1/ǫ)2 times as many vertices as G2, and
satisfy

Sdp(G3) ≥ Sdp(G2) ≥ c − 3ǫ, (38)

and
Opt(G3) ≤ Opt(G2) ≤ s + ǫ. (39)

Finally, we form G′ = G4 from G3, converting weighted edges to unweighted edges. There is a simple
randomized way to do this (see, e.g., [BGS98, CST01]), taking a weighted graph on m vertices into an
unweighted one on poly(m/ǫ) vertices, such that

Sdp(G4) ≥ Sdp(G3) − ǫ ≥ c − 4ǫ, (40)

and
Opt(G4) ≤ Opt(G3) + ǫ ≤ s + 2ǫ. (41)

Since G3 has O(1/ǫ)d+2 vertices, our G4 has n = (1/ǫ)O(d) vertices, as claimed. The proof follows after
replacing ǫ by ǫ/4. 2

C RPR2 — implementation issues

In this section we mention a few implementation issues that arise in the use of the RPR2 framework
and discuss how they affect our algorithmic guarantees. All of these issues have been considered before;
see [GW95, MR99, FL06, FS02, EIO02].
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Exact solving of the SDP. The SDP-solving guarantee one actually has is that a solution within ǫ
of optimum can be found in time poly(n) · log(1/ǫ). We have already treated this issue in the proof of
Corollary 5.4. Another related issue is that the vectors returned by the SDP-solver may not lie precisely on
the unit sphere, something we assumed in our analysis. This can be taken care of by shrinking all vectors
slightly so that they lie within the unit ball, and then adding a fictitious extra coordinate with tiny values
to make the vectors have length exactly 1.

Choosing Gaussian random variables. Again, this can not be done precisely, but the approximation
methods of Mahajan and Ramesh [MR99] shows that one can occur ǫ loss at the expense only of poly(n, 1/ǫ)
time.

Expectation vs. high probability vs. deterministic. Our results have been concerned with showing
the expected value of the fractional cut produced by the (randomized) RPR2 algorithm is at least S(c).
One can turn this into a high-probability result, losing only an additive ǫ in cut value, by using poly(n, 1/ǫ)
independent repetitions. Alternatively, one can derandomize the RPR2 framework, again losing only an
additive ǫ in the cut value, via the method of conditional expectations; this can be done in poly(n, 1/ǫ)
time [MR99] or O(n) · 2poly(1/ǫ) time [EIO02]. Having done either of these, one has a fractional cut with
value at least S(c)− ǫ. This can be converted into a proper cut with at least the same value by the method
of conditional expectations.

Multiple rounding functions. As discussed in Section 1.4, we also want to try a collection R of rounding
functions. For a high-probability results, we can simply repeat the algorithm O(|R| log |R|) times for each
rounding function and this will achieve what the best of them does. Alternatively, we can just use the
derandomized algorithms once for each r ∈ R.

Proper cuts when G has self-loops. Given a graph G with self-loops, we cannot actually find proper
cuts with value at least S(Sdp(G)). For example, if G consists of a single self-loop then Sdp(G) = 1

2 (via
the embedding mapping the vertex to 0), but there is no proper cut of value 1

2 . The way to interpret our
guarantee for graphs G with self-loops is as follows: First, remove the self-loops from G, forming G′ —
note that this does not change the value of the optimal proper cut. Then our algorithm achieves at least
S(Sdp(G′)) − ǫ ≥ S(O(G)) − ǫ, where O(G) denotes the value of the optimal proper cut in G.

D Improved asymptotics of S(1
2 + ǫ)

As described in Section 2.3, Charikar and Wirth [CW04] established GapSDP(1
2 + ǫ) ≥ 1

2 + Ω(ǫ/ ln(1/ǫ)) and
Khot and O’Donnell [KO06] established GapSDP(1

2 + ǫ) ≤ 1
2 + O(ǫ/ ln(1/ǫ)). In this appendix we carefully

examine these proofs and conclude the following:

Theorem D.1 GapSDP(1
2 + ǫ) = S(1

2 + ǫ) = 1
2 + (1

2 ± o(1)) · ǫ/ ln(1/ǫ).

Proof: We upper-bound S(c) essentially by repeating the argument in [KO06], paying more attention to
the constants. Take P to be the (1, ρ0)-distribution with weight p = 2

3 + 4
3ǫ on ρ0 = − 1

2 and weight 1
3 − 4

3ǫ
on 1. Now if r : R → [−1, 1] is any odd one-dimensional rounding function, we have

valGP
(r) = 1

2 − 1
2

[
(1
3 − 4

3ǫ)S1(r) + (2
3 + 4

3ǫ)S−1/2(r)
]

= 1
2 −

∑

odd s

(
1
6 − 2ǫ

3 + (1
3 + 2ǫ

3 )(− 1
2 )s
)
r̂(s)2

≤ 1
2 + ǫr̂(1)2 −

∑

odd s≥3

(1
8 − 3

4ǫ)r̂(s)2 = 1
2 + ǫr̂(1)2 − (1

8 − 3
4ǫ)E[(r − Lr)2], (42)

where L denotes the ‘projection to degree 1’ operator; i.e., Lr(x) = r̂(x)x. As in [KO06] we consider the
value of σ2 := r̂(1)2 = E[(Lr)2], the variance of the Gaussian Lr(x). Using |r| ≤ 1, we lower-bound

E[(r − Lr)2] ≥ E[1{|Lr|≥1} · (sgn(r) − Lr)2],
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which asymptotically is σΘ(1) · exp(−1/2σ2). If σ ≫ 1/
√

2 ln(1/ǫ) then the final term in (42) will ex-
ceed ǫ, making the overall quantity less than 1

2 . Thus in upper-bounding (42) we can assume σ ≤ (1 +

o(1))/
√

2 ln(1/ǫ), and thus we get an upper bound of 1
2 + (1

2 + o(1))ǫ/ ln(1/ǫ), as claimed.

To lower-bound GapSDP(1
2 + ǫ) we refer to [CW04, equation (11)], which shows that

GapSDP(1
2 + ǫ) ≥ 1

2
+

ǫ

T 2
− 4e−T 2/2

for every T ≥ 1. By taking T = (1− o(1)) ·
√

2 ln(1/ǫ), we get a lower bound of 1
2 +(1

2 − o(1)) · ǫ/ ln(1/ǫ). 2

E Approximate values of S(c)

c S(c) c S(c) c S(c) c S(c)
0.505 0.5008 0.590 0.5414 0.675 0.6012 0.760 0.6694
0.510 0.5021 0.595 0.5446 0.680 0.6050 0.765 0.6736
0.515 0.5036 0.600 0.5478 0.685 0.6089 0.770 0.6778
0.520 0.5053 0.605 0.5510 0.690 0.6127 0.775 0.6820
0.525 0.5072 0.610 0.5544 0.695 0.6167 0.780 0.6862
0.530 0.5092 0.615 0.5577 0.700 0.6206 0.785 0.6905
0.535 0.5113 0.620 0.5611 0.705 0.6245 0.790 0.6947
0.540 0.5136 0.625 0.5646 0.710 0.6285 0.795 0.6990
0.545 0.5160 0.630 0.5681 0.715 0.6325 0.800 0.7033
0.550 0.5185 0.635 0.5716 0.720 0.6365 0.805 0.7076
0.555 0.5211 0.640 0.5752 0.725 0.6406 0.810 0.7119
0.560 0.5238 0.645 0.5788 0.730 0.6446 0.815 0.7162
0.565 0.5265 0.650 0.5825 0.735 0.6487 0.820 0.7206
0.570 0.5294 0.655 0.5861 0.740 0.6528 0.825 0.7249
0.575 0.5323 0.660 0.5898 0.745 0.6569 0.830 0.7293
0.580 0.5352 0.665 0.5936 0.750 0.6611 0.835 0.7336
0.585 0.5383 0.670 0.5974 0.755 0.6652 0.840 0.7380
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S(c) vs. c.

42


