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Abstract

Let p(Y1,...,Yy, 24, ..., Z,) be a self-adjoint noncommutative polynomial, with coefficients
from C"*7, in the indeterminates Y7, ..., Y, (considered to be self-adjoint), the indeterminates
Z1,...,Z, and their adjoints Zf,...,Z¥. Suppose Yi,...,Y; are replaced by independent
random n x n matching matrices, and Z, ..., Z, are replaced by independent random n x n
permutation matrices. Assuming for simplicity that p’s coefficients are 0-1 matrices, the result
can be thought of as a kind of random rn-vertex graph G. As n — oo, there will be a natural
limiting infinite graph X that covers any finite outcome for G. A recent landmark result
of Bordenave and Collins shows that for any ¢ > 0, with high probability the spectrum of
a random G will be e-close in Hausdorff distance to the spectrum of X (once the suitably
defined “trivial” eigenvalues are excluded). We say that G is “e-near fully X-Ramanujan”.

Our work has two contributions: First we study and clarify the class of infinite graphs X
that can arise in this way. Second, we derandomize the Bordenave—Collins result: for any X,
we provide explicit, arbitrarily large graphs G that are covered by X and that have (nontrivial)
spectrum at Hausdorff distance at most ¢ from that of X. This significantly generalizes the
recent work of Mohanty et al., which provided explicit near-Ramanujan graphs for every
degree d (meaning d-regular graphs with all nontrivial eigenvalues bounded in magnitude by
2+/d — 1 + ¢). To give two simple examples:

e For any d > ¢ > 2 we obtain explicit arbitrarily large (c,d)-biregular graphs whose
spectrum (excluding 0, i\/a) is e-close in Hausdorff distance to
[-(WVd—1++Vc—1),-(Vd—1—+c-1)]u[(Vd—1—-+c—1),(Vd—1++c—1)].

e We obtain explicit arbitrarily large graphs covered by the modular group —i.e., 3-regular
graphs in which every vertex participates in a triangle — whose spectrum (excluding 3)
is e-close in Hausdorff distance to

{—2} U [1—\/1§+8ﬁ, 1—\/13—8\@] {0} U [1—&-\/1;—8\@, 1+\/1§,+8\@]'

As an application of our main technical theorem, we are also able to determine the “eigen-
value relaxation value” for a wide class of average-case degree-2 constraint satisfaction prob-
lems.

*Or, ABCDEFG — Adventures with Bordenave—Collins: Derandomization and Examples of Fun Graphs
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1 Introduction

Let G be an n-vertex, d-regular graph. Its adjacency matrix A will always have a “trivial” eigen-
value of d corresponding to the eigenvector 1(1,1,...,1), the stationary probability distribution
for the standard random walk on G. Excluding this eigenvalue, a bound on the magnitude A of
the remaining nontrivial eigenvalues can be very useful; for example, A can be used to control
the mixing time of the random walk on G [Mar08], the maximum cut in G [Fie73], and the error
in the Expander Mixing Lemma for G [AC88].

The Alon-Boppana theorem [Alo86] gives a lower bound on how small A can be, namely
2v/d —1—04-4(1). This number 2+/d — 1 arises from the spectral radius p(T,) of the infinite
d-regular tree T,;, which is the universal cover for all d-regular graphs (d > 3). Celebrated
work of Lubotzky-Phillips—Sarnak [LPS88] and Margulis [Mar88] (see also [Tha66]) shows that
for infinitely many d, there exists an explicit infinite family of d-regular graphs satisfying A <
2+/d — 1. Graphs meeting this bound were dubbed d-regular Ramanujan graphs, and subsequent
constructions [Chi92, Mor94] gave explicit families of d-regular Ramanujan graphs whenever
d —1 is a prime power. The fact that these graphs are optimal (spectral) expanders, together
with the fact that they are explicit (constructible deterministically and efficiently), has made them
useful in a variety of application areas in computer science, including coding theory [SS96],
cryptography [CFL*18], and derandomization [NN93].

The analysis of LPS/Margulis Ramanujan graphs famously relies on deep results in number
theory, and it is still unknown whether infinitely many d-regular Ramanujan exist when 4 —
1 is not a prime power. On the other hand, if one is willing to settle for nearly-Ramanujan
graphs, there is a simple though inexplicit way to construct them for any 4 and n: Friedman’s
landmark resolution [Fri08] of Alon’s conjecture shows that for any ¢ > 0, a random n-vertex
d-regular graph has A < 2v/d — 1 + ¢ with high probability (meaning probability 1 — 0,—.4(1)).
The proof of Friedman’s theorem is also very difficult, although it was notably simplified by
Bordenave [Bor19]. The distinction between Ramanujan and nearly-Ramanujan does not seem to
pose any problem for applications, but the lack of explicitness does, particularly (of course) for
applications to derandomization.

There are several directions in which Friedman’s theorem could conjecturally be generalized.
One major such direction was conjectured by Friedman himself [Fri03]: that for any fixed base
graph K with universal cover tree X, a random n-lift G of K is nearly “X-Ramanujan” with
high probability. Here the term “X-Ramanujan” refers to two properties: first, X covers G in
the graph theory sense; second, the “nontrivial” eigenvalues of G, namely those not in spec(K),
are bounded in magnitude by the spectral radius p(X) of X. The modifier “nearly” again refers
to relaxing p(X) to p(X) + ¢, here. (We remark that for bipartite K, Marcus, Spielman, and
Srivastava [MSS15] showed the existence of an exactly X-Ramanujan n-lift for every n.) An
even stronger version of this conjecture would hold that G is near-fully X-Ramanujan with high
probability; by this we mean that for every ¢ > 0, the nontrivial spectrum of G is e-close in
Hausdorff distance to the spectrum of X (i.e., every nontrivial eigenvalue of G is within ¢ of a
point in X’s spectrum, and vice versa).

This stronger conjecture — and in fact much more — was recently proven by Bordenave and
Collins [BC19]. Indeed their work implies that for a wide variety of non-tree infinite graphs X,
there is a random-lift method for generating arbitrarily large finite graphs, covered by X, whose
non-trivial spectrum is near-fully X-Ramanujan. However besides universal cover trees, it is not
made clear in [BC19] precisely to which X’s their results apply.

Our work has two contributions. First, we significantly clarify and partially characterize the
class of infinite graphs X for which the Bordenave—Collins result can be used; we term these MPL



graphs. We establish that all free products of finite vertex-transitive graphs [Zno75] (including
Cayley graphs of free products of finite groups), free products of finite rooted graphs [Que94],
additive products [MO20], and amalgamated free products [VK19], inter alia, are MPL graphs —
but also, that MPL graphs must be unimodular, hyperbolic, and of finite treewidth. The second
contribution of our work is to derandomize the Bordenave—Collins result: for every MPL graph X
and every € > 0, we give a poly(n)-time deterministic algorithm that outputs a graph on n’ ~ n
vertices that is covered by X and whose nontrivial spectrum is e-close in Hausdorff distance to
that of X.

1.1 Bordenave and Collins’s work

Rather than diving straight into the statement of Bordenave and Collins’s main theorem, we will
find it helpful to build up to it in stages.

d-regular graphs. Let us return to the most basic case of random n-vertex, d-regular graphs.
A natural way to obtain such a graph G, (provided n is even) is to independently choose d
uniformly random matchings M, ... M, on the same vertex set V,, = [n] = {1,2,...,n} and to
superimpose them. It will be important for us to remember which edge in G, came from which
matching, so let us think M, ..., M, as being colored with colors 1,...,d. Then G, may be
thought of as a “color-regular graph”; each vertex is adjacent to a single edge of each color.

Moving to linear algebra, the adjacency matrix A, for G, may be thought of as follows: First,
we take the formal polynomial p(Y3,...,Y;) = Y1 +--- +Y;. Next, we obtain A, by substituting
Y; = Py, for each j € [d], where the o/’s are independent uniformly random matchings on [#] (i.e.,
permutations in &(n) with all cycles of length 2) and where P, denotes the permutation matrix
associated to .

If we fix a vertex o € V,, and a number ¢ € IN, with high probability the radius-¢ neighborhood
of 0 in G, will look like the radius-¢/ neighborhood of the root of an infinite d-color-regular
tree (i.e., the infinite d-regular tree in which each vertex is adjacent to one edge of each color).
This tree may be identified with the Cayley graph of the free group Vo, = Zy * Zy x - - - Z with
generators g1, ...,84. These generators act as permutations on Vi, by left-multiplication. Indeed,
if one writes Py, for the associated permutation operator on £5(Vy), then the adjacency operator
for the Cayley graph is A, = p(Pg,, ..., Py,).

Bordenave and Collins’s generalization of Friedman’s theorem may thus be viewed as follows:
for p(Y1,...,Ys) = Y1 +---+Y; we have that for any ¢ > 0, if A, = p(Py,,...,Pr,) and Ay =
p(Pg,, ..., Pg,), then with high probability the “nontrivial” spectrum of A, is e-close in Hausdorff
distance to the spectrum of A,,. Here “nontrivial” refers to excluding p(1,...,1) = d.

Weighted color-regular graphs. The Bordenave—Collins theorem is more general than this,
however. It also applies to (edge-)weighted color-regular graphs. Let ay,...,a; € R be real weights
associated with the d colors, and consider the more general linear polynomial p(Y3,...,Yy) =
mYr+---+a3Y;. Then A, = p(Py,...,Ps,) is the (weighted) adjacency matrix of a random
“color-regular” graph in which each vertex is adjacent to one edge each of colors 1,...,d, with
edge-weights ay,...,a; respectively. Similarly, A = p(Py,,...,Pg,) is the adjacency operator
on /»(Vy) for the version of the d-color-regular infinite tree in which the edges of color j are
weighted by 4;. Again, the Bordenave-Collins result implies that for all ¢ > 0, with high proba-
bility the nontrivial spectrum of A, (meaning, when p(1,...,1) = Z]‘ a;j is excluded) is e-close in
Hausdorff distance to the spectrum of A.



There are several examples where this may be of interest. The first is non-standard ran-
dom walks on color-regular graphs; for example, taking a; = 1/2, a, = 1/3, a3 = 1/6 models
random walks where one always “takes the red edge with probability 1/2, the blue edge with
probability 1/3, and the green edges with probability 1/6”. Another example is the case of
ap = - = agp = +1, agpy = -+ = ag = —1. Here A, is a d-regular random graphs in
which each vertex is adjacent to d/2 edges of weight +1 and d/2 edges of weight —1. This is
a natural model for random d-regular instances of the 2XOR constraint satisfaction problem.
Studying the maximum-magnitude eigenvalue of A, is interesting because it commonly used to
efficiently compute an upper bound on the optimal CSP solution (which is NP-hard to find in
the worst case); see Section 1.4 for further discussion. Conveniently, the “trivial eigenvalue” of
A, is 0, and the spectrum of Ay is easily seen to be identical to that of the d-regular infinite tree,
[-2vd —1,2+/d —1]. Thus this setting is very similar to that of unweighted random d-regular
graphs, but without the annoyance of the eigenvalue of d.

Self-loops and general permutations. The Bordenave—Collins theorem is more general than
this, however. Here are two more modest generalizations it allows for. First, one can allow
“self-loops” in our template polynomials. In other words, one can generalize to polynomials
p(Y1,...,Ys) = aol + ;Y1 +--- +a;Yy, where ap € R and 1 can be thought of as a new “in-
determinate” which is always substituted with the identity operator (both in the finite case of
producing A, and in the infinite case of Ay). Second, in addition to having Y; indeterminates
that are substituted with random 7 x n matching matrices, one may also allow new indeter-
minates that are substituted with uniformly random 7n x n general permutation matrices. One
should be careful to create self-adjoint matrices, i.e. undirected (weighted) graphs, though. To

this end, Bordenave and Collins consider polynomials of the form

p(Yi,... . Y4, Z1,..., Z) =agl + Y1+ -+ agYy+ a2y + -+ g Ze +aij 27 -+ a), 2y

)
Hereay,...,a;€e R, a;5,1,...,a4,.€ C,and Z4, ..., Z, are new indeterminates that in the finite case
are always substituted with random 7n x n general permutation matrices. We say that the above
polynomial is “self-adjoint”, with the indeterminates 1,Y],...,Y; being treated as self-adjoint.
Note that the finite adjacency matrix A, = p(Py,, ..., Ps,, Py, ware-r Poy ,,) that is self-adjoint and
hence that represents a (weighted) undirected n-vertex graph. (As a reminder, here o,..., 0y
are random matching permutations and o4,1,...,04, are random general permutations.) As
for the infinite case, we extend the notation V,, to denote Z3? « Z*°, the free product of d copies
of Z, and e copies of Z. Then Ay, = p(Pg,,..., Py, P P,...), where g4.1,...,84+e denote

8d+17 7~ 8d+e

the generators of the Z factors (and note that Pé"d+i =P 1 =P ).

8d+i Sati

Matrix coefficients. Now comes one of the more dramatic generalizations: the Bordenave-
Collins result also allows for matrix edge-weights/coefficients. One motivation for this generalization
is that it is needed for the “linearization” trick, discussed below. But another motivation is that
it allows the theory to apply to non-regular graphs. The setup now is that for a fixed dimension
r € IN*, we will consider color-regular graphs where each color j is now associated with an edge-
weight that may be a matrix a; € C"*". The adjacency matrix of an n-vertex graph with r x r matrix
edge-weights is, naturally, the n x n block matrix whose (u,v) block is the r x r weight matrix
for edge (u,v). (To be careful here, an undirected edge should be thought of as two opposing
directed edges; we insist these directed edges get matrix weights that are adjoints of one another,
so as to overall preserve self-adjointness.) In case all edges have the same matrix weight, the



resulting adjacency matrix is just the Kronecker product of the original adjacency matrix and the
weight. For example, if P, is the adjacency matrix of a matching on [n], and each edge in the
matching is assigned the weight

0

(the adjacency matrix of =),

— O -

1
1
0

[
OO O =

00

then the resulting matrix-weighted graph has adjacency matrix P, ® a, an operator on C" @ C’.

Note that a matrix weighted graph’s adjacency operator on C" ® C" can simultaneously be
viewed as an operator on C". In this viewpoint, it is the adjacency matrix of an (uncolored)
scalar-weighted nr-vertex graph, which we call the extension of the underlying matrix-weighted
graph. The situation is particularly simple when the matrix edge-weights are 0-1 matrices; in
this case, the extension is an ordinary unweighted graph. In our above example, P, ®a is the
adjacency matrix of #n/2 disjoint copies of the graph formed from Cg¢ by taking two opposing
vertices and hanging a pendant edge on each. Notice that this is a non-regular graph, even
though the original matching is regular.

The Bordenave—Collins theorem shows that for any self-adjoint polynomial as in Equation (1),
where the coefficients 4; are from C"", we again have that for all ¢ > 0, the resulting random
adjacency operator A, (on C™") has its nontrivial spectrum e-close in Hausdorff distance to that of

the operator Ay, (on #2(V,, x [r])). Here the “nontrivial spectrum” refers to the nr — r eigenvalues

obtained by removing the eigenvalues of p(1,...,1) = Z?:o aj + Z]e-:l (aj + a7) from the spectrum

of A,,.

The most notable application of this result is the generalized Friedman conjecture about the
spectrum of random lifts of a base graph K = (R, E). That result is obtained by taking r = |R|,
e=|E,d=0,a =0,and p = Z(M)eE AyoZyyp, Where (u,v) denotes a directed edge, a,, is the
r x r matrix that has a single 1 in the (u,v) entry (0’s elsewhere), and where Z,, denotes Z,
when v > u. In this case, the random matrices A, are adjacency matrices of (extension) graphs
that are random n-lifts of K, and the operator A, is the adjacency operator for the universal
cover tree X of K.

Nonlinear polynomials. We now come to Bordenave and Collins’s other dramatic generaliza-
tion: the polynomials p that serve as “recipes” for producing random finite graphs and their
infinite covers need not be linear. Restricting to 0-1 matrix weights but allowing for nonlinear
polynomials leads to a wealth of possible infinite graphs X (not necessarily trees), which we term
MPL (matrix polynomial lift) graphs. (Note that even if one ultimately only cares about matrix
weights in {0,1}"*”, the “linearization” reduction produces linear polynomials with general ma-
trix weights.) An example MPL graph is depicted on our title page; it arises from the polynomial

01 0001
1 01 0 0O
010100
001010l 1+ a1z + 5141ZT +azeZo + 0'163Z;< + ay5Zr71 + a5ZZi“Z§",
00 0101
1 00 01O

where again a,, denotes the 6 x 6 matrix with a 1 in the (1, v) entry.
We may now finally state Bordenave and Collins’s main theorem:

7



Theorem 1.1. Let p be a self-adjoint noncommutative polynomial with coefficients from C™" in the self-
adjoint indeterminates 1,Y1, ..., Y, and the indeterminates Z,...,2.,Z5,...,Z;. Then for all e, > 0
and sufficiently large n, the following holds:

Let A, be the operator on C" @ C" obtained by substituting the n x n identity matrix for 1, inde-
pendent random n x n matching matrices for Yi,...,Y,;, and independent random n x n permutation
matrices for 71, ..., Z.. Write A, | for the restriction of A, to the codimension-r subspace orthogonal to
span{(1,...,1)} ® C". Then except with probability at most B, the spectra o(A,, 1) and 0(Ay) are at
Hausdorff distance at most e.

Here Ay is the operator acting €»(V.,) ® €7, where Vo, = Z3% « ¢ is the free product of d copies
of the group Zy and e copies of the group Z, obtained by substituting for Y1,...,Yy and Zy,...,Z, the
left-reqular representations of the generators of V..

As discussed further in Section 1.3, our work derandomizes this theorem by providing explicit
(deterministically poly(n)-time computable) n x n permutation matrices Py, ..., P;, (matchings),
Py \s--., Py, (general), for which the conclusion holds. In fact, our result has the stronger
property that for fixed constants d,e,r,k, R, and ¢, we construct in deterministic poly(n) time
Py, ..., Py,,, that have the desired e-Hausdorff closeness simultaneously for all polynomials p (with
degree bounded by k and coefficient matrices bounded in norm by R). A very simple but amusing
consequence of this is that for every constant D € IN* and & > 0 we get explicit n-vertex matchings
My, ..., Mp such that M + M3 + --- + M, is e-nearly d-regular Ramanujan for each d < D.

1.2 X-Ramanujan graphs

We would like to now rephrase the Bordenave—Collins result in terms of a new definition of
“X-Ramanujan” graphs. Over the years, a number of works have raised the question of how to
generalize the classic notion of a d-regular Ramanujan graph to the case of non-regular graphs G;
see, e.g., [MO20, Sec. 2.2] for an extended discussion. A natural first possibility is simply to com-
pare the “nontrivial” spectral of G to that of its universal cover tree X. However this idea is
rather limited in scope, particularly because it only pertains to locally tree-like graphs. To illus-
trate the deficiency, consider the sorts of graph G arising from average-case analysis of constraint
satisfaction problems. For example, random regular instances of the 3Sat or NAE-3Sat problem
lead one to study graphs G composed of triangles, arranged such that every vertex participates
in a fixed number of triangles — say, 4, for a concrete example. Such graphs are 8-regular, so
in analyzing G’s second-largest eigenvalue one might be tempted to compare it to the Alon—
Boppana bound 2+/7, inherited from the 8-regular infinite tree. However as the below theorem
of Grigorchuk and Zuk shows, the graph G will in fact always have second-largest eigenvalue
at least 1 +2v/6 —0(1) > 2+/7. The reason is that the finite triangle graph G is covered (in the
graph-theoretic sense’) by the (non-tree) infinite free product graph X = Cs » C3 * C3 * C3, which
is known to have spectral radius p(X) = 1 + 2V/6.

Theorem 1.2. ([GZ99]’s generalization of the Alon—Boppana bound.) Let X be an infinite graph and let
€ > 0. Then there exists ¢ > 0 such that any n-vertex graph G covered by X has at least cn eigenvalues at
least p(X) — €. (In particular, for large enough n the second-largest eigenvalue of G is at least p(X) — ¢.)

In light of this, and following [GZ99, Cla07, MO20], we instead take the perspective that the
property of “Ramanujan-ness” should derive from the nature of the infinite graph X, rather than
that of the finite graph G:

1For the complete definition of graph covering, see Definition 2.7.



Definition 1.3 (X-Ramanujan, slightly informal®). Given an infinite graph X, we say that finite
graph G is X-Ramanujan if:

e X covers G;

e the “nontrivial eigenvalues” of G are bounded in magnitude by p(X).
If the bound is relaxed to p(X) + ¢, we say that G is e-nearly X-Ramanujan.

Thus the classic definition of G being a “d-regular Ramanujan graph” is equivalent to be-
ing T ;-Ramanujan for T, the infinite d-regular tree. It was shown in [MO20] (via non-explicit
methods) that for a fairly wide variety of X, infinitely many X-Ramanujan graphs exist. This
wide variety includes all free products of Cayley graphs, and all “additive products” (see Defini-
tion 3.7). Friedman’s generalized conjecture (proven by Bordenave—Collins) holds that whenever
X is the universal cover tree of a base graph K, random lifts of K are e-nearly X with high
probability (for any fixed & > 0).

With this perspective in hand, one can be much more ambitious. Take the earlier example
of graphs G where every vertex participates in 4 triangles; i.e., graphs covered by X = C3 x C3 *
Cs * C3, which is known to have spectrum ¢(X) = [1 —24/6,1 + 2+/6]. The above definition of
X-Ramanujan asks for G’s nontrivial eigenvalues to be upper-bounded in magnitude by 1 +2+/6.
But it seems natural to ask if G can also have these eigenvalues bounded below by 1 —2+1/6. As
another example, it well known that the spectrum of the (c,d)-biregular infinite tree T,; with
d>cis[-(Vd—1++c—1),—(vVd—1—-+vVc—1)]u{0}u[(WVd—1—+c—1),(v/d—1++c—1)],
which (when 0 is excluded) contains a notable gap between +(1/d —1 —+/c —1). Are there in-
finitely many (c, d)-biregular finite graphs G with nontrivial spectrum inside these two intervals?
(As far as we are aware, the answer to this question is unknown, but if an e-tolerance is allowed,
the Bordenave—Collins theorem gives a positive answer.) Even further we might ask for (c,d)-
biregular G’s whose nontrivial spectrum does not have any other gaps besides the one between
+(vd —1—+/c —1). Of course, since G’s spectrum is a finite set this is not strictly possible, but
we might ask for it to hold up to an €. Taking these questions to their limit leads to following
definition:

Definition 1.4 (Near-fully X-Ramanujan, slightly informal). Given an infinite graph X and ¢ > 0,
we say that finite graph G is e-near fully X-Ramanujan if:

e X covers G;

e every nontrivial eigenvalue of G is within € of a point X’s spectrum and vice versa —i.e,,
the Hausdorff distance of G’s nontrivial spectrum to that of X is at most e.

Example 1.5. It is known that for every ¢ > 0, a sufficiently large d-regular LPS/Ramanujan
graph G is e-near fully Tj-Ramanujan; i.e., every point in [-2+/d — 1,2+/d — 1] is within distance ¢
of spec(G).® Rather remarkably, is has also been shown this is true of every sufficiently large d-
regular Ramanujan graph [AGV16].

Bordenave and Collins’s Theorem 1.1 precisely implies that for any “MPL graph” — i.e.,
any infinite graph X arising from the “infinite lift” of a {0, 1} -edge-weighted polynomial —
we can use finite random lifts to (inexplicitly) produce arbitrarily large e-near fully X-Ramanujan
graphs. Our work, describes in the next section, makes this construction explicit, and significantly
characterizes which graphs are MPL.

2Both of the two bullet points in this definition require a caveat: (i) does “covering” allow for disconnected G?
(if) what exactly counts as a “nontrivial eigenvalue”? These points are addressed at the end of this section.
3This fact has been attributed to Serre. [Sar20]



Technical definitional matters: “nontrivial” spectrum and connectedness. As soon as we
move away from d-regular graphs, it’s no longer particularly clear what the correct definition
of “nontrivial spectrum” should be. For example, in Friedman’s generalized conjecture about
random lifts G of a base graph K with universal covering tree X, then “nontrivial spectrum”
of G is taken to be spec(G)\spec(K). But note that this definition is not a function just of X%,
since many different base graphs K can have X as their universal cover tree. Rather, it depends
on the “recipe” by which X is realized, namely as the “infinite lift” of K. Taking this as our
guide, we will pragmatically define “nontrivial spectrum” only in the context of a specific matrix
polynomial p whose infinite lift generates X; as in Bordenave—Collins’s Theorem 1.1, the trivial
spectrum is precisely spec(p(1,...,1)), the spectrum of the “1-lift of p”.

We also need to add a word about connectedness in the context of graph covering. Tradi-
tionally, to say that “X covers G” one requires that both X and G be connected. In the context
of the classic “d-regular Ramanujan graph” definition, there are no difficulties because d < 2 is
typically excluded; note that for d = 1 or 2 we have the random d-regular graphs are surely or
almost surely disconnected. However when we move away from trees it does not seem to be a
good idea to insist on connectedness. For one, there are many MPL graphs consist of multiple
disjoint copies of some infinite graph X; it seems best to admit X as an MPL graph in this case.
For two, it’s a remarkably delicate question as to when (the extension of) a random n-lift of a
matrix polynomial is connected. Fortunately, in most cases X is “non-amenable” and this implies
that the infinite explicit families of near fully X-Ramanujan graphs we produce are connected;
see Section 3.4 for discussions. Nevertheless, for convenience in this work we will make say (see
Definition 2.7) that “X covers G” provided each connected component of G is covered by some
connected component of X.

1.3 Our results, and comparison with prior work

The first part of our paper is devoted understanding the class of “MPL graphs”. Recall these are
defined as follows (cf. Definition 2.21): Suppose the Bordenave—Collins Theorem 1.1 is applied
with matrix coefficients a; € {0,1}"*". Then the resulting operator A, on £>(Vy) ® C" can be
viewed as the adjacency operator of an infinite graph on vertex set V,, x [r]. We say that X is an
MPL graph if (one or more disjoint isomorphic copies of) X can be realized in this way.

Our main results concerning MPL graphs are as follows:

e (Section 3.1.) All free products of Cayley graphs of finite groups are MPL graphs. More
generally, all “additive products” (as defined in [MO20]) are MPL graphs. Additionally, all
“amalgamated free products” (as defined in [VK19]) are MPL graphs. (Furthermore, there
are still more MPL graphs that do not appear to fit either category; e.g., the graph depicted
on the title page.)

e (Example 3.12) Some zig-zag products and replacement products (as defined in [RVW02])
of finite graphs may be viewed as lifts of matrix-coefficient noncommutative polynomials.

e (Proposition 3.17.) All MPL graphs have finite treewidth. (So, e.g., an infinite grid is not an
MPL graph.)

e (Proposition 3.26.) Each connected component of an MPL graph is hyperbolic. (So, e.g., an
MPL graph’s simple cycles are of bounded length.)

e (Proposition 3.31.) All MPL graphs are unimodular. (So, e.g., Trofimov [Tro85]’s “grand-
parent graph” is not an MPL graph.)
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e (Proposition 3.20.) Given an MPL graph (by its generating polynomial), as well as two
vertices, it is efficiently decidable whether or not these vertices are connected.

The remainder of our paper is devoted to derandomizing the Bordenave—Collins Theorem 1.1;
i.e., obtaining explicit (deterministically polynomial-time computable) arbitrarily large e-near
fully X-Ramanujan graphs. Thanks to the linearization trick utilized in [BC19], it eventually suf-
fice to derandomize Theorem 1.1 in the case of linear polynomials with matrix coefficients. This
means that one is effectively seeking e-near fully X-Ramanujan graphs for X being a (matrix-
weighted) color-regular infinite tree.

Our technique is directly inspired by the recent work of Mohanty et al. [MOP20a], which ob-
tained an analogous derandomization of Friedman’s theorem, based on Bordenave’s proof [Bor19].
Although the underlying idea (dating further back to [BLO6]) is the same, the technical de-
tails are significantly more complex, in the same way that [BC19] is significantly more complex
than [Bor19]. (See the discussion toward the end of [BC19, Sec. 4.1] for more on this compari-
son.) Some distinctions include the fact that the edge-weights no longer commute, one needs the
spectral radius of the nonbacktracking operator to directly arise in the trace method calculations
(as opposed to its square-root arising as a proxy for the graph growth rate), and one needs to
simultaneously handle a net of all possible matrix edge-weights.

Similar to [MOP20a], our key technical theorem Theorem 6.5 concerns random edge-signings
(essentially equivalent to random 2-lifts) of sufficiently “bicycle-free” color-regular graphs. Here
bicycle-freeness (also referred to as “tangle-freeness”) refers to the following:

Definition 1.6 (Bicycle-free). An undirected multigraph is said to be A-bicycle free provided that
the distance-A neighborhood of every vertex has at most one cycle.

We also use this terminology for an “n-lift’ — i.e., a sequence of permutations o,...,0y
(matchings), 0;41,...,04:. (general permutations) on V,, = [n] — when the multigraph with
adjacency matrix P, +---+ Py, + Py, + Py, + -+ Po,,, + Py, is A-bicycle free.

Od+1

Let us state our key technical theorem in an informal way (for the full statement, see Theo-
rem 6.5):

Theorem 1.7. (Informal statement.) Let G be an n-vertex color-regular graph with matrix weights
A1y 0d, A1, - Adye, A 1, -, 05,, € C, and assume G is A-bicycle free for A » (loglog n)z.
Consider a uniformly random edge-signing of G, and let B,, denote the nonbacktracking operator of the
result. Then for any € > 0, with high probability we have p(B,) < p(By) + €, where By, denotes the
nonbacktracking operator of the color-regular infinite tree with matrix weights aq, ..., a3 .

As in [MOP20a], although our proof of Theorem 1.7 is similar to, and inspired by, the proof
of the key technical theorem of Bordenave-Collins [BC19, Thm. 17], it does not follow from it in a
black-box way; we needed to fashion our own variant of it. Incidentally, this (non-derandomized)
theorem on random edge-signings is also needed for our applications to random CSPs; see Sec-
tion 1.4.

After proving Theorem 1.7, and carefully upgrading it so that the conclusion holds simulta-
neously for all weight sets (4;) (of bounded norm), the overall derandomization task is a straight-
forward recapitulation of the method from [BL06, MOP20a]. Namely, we first run through
the proof of the Bordenave-Collins theorem to establish that O(logn)-wise uniform random
permutations are sufficient to derandomize it. Constructing these requires n°1°8™) determin-
istic time, but we apply them with n = Ny = 29W1%8N) where N is (roughly) the size of
the final graph we wish to construct. Thus in N(? (log No) _ poly(N) deterministic time we ob-
tain a “good” Np-lift. We also show that this derandomized Np-lift will preserve the property
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of a truly random lift, that its associated graph is (with high probability) A-bicycle free for
A = O(log Np) = O(4/logN) » (loglog N)2. Next we show that 1/poly(N)-almost O(log N)-
wise uniform random bit-strings are sufficient to derandomize Theorem 1.7, and recall that these
can be constructed in poly(N) deterministic time. It then remains to repeatedly apply this 2-lifts
arising from the derandomized Theorem 1.7 to obtain an explicit “good” N’-lift, for N’ ~ Np. We
remark that, as in [BL06, MOP20a], this final N'-lift is not “strongly explicit’, although it does
have the intermediate property of being “probabilistically strongly explicit” (see Section 8 for
details). In the end we obtain the following theorem (informally stated; see Theorem 8.1 for the
full statement):

Theorem 1.8. (Informal statement.) For fixed constants d,e,r,R, and € > 0, there is a deterministic
algorithm that, on input n, runs in poly(n) time and outputs an n'-vertex unweighted color-reqular graph
(n' ~ n) such that the following holds: For all ways of choosing edge-weights ay, ..., a},, € C™" for the

colors with Frobenius-norm bounds |a;|, Haj_l g < R, the resulting color-reqular graph’s nonbacktracking

operator By has its nontrivial eigenvalues bounded in magnitude by p(By) + €, where By, denotes the
nonbacktracking operator for the analogously weighted color-reqular infinite tree.

At this point, it would seem that we are essentially done, and we need only apply the (non-
random) results from [BC19] that let them go from nonbacktracking operator spectral radius
bounds for linear polynomials (as in Theorem 1.8) to adjacency operator Hausdorff-closeness
for general polynomials (as in Theorem 1.1), taking a little care to make sure the parameters in
these reductions only depend on d,e,7, R, ¢, and k (the degree of the polynomial), and not on
the polynomial coefficients a; themselves. The tools needed for these reductions include: (i) a
version of the Ihara—Bass formula for matrix-weighted (possibly infinite) color-regular graphs, to
pass from nonbacktracking operators to adjacency operators ([BC19, Prop. 9, Prop. 10]); (ii) a re-
duction from bounding the spectral radius of nonbacktracking operators to obtaining Hausdorff
closeness for linear polynomials ([BC19, Thm. 12, relying on Prop. 10]); (iii) a way to ensure that
this reduction does not blow up the norm of the coefficients 4; involved; (iv) the linearization
trick to reduce Hausdorff closeness for general polynomials to that for linear polynomials. Un-
fortunately, and not to put too fine a point on it, there are bugs in the proof of each of (i), (ii), (iii)
in [BC19]. Correcting these is why the remainder of our paper (Sections 9 and 10) still requires
new material.* In brief, the bug in (i) involves a missing case for the spectrum of non-self-adjoint
operators B; the bug in (ii) arises because their reduction converts self-adjoint linear polynomials
to non-self-adjoint ones, to which their Theorem 17 does not apply. We fill in the former gap, and
derive an alternative reduction for (ii) preserving self-adjointness. Finally, the bug in (iii) seems
to require more serious changes. We patched it by first establishing only norm bounds for linear
polynomials, and then appealing to an alternative version of Anderson’s linearization [And13],
namely Pisier’s linearization [Pis18], the quantitative ineffectiveness of which required some ad-
ditional work on our part.

1.4 Implications for degree-2 constraint satisfaction problems

In this section we discuss applications of our main technical theorem on random edge-signings,
Theorem 1.7, to the study of constraint satisfaction problems (CSPs). In fact, putting this theorem

4 After consultation with the authors, we are hopeful they will soon be able to published amended proofs. The bug
in (i) is not too serious with multiple ways to fix it. The bug in (ii) is fixed satisfactorily in our work, and the authors
of [BC19] outlined to alternate fix involving generalizing [BC19, Thm. 17] to non-self-adjoint polynomials. The bug
in (iii) is perhaps the most serious, but the authors may have an alternative patch in mind.
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together with the finished Bordenave—Collins theorem implies the following variant (cf. [MOP20a,
Thm. 1.15]), whose full statement appears as Theorem 10.10:

Theorem 1.9. (Informal statement.) In the setting of Theorem 1.1, if A, is the operator produced by
substituting random +1-signed permutations into the matrix polynomial p, then the Hausdorff distance
conclusion holds for the full spectrum o(A,,) vis-a-vis 0(Ay); i.e., we do not have to remove any “trivial
eigenvalues” from A,.

This theorem will allow us to determine the “eigenvalue relaxation value” for a wide class
of average-case CSPs. Roughly speaking, we consider random regular instances of Boolean
valued CSPs where the constraints are expressible as degree-2 polynomials (with no linear
term). Our work determines the typical eigenvalue relaxation bound for these CSPs; recall
that this is a natural, efficiently-computable upper bound on the optimum value of Boolean
quadratic programs (and on the SDP/quantum relaxation value). This generalizes previous
work [MS16, DMO*19, MOP20b] on random Max-Cut, NAE3-Sat, and “2-eigenvalue 2XOR-like
CSPs”, respectively. We remark again that our results here do not require the derandomization
aspect of our work, but they do rely on Theorem 1.9 concerning random signed lifts, which is not
derivable in a black-box fashion from the work of Bordenave—Collins.

We will be concerned throughout this section with Boolean CSPs: optimization problems over
a Boolean domain, which we take to be {+1} (equivalent to {0,1} or {True, False}). The hallmark
of a CSP is that it is defined by a collection of local constraints of similar type. Our work is also
general enough to handle certain valued CSPs, meaning ones where the constraints are not simply
predicates (which are satisfied /unsatisfied) but are real-valued functions. These may be thought
of giving as “score” for each assignment to the variables in the constraint’s scope.

Definition 1.10 (Degree-2 valued CSPs). A Boolean valued CSP is defined by a set ¥ of constraint
types . Each ¢ is a function ¢ : {£1}" — R, where r is the arity. We will say such a CSP is
degree-2 if each 1 can be represented as a degree-2 polynomial, with no linear terms, in its inputs.

An instance T of such a CSP is defined by a set of n variables V and a list of m constraints
C = (¢,S), where each ¢ € ¥ and each S is an r-tuple of distinct variables from V. More generally,
in an instance with literals allowed, each constraint is of the form C = (¢, S, £), where ¢ € {£+1}".

The computational task associated with 7 is to determine the value of the optimal assignment
x:V — {£1};ie,

Opt(Z) = e 1}obj(x), where obj(x) = C:(lpzsf)dlp(zlx(sl),...,erx(s,)). )

Note that for a degree-2 CSP, the objective obj(x) may be considered as a degree-2 homogeneous
polynomial (plus a constant term) over the Boolean cube {+1}".

Example 1.11. Let us give several examples where ¥ contains just a single constraint .

When r = 2 and ¢(x1,x2) = % — %xlxz we obtain the Max-Cut CSP. If we furthermore
allow literals here, we obtain the 2XOR CSP. If literals are disallowed, and ¢ is changed to
P(x1,x2,X3,X4) = % — %xlxz + % — %x3x4, we get a version of the 2XOR CSP in which instances
must have an equal number of “equality” and “unequality” constraints.

When r = 3 and 9(x1,x2,x3) = % — }‘(xlxz + x1x3 + x2x3), the CSP becomes 2-coloring a
3-uniform hypergraph; if literals are allowed here, the CSP is known as NAE-3Sat.

The case of the predicate §(x1, x2, x3,X4) = % + i(xlxz + XpXx3 + X3x4 — X1Xx4) with literals al-
lowed yields the Sorty; CSP; the predicate here is equivalent to “CHSH game” from quantum
mechanics [CHSH69].
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Remark 1.12. As additive constants are irrelevant for the task of optimization, we will henceforth
assume without loss of generality that degree-2 CSPs involve homogeneous degree-2 polynomial
constraints.

Definition 1.13 (Instance graph). Given an instance Z of a degree-2 CSP as above, we may as-
sociate an instance graph G, with adjacency matrix A. This G is the undirected, edge-weighted
graph with vertex set V = [n] where, for each nonzero monomial w;;x;x; appearing in obj(x)
from Equation (2), G contains edge {i,j} with weight %wij. The factor of % is included so that
given an assignment x € {+1}", we have obj(x) = x" Ax = (A, xx"), where (A, B) denotes the
matrix inner product.

For almost all Boolean CSPs, exactly solving the quadratic program to determine Opt is NP-
hard; hence computationally tractable relaxations of the problem are interesting. Perhaps the
simplest and most natural such relaxation is the eigenvalue bound — the generalization of the
Fiedler bound [Fie73] for Max-Cut:

Definition 1.14 (Eigenvalue bound). Let 7 be a degree-2 CSP instance and let A be the adjacency
matrix of its instance graph. The eigenvalue bound is

Eig(Z) = max (A, xx' )= max (A, X)=n-Anax(A).
xely (V) XeR"*" PSD
Jx|3=n r(X)=n

It is clear that
Opt(Z) < Eig(Z)

always, and Eig(Z) can be computed (to arbitrary precision) in polynomial time. For many
average-case optimization instances, this kind of spectral certificate provides the best known
efficiently-computable bound on the instance’s optimal value; it is therefore of great interest to
characterize Eig(Z) for random instances. See, e.g., [MOP20b] for further discussion. As we will
describe below, for a natural model of random instances Z of a degree-2 CSP, our Theorem 1.9
allows us to determine the typical value of Eig(Z) for large instances. Often one can show
this exceeds the typical value of Opt(Z) for these random instances, thus leading to a potential
information-computation gap for the certification task.
We should also mention another efficiently-computable upper bound on Opt(Z):

Definition 1.15 (SDP bound). Let Z be a degree-2 CSP instance and let A be the adjacency matrix
of its instance graph. The SDP bound is

SDP(Z) = max (A, X).
XeR"*" PSD

Xii=1 Vi
This quantity can also be computed (to arbitrary precision) in polynomial time, and it is
easy to see that Opt(Z) < SDP(Z) < Eig(Z) always. Thus the SDP value can only be a better
efficiently-computable upper bound on Opt(Z), and it would be of interest also to characterize
its typical value for random degree-2 CSPs, as was done in [MS16, DMO*19, MOP20b]. Proving
that SDP(Z) ~ Opt(Z) with high probability (as happened in those previous works) seems to
require that the CSP has certain symmetry properties that do not hold in our present very general

setting. We leave investigation of this to future work.
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We now describe a model of random degree-2 CSPs for which Bordenave—Collins’s Theo-
rem 1.1 and our Theorem 1.9 lets one determine the (high probability) value of the eigenvalue
relaxation bound. It is based on the “additive lifts” construction from [MOP20b].

Suppose we have a degree-2 Boolean CSP with constraints ¥ = {¢y, ..., {1} of arity r. We wish
to create random “constraint-regular” instances defined by numbers ¢y (1 <j <7 1<k <t
in which each variable appears in the jth position of cj constraints of type 9. Let ¢ = > cji,
and for notational simplicity let Zp = (¢1,..., ¢.) denote a minimal such CSP instance on a set
[r] of variables, where each ¢; stands for some i, with permuted variables, and every scope is
considered to be (1,...,r). For each constraint ¢;, we associate an atom graph A;, which is the
instance graph on vertex set [r] defined by the single constraint ¢; applied to the r variables.

Now given n € INT, we will construct a random CSP on nr variables with nc constraints
as a “random lift”. We begin with a base graph: the complete bipartite graph K., with the r
vertices in one part representing the variables, and the c vertices in the other part representing the
constraints. We call any n-lift of this base graph a constraint graph; we can view it as an instance of
the CSP where the edges encode which variables participate in which constraints for the random
CSP. When we do a random n-lift of this K, ., we create r groups of n variables each, and c
groups of n constraints, with a random matching being placed between every group of variables
and every group of constraints. In this random bipartite graph, each variable participates in
exactly c constraints, one in each group, while each constraint gets exactly one variable from
each group.

To obtain the instance graph from the constraint graph, we start with an empty graph with
nr vertices corresponding to the variables, and then, for each constraint vertex in the constraint
graph from some group j, we place a copy of the atom A; on the r vertices to which the constraint
vertex is adjacent.

With this lift-based model for generating random constraint-regular CSP instances, it is im-
portant to allow for random literals in the lifted instance. (Otherwise one may easily generate
trivially satisfiable CSPs. Consider, for example, random NAE-3Sat instances., as in [DMO™19].
Without literals, all lifted instances will be trivially satisfiable due to the partitioned structure of
the 3n variables: one can just assigning two of the three n-variable groups the label +1 and the
other n-variable group the label —1. Hence the need for random literals.) Thus instead of doing
a random n-lift of the base K, . graph, we do a random signed n-lift, placing a random +1 sign on
each edge in the lifted random graph. Then, if u and v are variables and they are connected to
a constraint vertex y in the constraint graph, then, in the instance graph the weight of the edge
{u,v} (if it exists in the atom) will pick up an additional sign of sign({u, y}) - sign({v, y}). This
has the effect of uniformly randomly negating a variable when a predicate is applied to it.

Next, we will see how this model of constructing a random regular CSP is equivalent to a
random lift of a particular matrix polynomial. The coefficients of the polynomial will be in C"*",
indexed by the r variables which the atoms act on. The rc indeterminates in the polynomial are
indexed by the edges of the base constraint graph; i.e., we have one (non-self-adjoint) indetermi-
nate X, ; for each variable u and each constraint j. We construct the polynomial p iteratively: for
each constraint j, and every pair of variables u and v, if {1, v} is an edge in in Aj then we add the
terms

1 1
5 Wou |o)u| XU,jX;“,j + 5 Wuo |u)(v| Xu,jX;",j

to p°. Then, a random signed lift fits precisely into the model of our Theorem 1.9, and we
conclude that for this model of random regular general degree-2 CSPs, the eigenvalue relaxation

5Note that this is the same construction as with the additive lifts defined in Example 3.6
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bound is, with high probability, 7 - (Amax(4,,) £ €) for any & > 0.

2 Setup and definitions

The general framework of color-regular matrix-weighted graphs and polynomials lifts was intro-
duced in [BC19]; however we will add some additional terminology. We will also make use of
Dirac bra-ket notation.

2.1 Matrix-weighted graphs

Definition 2.1 (Matrix-weighted graph). Let G = (V, E) be a directed multigraph, with V count-
able and E locally finite. We say that G is matrix-weighted if, for some r € INT, each directed
edge e € E is given an associated nonzero “weight” a, € C™*". We say that G is an undirected
matrix-weighted graph if (with a minor exception) its directed edges are partitioned into pairs e
and e*, where e* is the reverse of ¢ and where a,+ = a}. We call each such pair an undirected
edge. The minor exception is that we allow any subset of the self-loops in E to be unpaired,
provided each unpaired self-loop e has a self-adjoint weight, a; = 4,. (In the terminology of
Friedman [Fri93], such self-loops are called “half-loops”, in contrast with paired self loops which
are called “whole-loops”.) The adjacency operator A for G, acting on />(V) ® €', is given by

Z |o)(u| ® ae.

e=(u,v)eE

It can be helpful to think to think of A in matrix form, as an |V| x |V| matrix whose entries are
themselves r x r edge-weight matrices. Note that if G is undirected then A will be self-adjoint,
A= A*

Definition 2.2 (Extension of a matrix-weighted graph). Let G = (V, E) be a matrix-weighted
graph. We will write G for the extension of G, the scalar-weighted multigraph on vertex set
V x [r] formed as follows: for each e = (u,v) € E with weight a, = Z;,jzl cij [i){j|, we include
into G the edge ((u,1), (v,])) with scalar weight c;; for all 7, j such that c;; # 0. The scalar-weighted
graph G will be undirected when G is, and the two graphs have the same adjacency operator
when /,(V) ® C" is identified with ¢,(V x [r]). We will be most interested in the case when G is

undirected with weight matrices a, € {0,1}"*"; in this case, the extension G will be an ordinary
unweighted, undirected (multi)graph.

Definition 2.3 (Index/color set). Given parameters d,e € IN, the associated index set, or color set,
is defined tobe .# = {0,1,2,...,d,d +1,...,d + 2e}, together with the involution  : .# — .# that
has j* = jforj < dand j* = j+eford <j <d+e. Index 0 is called the identity-index, indices
1,...,d are called the matching-indices, and d + 1, ...,d + 2e are called the permutation-indices. We
also refer to indices as “colors”. Finally, we sometimes allow an index set to not include an
identity-index.

Definition 2.4 (Color-regular graph). Fix an index set .# and a sequence (4j)jc» of nonzero
matrices in C”" with aj« = a7. We say that an unweighted matrix-weighted graph G is color-
regular with weights (a;)je.» if each directed edge has an associated color from the set .#, and the
following properties hold:

e Each vertex v has exactly one outgoing edge of each color.
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e If 0 € .7, then each edge colored 0 is a half-loop.

o If (e,e*) is an undirected edge, and e is colored j, then e* is colored j*.
e The weight of every j-colored edge is a;.

We will find it convenient to make the following definition.

Definition 2.5 (Matrix bouquet). A (matrix) bouquet K on index set .# is a color-regular graph on
one vertex. Note that K is completely specified by the matrices (4;);c s

Figure 1 gives some examples of matrix bouquets.
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Figure 1: Example matrix bouquets. In each, identity-indices are pictured dotted, matching-
indices are depicted dashed, and permutation-indices are depicted solid. All matrix edge-weights
a; happen to have 0-1 entries, though this is not in general necessary. In the left bouquet, d = 1,
e=1,r=2,and ay,a1,4ay,a3 are [? (1)} , [8 (1)} , [? 8} , [? (1)} In the middle bouquet, d = 3,
e =0,7r =1, and aj,ay,a3 are 1,1,1 (there is no identity-index in this example). In the right
bouquet, d = 0, e = 6, r = 5, there is no identity-index, and we have only depicted one of the
a,a* pairs on each whole-loop.

Definition 2.6 (The bouquet of an ordinary graph). Let G = (V, E) be an ordinary unweighted,
undirected multigraph (for simplicity, without half-loops), having |V| = r vertices and |E| = e
edges. We define the associated bouguet of G to be the matrix bouquet ¢ with no identity-index,
d =0,and ay, ..., a2 being “0-1 indicator matrices” for the directed edges of G. In other words, if
the ith edge in E is {u, v}, then a; = |v)(u| and a;,, = |u)(v|. Another description is that K¢ is the
one-vertex color-regular graph with 0-1 matrix-weights whose extension, K¢, is G. We remark
that ) ,._ , a; is the adjacency matrix of G.

The third bouquet in Figure 1 is an example of this construction; it is the bouquet K¢ associ-
ated to the graph G in Figure 2 (whose vertices have been numbered and whose edges have been
colored, for illustrative purposes). This example also illustrates the general point that if G is the
extension of a color-regular graph G with 0-1 matrix-weights, the ordinary graph G need not be
regular.

We now recall the standard definitions of multigraph coverings (see, e.g., [Mak15, Sec. 2.3]).
We include certain extensions to allow for weighted graphs and possibly-disconnected graphs.
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Figure 2: An undirected graph H with 5 vertices and 6 edges; its associated matrix bouquet is
the third one depicted in Figure 1.

Definition 2.7 (Matrix-weighted graph covering). Let X and G be connected undirected matrix-
weighted graphs. A homomorphism from X to G is a pair of maps fv : V(X) — V(G) and
fe 1 E(X) — E(G) such that if e = (u,v) is an edge in X with weight a, then fr(e) is (fv(u), fv(v))
and has weight 2 in G. We say such a homomorphism is a covering (and we say that X covers G)
if:

e the preimage under fr of every undirected edge (i.e., pair of opposing edges e, e*) in E(G)
is a collection of undirected edges in X;

o for every vertex v € V(X), out-edges are mapped bijectively by fr to the out-edges of fy(v),
and similarly for v’s in-edges.

We extend this definition to allow X and/or G to be disconnected; in this case we stipulate
that X covers G provided each connected component of G is covered by some connected com-
ponent of X and, vice versa, each connected component of X covers some connected component
of G.

We make the following observations:

Fact 2.8. Let K = (aj)jc.s be a matrix bouquet, and let G be a color-regular graph with weights (a;)jc.s-
Then G covers K.

Fact 2.9. Suppose X and G are undirected matrix-weighted graphs with X covering G. Then X covers G.

2.2 Matrix polynomials

We now define matrix polynomials, which may be thought of as recipes for producing for color-
regular graphs.

Definition 2.10 (Unreduced matrix polynomial). Given an index set .# (necessarily including the
identity-index 0) and a dimension r € IN*, an (unreduced) matrix polynomial is a noncommutative
polynomial over indeterminates (X;);c» with coefficients from C"’; we explicitly disallow the
empty monomial. More formally, the matrix polynomials are the free left C"*"-module with basis
given by all words W of positive length over the alphabet (X;);c.». We write X" for the monomial
associated to word W.

We make the matrix polynomials into a noncommutative ring by specifying that (ay, X""1) x
(aWZXWZ) = awlaszwl W2 where W; W, denotes concatenation. This ring does not have a multi-
plicative identity, but see Definition 2.12 below.

We further make the matrix polynomials into a *-ring by specifying that (aXj --- X;,)* =
a*Xj --- X3, where X7 is a synonym for X« (recalling the involution associated to .#).
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We will be mainly interested in polynomials p that are self-adjoint, meaning p* = p. We will
also be particularly interested in linear matrix polynomials p, meaning p = >} , a;X;.

Definition 2.11 (Evaluating a matrix polynomial). We will be “evaluating” matrix polynomials
at bounded operators on a complex Hilbert space H. Given bounded operators (LIJ) je.7, the eval-
uation of monomial aXj --- Xj is defined to be Uj, - - Uj, ®a, an operator H ® C".” Furthermore,
in this paper we will only ever evaluate matrix polynomials at bounded operators satisfying the
following conditions:

e Uy = 1, the identity operator on H.
o = u;k.
o All Uj's are unitary, U = U]._l.

In light of the first two conditions above, we need not explicitly specify Uy, Uj4e41, - - -, Ugie, and
hence may just write p(Uy, ..., Uy, Ujyq, ..., Use,) for a polynomial evaluation. Also note that
p*(Uy,..., Uzee) = p(Uy, ..., Use.)*, and hence the evaluation of any self-adjoint polynomial will
be a self-adjoint operator.

Definition 2.12 (Reduced matrix polynomial). Given the restrictions on evaluations we imposed
in Definition 2.11, we may somewhat simplify the ring of matrix polynomials with which we
work. First, we will let 1 be a synonym for the indeterminate X,. Second, we may take XX =
XiXj =1 and 1X; = Xjl = Xj as “relations”, resulting in a quotient ring which we term the
(reduced) matrix polynomials. Here monomials correspond to “reduced words” in Z3 « Z*¢, the
free product of d copies of the group Z, and e copies of the group Z. The empty reduced
word corresponds to the monomial 1, and we will sometimes abbreviate the monomial ao1 just
as ap. Notice that if this ag is itself the identity operator 1,.,, then the monomial becomes a
multiplicative identity for the quotient ring.

Remark 2.13. In the remainder of this work, a “matrix polynomial” will mean a reduced matrix
polynomial unless otherwise specified. We will write p = > a,X® for a generic such polyno-
mial, where a,, is nonzero for only finitely many w e Z;d * 7€

2.3 Lifts of matrix polynomials

Definition 2.14 (n-lift). Fix an index set .# = {0,1,...,d + 2¢}. Let n € N and write V,, =
{1,2,...,n}. We define an n-lift to be a sequence £, of permutations 0y, 071, ...,0;42 € S(Vy)
S(n) satisfying

lle

O = (7]._1 for 0 <j<d+2e, withop=1 and o; being a matching for 1 <j<d.

Here a permutation is said to be a matching when all its cycles have length 2. (We tacitly disallow
simultaneously having n > 1 odd and d > 0.) Given a permutation ¢ € &(V,,), we will write P,
for the associated permutation operator acting on the Hilbert space />(V,;) = C", namely

Pr= 3 |o(u)Xul. ©)

ueVy,

®The reason for this strange-looking convention is that: (i) we wish to have coefficients to the left of monomials in

our polynomials, as is standard; (ii) we wish to think of the extension graph G as being formed from G by replacing
each vertex in V with a small “cloud” of r vertices, and connecting edges between clouds — but this forces us to
tensor /Kronecker-product the C"*" coefficients on the right when forming adjacency matrices.
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A special case occurs when n = 1; the unique 1-lift £; is has 0y, 01, ...,04.2, all equal to the
identity permutation 1.

Definition 2.15 (co-lift). We extend the definition of an n-lift to the case of n = o, as follows.
Let V., denote the group 73" « Z*¢, with its components generated by g1, . ..,g4... Each of these
generators acts as a permutation on V,, by left-multiplication; we write o7, ..., 04, for these
permutations. Writing also op for the identity permutation on Vi, and 0jx = (T]._l ford <j<d+e,
we define £, = (09, ...,0412¢) to be “the” co-lift associated to index set .#. We continue to use

the P, notation from Equation (3) for the permutation operator acting on ¢(V,,) associated to ¢.

Definition 2.16 (Polynomial lift). Let p be a self-adjoint matrix polynomial over index set .% =
{0,1,...,d + 2e} with coefficients in C™". Write p = > . 54, X", where .7 is the finite set of
reduced words on which p is supported; for w €  we call 4, X" the associated term. The
x-operation is an involution on these terms, since p is self-adjoint. Thus we may consider .7
to be a color set, with each w € .7 being designated a matching-index or a permutation-index
depending on whether w = w* or not. (If .7 contains the empty word, we treat that as the
identity-index.) Now given an n-lift £, = (1,01,...,0442.), with n € Nt U {00}, we define the
associated polynomial lift to be the .7 -color-regular graph %,(£,, p) on vertex set V; defined as
follows: for each vertex u € V,, and each term a, X%, we include a directed edge from u to o™ (u),
with matrix-weight a,,. Here ¢® denotes the permutation formed from the monomial X“ by
substituting X; with o; for each j € .# (and it denotes the identity permutation if w is the empty
word).

Notation 2.17. Given a polynomial lift G, = %, (£,, p) as in the preceding definition, we write

An(gn/ P) = Z Paw ®aw

weT

for its adjacency operator on /»(V;,) ® C". As noted earlier, this is also the adjacency operator of
its extension G,,.

We will be specifically interested in two kinds of polynomial lifts. The first is the case when
the polynomial p is linear. As Bordenave and Collins [BC19] show, thanks to the “linearization
trick”, in order to understand the spectrum of general polynomial lifts, it suffices to understand
the spectrum of linear matrix polynomial lifts (and indeed linear lifts with no “constant term”
apl). Because of the importance of this case, we extend the “bouquet” terminology:

Definition 2.18 (Lifts of linear polynomials/bouquets). Given a linear matrix polynomial Z}t}?e a;Xj,
we may associate it with a matrix bouquet in the natural way, deleting from the index set any j
with a; = 0. Conversely, given any matrix bouquet £ = (a;)jc», we will identify it with the
linear polynomial > };c , 4;X; (extending the index set .#" to include 0 if necessary, and putting
ag = 0 in this case).” Given this identification, we may write ¢,(£,, K) for the n-lift of this poly-
nomial. When n = 1, we will simply denote the 1-lift ¢4, (£, K) as ¢4 (K). In particular, the oo-lift
Y0 (Lo, K) is a color-regular infinite tree of degree |.#\{0}| (with self-loops, if 0 € .#). This graph

is the universal cover of the bouquet K. For notational simplicity, we will henceforth denote it
simply by ¥4,,(K).

7Tt is almost the case that the one-vertex graph bouquet is the 1-lift of this linear polynomial; the only catch is that,
following [BC19], we have insisted that a “matching” permutation has no self-loops. An alternative inelegancy would
be to allow matchings to have self-loops, as in the 1-regular configuration model.
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The terminology “universal cover” stems from the following observation (cf. Fact 2.8):

Fact 2.19. Let G be a color-regular graph with weights (a;);c » and let K be the associated bouquet. Then
Yo (KC) covers G.

More generally, we have the following key observation:

Fact 2.20. Let p be a self-adjoint matrix polynomial over index set .# = {0, 1, ...,d + 2e} with coefficients
in C". Let £, = (1,04,...,04.2.) be an n-lift, n € NT. Then 9 (p) covers 4,(L,, p) and hence

~

(Fact 2.9) also X = 9 (p) covers G = G.(Ln, p).

The second kind of polynomial lift that will concern us is the case when the polynomial p’s co-
efficient matrices have 0-1 entries. In this case, the extended oco-lift X described in Fact 2.20 will be
an ordinary unweighted infinite graph, and the extended n-lift G will be an ordinary unweighted
finite graph that is covered by X. The main theorem of Bordenave and Collins [BC19] implies
that when the n-lift £, is chosen uniformly at random, the resulting G will be X-Ramanujan
(cf. Definition 1.3) with high probability. Our work has two aspects. First, we derandomize the
Bordenave-Collins result, provided deterministic poly(n)-time algorithms for producing n-lifts
£, such that G = %:1(2,1, p) is X-Ramanujan (starting in Section 4). Second, we explore and partly
characterize the kinds of infinite graphs X that may arise as X = g?oo( p) (in Section 3). As we will
be significantly investigating these graphs, we will give them a name:

Definition 2.21 (MPL graph). We say an (undirected, unweighted, multi-)graph X is an MPL
graph if there is a matrix polynomial p with coefficient matrices in {0,1}"*" such that ¥, (p)
consists of disjoint copies of X.

We allow disjoint copies for two reasons: (i) in some cases, we only know how to generate
multiple copies of X via polynomial lifts; (ii) if X’ consists of disjoint copies of X, then the
notions of “X-Ramanujan” and “X’-Ramanujan” coincide (since X’ has the same spectrum —
indeed, spectral measure — as X, and since X’ covers G if and only if X covers G).

2.4 Projections

Notation 2.22 (Projection to the nontrivial subspace). For n < o, we define the following unit
vector:

[ = 05 2, |0 ba(Va).

ueVy,

We sometimes identify this vector with its 1-dimensional span, and we write \+>i < 0r(Vy) for
its (n — 1)-dimensional orthogonal complement. Every permutation matrix P, for c € &(V,)
preserves both |+, and |+):; thus we may write

Py = [+),{+|, + (0D Py,1), (4)

where P, | denotes the action of P, on |+>i (i.e., the standard group representation of ¢) and
the 0 is operating on |+),. We may analogously define A, | (£, p), and for linear polynomials,

By, 1 (£4, p) for the action of adjacency/nonbacktracking operators on ]+>i .

We refer to the eigenvalues in spec(A;)\spec(A,, 1) as the “trivial” eigenvalues. These trivial
eigenvalues are precisely the r eigenvalues of the 1-lift A;(p).
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Proposition 2.23. The following multiset identity holds:

spec(An(Lq, p)) = spec(A1(p)) v spec(Ay, L (L4, p))-

Proof. From Equation (4),

An(€n,p) = D |HX+H @a" + D (0@ Ppw,1) ®a”. O
weT weT

3 On MPL graphs

The goal of this section is to illustrate a wide variety of infinite graphs that can be realized as
MPL graphs, and to prove some partial characterizations of MPL graphs. In this section we will
freely switch between writing X7 and Xj_1 for the adjoint of X;. We may also sometimes return
to the convention (from the introduction) of writing Y; for self-adjoint indeterminates and Z;, Z]’."
for the remaining adjoint pairs. We remind the reader of the convention (arising because we
multiply matrices on the left) that a term like X;X; means “first do X, then do X;”.

3.1 Examples of MPL graphs

In this section we will give several examples of MPL graphs, and demonstrate that generalize a
number of graph products found in the literature, including free products of finite vertex tran-
sitive graphs [Zno75], free products of finite rooted graphs [Que94], additive products [MO20],
and amalgamated free products [VK19].

For finite lifts, we additionally show how some replacement products and zig-zag prod-
ucts [RVWO02] may be expressed as matrix polynomial lifts.

Example 3.1 (r = 1, linear polynomials). The simplest example of MPL graphs occurs when r = 1
and the polynomial is linear. In this case, p = Y1 +--- + Y; + Z; + Zfl + -+ Ze_1 for some d, e,

and the resulting MPL graph, X = %, (p), is the (d + 2¢)-regular infinite tree.

Example 3.2 (r = 1, a general polynomial). In fact, more interesting MPL graphs can already
be created with r = 1. For instance, with p = Y +Z + Z~! + Z71YZ we obtain that %Noo(p) is
Cy » C4, the free product of two 4-cycles. See Figure 7 for an illustration, and Example 3.5 for a
generalization to arbitrary free products of Cayley graphs.

Example 3.3 (Lifts and universal covers). As we have already seen in Section 2.3, when we take
K to be a matrix bouquet of a finite graph G = (V, E) (a linear polynomial where each coefficient
has only 1 nonzero entry), the extended n-lift %(SH,K) is a lift of G in the sense of Amit and
Linial [AL02]. Moreover, the infinity-lift 9, (K) contains |V| copies of the universal covering tree
of G.

Using matrix bouquets we can easily obtain non-regular graphs. For example, if we let G be
a (3,4)-bipartite complete graph, the infinity-lift of the matrix bouquet of G contains 7 copies of
the infinite (3, 4)-biregular tree.

Example 3.4 (Adding cycles by polynomial terms). Next, we give a somewhat esoteric example,
where the extension of the infinite lift goo contains infinitely many copies of a finite graph. This
construction will not be as useful for applying Theorem 1.1, but will be illustrative for further
examples of various graph products.
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When the infinite lift does have infinite copies of a finite graph, the spectrum is equal to the
finite graph’s spectrum (but with infinite multiplicity).

To create infinitely many copies of a finite undirected graph G = (V,E), we construct the
polynomial iteratively. We first start off with a spanning tree of G, which we call H = (V,E’),
and let p be the linear polynomial corresponding to the matrix bouquet of H. When we create
the matrix bouquet, p has |E| pairs of adjoint indeterminates Z; and Z, one associated with each
undirected edge in H. We further have an involution on the indices such that Z¥ = Z;«. Since the
universal cover of a tree is itself, it’s clear that @ ( p) now contains countably infinite copies of
H. Next, we “add” p the terms which will generate the edges of G which are not in H. If {u, v} is
an edge in G but not H, there is a sequence of directed edges bringing u to v which corresponds
to a monomial Z; Z;, ... Z;. We then add the terms [v)(u| Z;, ... Zj, + [u)v| Zx ... Zx to the
polynomial. An example is in Figure 3.

(b) A spanning tree, where only
(a) The graph we want to create one of the directed edges is
shown

Figure 3: An example of creating arbitrary graphs with cycles in the infinite lift. First we find
a spanning tree (shown in Figure 3b. The edges have been colored and oriented for illustra-
tion purposes; the direction of the red edge indicates the directed edge corresponding to Z,,
the opposite edge corresponds to Z). The spanning tree corresponds to the linear polynomial
12| Zsg + |4)A| Zy + |3)XL| Zc + |1)2| Zgx + |1){4| Zp+ + |1)(3]| Zcx. The two non-tree edges are
given by [4)(2| ZpZyx + [2){4| ZaZp+ and |3){4| Z:Zp+ + |4)(3| ZyZe+. Adding all these together
gives the nonlinear polynomial that creates copies of the graph in Figure 3a in the infinite poly-
nomial lift.

Example 3.5 (Free products of finite vertex transitive graphs). The construction in Example 3.4
is a helpful building block in creating graph products, for instance the free product of vertex
transitive graphs (as defined by Znoiko [Zno75]). For instance, this construction includes Cayley
graphs of free products finite groups.

Let G and H be finite vertex transitive graphs (e.g. those of Cayley graphs of finite groups;
the particular generating set used does not matter here). We will construct the free product G x H
as an MPL graph. Let G and H be spanning trees of G and H respectively. Then, let p be the
linear polynomial corresponding to the matrix bouquet of G x H (the Cartesian product), and
let g be the sum of the polynomial terms corresponding to edges in G x H but not in G x H
(constructed in the same way as in Example 3.4). Then, p + g is a polynomial whose infinite lift
contains (multiple copies of) the free product of G and H. An example for creating Cs x Cy is
shown in Figure 4.

Example 3.6 (Additive lifts and products). Additive lifts and products are a graph product for
non-vertex-transitive finite graphs defined by Mohanty and O’Donnell in in [MO20].
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Figure 4: Here is an example of how to create C3 » C4 as an MPL graph. We first get the matrix
bouquet of the Cartesian product of a spanning tree of C3 and C4 (which are simple paths of
length 2 and 3 respectively), creating the grid shown above. Then, when creating the matrix
bouquet, we assign generators to each edge (some omitted in the drawing), which orients the
edges as shown. Finally, we add terms corresponding to the edges in C3 x C4 but not in the grid,
for example, |1)9| ZyZ, + |9){1| Zy+ Zp+ for the edge {1,9} and |1){(4| Z.Z3Z. + |4){1| Zox Z g5 Zpx
for the edge {1,4}. We similarly add terms corresponding to {10,5}, {2,8}, {3,7} and {4, 6}.

The components of the additive product are finite, unweighted, undirected graphs called
atoms, which are defined on a common vertex set.

Definition 3.7 (Additive products [MO19, Definition 3.4]). Let Ay, ..., A. be atoms on a common
vertex set [r]. Assume that the sum graph G = A; +--- + Ac is connected; letting A; denote A;
with isolated vertices removed, we also assume that each Aj is nonempty and connected. We
now define the (typically infinite) additive product graph Ay 4 --- ¢ A. = (V,E) where V and E
are constructed as follows.

Let v; be a fixed vertex in [r]; let V be the set of strings of the form vy, 1CxvxCy_1...v2C1v1
for k = 0 such that:

i) each v; is in [r] and each C; is in [c],
ii) C; # Cj;q forall i <k,
iii) v; and v;;1 are both in A, for all i <k;
and, let E be the set of edges on vertex set V such that for each string s € V,
i) we let {uCs,vCs} be in E if {u,v} is an edge in A,
ii) we let {uCs,vC'uCs} be in E if {u, v} is an edge in A, and
iii) we let {v1,vCv;} be in E if {v;, v} is an edge in Ac.

We show two ways to construct additive products using polynomial lifts, which illustrates
that constructions using polynomial lifts are in general not unique. Let the atoms be Ay,..., A
on r vertices each.

For the first construction, for each A;, let A; be a spanning tree. Let H be the sum of
Ay, ..., Ay, including parallel edges (in other words, sum the adjacency matrices of Ay, ..., Ay).
Then, we start with the matrix bouquet of H. Then, for each A;, for each edge not in the spanning
tree A;, we add the term corresponding to that edge to the polynomial similar to Example 3.4.

The second construction has a pair of adjoint indeterminates Z,4, and Z7% | for each atom A
and each vertex v which is not an isolated vertex in A. We construct the polynbmial p iteratively.
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For each edge {u,v} in the atom A, we add the term [v)(u|Za,Z} , + [u)(v| ZauZ} , to the

polynomial p. We repeat this for for every edge in each every atom A;, 1 < i < m. Then %, (p)
consists of (r copies of) the additive lift A; ¢ --- ¢ Ay,.

The finite graphs arising from the n-lifts of the second construction also has a nice interpre-
tation. Mohanty and O’Donnell make the following definition of additive lifts,

Definition 3.8 (additive lifts). Let A1,..., A. be atoms on a common vertex set [r]. The additive
n-lift of Ay, ..., A is the following;:

i) It has vertex set [n] x [r].
ii) For each vertex v in each atom A;, let 74, , be a permutation on [n].

iii) For each atom A;, for each original edge (u,v), add the matching ‘TZI-%U‘TAZ-,M to the vertices
[n] x {u} and [n] x {v}.

One can check that an additive n-lift is the same as an n-lift of the polynomial described in
the second construction above. Applying Theorem 1.1, we can moreover deduce that as n — o
the spectrum of a uniformly random additive n-lift (with the trivial eigenvalues of A; + --- +
Ay, removed) is close in Hausdorff distance to the corresponding additive product with high
probability.

Example 3.9 (Amalgamated free products). Vargas and Kulkarni [VK19] define another graph
product based on amalgamated free products from free probability. These generalize the notion
of free products of graphs defined in [Que94], and can be used to express Cayley graphs of
amalgamated free group products. These graph products are defined on rooted graphs, i.e. graphs
(V, E) with a distinguished vertex r. We denote these rooted graphs as a triple (V, E,r).

Definition 3.10 ([VK19]). Let G = (V4,E1,01),...,Gy = (Vy, Ey, 04) be finite rooted undirected
graphs. Assume that each G; comes equipped with an edge coloring ¢; : E; — C; such that
CinCj= @ forevery i # j. Let C := | Ji_; C; and let G = (V, E,r) be a rooted graph G = (V,E,r)
together with an edge coloring ¢ : E — C, and where V = [k]. We call (G, ¢) the relator graph.

We construct the free product of the (G;, c;) with amalgamation over (G, c), which we denote by
#G,c1(Gi, ci)}I_;. Let Vj be the set of strings of the form vv;_; ... vov1e for k > 0 where

i) ois one of 01,...,0y,
ii) v1,...,vx are elements of Vi\oy, ..., V,;\on,
iii) v;,v;;1 do not belong to the same V;\o; for 1 <i<k-1.
The vertex set is {(r,0)} U [k] x V. The edges are defined such that {(i, vu), (i',v'u)} is an edge if
i) {i,i'} isin E,
ii) u is the empty string or some element of V),

iii) {v, 7'} is an edge in some Vjfor 1 <j < n, and we treat any of 0y, ..., 0, appearing as one of
v or v’ as the empty string, except when both u and v or v’ are the empty string, in which
case we let uv or uv’ be o,

iv) finally, c({i,i'}) = cj({v,?'}).
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This can be constructed as an MPL graph in the following way: Let r be the number of colors
k. For each graph G; in the product and for each non-root vertex v in G, let Y, , be a self-adjoint
indeterminate. Let {u,v} be an edge in G; where neither u nor v is 0;. We then add the term
(k1 )<ko| + |ko)<k1|)YG,uYG, o to the polynomial for every edge {ko, k1} in the relator graph G such
that c({ko, k1}) = ci({u, v}). When {o;, v} is an edge in G;, we add the term (|kq ){ko| + |ko)<k1| Ye, 0
to the polynomial for every edge {ko, k1} in the relator graph G such that c({ko, k1}) = c;i({o;, v}).
As an example (derived from Example 6.1 of [VK19]), let

11 10 01 10
p = (1 1) Yl,l + (0 1> YZ,] + (1 0) YZ,Z + (0 1> Y2,1Y2/2,

Then, %.(p) is the Cayley graph of SL(2,7) with the group presentation (a,b |a* = b° = 1).

Example 3.11 (Constant terms; beyond additive products, and amalgamated free products). The
class of MPL graphs also include graphs beyond additive products and amalgamated free prod-
ucts. To construct such graphs, one key observation is that we have yet to use the constant term
ap in the polynomials. One use case of adding the constant term is that we can create MPL
graphs where the extension of the co-lift contains only one component. For instance, one can add
edges which connect the different copies of the universal covering tree created by lifting a matrix
bouquet. For example, the following polynomial

(o) (o W)z (o))

gives rise to a graph which looks like a infinite ladder (Figure 5a). In general, there may be
multiple, possibly very different, ways to construct the same graph. We can also create ladders
without using the constant term a9. For example, we can construct (6 copies of) the graph in
Figure 5b by starting off with the matrix bouquet of the graph in Figure 6 and adding further
edges to create cycles. The vertices are labeled 1, ...,6 and the edges are labeled 4, ..., f. Let

p =151 Za + |2)X1| Zp + [3)C2| Ze + [4)(3| Za + |5)X4| Ze + [2)$6] Zf

Then %, (p + p*) is the graph depicted in Figure 5b.

(b) A ladder with alternating hexagons

(a) The infinite ladder graph and squares

Figure 5: Examples of MPL graphs

Another example of a graph which, as far as we know, requires a constant term to express as
an MPL graph is depicted in Figure 8.

Example 3.12 (Replacement products and zig-zag products). It is also possible to view some
graphs arising from polynomial lifts as the result of replacement products and zig-zag prod-
ucts [RVW02].
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Figure 6: An illustration of the graph whose matrix bouquet serves as a base for Figure 5b

Definition 3.13 (Replacement product). Let G be a D-regular undirected, unweighted graph on
n vertices, and let H be a d-regular undirected, unweighted graph on D vertices. Further, G is
equipped with a rotation map Rotg : [n] x [D] — [n] x [D] is a permutation where Rotg(u,i) =
(v, j) if the i" outgoing edge from u is the j outgoing edge from v. This can be thought of as a
coloring on the edges.

The replacement product of G and H, denoted G®H, is a graph on nD vertices which we
identify with [n] x [D]. The graph is constructed by first making n copies of H, labeling the
vertices with [n] x [D], and then joining every (u,i) € [n] x [D] to Rotg(u,i). This results in a
(d + 1)-regular graph.

With some further restrictions on G, we can view the replacement product as a matrix poly-
nomial lift. Namely, we require that G is the sum of e permutations and d’ matchings on [#]. In
particular, we fix an involution * on {0,1,...,d + 2e} as in a matrix bouquet, and require that G
is the graph of an n-lift £, = (09,01, ...,0442-) (satistying ojx = (Ti_l). In terms of the rotation
map, this results in Rotg(u,1) = (0;(u),i*). Now let Ay be the adjacency matrix of H, and define

d+2¢

pi=An+ Y, DG X
i=1

The X; terms are self adjoint whenever the corresponding permutation ¢; is a matching, and
are part of an adjoint pair X;, X;+ otherwise. Then, A,(£,, p) is the adjacency matrix of the
replacement product G@®H.

Definition 3.14. Similar to replacement products, the zig-zag product of a D-regular graph G on n
vertices, and a d-regular graph H on D vertices is a graph on [n] x [D], denoted G@ H. First, we
create n clouds of D vertices, each corresponding to a copy of H. An edge exists in G@ H from
(u,1) to (v, ) if there exist i’ and j’ € [D] such that (i,i') is an edge in H, Rotg(u, i) = (v,j’), and
(j',j) is an edge in H. This can be thought of as taking a step within a cloud (with edges defined
by H), then a step between clouds (with edges defined by G), and then a step within a cloud.
This construction results in a d-regular graph.

Again, we can express zig-zag products as the lift of a matrix polynomial when G is the graph
of an n-lift £,. Let Ay be the adjacency matrix of H, and define

d+2e
pi= Z A% X,
i=1

Then, A,(L,, p) is the adjacency matrix of the zig-zag product G@ H.
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3.2 Structure, connectivity and geometry of polynomial lifts

In this section, we will examine some properties that infinite polynomial lifts must satisfy. We will
take p to be a self-adjoint polynomial with {0, 1}"*" coefficients, in d self-adjoint indeterminates
and e indeterminates and their adjoints. In this section, whenever we refer to a matrix polynomial
p we mean with these constraints unless otherwise specified.

Though our main interest is with MPL graphs, our results in this sections apply more gen-
erally to the extensions of infinite lifts 9 (p) of such polynomials (which, in general, consist of
the union of possibly non-isomorphic finite or infinite graphs). We will refer to any connected
component of an extension of a infinite lift as a “graph arising from a polynomial lift”.

Recall that the vertex set of E%o(p) is Vi, x [r], where V, is the free product of d copies of Z,
and e copies of Z. We think of the vertices of V,, as corresponding to the reduced words formed
by d self-inverse generators and e pairs of generators and their adjoints, named g1, ..., g4+ 2.
Following our convention of left-multiplying permutations, e.g. we think of the word ¢>¢1 as g1
followed by g>. For a word w, we write w to denote its reduced word. In this section we use the
notation £, = (0,81, ...,84+2.) Where o is the identity element of Vi, g1 ... 4.2, are generators
with g1 ... g4 being self-inverse. Given some term a,X“ in p, we write ¢ to denote substituting
the generators into X“. We label the vertices of gzo(p) by (w, i) € Vi x [r], where w is a word of
generators, and i indexes into the cloud of r vertices corresponding to w.

The graphs of infinite polynomial lifts are clearly locally finite, and they additionally are
constrained to look “tree-like”, i.e. their structure and geometry are similar to those of trees. We
can formalize this in terms of the treewidth and hyperbolicity. The treewidth measures how close
the graph is to a tree structurally, while the hyperbolicity of a graph measures how close the
graph distance metric is to that of a tree metric.

In particular, we will find that the graphs that arise as the infinite lifts of polynomials all have
finite treewidth. Let us recall some definitions:

Definition 3.15. Let G = (V,E) be a graph (possibly with infinite vertices). A tree decomposition
of G is a tree T whose vertices are sets W = | J;.» W; indexed by some set .. Each W; is a subset
of V. (T, W) satisfies the following properties:

1. Each v € V is in at least one W;.
2. If (u,v) € E, then there exists some i € X such that both u and v are in some W;.

3. If u € V is in W; and also W, then it is in every Wy for Wy in the unique path in T from W;
to W..
]

Definition 3.16. The treewidth of G is the minimum of max;ey |W;| — 1 over all tree decompositions
(T,W).

Proposition 3.17. Let p be a matrix polynomial, and let m be the sum of the degrees of the terms of p.
Then, the treewidth of the extension of the co-lift 4, (p) is bounded by (m + 1)r.

Proof. We can construct a tree decomposition. Each v € V,, is associated to a cloud of r vertices
in Egoo(p). Our vertex sets {Wy}yey,, in the tree decomposition will be indexed by Vi, and the
tree structure on {W,} is also inherited from V.. Each W, contains a copy of the r vertices in the
cloud of v € V,, and for each polynomial term a, X" in p, W, also contains the r vertices in the
cloud of u € V, for every u along the path from v to g“v. O
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Corollary 3.18. In particular, graphs which arise from infinite lifts of matrix polynomials must have
finite treewidth. An example of a graph that does not have finite treewidth is an infinite grid. Therefore,
we cannot derive grids from noncommutative polynomials.

We have seen from the previous section that, in general, the infinite lifts of a polynomial can
contain many connected components. It is also easy to see that these need not be isomorphic.
Nevertheless, given the labels of two vertices in Q@(p), based on p it is easy to decide if they
belong in the same connected component.

In the scalar case where r = 1, we can decide connectivity with a deterministic finite au-
tomaton by utilizing Stallings foldings [Sta83]. The following is from Section 2 of Kapovich and
Myasnikov [KMO02], which we refer the reader to for full details. We reproduce a sketch of the
proof here.

Proposition 3.19. Let T be a set of words from a free group which is closed under inverse. We say a word
w is reachable by T if the reduced word w can be formed by concatenating an arbitrary combination of
words from T, possibly with repeats, and then reducing. Then, the language L of such words is regular.

Proof sketch. We construct a deterministic finite automaton which, given an input reduced word
w, accepts if w is reachable by T. Since the reduced words are also a regular language, and
regular languages are closed under intersection, this shows that L is regular.

We construct the automaton iteratively as a directed graph labeled with the generators (the
direction of the edge indicates to use the generator or its inverse). We start off with a single node
z which will serve as both the initial and final state. For each word t € T, we add a directed loop
of length |t| starting and ending at z, such that traversing the loop recovers t. Then, we apply
a “folding” process: whenever a node has two outgoing edges to nodes x and y with the same
direction and the same label, we replace the nodes x and y with a single new node with incident
edges equal to the union of incident edges of x and y. The process terminates when every node
has at most one incident node of every label. O

Given a scalar-coefficient polynomial p, the vertices of gzo(p) correspond to words of the free
group. For the connectivity question, the coefficients of p are irrelevant, so we can assume they
are all 1. We can take T to be the set of words of generators corresponding to the terms of p. Then,
u and v in V,, are connected if and only if vu~! is in the language defined in Proposition 3.19. It
is easy to see that the construction can be modified to allow for self-inverse generators by making
the edges labeled by those generators undirected.

With a reduction to the scalar case, we can also understand connectivity for matrix-coefficient
polynomials.

Proposition 3.20. Let p be a matrix polynomial. Let (u,i) and (v, j) € Vi, x [r] be vertices in gzo(p). It
is efficiently decidable whether (u,1) and (v, j) belong to the same connected component.

Proof. We first create r additional generators, each corresponding to one of the vertices in a cloud.
Call these generators hy, ..., h, and hl_1 Y

p can be written as a sum of terms of the form |i){j| X" (i.e. terms whose coefficients have
exactly one nonzero entry). For each such term, add the word hjgwhi_1 to T. Since p is self-
adjoint, T is closed under inverse. Then, (u,i) and (v, j) are connected if and only if h]-vu_lhi_1 is
reachable by T, which we can check using Proposition 3.19. O

We now move on to describe the hyperbolicity of graphs arising from infinite lifts of polyno-
mials. Hyperbolicity is another measure of how tree-like a graph is. Gromov [Gro87] defined
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this notion of hyperbolicity for groups; it generalizes a notion of how much a space is like a
Riemannian manifold with negative curvature [Gro83]. Hyperbolicity is also interesting for finite
graphs [BRS11, BRSV13], including random graphs [CFHM12]. It is related to other combinato-
rial properties of the graph such as chordality [BKM01, WZ11], independence number and max
degree [RS12], and the circumference and girth [HPR19]. It is also useful describing real-world
graphs, and has applications in networks and routing (e.g. [MSV11, Kle07]).

In the context of geometric group theory, hyperbolicity has also been studied for infinite
graphs, for instance those arising from the free products of groups [Hor16], and tessellations of
the Euclidean plane [Car17]. More generally, simplicial complexes arising from free groups such
as the complex of free factors [BF14] and the free splitting complex [HM13] have been proven to be
hyperbolic.

We use the following definition for hyperbolicity of (possibly infinite) graphs.

Definition 3.21. Let G be an unweighted, undirected graph. We say that G is J-hyperbolic if
for every 3 vertices u, v, w, the shortest paths (u,v), (1, w) and (v, w) satisfy that for every node
x € (u,v) there exists a node y in (u,w) or (v,w) such that the graph distance (length of the
shortest path) dist(x,y) <.

As an example, a tree is 0-hyperbolic. We are interested in graphs where J is finite and
constant.

In contrast to treewidth, which captures information about the local structure of the graph,
hyperbolicity is a global property which captures global information about distances between
vertices. Hyperbolicity and treewidth are in general not comparable; for instance, a n-cycle has
treewidth 2 but hyperbolicity [} ]. Meanwhile, the Cayley graph of the fundamental group of the
torus G = (a,b,c,d| aba='btede 1d! = 0) has arbitrarily large grid minors, and hence infinite
treewidth, but it has finite hyperbolicity.

For graphs with multiple connected components, J is typically taken to be infinity. Hence, we
are concerned only with the hyperbolicity of connected components within infinite polynomial
lifts. In our application of spectral approximations of polynomial lifts, we typically only consider
cases where the infinite polynomial lifts is a finite number of isomorphic copies of some infinite
graph.

We next show that all connected components of a infinite polynomial lift are J-hyperbolic
for 6 a constant depending on the polynomial p. Similar to the case of connectivity, we will
eventually make a reduction to the scalar case of r = 1. We first prove the statement in the case
of r = 1, hence we take p to have all coefficients 1 in the following. Given the extension of the
infinity lift 9, (p), we will want to consider the graph given by the polynomials and the Cayley
graph of the subgroup of the free group with vertex set V, at the same time. When possible we
will use E%o(p) to refer to the polynomial graph, but V,, to refer to the Cayley graph (switching
between the two views when necessary). To proceed, we start with some definitions:

Definition 3.22. Let u,v € V,,. We define the tree path between u and v to be the sequence of

generators in vu~! (i.e. the edges along the (unique) path in the Cayley graph of the free group
V). We denote the tree distance treedist(u,v) as the length of the tree path.

Definition 3.23. We define the d-neighborhood of a vertex v to be the set of vertices w € V,, such
that treedist(v, w) < d. We also define the d-neighborhood of the tree path from u to v to be the
set of vertices w € V,, such that there exists x on the tree path from u to v with treedist(x, w) < d.

Definition 3.24. Let p be a polynomial. Let u,v € gzo(p) be in the same connected component.
We define a monomial path between u and v to be a shortest path between u and v in ¥, (p).
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Further let the monomial distance dist(u,v) be the length of the monomial path. Note that there
may not be a unique shortest path.

The following observations are key for the hyperbolicity of the scalar polynomial lifts.

Lemma 3.25. Let p be a polynomial with {0, 1} coefficients and the degree of any term is at most m. Let

u,v e gw(p) be in the same connected component. Now fix a monomial path from u to v and consider
traversing it. The following hold:

i) Every time the monomial path leaves the m-neighborhood of the tree path between u and v, it returns
to the m-neighborhood at a point at most tree distance 2m away.

ii) For every vertex w on the tree path from u to v, there is a vertex x in the m-neighborhood of w such
that x is on the monomial path from u to v.

Proof. We first prove (i). Suppose that the monomial path leaves the m-neighborhood of the tree
path at a point x. Note that treedist(x,v) > m since x has to be outside a m-neighborhood of v.
Let y be the vertex such that treedist(x,y) = m and y is on the tree path between x and v, and let
' be one step further than y on the tree path between x and v. Also note that ¥’ must be on the
tree path between u and v.

When removed, the edge (y, ') disconnects V. In particular, after removing the edge we can
think of y and i’ as the roots of two subtrees, the union of which includes all the vertices of V.
u is in the subtree of y and v is in the subtree of y’. Since the maximum degree of p is m, any
monomial-step can only get to a vertex at most m in tree distance away from x. Therefore, any
monomial step from x remains in the subtree of y.

In order to reach v, the monomial path has to enter the subtree of . Let z be the last vertex
visited by the monomial path in the subtree of y before entering the subtree of y’. Since each
monomial-step can traverse at most m tree-steps, z has to be tree-distance at most m — 1 from y,
and is hence in the m-neighborhood of y’. Finally, we note that treedist(x,z) < treedist(x,y) +
treedist(y, z) < 2m.

We observe (ii) as a consequence of (i). At any vertex on the monomial path from u to v, the
next step either goes to a vertex at most m away in the m-neighborhood of the tree path from u
to v, or it leaves the m neighborhood and rejoins at a point at most 2m away. O

We can now prove the hyperbolicity of the connected components, where connectivity is
defined based on the monomial paths.

Proposition 3.26. A graph arising from a polynomial lift has finite (depending on the polynomial p)
hyperbolicity in every connected component.

Proof. We first prove the statement for scalar-coefficient p, then make a reduction for general p.

Fix a scalar-coefficient p with maximum degree m, and let C be the maximum monomial
distance between any two vertices which are connected and tree distance at most 2m apart.

Let u, v, w be vertices in V,, from the same connected component. Let x be on a monomial
path from u to v. By part (i) of Lemma 3.25, x is either in the m-neighborhood of the tree path
from u to v, or x is on a path which leaves the m-neighborhood of the tree path but will rejoin
at a point at most 2m away from where it left. In either case, x is at most monomial-distance
C away from a vertex x’ which is in the m-neighborhood of the tree path from u to v and is on
the monomial path from u to w. Let y be the point which is on the tree path from u to v and is
closest in tree distance to x’.
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Since the union of the tree paths between 1 and v, v and w and u and w is a tree, y lies on
either the tree path from u to w or from v to w. Suppose without loss of generality v is on the
tree path from u to w. Now fix a monomial path between u to w. From part (ii) of Lemma 3.25
there is a vertex i’ such that i’ is on the monomial path between u to w and treedist(y’, y) < m.
x" and y’ are in the same connected component since they are on the monomial path between
u and v and the monomial path between u and w respectively. We also know treedist(x’, y") <
treedist(x’, y) + treedist(y,y’) = 2m, therefore dist(x’,y’) < C, so dist(x,y’) < 2C. Therefore, the
connected component that 1, v, and w belong to is 2C-hyperbolic.

Finally, for matrix-coefficient polynomials, we make a similar reduction as in Proposition 3.20,
by adding a generator and its inverse for each i € [r], which we call hy,...h, and hy L Jhy 1,
We use V), to denote the free product of V,, with another r copies of Z. Next, we make a
transformation of p to a scalar-coefficient polynomial p’. We write p as a sum of terms of the form
|i)(j| X®, and for each such term, we add X]-Xin_1 to p’. Given (u,1), (v,j) and (w, k) € Vi, x [r],

we transform these vertices to o, hju—lhlfl and hkwu—lhfl in V.. This increases all tree distances

by 2, and leaves monomial distances unchanged. Therefore, the connected components of G ( )
are also hyperbolic. O

3.3 Benjamini-Schramm convergence and unimodularity
Next, we study some properties of the automorphism group of the graph %, (p).

Proposition 3.27. Let p be a matrix polynomial with coefficients in {0,1}"*". &..(p) has at most r vertex
orbits.

Proof. Consider the graph of ¥, (p), and recall that each vertex can be labeled (v, c) for v € Vi,
and ¢ € [r]. The natural covering map from %, (p) to % (p) maps any two vertices labeled with
the same ¢ in 64700(;9) onto the same vertex in %Nl(p) For any two vertices (u,c) and (v, c), there
must be some sequence ¢ a product of generators corresponding to the polynomial terms of p
that such that gu = v. Then, the map P; ® I,», applied to A (p) brings (u,c) to (v,c), so these
two vertices are in the same orbit. Therefore, there can be at most r orbits. ]

We move on to another property that the automorphism groups of these infinite graphs have.
We say that a graph is unimodular the Haar measure on the automorphism group is both left
invariant and right invariant®. Intuitively, this condition means that the infinite graphs “looks
the same” in any direction. Unimodularity can be a useful property in characterizing graphs, for
example, all unimodular trees are the universal covering tree of some finite graph [BK90].

Definition 3.28. Let G = (V,E) be a graph. We say that f : V x V — [0, ] is diagonally invariant
if for all automorphisms g € Aut(G), we have f(gu,gv) = f(u,v). In the case where we let the
graph be a parameter of f, we also say f is diagonally invariant if f(G;u,v) = f(G; gu, gv) for all
automorphisms g € Aut(G).

The following is the Mass-Transport Principle of Benjamini, Lyons, Peres and Schramm [BLPS99],
and in a vertex transitive graph, satisfying this condition is equivalent to unimodularity.

Definition 3.29. Let G = (V, E) be a vertex-transitive graph. Fix some vertex 0 € V. We say that
G satisfies the Mass-Transport Principle if for all diagonally invariant f : V x V — [0, 0],

> flo,x) = f(x,0).
xeV xeV
unrelated to totally unimodular matrices

8
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The Mass-Transport Principle can be extended to non-vertex-transitive graphs. For finite
graphs, we can choose 0 € V uniformly at random and require that the equation hold in expecta-
tion. We can extend this to quasi-transitive graphs (graphs which have a finite number of vertex
orbits) as well. To do so, we have to introduce some machinery. For a graph G, we call the pair
(G,0) with 0 € G a rooted graph. (G, o) is isomorphic to (G/,0) if there is an isomorphism from
G to G’ bringing o to o’. We write [G,0] to denote the isomorphism class of (G,0). Let G be
the space of isomorphism classes of locally finite graphs. We sometimes also need to consider
isomorphism classes of graphs with two roots, which we will denote [G;a,b]. We call G, the
space of these isomorphism classes.

We can define a metric on G,

d([G,o],[G,0']) = sup{27" : B([G, 0], r) is isomorphic to B([G',0'],7)}.

r>0

We write Gp for the subspace of G where the degrees of the vertices are uniformly bounded by
D. Under the above metric, Gp is compact metric space. In the following, we consider probability
measures on the Borel o-algebra generated by the metric.

To formulate the Mass-Transport Principle, one can try to extend the notion of picking a
vertex uniformly at random to infinite graphs. The natural way to do this for a quasi-transitive
graph is to pick a isomorphism class with probability proportional to the density of the type
of the root. This is a probability measure u on G. This form of the Mass-Transport Principle is
known as the Intrinsic Mass-Transport Principle due to Benjamini and Schramm [BSO01].

Definition 3.30. We say that a probability measure y on G satisfies the Mass-Transport Principle
or is unimodular if for all Borel f : G, — [0, ],

E Z f(Go,x)| = ]? 2 f(G;x,0)

[Gol~1 1 VG [Gol~k] Vg

For quasi-transitive graphs, the Intrinsic Mass-Transport Principle is equivalent to unimodu-
larity [ALO7, Theorem 3.1], which explains the terminology. For a finite graph G, the measure
supported on [G, 0] for 0 € G defined by

| Aut(G) - o
mle el = i)

is unimodular.

One example of a non-unimodular graph is Trofimov’s grandparent graph [Tro85]. The con-
struction is as follows: Start with a 3-regular tree, and pick an end ¢. For each vertex, call the
vertex one step in the direction of ¢ its parent, and the vertex two steps in the direction of ¢
its grandparent. Join each vertex to its grandparent with an undirected edge. This produces a
6-regular graph. Another class of examples are the Diestel-Leader graphs [DLO1].

Our next goal is to show that the graphs arising from matrix polynomials. This gives us some
slightly surprising examples of graphs that cannot be expressed by non-commutative polyno-
mials. For instance, the grandparent graph appears to have a repeating structure, and is vertex
transitive, but nevertheless non-commutative matrix polynomials cannot express it.

A nice consequence of defining unimodularity via the Mass-Transport principle is that we can
now consider limits of graphs as limits of probability measures on G. For a single finite graph G,
we can take the probability measure on equivalence classes of [G, 0] for 0 € G chosen uniformly
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at random, or in other words, [G, 0] is weighted according to the size of the vertex isomorphism
class of 0. The notion of convergence we will use is that of weak convergence of measures. Recall
that we say a sequence of probability measures {1, },_, converges weakly or converges in distribution
to p if for every continuous function f,
lim E(f] - E[f)

In the literature, # (or G on which y is supported) is sometimes known as the “local limit” or
the convergence is known as “convergence in the sense of Benjamini-Schramm”. By having the
support of # on a random collection of G, we can also consider the limit of random graphs.

If each i, is supported on some finite graph Gy, this form of convergence intuitively says that
with high probability, each radius-r-neighborhood of G, looks like a radius-r neighborhood of G
appearing with probability according to u, where r — o0 as n — co.

An important open question is whether every unimodular measure is such a limit of finite
graphs [AL07, Question 10.1].

Rooted graphs of depth at most k (for k > 0) which we call G® forms a base of G (as a
metric space). The finite graphs are all isolated points in this metric, thus these base elements
are discrete. To show weak convergence in Gp (i.e. when the degree is uniformly bounded), it
suffices to show convergence in measure on every set in the base.

To show convergence on the base sets, it suffices to show that for every finite rooted graph I’
and k > 0,

lim [G’gg W[B(ol k)=T]= : Gg]g y[B(o, k) =T],
where B(o, k) denotes a k-neighborhood around the root of G.

One useful property is that unimodularity is preserved under weak convergence [AL07], and

we will use this to show the following:

Proposition 3.31. Graphs arising from infinite lifts of matrix polynomials are unimodular.

Proof. We will do so by showing that the random finite lifts weakly converge to the measure on
the infinite graph. Let y,, be the uniform distribution over randomly-rooted n-lifts. Since this is
a uniform distribution over unimodular measures, it's unimodular as well.

From Proposition 3.27, there are at most r vertex orbits in the infinite graph. Thus, picking a
random root can be done by picking a representative corresponding to one of the r base vertices
uniformly. We call this probability measure .

For every k > 0, with high probability as n — o0 none of the permutations have cycles smaller
than k. In this case, for all finite rooted graphs I', Pr(g oj~y,[B(0, k) = I'| = Pr[go)~u[B(0, k) = T].
Therefore, ji,;, — p in measure on the base sets. ]

3.4 Connectedness of finite lifts produced by our algorithm

We now turn to the question of whether the finite lifts produced from our derandomization of
Theorem 1.1 (with the full theorem statement in Theorem 10.13) result in connected (extension)
graphs when applied to a polynomial. To do so, we consider random walks on the graphs.

Definition 3.32. Let A be the adjacency matrix of a locally finite multigraph G (indexed by pairs
of vertices). We define the random walk matrix of G to be Pg such that

(PG)uv = Aun/ deg(u),

where deg(u) is the degree of the vertex u.
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We need the following fact about Pg.

Fact 3.33. For a finite multigraph G, the largest eigenvalue of Pg is 1 and it has multiplicity 1 if and only
if G is connected.

For spectral computations, it is convenient to analyze a symmetrized version of Pg.

Fact 3.34. Let A be the adjacency matrix of a locally finite multigraph G. Let D be the degree matrix,
i.e. the diagonal matrix where D, is the degree of vertex u in A. Then, P; = DA, and we define the
symmetric matrix Sg == D~Y/2AD~1/2,

One can check that if A is an eigenvalue of S with eigenvector v, then A is an eigenvalue of Pg with
eigenvector DV/?v, so in particular their spectra are equal.

For an infinite graph G, it turns out that whether p(P;) = 1 is characterized by an isoperi-
metric property: whether the graph is amenable. Amenability was first defined as a property of
groups, see, e.g. [Woe00, Ch. 12]. The definitions for amenability of Cayley graphs can also be
extended to general graphs. There are many equivalent definitions for amenability in graphs; the
following is a statement about the isoperimetric constant of the graph.

Definition 3.35. Let G = (V, E) be a locally finite undirected graph. Let S — V be a set of vertices,
and we define the boundary 0S c E to be the set of edges {u, v} withu e Sand v ¢ S. Let m(S) be
the sum of the vertex degrees in S. We say that G is amenable if

0S|

0.
Sch,r|IS\<oc ﬂ’l(S)

The quantity infscy,|s|<x [0S]/|S| is known as the isoperimetric constant or isoperimetric number.

As some examples, every finite graph is amenable, an infinite path is amenable, while a
d-regular infinite tree for d > 3 is not amenable.

The following was shown by Gerl [Ger88] (which also contains other equivalent characteri-
zations of amenability), and is an extension the result on Cayley graphs by Kesten [Kes59]. The
result for d-regular graphs was also shown in [BMST88].

Proposition 3.36. Let G be a locally finite undirected graph. Then, G is amenable if and only if p(Pg) = 1.
We can therefore conclude:

Proposition 3.37. Let p be a matrix polynomial with r-dimensional coefficients. Suppose that the exten-
sion of the co-lift 4,,(p) is non-amenable, and that ¢4 (p) is connected. Then, there exists € > 0 such that
applying Theorem 10.13 with k the total degree of p and R the maximum Frobenius norm of the coeffi-

cients of p gives a lift £, such that A, (L., p) satisfies the conclusion of Theorem 10.13 and %, (S, p) is
connected.

Proof. Write p = 3 c 7 @wXw, An = Ay(£4,p) and let D, be the degree matrix of A,. We will
show that Sg; = D;l/z
p(S4 1) <1 (where S denotes the projection onto the orthogonal complement of |+), ).

AnDy 12 projected onto |+), has the eigenvalue 1 with multiplicity 1, and

Recall that 4,,(£,, p) is a 7 -regular graph. Therefore, each group of vertices in 9, correspond-
ing to the same vertex in %, has the same set of degrees. Hence, D,, is a block-diagonal matrix
with identical blocks, in fact D, = I, ® D1, where D; is the degree matrix of ¢ (p). Therefore, we

can express S, as the lift of another polynomial. If we define p’ = > ,c > Dy 1 zale_ Y2xw then
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S% = Au(£4,p'). Note that p’ has the same degree as p, each of the coefficients has Frobenius

norm at most that of the corresponding coefficient in p, and that G(L0, p') is connected if and
only if %Nn(ﬂn, p) is connected.

By Facts 3.33 and 3.34, max U(Sfin
eigenvalue 1 with multiplicity 1. Using Proposition 2.23, the eigenvalue 11is in spec(S,; )\ spec(S; | ).

) = 1. Since we assume ¥ is connected, S{% has maximum

Hence, showing that | 55 1 || <1 ensures that S has eigenvalue 1 with multiplicity 1.

Let ¢ > 0 be a parameter to be chosen later. We apply Theorem 10.13 with r being the
dimension of the coefficients of p, k the total degree and R the maximum norm of the coefficients
of p, and N of our choice, obtaining an n-lift £,. From Proposition 3.36, the assumption that G is
non-amenable implies p(Aw (L, p')) < 1. If we choose e small enough that p(Ax (Lo, p')) +€ <
1, then HSCp lH < 1, and we conclude that &,(£,, p’) is connected, hence %, (£,, p) is connected.

O

We will not attempt to characterize which polynomial lifts are non-amenable here, but refer
the reader to some previous work done on amenable graphs. The isoperimetric constant, and
hence determining if a graph is amenable, is related to the growth rate [Moh88] (in particular, non-
amenable graphs have exponential growth). Amenability also has connections to percolation
processes [BLPS99], and other spectral properties and properties of the random walk [Ger8S,
Kai92, Dod84, Sal92]. There are also some combinatorial characterizations e.g. on trees [Woe00,
Thm. 10.9], [FMK17], and on vertex-transitive graphs [SW90].

4 Additional analytic setup and definitions

4.1 Nonbacktracking operators

Throughout this section, let % = {0,1,...,d + 2e} be an index set, and write .¥ = .%,\{0} for
the version with no identity-index. Let p = > .5 2,X" be a self-adjoint matrix polynomial
over %, with coefficients in C™", let K = ap +a1X1 + - -+ + 44,2, X412, be a self-adjoint linear
matrix polynomial over ., with coefficients in C"*", and let £, = (1,01, ...,04.2.) be an n-lift,
ne Nt U {oo}. Let G, = 4,(£,, K) be the resulting n-lifted color-regular graph on vertex set V.
Recall that the adjacency operator of G, is

An:A 2fn/ ZPU,®Q1
lejo

Definition 4.1 (Nonbacktracking operator). The nonbacktracking operator of G, is the following (in
general non-Hermitian) bounded operator on /5(V;) ® f2(.#) ® C":

d+2e
Bn = Bn(gn/]c> = Z l[j 7 i*] ' Plfi ® |]><Z‘ ®af'
ij=1

As lr(Vy) ®Lo(I) = £r(Vy, x &), we may think of B, as arising from nonbacktracking steps along
the colored arcs V,, x .# of G,,.

Remark 4.2. We only define the nonbacktracking operators of G, arising as lifts of linear poly-
nomials, and not general polynomials.
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Remark 4.3. A warning: the summation defining B, above does not include i,j = 0; i.e., it
excludes the identity-loop color in G,. Hence B, does not depend on ayg. The reason for this
convention (chosen by Bordenave—Collins) is that in the needed technical theorems involving B,
we will be in a setup where a9 = 0 anyway. In case ap = 0, the operator B, corresponds to the

“usual” nonbacktracking operator of the extended graph Gn.

Notation 4.4. We use By, (K) = By (L4, K) to denote the nonbacktracking operator of the co-lift
of K Ay (K).

Notation 4.5 (Projection to the nontrivial subspace). As in Section 2.4, for a linear polynomial p
we write By, | (£,, p) for the action of adjacency/nonbacktracking operators on H—),f .

Finally, we record a kind of formula for the spectral radius of By,. The following fact is proven
within “Proof of Lemma 14” in Bordenave and Collins’s work [BC19]:’

Proposition 4.6. For i € [d + 2e], define the r* x r* matrix A; = a; ® a;, where @; denotes the matrix
formed by taking the complex conjugate of each entry in a;. Also, define L to be the (d + 2e) x (d + 2e)
block matrix, with blocks of size r* x r2, whose (i, j)th block is 1[j # i*] - A;. Then p(Bx) = /p(L).

Corollary 4.7. If |ajllp < R for all i € [d + 2¢], then p(By,) < v/d + 2eR.
Proof. The claim follows from p(By)* = p(L)? < tr(LL*) and

d+2e d+2e
r(LL*) = > > tr(AAF) = > > [ailFlailf < (d + 2¢)°R*. O
i=1 j#i* i=1 j£i*

4.2 Lifting permutations and product lifts

We continue with the notation from the previous section, assuming henceforth that n < oo.

Definition 4.8 (The graph Gg¢, associated to a lift). Let 0 € &(n) be a general permutation. Then
P, + P,-1 is the adjacency matrix of an n-edge undirected graph on vertex set [n], which we
will denote by G,. Similarly, suppose ¢ € &(n) is a matching permutation. Then P, alone
is the adjacency matrix of an n/2-edge undirected graph on vertex set [n]; abusing notation
slightly, we will also denote it by G,. Now supposing £n = (L,09,.. 0d+23) is an n-lift, we
define an associated undirected (multi)graph G¢, = G, + -+ Gg, + G -+ G More

precisely, Gg, is the graph on vertex set V;,, whose ad]acency matrix is Z‘HZE P,.. Note that we
have omitted the identity-index i = 0 here, so G¢, has no self-loops. Equivalent definitions are

that Gg¢, = %(Sn, KC) where K is the linear matrix polynomial Z]-e X (withr =1).

Ud+1 Od42e°

Definition 4.9 (The lift of a permutation/matching). Suppose again that o € &(n) is a general

permutation. Given a sequence ¥, of permutations 19 = 1,71,..., T2, € &(m) with Tjtn = T].’l

(for j € [n]), we can form the lifted extension graph ©,,(T,,, K¢,). This graph is of the form Go
for a permutation p € &(mn), and we refer to (o, p~!) as the permutation pair (o, ") lifted by Ty,
Identifying C"" = C" ® C" we have P, = > Pr. ® |o(j)){j]-

If c € &(n) is a matching permutation, we may do something similar. In this case, P, alone
is the adjacency matrix of an n/2-edge undirected graph on vertex set [1], which we also denote

9Therein they write “We deduce from Theorem 16(ii) that p(B.) is equal to the spectral radius of L”, but this is
clearly a typo for “the square-root of the spectral radius of L”; personal communication with the authors confirms this.
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by G,. Given a sequence ¥,, of permutations 10 = 1,1,...,T, € &(m) with Titn = Tfl (for
j € [1/2]), we can again form the lifted extension graph %,(T,,, Kg,). This graph is a perfect
matching, and hence may be viewed as G, for p € &(kn) a matching permutation. We again refer
to p as the matching permutation o lifted by %,,.

Definition 4.10 (Product lift). Let £, = (1,04,...,0442.) denote an n-lift. For m € IN", we can

produce an mn-lift (op = 1,p1,...,p4+20) as follows. For for 1 < i < d assume that ‘Z%) =

(Tl(i), ceey T,Si)) is a sequence of permutations in &(m) with T].(_?n/z = (Tj(i))_l; and, ford+1 <i <
d + e assume that T = (Tl(i), ceey 2(;)) is a sequence of permutations in &(m) with T].(i)n = (Tj(i))*l.

Now for 1 <i < d, let p; be the matching permutation o; lifted by Tl and, ford+1<i<d+e,

let (pi, pi+.) be the permutation pair (0j, 0;.) lifted by ‘I,(qi). We write T, ® £, for the mn-lift (p;);,

calling it the product of the m-lifts ‘3%) with the n-lift £,. Note that Gg,,g¢, is an m-fold graph lift
of Gg, (of the usual sort).

4.3 Signed permutations

Notation 4.11. We continue in the setup of the previous section, but restrict attention to the case
of m = 2. In this case, given the 2-lifts ‘Ig) = (T]-(l))]' (for1<i<d l<j<nandd+1<i<d+e,
1 <j < 2n) we may write

T el EPTUR ] et BRSO

where x1,..., x4 : [n] = {1} and X441, -, Xd+e : [21] — {£1} and where we use the notation
== HD+R), 5= LD ).

Definition 4.12 (edge-signing/signed permutation). Recall that we have x;(j +n) = x;(j) for
d+1 < i < d+e and thus it is natural to treat these yx;’s as functions [n] — {£1}. Simi-
larly for 1 < i < d we have x;(j + n/2) = x;i(j) and thus it is natural to treat these x;’s as
functions [n/2] — {£1}. In this form, we will identify X1, ..., x4 as edge-signings of the 1-regular
matching graphs G, ..., Gg,, and identify x41, ..., X4+, as edge-signings of the 2-regular graphs
Goyirr -+ -+ Goy,,- Relatedly, we may think of each x;o; as a signed permutation (i.e., a member of
the hyperoctahedral group of order n). Collectively, x = (X1,---,Xds Xd+1/-- -, Xd+e) iS an edge-
signing of the graph Gg, .

Notation 4.13. We will use Py, to denote the signed permutation matrix naturally associated to
the signed permutation y;0;. In the context of a matrix polynomial p, given a monomial X%, we
use Py,v to denote the signed permutation matrix associated to the signed permutation (xo)®
given by substituting X; with x;o; for each j € .#. We also write x to denote the signing obtained
by substituting X; with x; for each j € .7.

Notation 4.14. Let p = >} ., 0, X" be a matrix polynomial. We write A, (x£,, p) for the signed
adjacency operator of the sign-lifted color-reqular graph 4, = 4,(x£x, p), the variant of 4,(£,, p) in
which the w-colored edge emanating from u € V,, is also signed by x“(u).

Remark 4.15. One might also interpret this as changing the matrix-weight on the edge from a%
to x“(u)a®, but one must be careful not to use this interpretation for the signed nonbacktracking
operator, as we will see.
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Notice that for 1 < i < d + 2¢, the ith permutation p; in the composition lift T, ® £, satisfies

n

- L P @) (41 = D (106 + 2:07) - [=X=1) ® ()X

: ]1
Z+><+\®!m ><]\+ZX1 =X 1@ e ()]
j= j=1

= [+X+[® Po; + [- X~ ® Pyio;-
Thus
A(T2® &0, p) = |[+X{+|® (Z Py ®aw> +]-X-|® (Z Pyov @m)
weT weT
= |+ @ An(Ln, K) + [ =)= ® An(xLn, K), ®)

From these, we deduce
Proposition 4.16. The following multiset identities hold:

1. spec(A2 (T2 ® £q, p)) = spec(An(Ln, p)) © spec(Anyx(Ln, p)),

2. spec(Azn, 1 (2@ £y, p)) = spec(An, 1 (€n, p)) v spec(Any(£n, p))-

Proof. Ttem 1 follows immediately from Equation (5). Using |+)® |+), = |+),,, we have

[+ @ An(Ln,p) = D) (I4XH ®Pore) @i = . |49, (+]py ®a° + D (0D Py 1) @0, (6)
weT weT weT

and combining this with Item 1 gives us Item 2 O
Similarly, in the case of a linear polynomial X, we have

Proposition 4.17. The following multiset identities hold:
1. spec(B2: (T2 ® £, K)) = spec(B (L4, K)) U spec(B, (£, K)),
2. spec(Bay, 1 (T2 ® £4,K)) = spec(By,, 1 (£4,K)) U spec(By (L4, K)).

Proof. Similarly to the computations for A,, we have

d+2e
By = Bon(To® £4,K) = |[+){+|® (Z 1[j # i*] - Py, ® |7 ®”J')
ij=1

d+2e
+ |_><_| ® (Z 1[/ e i*] ' PXiUi ® |]><1’ ®aj)

ij=1
= |+ ){+]|® Bu(Ln, K) + | =X ~| ® Bu(xLn, K), (7)
where here we’ve introduced the notation
d+2e
Bn,)( = BH(XSHIIC) = Z 1U 7 Z*] ’ PXiUi ® ’]><l| ®aj (8)

ij=1

39



for the signed nonbacktracking operator of the sign-lifted color-regular graph ¢,(x£,, K). Notice
here that the action of B,(x£,, K) on a colored arc (u, 1) picks up the sign x;(u) on the “stepped-
from” arc (u, i), but picks up the matrix-weights a; on the “stepped-to” arcs (v, j) (for v = 0;(u) and
j # 1*). (This is why one shouldn’t automatically think of an edge-signing simply as changing
the matrix-weight on colored edge (u,i) from a; to x;(u)a;.) Equation (7) allows us to conclude
Item 1. We can further compute,

d+2e
[+XH @ Ba(L K) = ) 1[j # 1 (|4)X+ @ Py ) ® )i @4
ij=1
d+2e d+2e

= 2 1 # T (L ® D ®a; + 4+ ® D) 1l #*]- (0@ P, 1) ® )X @4,

ij=1 ij=1

and hence from Item 1 we may further conclude Item 2. O

5 Derandomization tools

We require the following standard derandomization tools:

Definition 5.1. Let 6 € [0,1] and t € N*. A sequence of random bits x = (xy,...,x,) € {£1}" is
said to be (9, t)-wise uniform if, for every S < [n] with 0 < |S] < t, it holds that |E[] [;cs xi]| < 6.

The key property of such sequences we use is the following:

Fact 5.2. Let q € C[Xy,..., Xy be a (usual) polynomial of degree at most t such that the sum of the
magnitudes of the coefficients of q is M. Then if x € {£1}" is (9, t)-wise uniform and u € {£1}" is truly
uniformly random, then |E[q(x)] — E[g(u)]| < M.

A classic result is that (J,t)-wise uniform bits can be strongly explicitly constructed from a
truly random seed of length O(logt + loglogn + log(1/6)):

Theorem 5.3. (INN93, AGHP92, Sho90].) There is a deterministic algorithm that, given J, t, and n,
runs in time poly(n/d) and outputs a multiset X < {+1}" of cardinality S = poly(tlog(n)/é) (a power
of 2) such that, for x ~ X chosen uniformly at random, the sequence x is (6,t)-wise uniform. Indeed, if
the algorithm is additionally given 1 < s < S and 1 < i < n (written in binary), it can output the ith bit
of the sth string in X in deterministic time polylog(n/J).

Definition 5.4. Let e IN" and let [n]; denote the set of all sequences of ¢ distinct indices from [n].
A random permutation 7w € &(n) is said to be t-wise uniform if, for every sequence (iy,...,i) €
[1]¢, the distribution of (7t (i),..., 7(i¢)) is uniform on [n];. For 6 € [0,1], we say that 7t is J-
almost t-wise uniform if its distribution is J-close in total variation distance to that of a truly t-wise
uniform distribution 7t’.

Again, the key property of such permutations we use is the following:

Fact 5.5. Let q be a (usual) polynomial of degree at most t in indicator random variables (1]t (i) = ]]);1]:1

Then q has the same expectation under a t-wise uniform 7t € &(n) as it has under a truly uniform
T e S(n).

Combining the strongly explicit (J, t)-wise uniform permutations of [Kas07, KNR09] with the
main theorem in [AL13], we obtain the following theorem (called “Corollary 2.6” in [MOP20a]):
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Theorem 5.6. ([KNRO09, Kas07, AL13]) There is a deterministic algorithm that, given t and n, runs in
time poly(n') and outputs a multiset I1 < &(n) (closed under inverses) of cardinality S = poly(n') (a
power of 2) such that, when 7t ~ 1 is chosen uniformly at random, 7t is n='%%-almost t-wise uniform.
Indeed, if the algorithm is additionally given 1 < s < S and 1 < i < n (written in binary), it can output
7t5(i) and 771 (i) (where 7t is the sth permutation in 1) in deterministic time poly(tlog(n/é)).

Definition 5.7. For n even, we say a general permutation 77 € &(n) has the associated matching
o € &(n), where ¢ matches (i.e., has as a 2-cycle) the pairs (77(1), 7(2)),...,(7t(n — 1), t(n)).
We note that when m ~ &(n) is uniformly random, its associated matching o is uniformly
distributed among matching permutations.

Remark 5.8. If 7 € S(n) has associated matching o € &(n), each indicator 1[o(k) = /] is a
degree-2 polynomial in the indicators 1{7t(i) = j].

Definition 5.9. Given an index set .# = {0,1,...,d + 2e}, we say a random n-lift £, = (1,071,..., 0 412¢)
is 6-almost t-wise uniform if:

e the permutations o4,...,04,0441,...,044, are independent;

e each of 0y, ..., 0, is the associated matching of a d%e—almost 2t-wise uniform permutation;

e eachofoy,q,...,044.15a d%g-almost t-wise uniform permutation.

When § = 0, we simply say that £, is t-wise uniform. Note that a 6-almost t-wise uniform n-lift is
o-close, in total variation distance, to a t-wise uniform n-lift.

The 2t-wise requirement in the second bullet of this definition was chosen so that, in light of
Remark 5.8, we could make the following observation:

Fact 5.10. In the notation of Definition 5.9, suppose q is a polynomial of degree at most t in the indicator
random variables (1[c(j) = k])f’ek;ol'“n. Then q has the same expectation under a t-wise uniform n-lift £,

as it has under a truly uniform n-lift £,,.
Finally, applying Theorem 5.6 and adjusting constants, we conclude the following:

Theorem 5.11. Fix an index set .#. There is a deterministic algorithm that, given t and n, runs in time
poly(n') and outputs a multiset A of n-lifts (indexed by %) such that, when £, ~ A is chosen uniformly
at random, £, is n—1%%_close in total variation distance to being a t-wise uniform random n-lift. Indeed,
if the algorithm is additionally given i € %y, 1 <s < S, and 1 < j < n (written in binary), it can output
O'i(s)(j) in deterministic time poly(tlog(n/é)) (where 0'1-(5) is the ith permutation of the sth lift in A).

(Note that we rely on Theorem 5.6s ability to compute permutation-inverses strongly explic-

itly, not just for computing Ui(s)

permutations (Ti(s) with 1 < i < d strongly explicitly. E.g., for such a matching index, we may
efficiently compute 0;(j) from its underlying associated general permutation 7; by first letting

k = 77'(j), then setting k' to be k + 1 if k is odd or k — 1 if k is even, and finally computing
0i(j) = mi(K').)

with d + e+ 1 <i < d + 2e, but also for computing the matching
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6 Random 2-lifts

Throughout this section we fix an index set .# = {1,...,d + 2e} with no identity-index (as we will
be working exclusively with nonbacktracking operators). We will be considering linear matrix
polynomials over this index set, a1 X1 + - - - + 2412, X412., where a; € C"*". We will abuse our own
terminology very slightly by referring to these as “bouquets” IC = (ay, ..., a4,2.), the abuse being
the possibility of 4; = 0. In fact, it will not even be an abuse, because we will focus on bouquets
whose matrix-weights are bounded and have bounded inverses (and therefore are nonzero).

6.1 A net of bouquets

Definition 6.1. Given R > 0 (and implicitly .# and r), we define R to be the collection of all
matrix bouquets (ay,...,a442.) € ((D’”)‘”Zﬁ with the property that each a; is R-bounded, meaning
that both [[a;|z < R and la; e <

The below e-net result is mostly proven in [BC19, Sec. 4.5]. We remark that for our main
Theorem 6.5 we will only need the A = 1 case, but for the weak derandomization of [BC19] in
Section 7 we need the A = ©(logn) case.

Proposition 6.2. Given constants d,e,r,e > 0 and R > 1, there is a large constant k = x(d, e, 7, R, €)
such that the following holds: Given A € IN*, there is an (efficiently computable) net E)y < Ryr with the
following properties:

o |Ex| <« and each element of 2 has “encoding length”'* at most xA.

o For every R-bounded bouquet K € Rg, there exists KC € B, such that both:
‘HBH (xLn, K) H — || Bn(xLn, )* Hop‘ < &! holds for every finite signed lift x Ly,
- |p(Bw(K)) ~ p(Boo@)] <e.

As this exact statement does not precisely appear in [BC19], we provide a proof (which closely
follows that in [BC19, Sec. 4.5]).

Proof. Let §r denote the set of all matrices in C"™*” with Frobenius norm at most R, and let
F& denote the subset of Hermitian such matrices. For any fixed rational § > 0 we can create
a “grid” &; of all matrices in §r with entries being complex integer multiples of J, such that:

(i) |&s] < (rR/(S) ; (ii) for every b € §r there is b € 85 with |b— b|g < é. (Also, (ii) holds for SR
when restricting to & = &; 1 §X.) Suppose now that b~! € Fr as well. Then provided § < 5
(which we will certainly ensure) we have, writing A = b — b,

Hb‘1 —@‘1HF — Hb—l(Ab—l (A2 1+ (Ab1 HF
< b E(IAllb E)/ (1= [[AllEIb F) < 26R* < R;
hence || p! |F < 2R, and therefore b~ € F»r. For a suitable § > 0 to be chosen later we will define

Ex={by,-- by byt bgie b1, - Bie) :bl,...,bde(ﬁ? and by q,..., by . € &5} (9)

10Meaning, number of bits needed to represent the matrix, with the real and complex part of each entry being
stored as the ratio of two integers.
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A key observation is now that for any bouquet K = (a3,...,a4:2,) € 8r there is a bouquet
K=(ay,...,a;,5,) € Ewith

i = aillop < [l —aillp <0 Vie[d+2e];

hence from the definition Equation (8) and the bounds [Py, [op < 1 and | [j){i][lop < 1, we
conclude
1Bt 2, )llop — 1 BarSn, K)oy | < (d +20)2 -6

for every finite signed lift x£,. This bound already suffices for the A = 1 case; more generally,
using |B* — B*| < A-max{||B||, ||B||}*~" - | B — B||, and also the bounds

||B”(XSHIIC) HBVI(X’SH/E)HOP < (d+26)2'R/

llops

[
op

Finally, it is not hard to Verlfy that for the matrix “L” defined in Proposition 4.6, and the
analogously defined “L”, we have

we conclude
< A((d +2e)2R)* - 6. (10)

Bu(x£n, K

IL = Lllop < |L =L < (d+2e)-20R,
and also that |L|op, [L[op < (4 +2¢)R?. Hence by [Bha97, Thm. VIIL1.1] we get

lo(L) — p(L)| < (2(d + 2e)R*)' V7 ((d + 2¢) - 26R)Y" < 2(d + 2¢)R - 5/
—  |p(Boo(K)) ~ p(Bo(K))| < V2(d + 20)R -6V, (11)

In light of Equation (9) and inequalities (10) and (11), we may be complete the proof by taking
5 = c(d,e,r,R,e) for a suitably small rational constant c(d,e, 7, R,e) > 0, and then taking x =
k(c,d,e,r,R,¢) alarge enough constant. O

6.2 Owur main technical theorem

Our goal for the remainder of the section is to prove Theorem 6.5 below, which we state after
making a few preliminary definitions.

Definition 6.3. A color sequence 7y is a sequence iy,...,i; € #. Its reverse, denoted y*, is the color
sequence i}, ...,i;. We call -y a nonbacktracking (n.b.) color sequence if is;1 # i} for all s € [t —1].

Definition 6.4. Given a color sequence y = (iy, ..., ;) and matrix-weights a4, ..., a4, we intro-
duce the notation a(y) = a;,a;,_, - - - a;,. Note that a(y*) = a(y)* and hence ||a(7*)||z = ||a(7) ||

Theorem 6.5. Let d, e, v, R, €, p > 0 be constants, and let 21 < Ror and x be as in Proposition 6.2, with
A =1and e = €/3. Then there are large enough constants Cy, Cp such that the following holds:

Let £, be any n-lift (n > Cy) that is A-bicycle-free, where A = Cy(loglogn)?. Then for a uniformly
random edge-signing x of Gg,, except with probability at most n=P the following holds simultaneously for
all matrix bouquets K € E;:

1B (L K)lop < p(Bo(K)) +€/3. (12)
When this happens we may easily deduce from Proposition 6.2 that
P(Bn(x£n, K)) < HBH(X‘QH/K)HOP < p(Bo(K)) +€ (13)

holds simultaneously for all R-bounded bouquets K € Rg.
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Fix any £, and any K = (a1, ...,a4:2.) € Kor. It suffices to show that Inequality (12) holds for
this fixed K except with probability at most n~2 over the choice of x; we may then take a union
bound over the at most x bouquets K € E1, and enlarge C; if necessary so that xn =2/ < n~P.

Let us write B, = B, (x £y, K) for brevity and write p = p(B»(K)) + €/6. The main characteri-
zation of p that we will need is the below proposition of Bordenave-Collins:'!

Proposition 6.6. ([BC19, eqn. (50)].) There is a constant ¢ > 1 depending only on d, e, r, R, € (and not
on the specific a;’s) such that for all t € IN,

> la(y)[If < cp™.

n.b. color sequences
y=(i1,--/1t)

In particular, ||a(7y)||g < cp' for all n.b. color sequences of length t.

It now remains to prove that except with probability at most 127
||Bi’l||op <p+§/6 (14)

The key to proving this is to use the Trace Method in expectation. In preparation for this, we
make some definitions (borrowing some terminology from [MOP20a]):

Definition 6.7. In the color-regular graph G, = ¥,(£,,K), a length-t walk may be naturally
specified by giving a starting vertex u € V,, and a sequence iy,...,i; € .# of colors. We call the
walk closed if the final vertex is equal to u. We define an /-hike to be a closed, length-2¢ walk
composed of two consecutive n.b. color sequences (i1, ...,i7) and (ji41, ..., jo¢); equivalently, it is
defined by a length-2¢ color sequence that is nonbacktracking except possibly at the midpoint of
the walk. Finally, we call an ¢-hike even if each (undirected) edge is traversed an even number of
times (in either direction); more generally, we call it singleton-free if no edge is traversed exactly
once.
Fix

¢ = [Cslogn|, (15)
where Cj3 is a large constant depending only on d, ¢, 1, R, €, p. (The constant C, will also depend
on Cz, and the constant C; will depend on C, and Cz.) Write B, = B,(x£,,K), and define the
random variable

Trace = tr (Bﬁ(Bfl)*),

which is nonnegative since B, (BY)* is positive semidefinite. Temporarily abbreviating &; = Py.o:s
one can check that
¢ pt ~ D
B, (B,) Z Tjpo— 10']% 2" 0-]1 0-11/0-14 100 ® ‘]2f><10 ‘ @ Ay Ay v e By Big_ Aig_y - - Bigs

where the sum is over n.b. color sequences (ig, i1, ...,i;) and (j, ..., jo¢) such that i} = j,. Taking
the trace, we obtain

Trace = tr(Bfl(Bfl)*) = Z xl(u,7)]tr(a(¥)),
special (¢+1)-hikes (u,7)
Y=(l0s-sitses-rj20)

where:

H'We remark that this is the one place in this section where the inverse norm-bound Hai_l lop < 2R is used; it takes
care of a “fencepost error” in the natural proof of this proposition. In fact, a personal communication from the authors

of [BC19] suggests that a variation of their argument can eliminate the need to bound the values Ha;l lop-
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e the adjective “special” denotes that i} = j, and i§ = j;

e the notation x[(u, )] denotes the product of the edge-signs from x for each edge traversed
by the hike (u,y);"

e 7 denotes that the middle two elements i, and j, are omitted from 1.

Taking the expectation over x kills all non-even hikes, and we conclude

E[Trace] = > w@@)<vi Y @l (16)
even, special even, special
(£+1)-hikes (u,7) (¢+1)-hikes (u,7)

Note that if we delete the first/last steps, and also the middle two steps, of a special (¢ + 1)-hike
(1,7v) (these two step-pairs both being a step and its reverse), we obtain an (¢ — 1)-hike (v,v/),
where v = 0;, (). We have a(y) = aj,,a(7)a;,, and hence |[a(7)|| < (2R)?||a(y’)||p. For each
(¢ —1)-hike (v,7"), there are at most (d + 2¢)? ways to add a step and its reverse to the beginning
and the middle of the hike to get a special (¢ + 1)-hike. Replacing also the condition “even” by
the broader condition “singleton-free”, we finally conclude:

E[Trace] < 41/7R?(d + 2¢)? Z lla(y)|lg- (17)
singleton-free
(¢—1)-hikes (v,7)
Our goal is now to bound the right-hand side of Inequality (17) using only the A-bicycle-free
property of G,,.

6.3 Elementary graph theory

We begin with some elementary graph theory. In the below definitions, by “graph” we mean an
undirected multigraph, possibly with self-loops.

Definition 6.8. The excess of a graph H is exc(H) = |E(H)| — |V(H)|.

Definition 6.9. Given a degree-2 vertex v in a graph H, smoothing v refers to the operation of
deleting v from H and adding an edge between its two (former) neighbors. The smoothing of
a graph H, which we will denote H, is the graph obtained by iteratively smoothing degree-2
vertices (it is easy to see that the order does not matter). Each vertex in H has the same degree
in H as it had in H; hence the vertex set of H consists of all vertices that originally had degree
other than 2 in H. The edges in H correspond to paths in H whose internal nodes all had
degree 2. We call these paths stretches. Finally, it is easy to see that exc(H) = exc(H).

We will also need the following lemma of elementary graph theorem from [MOP20a]:

Lemma 6.10. ([MOP20a, Thm. 2.13].) Let H be a k-vertex graph that is A-bicycle free, where A > 10Ink.
Then exc(H) < % k.

12Note that the first and last edge-sign do not actually arise in Trace, but it is okay that we have artificially inserted
them: in any special hike, the first and last step are always along the same edge and hence contribute equal signs;
thus their product is always 1.
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Given an (¢ — 1)-hike (v,7), let H = H(,,) be the edge-colored subgraph of G, induced by
the edges on which the hike walks. This H is A-bicycle free (since G, is), and it has k < 20 — 2
vertices. Provided C; and then C; are taken large enough given Cz, we will have

10In(2¢ —2) < A.

(The left-hand side is @(loglogn), the right-hand side is ®((loglogn)?).) Thus Lemma 6.10
implies exc(H) < ln(Ek) - k. Due to the nonbacktracking nature of the hike, every vertex in H has
degree at least 2, except possibly its initial vertex v and its midpoint vertex, which we call w.
Abusing notation slightly, let us write H = (V,£) for the smoothing of H where we do not
smooth v or w if they have degree 2. We still have exc(H) = exc(#). Writing c¢; for the number

of vertices of degree i in H, we have

In(ek)
A

k=exc(H) =exc(H) = €] — V| = (1 +2c2+3c3+ ) — (1 + 2+ 3+ )
> —201— 300+ 3 21+ 200+ 33 +4cs )
=—%c1— 300+ 3|E|.

We have c¢; + c2 < 2 (since v, w are the only vertices in H that may have degree smaller than 3).
Hence:

Corollary 6.11. For any (¢ — 1)-hike (v, 7y), the smoothing H of H, ) has
€] < 3D g <10mE g,

(The latter inequality uses A < %6, which holds provided C, and then Cy are taken large enough given Cs;
recall A = O((loglogn)?) and ¢ = ©(logn).) That is, H (v, consists of the vertices V, together with at
most 10% - £ stretches (disjoint paths) linking these vertices.

6.4 Encoding and decoding

For the purpose of analyzing the right-hand side of Inequality (17), we will now introduce two al-
gorithms called ENcoDE and DeEcope. The ENCODE algorithm is inspired by the analysis in [BC19,
Lem. 26], and is a significant elaboration of a similar kind of algorithm in [MOP20a]. It will take
as input a singleton-free (¢ — 1)-hike (v, y), and will output v together with a few “data struc-
tures”, which we now define.

Definition 6.12. An outline data structure OUTLINE consists of:
o The trek count T: an integer between 1 and 50% L.
o The length data {4, ..., {7: a sequence of positive numbers adding to 2(¢ —1).

o The type data: A subset of [T] called F; (the letter F stands for “fresh”), a disjoint subset
of [T] called F, with |F;| = |F1|, and the remaining subset of [T] called S (“stale”); thus
[T]=FiuFus.

o The matching data: this consists of a bijection T : /, — JFj such that 7(t) < t for each
t € F, (that is, T matches each t € F, with an “earlier” t' € F;); and also, a mapping
p : Fo — {forward, backward}.
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Definition 6.13. A fresh data structure FRESH consists of a list Cl,...,Cf, where each C; is an
n.b. color sequence. We say that FREsH is compatible with an outline data structure OUTLINE (as
above) if f = |F1| and [C;j| = {;; when the elements of /7 in increasing order are denoted iy, . . ., if.

Definition 6.14. A stale data structure STALE consists of a list (r1,h1),...,(rs, hs), where each 0 <
r; < 2(¢ —1) is an integer and each h; is in .# U {0}. We say that STALE is compatible with an
outline data structure OUTLINE (as above) if s = |S].

6.4.1 Encoding

As mentioned, the ENCODE algorithm takes as input a singleton-free (¢ — 1)-hike (v, ), and it
outputs (v, OUTLINE, FRESH, STALE), where OUTLINE is an outline data structure and FREsSH/STALE
are compatible fresh/stale data structures (respectively). Recall the notation H = (V, ) for the
smoothing of H = H,,). The algorithm ENcODE analyzes how the hike traverses stretches
from H. Crucially, by the singleton-free property, every stretch is traversed (in either direction)
at least twice.

To explain in detail how the ENcODE algorithm works, imagine a hiker walking along the
edges of the hike (v,7) from beginning to end. At various points the hiker will pause at some
vertex in V, look at the upcoming edges of the hike, designate some initial portion of them one or
more treks, record information about the trek(s) into the data structures (in particular, increasing
the trek count T), then walk the trek(s) and pause again. The first pause occurs at the beginning
of the hike before any edges have been traversed. In general, when the hiker has paused after
completing t — 1 treks, the hiker looks ahead to the next stretch e € £ that will be traversed and
performs the following three rules:

1. First traversals. If this will be the first time the hiker traverses e (in either direction), then
it will be designated as the single next trek. Its length (number of edges) ¢; is appended to the
length data of OUTLINE, and the trek index f is included into F; in the type data. Finally, the
n.b. color sequence C is appended to the fresh data structure FREsH.

2. Second traversals. If this will be the second time the hiker traverses e, then again it will be
designated the single next trek. Its length ¢; is appended to the length data of OUTLINE, and the
trek index f is included into F; in the type data. Furthermore, matching data is recorded: t(t)
is set to the earlier trek index on which ¢ was traversed; and, p(t) is set to “forward” if e will be
traversed in the same direction as last time, and “backward” otherwise.

3. Third or higher traversals. If this will be the third or higher time the hiker traverses e, the
hiker begins preparing a “stale supertrek”. The hiker looks further ahead at upcoming stretches
to be traversed. All upcoming “third-time-or-higher” stretches ¢’,¢”,... are added to the stale
supertrek, up to (but not including) the next stretch that will be a first-time or second-time
traversal.

Next, the stale supertrek is broken down into multiple “stale subtreks” of length equal to the
bicycle-free radius A, with the necessary exception that the last of these subtreks allowed to have
length less than A. Note that while the first vertex of the first subtrek and the last vertex of the
last subtrek will be in V, the intermediate starting/ending vertices may be any vertices in H (i.e.,
they may be “inside” a stretch from £). There is one additional proviso: if some stale subtrek
encompasses the exact midpoint of the hike (i.e., both the (¢ — 1)th and the /th steps) then this
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stale subtrek is further broken into two subtreks at this the midpoint. This proviso is included to
ensure that the hiker traverses each stale subtrek in a nonbacktracking fashion.

Now the hiker designates these stale subtreks as the next few treks, and data about them is
encoded into the data structures. First, their lengths ¢;,¢;.1,... are added to OUTLINE’s length
data. Next, their trek indices are included into the type data’s S. Finally, for each stale subtrek Q,
an (7, h) pair is appended into the stale data structure STALE. The role of the (r, 1) pair is to allow
the DECODE algorithm to reconstruct the stale subtrek Q. Let y be the vertex of ‘H at which Q
begins and let z be the vertex of H at which Q ends. We know the hike must have reached z at an
earlier time (in fact, at least two earlier times). The parameter r is set to the first “time” (between
0 and 2(¢ — 1)) at which the hike reached z. As for defining £, let B be the subgraph of H induced
by the radius-A neighborhood of x. By the bicycle-free property, B contains at most one cycle. If
there is such a cycle, and the trek walked along it for at least one step, then & is set to the color
from .# of the first such cycle-step. Otherwise, if the trek does not walk on B’s cycle, or if B does
not even have a cycle, then & is conveniently set to 0.

This completes the description of the ENCODE algorithm. Finally, we need to briefly verify two
things about the OUTLINE data structure output by ENcope. First, as we noted, the singleton-free
property implies that each stretch that is traversed is traversed at least twice; this means that
the type data will indeed have |F,| = |F;| and a well-defined bijection 7. Second, and more
importantly, we need to verify that the trek count T will indeed be at most 502 - £ as promised.
From Corollary 6.11 we know that there are at most 10% - £ stretches. These can contribute at
most 2011}\—[ - £ “fresh treks” in total. Let us now upper-bound the possible number of “stale treks”
(ignoring the +1 we may get due to potentially traversing the hike’s midpoint). Note that when
the hiker produces a stale supertrek of length k, it gets decomposed into [k/A| < k/A + 1 stale
subtreks. If we sum this quantity over all stale supertreks, we get

(# of steps involved in stale supertreks)/A + (# of stale supertreks) < 2(¢/ —1)/A + 20% L,

the last figure because each stale supertrek is preceded by a fresh trek. Now including the at
most 20% - £ fresh treks, as well as the potential +1 for the midpoint, we get a total trek count
of at most

2018L .0+ 2(0 —1)/A +2018L . 0+ 1 < 5018E - g,

as claimed. (Here we again used A < 1/.)

6.4.2 Decoding
We now describe the DecopE algorithm, which has the following properties:

1. It takes as input a vertex v, an outline data structure OUTLINE, and compatible fresh and
stale data structures FREsSH and STALE.

2. It either outputs a singleton set {(v, y)}, where (v, y) is an (¢ — 1)-hike in G,; or, it outputs
the empty set ¢J (“invalid”).

3. If (v, OUTLINE, FRESH, STALE) is the output of the ENcODE algorithm applied to some singleton-
free (¢ —1)-hike (v, ) in G,, then DECODE will output {(v, v)}.

In other words, a singleton-free hike may be recovered from the data output by ENcobe. We will
not explicitly prove Item 3 above; rather, it will become clear as we describe the DECODE algo-
rithm. Also, implicit in our description is that whenever the DEcoODE algorithm cannot continue,
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or is required to do something nonsensical, or produces an invalid singleton-free (¢ — 1)-hike, it
simply outputs 7.

The Decobk algorithm will (attempt to) recover a singleton-free hike {(v, y)} in a trek-by-trek
fashion from its input data. The algorithm will always maintain a “current vertex” from V. The
initial value of the “current vertex” is of course the vertex v which is part of DECODE’s input. For
t = 1...T, the DECODE algorithm recovers the tth trek by first considering whether t is in Fj,
Fo, or S. If t € Fi, then DECODE will take the first unused n.b. color sequence C from FrResH
(which by compatibility will have length ¢;) and will follow C from the current vertex. The final
vertex reached becomes the new “current vertex”. At this point, the DEcopk algorithm will have
“learned” a new stretch e € £, which it may associate to this tth trek.

If t € 7, then DEcopE will first let ' = 7(t) € F;. Since t' < t, the DECODE algorithm will have
already learned the stretch e € £ associated to t’. The DECODE algorithm can therefore typically
recover the tth trek: it just follows e again. If e is a self-loop in H, there is an ambiguity about
the direction in which the trek traverses ¢, but this is resolved using p(t) from the matching data.

Finally, if t € S, then DeEcoDpE will recover the stale trek with the aid of the associated stale
data (7, h). Let y denote the current vertex (i.e., the initial vertex for the stale trek) and ¢; the trek
length. As this trek is stale, it will take place entirely within a subgraph of H that the DEcODE
algorithm has already “learned”. In fact, it will take place within a further subgraph B, the
one of radius ¢; centered at y. The DECODE algorithm can infer the ending vertex z € B of the
trek using the stale datum r; the rth vertex visited so far on the hike is z. Next, since ¢; < A
(in the properly encoded case), B will have at most one cycle. It is not hard to see that in this
unicyclic B, a nonbacktracking walk from y to z of length ¢; is almost uniquely defined. The only
possible ambiguity that may arise comes from the direction in which B’s cycle (should it exist) is
traversed. This ambiguity is resolved using the stale datum #; it supplies the first color used by
the trek when the cycle is entered.

This completes the description of the DECODE algorithm.

6.5 Counting

We now bound the right-hand side of Inequality (17). By virtue of the Item 3 property of the
DEcopk algorithm, we have

Yoo allp < )] > > la(y)|lg

singleton-free v, OUTLINE ~ compatible FREsH, STALE  (v,7)€DECODE(v,0OUTLINE, FRESH,STALE)
(£—1)-hikes (v,7)

(18)
where on the right-hand side we sum over all possible v, OUTLINE, then all possible FRESH, STALE
compatible with OUTLINE, then all hikes in the set DECODE(v, OUTLINE, FRESH, STALE) (which set,
recall, either has cardinality 0 or 1). A key property of this new summation is that there is a
natural way to decompose and bound ||a(y)||; as a function of OUTLINE. Given the outline data
structure OUTLINE with trek count T and length data ¢y, ..., {7, we can naturally break up any
length-2(¢ — 2) color sequence 7 into parts 1, ..., 7yt of length /4, ..., {7. Then by submultiplica-
tivity of norms we have

la(lle < llaCy)llg---llaCyr)llg-

We then bound each of these factors depending on the type data in OUTLINE. For a factor ||a(7;)||g
with 7 in the stale subset S, we use Proposition 6.6 to bound it by cp".
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The remaining factors may be naturally grouped into pairs according to OUTLINE’s matching
data. Suppose that t € Fy, ' € F,, and T(t') = t. It is a property of the decoding algorithm
that whenever (v,7y) € DECODE(v, OUTLINE, FRESH, STALE), we have either o = ¢ or 7 = 7}
(depending on p(t')). Recalling Definition 6.4 we see that either way, ||a(v:)||g = |la(ve)]|g-
Furthermore, this norm only depends on the fresh data structure FREsH; specifically, if ¢ is the jth
element of F; (in increasing order), then ||a(v:)|[p = [la(ye)||lg = ||a(C;) |p- As a consequence, for
a given (v, OUTLINE, FRESH, STALE) the following bound holds:

2
FI

f f
> la(7)[l < (H cpff> [TlaCl2 | = ¥l - T T|la(c))
j=1 j=1

(v,7)eDECODE(v,0OUTLINE,FRESH,STALE) ieS

where we have written {s = Y, s ¢; for the number of stale steps. Notice that the above bound
does not depend on v, DECODE or, on STALE, just on OUTLINE and FreEsH. Substituting it into
Inequality (18) yields

f
> la(y)lg <n- D, c®lp’s - #{compatible STALE} - > Ha(C]-)Hi. (19)
1

singleton-free OUTLINE compatible FREsH  j=
(£—1)-hikes (v,7)

Now for a fixed OUTLINE we can interchange the final sum and product in the above:

f
> sl =TI ) la(O)1;
compatible FResa  j=1 teF1  n.b. color sequences C of length ¢;

< H(Cp%t) _ C|]:1|ﬁ€]-‘,
tE]:l

where the inequality is Proposition 6.6 and we have written £z =23, .z {; = } ;.7 7, {i- Putting
this into Inequality (19) yields

> la)llp<n- )] cFlFISIGE+Es  #{compatible STALE}

singleton-free OUTLINE
(£—1)-hikes (v,7)

T

<n-c p2(£—1) - #{compatible (OUTLINE, STALE)}.

It remains to bound the number of compatible (OUTLINE, STALE) pairs, and it suffices to do
this very crudely. For a given choice of T, the number of possibilities for the length data is at
most (2¢)T. The number of possibilities for the type data is at most 37. The number of choices
for the matching data is at most (2T)T. And the number of choices for compatible stale data is
at most (2D¢)T for D = d + 2¢. Thus we have at most (24D{T)" possibilities, given T. Recalling
T < 50%6 and also Inequality (17), we finally conclude

E[Trace] < n-exp (O(loilé)) 0%, (20)

where we have now begun using O(-) notation to hide constants depending on 4, e, 7, R, g, p.
Markov’s inequality now implies that except with probability at most n=2?,

2
HBHH% < tr(Bfl(Bfl)*) = Trace < n*"™! . exp <O(W€)) %, (21)
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and in this case

By <op(0(51 4 9E1)) p<pro(5) co(Y)

(where the second inequality used that p < O(1) thanks to Corollary 4.7). By taking Cs, then
C, then C; large enough, this shows Inequality (14) holds for our fixed choice of K, except with
probability at most 7727. This completes the proof of Theorem 6.5.

Corollary 6.15. In the setting of Theorem 6.5, suppose the edge signs x are not independent and uniformly
random, but are merely drawn from a (5,2()-wise uniform distribution, where § = 1/n for a sufficiently
large constant Co = Co(d, e,1, R, €, p), and where ¢ = [C3logn| as in Equation (15). Then the conclusion
of the theorem continues to hold.

Proof. The only place where the independence of the edge signs was used was in Equation (16), to
say that non-even hikes dropped out of the expectation. When y is merely (4, 2¢)-wise uniform,
the inequality therein is not exact; however, since Trace is a degree-2¢ polynomial in y, the error
is (Fact 5.2) at most an additive

5 ) tr(a(7))| <&-n(d+20)* - r2R)*,
special (¢+1)-hikes (u,y)

where we used naive upper bounds on the number of special (¢ + 1)-hikes and on the absolute
trace of the hike weight (the latter using K € Ag). In turn, by choosing the constant Cy large
enough (in particular, large enough vis-a-vis C3), we can ensure this error is much smaller than
the right-hand side of Inequality (20) — for concreteness, say at most half of it. (We use here the
naive lower bound p > €/6.) Thus the subsequent bound Inequality (21) is affected only up to a

constant factor, and in the final bound Inequality (22) only the hidden constant in the O(IO%”) is
affected. ]

7 Weakly derandomizing n-lifts

In this section we fix the same notation and terminology as in the beginning of Section 6. We
remark that except for the analysis of the net, this section is not substantially different from the
analogous [MOP20a, Sec. 4].

7.1 Derandomizing simple arguments about cycles

In the course of proving their main theorem on random n-lifts, Bordenave and Collins need to
show that the graph underlying a random n-lift is bicycle-free for radius A = Q)(logn) and also
that it has at least one vertex with an acyclic A-neighborhood. These are straightforward proofs,
and it is also straightforward to see that they are weakly derandomizable using ©(logn)-wise
uniform permutations; indeed, this was essentially already done in [MOP20a, Prop. 4.3]. As the
exact statement needed is not literally in [MOP20a, Prop. 4.3], we provide a statement and briefly
sketch a proof here.

Proposition 7.1. Given constants d, e, there are constants Cy, Cy such that the following holds: Assume
n,A € Nt satisfy n = Co and A < (logn)/Cy. Then for a 4\-wise uniform n-lift £,, except with
probability at most n=%° we have both of the following:

1. Gg, has at least one vertex whose radius-A neighborhood is acyclic;
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2. Gg, is A-bicycle free.

Proof. We will mainly rely on [BC19, Lem. 23]. For a fixed graph H on m edges, let Xy denote
the number of copies of H in Gg,. In [BC19, Lem. 23], the quantity E[Xy] is computed (and
then bounded) assuming the lift £, is truly uniformly random. Now it is easy to see that Xy

is a polynomial of degree m in the indicator random variables (1[c;(j) = k]);’ek;l"’n for £,. Thus
Fact 5.10 tells us, whenever m < 4A, that E[X ] has the same value under our 4A-wise uniform £,
as it has in [BC19, Lem. 23].

In [BC19, Lem. 23], the following is first shown: provided ¢ < /n, the expected number of
cycles of length £ in Gg, is at most O((d + 2¢)’). Using this fact for all £ < 24, it is directly
derived in [BC19, Cor. 8] that the expected number of vertices v € G¢, that have a cycle in their
A-neighborhood is at most O((d + 2¢)*"). Now for sufficiently large constants Cp, C; we will have
2A < /n and O((d + 2¢)*") < 3% Thus we conclude this expectation is at most 1% under
our 4A-wise uniform £,, and hence by Markov, Item 1 holds except with probability at most
1,,-999
’ Regarding Item 2, it is noted in [BC19, Lem. 23] that if Gg¢, is not A-bicycle free then it must
contain a “witness subgraph” to this fact (either a “handcuffs graph” or a “theta graph”) of at
most 4A edges. Provided 4A < /1, they bound the expected number of such witness graphs (for
truly uniform £,) by O(A3(d + 2¢)*'/n). Similar to before, for sufficiently large constants Cy, C;
we will have 4\ < /n and O(A3(d + 2¢)* /n) < %n_'999. Thus we conclude the expected number
of witness graphs is at most %n_'999 even under our 4A-wise uniform £,, and thus the probability
of Gg, not being A-bicycle free is at most $n~9%. O

7.2 Weakly derandomizing the main argument

In this setting, let us restate (a slight variant of) Bordenave and Collins’s main theorem on the
nonbacktracking operator of random n-lifts [BC19, Thm. 17]:

Theorem 7.2. Let d, e, r, R, € > 0 be constants. Then there are constants Cy, C; > 0 such that the
following holds:

Let n > Cy, let A = |(logn)/C1|, and let Ey < Ry be as in Proposition 6.2, with ¢ = €/3. Then
except with probability at most n=%° over the choice of a uniformly random n-lift £,, the following all
hold: Items 1 and 2 of Proposition 7.1, and also for all matrix bouquets K € &),

When this last event happens we may easily deduce from Proposition 6.2 that

B (£, KM < (0(Bo(K)) +8/3)M (23)

op

B, 1 (4, K)"|| < (p(Bo(K)) +2) (24)

p(B1 (20 K" < | .

holds simultaneously for all R-bounded bouquets K € fg.
Our goal in this section is to show the following:

Theorem 7.3. There is a constant C = C(d,e,r,R,€) such that Theorem 7.2 continues to hold only
assuming that £, is (Clogn)-wise uniform.

The key insight is that the only probabilistic component of Theorem 7.2 (besides Proposi-
tion 7.1) is a bound ([BC19, Prop. 22]) on the expectation of certain polynomials of degree O(logn)
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in the lift’s indicator random variables 1[c;(j) = k]. Unfortunately, to carefully verify this requires
recapping details from [BC19] in a somewhat black-box fashion.

We start by remarking that the way [BC19, Thm. 17] is originally stated only involves the
(Ath root of) Inequality (24); i.e., it only involves bounding p(B,,, | (£, K)). However, their proof
immediately begins (see [BC19, (27)]) by passing to bounding ||B,, l(ﬁn,lC)AHop for the given

choice of A (which they call “¢”). The bulk of the work is of course to bound HBH, (L, IC)AHOP

for a fixed K = (a1,...,a4.2.) € far (Where our 2R essentially corresponds to their “e~1”). After

this, the claim for all I € &, follows from a union bound. Indeed, for fixed K € Rz we will

be able to show that Inequality (23) holds except with probability O(n—%?), provided Cy, C; are

large enough — even for (Clog n)-wise uniform £,. Since || < x(d, e, 7, R, )", by increasing C;

(and Cp) if necessary, we can ensure that |E, |- O(n=?) < n=%, completing the proof.
Summarizing, our goal is to show:

For fixed K = (a1,...,a84.2.) € Ror,

Inequality (23) holds except with probability O(n~*?) when £, is (Clogn)-wise uniform. (25)

The operator B, | (£, IC))‘ occurring in Inequality (23) is hard to control directly. But using
a key idea from [Bor19], it is shown in [BC19, Sec. 4.2] that there are certain related operators
BW and Rl(f) (defined in [BC19, (32), (34)]) such that the following holds: if Gg, is A-bicycle free,
then

By Proposition 7.1 (and using Clogn » 4A), we may indeed assume Gg, is A-bicycle free for the
purposes of proving Equation (25) (and Proposition 7.1 also establishes that Items 1 and 2 also
hold with the required probability, as needed for Theorem 7.3). Thus, writing p* = p(Bx(K)), it
remains to show that

A
1 A
Br, i (€0, KPY| < 1B op + 2 7 IR lop.
op n =1

A
1 _
1B op + — 37 IR Jop < (0° +2/3)" (26)
k=1

except with probability O(n=%) for (Clogn)-wise uniform £,.13

As mentioned earlier, the only probabilistic component of Bordenave—Collins’s proof of this
(for truly uniform £,) is the below proposition (a slightly restated version of [BC19, Prop. 22]);
we leave some of the terminology in it undefined.

Proposition 7.4. ([BC19, Prop. 22], following directly from [Bor19, Props. 11, 28].) For a fixed sequence
f = (f1,--., fr) of potential “colored edges”, fi = (x¢,y:) € [n] x [n] of color iy € .Z, and assuming
T <T<VNif L =(1,01,...,0442.) is a random lift, then

< 2%(1/n)"(3t/v/n)™,

E[H(l[ﬁz‘t(xt) =yl =1/n) [] 1oi(x) = yt]]

t=1 t=1+1

where ¢ is a universal constant, b is the number of “inconsistent” edges in f, m is the number of distinct
edges in f, and my is the number of “consistent edges” of multiplicity 1 in f.

The only thing we need to take away from this is the following:

13In fact, we can show it holds except with probability 7719, The bottleneck for showing low failure probability is
the probability of Gg¢, failing to be A-bicycle free.
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Fact 7.5. Proposition 7.4 holds equally well if £, is merely T-wise uniform, by Fact 5.10.

Bordenave and Collins only ever apply Proposition 7.4 (twice) with T = 2Am, where “m”
is an integer parameter they eventually set to ©((logn)/(loglogn)). To save on the amount of
t-wise uniformity needed, though, we will eventually set m to be a large constant depending on
d,e,r,R,E and also C;. With this setting, we will indeed have T = 2Am < 4/n (provided Cy is
large enough) and also that (Clog n)-wise uniformity of £, suffices.

Inspecting the proof of [BC19, Props. 24, 28], particularly [BC19, (52), (56)]'*, we see that it
can use Proposition 7.4 to deduce (for a constant ¢ = ¢(d, e, r, R, €)) that

A
E[|BY 2] < n(cAm)!o" - (o* +8/4)2M", B[R A1) < (cAm)?2m . 2,

provided n > ng(d,e,r,R,€) and A < logn (both of which we are assuming) and also provided
(cAm)'?" /n < 1/2 (which also holds given our choice of m, assuming Cy is large enough). Thus
by Markov’s inequality, except with probability at most (A + 1)n~! = O(n=%) over the choice of
(Clogn)-wise uniform £,, we have all of

HB(/\)’(Z)g < HZ(C/\m)lom . (P + €/4)2/\m HR(/\)IZm < (cAm)32m . C2Am vk < A
1 A )\C)‘
= [BW op < 0!/ (cAm)® - (p* +2/4)" — IR Ollop < 0t/ @ (cam)'e . =

= (/O AmP) " (" + e/

Now for any constant 6 = d(d, e, , R, €) > 0, and given the constant C;, we can ensure |B (A) lop <
(1+8)* (p* + 5/4))L by taking m a sufficiently large constant (and Cy large enough). Further,

we can ensure - Zk 1 H RWM lop < 6* by taking C; large enough; then irrespective of m’s constant
value, it suffices to take Co large enough. We conclude that by setting constants appropriately,
we can ensure

H ||0p + = Z HR Hop (1+ ‘S) (0™ +§/4)/\ =+ (5/\,

which is enough for Inequality (26) 1f 0 is taken small enough (recalling that Corollary 4.7 upper-
bounds p* by a constant).

8 Constructing explicit good lifts

We remark that except for the analysis of the net, the below theorem is not substantially different
from its analogue in [MOP20a, Sec. 5].

Theorem 8.1. Fix an index set . = {1,...,d + 2e}. Fix also constants r € N* and R, e > 0. Then for
any constant C' > 0, there is a poly(N)-time deterministic algorithm that, on input N, outputs an N'-lift
Ly (with N < N’ < N + o(N)) such that:

o Gg,, has at least one vertex whose radius-C'\/log N neighborhood is acyclic;

e for every R-bounded bouquet K € Rg with r'-dimensional matrix-weights (' < r), we have

p(Bnr,L(En7, K)) < p(Boo(K)) + e
4Though (52) has a typo; its exponent on “p” should be “2¢m” not “¢m”.
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Proof. We may assume R and ¢ are rational, and it suffices to assume (as we will tacitly do a
couple of times) that N is at least a sufficiently large constant. We will prove the result just for
r-dimensional bouquets; the fact that it works simultaneously for all ¥ < r is a small twist we
will comment on at the end of the proof.

Given N, the algorithm will choose an even integer 1 on the order of 2°(V1°6N) and then
define n; = 2'ng for each 1 < i < t = [log,(N/np)]. The value N’ will be equal to n;; it is

clear that N’ > N, and it is easy for the algorithm to arrange that N’ < N(1 + 2-9(1eN)) py
adjusting n¢’s value by at most a factor of 2. The idea is that the algorithm will sequentially
produce n;-lifts £, for i = 0...t. The Oth one £,, will be produced using Theorem 7.3 and each
subsequent £,, = £5,, , will be produced via Corollary 6.15 as an edge-signing of £, | (recalling
from Section 4.3 that edge-signing a lift corresponds to forming a product with 2-lifts). As these
lifts are formed, the algorithm will maintain the following invariants:

1. Gg, has at least one vertex whose radius-C’y/log N neighborhood is acyclic;

2. Gg, is C'y/log N-bicycle free;

3. for every R-bounded bouquet K € Rz with r-dimensional matrix-weights we have
0(Bay (0, K)) < p(Bo(K)) +e.

Note that as soon as invariant Items 1 and 2 hold for ny, they automatically hold for all sub-
sequent n;. The reasons are that the 2-lift of any an acyclic radius-A neighborhood in Gg,
becomes two acyclic radius-A neighborhoods in Gg, ; and, every 2-lift of a A-bicycle free graph is
A-bicycle free ((MOP20a, Prop. 2.12]). Thus it suffices for the algorithm to ensure that all three
invariants hold for the Oth lift £,;, and then that the 3rd invariant holds for all subsequent lifts.

The Oth lift. As mentioned, the Oth lift £, is constructed via Theorem 7.3, with its “€” parame-

ter set to ¢/2 and its “n” parameter set to 19 = 22(V16N) Jarge enough so that the resulting value
of A is at least C'y/log N (and so that g > Cp). The theorem tells us that if £, is a t-wise uni-
form ng-lift, t = Clogng = O(y/log N), then except with probability at most 1, = 27 0(WlogN),
invariant Items 1 and 2 hold, as does the following:

VI e E)L, ’

Buo, 1 (L1, )| < (p(Boo(K)) +¢/6)". (27)

op

As noted in Theorem 7.2, Inequality (27) has invariant Item 3 as a consequence (even if it only has
g/3 in place of £/6). A crucial point is that a deterministic poly(N)-time algorithm can check, given
a realization of £, that invariant Items 1 and 2 hold (just use breadth-first search), and it can
also check that Inequality (27) holds (with €/3 in place of ¢/6). To see this last claim, note first from
Proposition 6.2 that the bouquets K in the net &) can be enumerated in poly(N) time (in fact,
in subpolynomial time, O(1)* = 20(V1°8N)) Next note that each matrix B = B, | (£,,, )" can
straightforwardly be computed exactly, as can be S = B*B. Observe that |B|op < B iff | S|op < B
iff 21 — S > 0, and the last condition (testing if a Hermitian matrix is positive semidefinite)
can be checked efficiently [GLS93, pg. 295] for any given f. Finally, note that each p(Bx(K))
can be efficiently computed to additive accuracy ¢/6, by Proposition 4.6 (in constant time, in
fact). Having established that Inequality (27) can be efficiently and deterministically checked (up
to replacing ¢/6 with ¢/3, which is sufficient for invariant Item 3), it remains to note that using
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Theorem 5.11 (with its “+” parameter set to Clogng), the algorithm can enumerate all lifts £,,, € A
in poly(nf) = poly(N) time, check all invariants for each, and we are assured that at least one (in

fact, all but an 1y + ny 1% fraction) will satisfy the invariants.

The subsequent lifts. As noted, we only need to show that for each 1 < i < ¢, the algorithm
can deterministically and efficiently find a 2-lift £,, of £, , such that invariant Item 3 holds,
presuming that it holds for all smaller i. By Proposition 4.17, Item 2, this is equivalent to finding
an edge-signing x of £, , such that

P(Bu_y(XEni_1/ K)) < p(Bo(K)) +& VK € Rp. (28)

To do this, the algorithm employs Corollary 6.15 with, say, € = ¢/6 and p = 1. A key point is that
Gg, _, is C'y/log N-bicycle free by invariant Item 3, and this is at least C>(log log n;)? even for the
largest n; = N’, as needed for Corollary 6.15 (presuming C’ is taken large enough). Similarly,
even for the largest n;, Corollary 6.15 only requires (1/poly(N), O(log N))-wise uniform signings
of O(N) bits, and by Theorem 5.3 the algorithm can enumerate over a poly(N)-size set of such
signings. Corollary 6.15 tells us that for all but an n; ” < ny' = 279W1osN) fraction of such
signings, the resulting x£,, , has

71i7

| Buiy (X Eni1, ) lop < 0(Boo(K)) +€/6

for all K € 1. As with the Oth signing, the algorithm can deterministically and efficiently verify
this (with ¢/3 in place of ¢/6) by enumerating over all K € E; and calculating; and again, this in
turn implies Inequality (28).

This concludes the proof, except for verifying the algorithm can find a lift that works simul-
taneously for all ' < r. But this only requires the algorithm to check all the nets in dimensions
1 <7 < r (only a constant-factor running time increase) and to note that in the failure probability
analysis, union-bounding over all 7’ has a negligible effect. O

In the above proof, note that if we use one set of (4, t)-wise uniform bits for all the edge-
signings (1 < i < t), then by a union-bound the probability of any failure is 2-©(V1°8N) " Fyr-
thermore, the total “seed-length” used is O(log N). Thus using the “strongly explicit” aspect
of Theorems 5.6 and 5.11, and omitting all the deterministic “checks”, we obtain the following
“probabilistically strongly explicit” construction, just as in [MOP20a, App. BJ:

Theorem 8.2. In the setting of Theorem 8.1, there is also an algorithm that takes as input a number N and
a seed s € {0,1}°0°8N) and in deterministic polylog(N) time outputs a binary circuit € that implements
the adjacency list of a “color-regular lift graph” Gg , (with N < N’ < N + o(N)). Furthermore, with

high probability over the choice of a uniformly random s (namely, except with probability 2~ ©V1eN))
the resulting Gg,, satisfies the conclusions of Theorem 8.1.

9 Relating the spectra of the adjacency operator and nonbacktracking
operator

In this section we will relate the spectra of A,, and B,,. We require the following fact about spectra
of possibly infinite-dimensional operators on Hilbert spaces (see e.g. [DS88a, VIL5]).
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Fact 9.1. Let T : S — J be a bounded linear operator on a Hilbert space 7. The spectrum of T can be
decomposed into three disjoint sets. Suppose A € o(T). Then one of the following hold:

1. A is in the point spectrum where AI — T is not injective. In this case, A is an eigenvalue and there
exists an eigenvector v € S such that Av = To.

2. Ais in the continuous spectrum where Al — T is not surjective, but the range of AI — T is dense
in €. In this case, for every € > 0 there exists an approximate eigenvector v, € S with ||ve| =1
such that ||Ave — Tv,|| < €, where ||-|| denotes the Hilbert space norm.

3. A is in the residual spectrum where Al — T is not surjective and its range is not dense in . In
this case, A is an eigenvalue of the adjoint T*, i.e. there exists v € A such that Av = T*v.

The following is essentially [BC19, Prop. 9].

Proposition 9.2. Let K = (ao,...,a442.) be a matrix bouquet, and let £, be an n-lift (possibly with
n = o0). Let A € C such that A*> ¢ o(a;a;) for all 1 <i < d+ 2e. We define Ky = (ag(A), ..., a442:(A))
where the coefficients are defined

d+2e
ap(A) = —-1— Z a;(A* —ama;) lag and  a;(A) = Aaj(A%2 — ajxa;) L
i=1

Note that IC) does not satisfy the symmetry conditions of matrix bouquets. We can nevertheless define the
n-lift Ay(Ln, o). Then, A € 0(By(£,,K)) if and only if 0 € 0(An(Ln, Kr)). Moreover, for n < oo,
A e (B, 1 (L4, K))ifand only if 0 € o (A, 1 (L4, K))).

Proof. In this proof, when A, (an operator on ¢»(V;,) ® C") acts on a vector v, we think of v as
being indexed by V;;, and each entry is an element in C". We write v, for x € V, to indicate the
block indexed by x. Similarly, when B,, acts on a vector v, we write v,; € C" for x € V,, and i € .
to index into v.

Let A € 0(B,(£,,K)). We prove the statement assuming there exists some i € .# such that a;
is invertible, and use a density argument. Suppose no g; is invertible. Then, let ¢ > 0 and let
i € Z be an index where g; is nonzero. Suppose A € 0(B,(£,,K,)), and let A, = A, (£, K))
be the n-lift of ). Let K¢ be defined the same as K, but with a; + €I, in place of a;. Let
A = An(Ln, Ke) — An(£4,K)). Let 6 > 0. In our proof below, in all cases we will construct
a vector us € V, ® C" such that |jus|| < C for a universal constant C and || A.us| < 6. Since
| Actts|| < ||Anus|| + O(e), taking e — 0 shows 0 is in the spectrum of A,,.

We split the proof into cases based on the classification in Fact 9.1.

Case 1: First suppose A is in the point spectrum of B,,. Then there exists v such that Av = B,v.
Our strategy is to construct a u € V,, ® C" such that u is in the kernel of A, (£,, K, ), which shows
0 is an eigenvalue of A, (£, K),).

Fix x € V,, and i € .# such that g, is invertible. By definition of B,

d+2e
Aoy i = (i (x| Byo = Gl <x| D) Y0 1k # ¥ ]]05(y) [ @axoy; = ' aig, (), (29)
yeVy j k=1 jFEIE

Our candidate for u, defined coordinate-wise, is

d+2e

Uy = 2 Uy,j- (30)
j=1

57



We can then write
/\Ux,i = Lliugl_* (x) — {ll‘Z)Ui* (x),i%

Plugging in (0« (x),i*) in place of (x, i) in the above, we get
/\vgi* (x),i% = @jxlly — A Vy je.
Multiplying Equation (29) by A, we get
szx,,- = Mgy (x) = MiVgy (x),i% = Millg, (x) — iUy + Ai0% Vy .
By assumption, (A? — a;a;+) is invertible. Therefore we can rearrange the above to
Vyi = /\(/\2 — aiai*)*laiugi* (x) — (Az — aiai*)’laiai* Uy
Now let y = 0« (x). Substituting Equation (31) into Equation (29), we get

2042 -1 2 -1
)va,i =A (/\ — (Zl'ﬂl'*) aiugi* (x) — }\(/\ — aiai*) aAidix Uy

= Z iy,

ji*
2 -1 2 -1
= Z ai)\(/\ —ajaj*) LZ]‘L{U]_*(]/) — Z ai()\ —aja]-*) ajaj*uy.
jAi* ji*

We now note the following identities:
(A = giae) " 'ai(A* — apea;) (A — ajea;) ™!
(/\2 — aiai*)_l (/\2 — aiai*)ai()\z — ai*ai)_l

(A* — ajax) " 'a; =
= a;j(A* —aja;) ",

and using the above,

}\2(}\2 — 111‘11,‘*)_1 — ai()tz — ai*ai)_lai* = )\2()\2 — aiai*)_l — ;% ()\2 — aiai*)_l

= (/\2 — aiai*)()\z — aiai*)*l =1

(31)

(32)

(33)

(34)

In the two terms on the right hand side of Equation (32), if we set j = i* and use Equation (33)

we get
ai/\()\zai*ai)_la?‘um@) = AMA? — ajapx) Lajamu,

and by using Equation (34) we get

ai(}\z — A ai)_lai* ajly = a;a;% ()LZ — aiai*)_laiuy = )\2()L2 — aiai*)_laiuy — ajlly.

Therefore, using Equations (33) and (34), we can rearrange Equation (32) to get

)\2()\2 — aiai*)_laiugi* (x) = Z ﬂi)\()\z — 11]'!1]'*)_111]‘1/[(7/,* (y) — Z tZi(/\z — a]-a]-*)_la]-a]-* My,

j j#I*
and then

ai| 1+ 2 a]-()\z - aj*ﬂl]')_lll]'* Uy = aiZ)\a]’(/\2 - a]-*a]-)_lugj* (v)-
] ]
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Since we assumed g; is invertible, this implies

(1 + Za] —ajxa;) a]-*)uy = ZAa]-(AZ — aj*a]-)_lu(,j* )"

i
This holds for all x € V,,. Observing that

d+2e

<x| An(gn/ IC/\)” = Z ai(A)uVi*(x)’
i=0

we conclude that 0 is in the kernel of A, (£,, K)).

Case 2: If A is in the continuous spectrum of B,, then for every ¢ > 0 there exists a v; €
V, ® .# ®C" such that ||vg|| = 1 and ||[Ave — B, v,|| < e. The above construction applied to v, gives
us a vector u, such that ||A,u|| < ¢ and by scaling u appropriately we can conclude that 0 is in
the continuous spectrum of A, (£,, K,).

Case 3: Suppose A is in the residual spectrum of B,,. Then there exists v such that Av = Bjv. A
similar proof as Case 1 holds here. Fix x € V,, and i € .#. We find that

d+2e
Avy; = (Gl Cx| Byo = Gl <x) Y Y Ak # 1o () [ @ agrvye = Y a0, (35)
yeVy jk=1 jAi*
Our candidate for u here is
d+2e
Uy = Z El]'*vx,]'. (36)
i=1
Similar to Case 1, we get
Oy,i = X()\Z — aiai*)_luai(x) — ()\2 — aiai*)_laiux. (37)

Now let y = 0i(x). Substituting Equation (37) into Equation (35), we get
va,i = /\2(/\2 — aiai*)_lum(x) — X()\Z - ﬂiﬂi*)_laiux = Z AjxVy,j
j#i*

= Z {/Z]'*X(/\z — ajaj*)_lugj(y) — Z ajx ()Lz — ujaj*)_lajuy. (38)
jE* ji*

Therefore, using Equations (33) and (34), we can rearrange Equation (38) to get
1+ Za]* —ajaj) lajuy = ZX”J'* (A2 - a]-a]-*)_lugj(y).
j
This holds for all x € V,,. Observing that

d+2e

<x‘ 271/ IC/\))*M = Z ai(/\)*uoi(x)/

i=0

and using that af = a;+ we conclude that 0 is in the kernel of (A, (£,,K,))* (and hence in the
kernel of A, (£,, K,) since A,(£L,, K,) is a normal operator).
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Projection onto |—|—># Finally, we can check that the computations in Case 1 still hold with v and

u projected onto |+>i (this is the only case to check for finite dimensional operators). Moreover,
Equation (31) requires that |+ )(+|u is nonzero when |+)(+|v is nonzero, hence |+){(+|u is in
the kernel of A, | (£,,K)). O

Next, we relate the spectral radius of the nonbacktracking operator to that of the adjacency
operator. To begin, we recall some standard definitions.

Let K be a matrix bouquet and let Ay, = Ay (Lo, K) be the co-lift of K. The resolvent of Ay is
defined as

G(p) = (I — Ax) ™.
G(p) is an operator on ¢»(Vy) ® C" defined for all y € C\o(Ay). Since Ay is self-adjoint, we will

henceforth restrict ourselves to y being real. G is self-adjoint since A is self-adjoint. We can index
into G(p) in the following sense: Given x,y € V,, define

ny(.“) = (x| G(p) lyy e C".

For u ¢ [—p(Awx), p(Ax)], we define an auxiliary matrix bouquet K( i) based on the resolvent.
Then, studying the nonbacktracking operator of K(y) will tell us whether p is in 0(Ay). Let

a;(p) = Goo(l/‘)_l/zc(’gf(V)GOO(V)_UZ for 1<i<d+2e, (39)

where 0 € V,, represents the origin, and g; is a generator of Z or Zo. I%(y) is the matrix bou-
quet with the same index set and involution as I but with (a(y), a2(4), ..., 84:2:(¢)) as the
coefficients. Note that if K is self-adjoint, then so is ().

Before proving that 4;’s are well-defined, we need a recursive characterization of G,,. We
(©)
0

define the operator Ay’ to be Ay but with the edges around the root removed, i.e.

Agg) =Ay — Z a; [i){0| + aix |0){(gi] -
Z'Efo

Let Vo(é) be the subset of V;, where the first word in the free product of Z’s and Z,’s is g;, the i’th
generator. 7 ® (%(V,,) then decomposes into the direct sum € ® |o) @; €' ® 2(V)), and AY
acts on each part of the direct sum independently. Let A be ALY restricted to €' ® éz(ch)). We
define G to be the resolvent of AE;;) and G to be the resolvent of Agé) . Note that Agé) is self-
adjoint, and further p(Agé)) < p(Ay). This is because, for every x € C" ® (*( ) with |x]| =1,
we can extend it to an x” in C" ® £2(V,,) by filling the other coordinates with 0, and ||x'|| = 1, so

xTADY — ¥TA ¥ < HAOOHOP = 0(Ax).

Note that Gé?,zgi = GS?. We will write v;(u) to refer to either of these.
Where the expressions are well-defined, the resolvents satisfy the following recursion re-
lations. This is almost identical to Lemma 11 from [BC19], but since our notation is slightly

different, we reproduce the proof below.

Lemma 9.3. Let K = (a,...,a4.2.) be a matrix bouquet. Let y ¢ 0(Ax) U U(Agg)), and let Gy, (1) and
vi(p) be invertible for all i € .%y. Then, the following hold (with the dependence of on u suppressed in the
notation):
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~ 1/2 —1/2
1. Gogi = Gooai*’)’i = Yixdj* Goo, hence aj; = Goé ai*’}’iGoo/ ’

2. Gl =l —ag— Y Goy' Gog,t,
ies

_ -1 _
3. Gi2aix Gl = GG, (17 — Gy Gog,e Go—olcogi) G,

Proof. In this proof we also suppress the dependence on u for the resolvents. Applying the
resolvent identity on G and G, we have

G =G + G(Ayp — AD)G® = GO + GO (A, — AD)G. (40)

We note that for x,y € V,, in different connected components of Agg), we have fo;) = 0. Then,
composing the first equality in Equation (40) with (o] - |g;) gives us Gog, = Goot1i+7y;, and compos-
ing the second expression with (g;| - |0) gives Gg,o = 7ia;Goo Which implies Item 1 by symmetry.

Next, composing Equation (40) with (o| - |0) gives

Goo == G(()g) + Z Gog1a]G((;g).
]'Ejo

We then use that Géoo) = (pul, — ag) ™! (since o is an isolated vertex in A@), which is well defined
since ||ag|| < ||Ax||- Rearranging the previous equation, we get Item 2

Goo (‘ulr —ag — Z LZ]*’)/]LZ]) = Ir.

]'E:fo

Finally, we fix i € %) and remove the edges around both o0 and g; € V, by defining

AT = A = Y aj]gigy)(8il — am 1g(gig)
j#i*
Using the resolvent identity similarly as before, and using that Ggg,)gig/ = 17 by translation
invariance, we obtain

-1
v, = pl—a,— Z Ajey L
J#*

Using this, we find that

-1
Villy — aiywapy) T = (v — apyap) Tt = (Vlr —ag — Z ﬂj*%‘ﬂj) = Goo-
j

Multiplying on the left by G'/2a;s, substituting in a;x7y; = G,' Gog; and then multiplying on the
right by G~1/2 gives Item 3. O

Next, we show that outside [—p(Ax), p(Ax)], Goo (i) and Ggf,) (u) are well-defined and bounded,
hence 4; is well-defined.
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Lemma 9.4. Let ¢ > 0, and let K = (ao,...,a4.2.) be a matrix bouquet with coefficients satisfying
[aillop < 1 fori e F, and let p € R with [u| > p(Acx) + . Then, a;(y) is well-defined and satisfies

op < e=%2(Ju| + (d + 2e + 1)). Moreover, if there is 6 > 0 such that ||a;*|| < 1/6 fori e .7, then
we can also conclude that 4;(1) is non-singular and satisfies ||a;(u) ™! lop < €5(|p| + (d +2e + 1))%/72

12i ()]

Proof. In this proof we will need several facts about spectral measures, which can be found for
instance in [DS88b, Ch. X].

Given Ay, there exists a unique positive operator-valued measure E (the resolution to the
identity) supported on o (Ay) such that

J dE = I, f AAE(A) = Ay and f L arn = cw.
(A) 0(Ac) (A) =2
We define v, to be the positive operator-valued measure {(J,, E(-)J,). In particular,
1
dvo(A) = G .
o i o) = Gt

We will use the fact that since v, is positive-valued, for any function f > 0 pointwise,

j fdv, >0 in Loewner order.
0(Ax)

One way to see this is, for any vector x € C’, (x, v,(-)x) defines a nonnegative real-valued measure
which is equal to the usual spectral measure with respect to the vector x ® |0) € C" ® £2(Vy,),

therefore
<x, (L(Aoo) fd1/0> x> = L(Am) falx,v,(-)x) = 0.

We can bound p(Acw) = [[Axlop < Dicg |0illop < d+2e+1. Forareal y > p(Ax), for A € 0(Ax)

we can lower bound 1 .

<
p+(d+2e+1)  pu—-A

and therefore

1 1
G =J 7d1/ >J dvy = (u+ (d+2e+ 1)L
oo (M) o) H— 0 () Ut (d+2e+1) o= (n+( )

Similarly, for p < —p(Ax),

1 1
Goo =f dv0>f dve = (| + (d +2¢ + 1)) 'L
|Goo(1)] iy A H wny T @426+ 1) (Il + ( )
We can upper bound
1 -1
< <— <L,
1Gool1)lop < 1GGep < g o7y <°

Therefore, we have shown that

(lul + (d +2e + 1)) 'L < [Goo(p)| < €1

which in particular shows that G, (1) ~"/? is well-defined. Since p(A(i ) < p(Ax), we get an

identical bound for each 7;(y). Now, combining with ||a;|,, < 1 and la; || < 1/6 and using
Lemma 9.3, Item 1 we get

18: (1)l op < €22 (Il + (d+2¢+1)) and [[ai(p) lop < 6(|u| + (d+2e+1))%% O
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Proposition 9.5. Let K be a matrix bouquet with coefficients satisfying |aill,, < 1 for all i € %,
and let A = AOO(SOO,IC). Let y € R with |u| > p(A). Let K(u) be defined as in Equation (39).
Let BP = BOO(SOC,IC(y)) be the corresponding nonbacktracking operator of the oo-lift of K(p). Then,
1¢0(B,). X R
Moreover, the above also holds for any n-lift £, with A = A, 1 (£, K) and B, = By, 1 (£4, K(1)).
Proof. We will apply Proposition 9.2 with A = 1. Let K' = (a, ..., a},,,) be the matrix bouquet

obtained from applying Proposition 9.2 to 16(;4), and let A" = Ay (L4, K') be the corresponding
lift. We know that 0 € A’ if and only if 1 € o(By), so showing that A’ = (Goo(1)2 @ I)(A —

1) (Goo(1)?) shows that if |u| > p(fiy) then 1 ¢ U(B\y). Note that G, (#)'/? is well-defined by
Lemma 9.4.
Let i € .#. We check that (omitting the dependence on y),

T = (1 = i) ' = Goo'*Gog, o (1= Go! PG, Goolcoglc‘“z)

— — — 71 —
_ G001/2 Gog,- ( G%z B G001/2 Gogi* G0_01 Gogi) — G 1/2 Gog,- (1 _ G&)l Gog,.* G; Gogi) Gool/z,

which is equal to Goo(y)l/zai* Gao(y)l/2 by Lemma 9.3, Item 3.
For aj, we check that

ay = —1— Y (1 — aud;)
i€y
-1 G;,l/zcogic;}“@ Gool/zcog*coolcog,c‘”Z) G‘l/zcogl Gog?
i€y
— _1 — —
= ~1= Y Goo*Gog,(Got” — Goa*Gogye Gao! Gog, ) G2 G G
i€y
- -1- Y G,"%c (1 — GGy GIIG ) G1Goe., Gos?
- 00 08i 00 M08 oo M0g; 00 M08 .
i€y
Now applying Lemma 9.3, Item 3, we get
ah = —1— Y Gy aixGog Goo .
i€y

Now using Gyg.. = 7i1;Goo from Lemma 9.3, Item 1, we have

ah = —1— > Golap7iaiGoy’ = —1— . Goo*GogaiGay”
=54 =54
= Gy} (—Gwl -2 Goolcogiaz) Gt
ies

and by applying Lemma 9.3, Item 2, we get
a) = Get*(ao — ul,) G2

Now, notice that if we swap each a; with a;«, all lifts of the resulting matrix bouquet remain the
same. Therefore we conclude that A’ = Gl/ 2(A —ul )G;éz.

Repeating the argument with A = A, | (£, K), Ay = An1(Ly, /6(;1)) and ]§V = By, 1 (£n, I%(pt))
gives the last part of the proposition. O
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Finally, we can prove the following, which is essentially Theorem 12 of [BC19].

Theorem 9.6. Let K = (ao,...,a4,2.) be a matrix bouquet with maxz-e/0||ai|\0p < 1and let £, be an
n-lift. For any € > 0, there exists 6 > 0 depending only on e,d, e and not on the particular a;’s such that

if for all p € R with [u] > || Aw(Lco, K)||op + € it holds that

~ ~

P(Bn, 1 (£n, K(1))) < p(Beo(Leo, K (1)) +6, (41)
where K () is defined via Equation (39), then [ A, (€0, K)[lop < [[Acn(Lo0, K)o + .

Proof. We write Aws = Ao (0, K), Ant = An1 (0, K), By = Bos (Lo, K (1)), and By, = By 1 (£, K(1)).
Fix ¢ > 0. First we show that we have p(By) < 1 for all y € R with [u[ > [|Ax||,, +& To

do so, suppose for the sake of contradiction that p(ﬁy) > 1 for some |p| > [[Ax|lo, + ¢ As we

take ¢ — o0 if p > 0 or p — —oo if p < 0, Lemma 9.4 implies that [|4;(#)llop Seae 172

|—1/2

therefore p(ﬁy) < HﬁVHOP Sede M as well, in particular p(ﬁy) — 0 as |pu| — oo. Using the

continuity of p(ﬁu) as a function of u (due to the 4;(jt)’s being continuous as a function of y and
Proposition 4.6), there must exist some y’ such that p(B,)op = 1. Lemma 13 in [BC19] says that

~

in this case, 1 € ¢(By/). Since we assumed [p| > [[Ax o, + €, we know [p'| > [|Aco |y, + € as well,

but this contradicts Proposition 9.5, so we conclude that p(ﬁy) <1

Again using that p(ﬁy) < |u|7V? as |u| — oo, there exists some D > HAOOHOp + ¢ depending

on e,d, e such that p(B,) < 1/2 for [u| > D. On [~D, —[Ax||,, — €] U [l Awlop + & DI, p(By) is
uniformly continuous as a function of y, hence there exists § > 0 such that p(gy) <16 for all

[l > | A |lop + & Hence, if we have Inequality (41) for all [u| > [[Ax ||, + € then p(ﬁw) <1 for
those y, which by Proposition 9.5 implies || > p(Ap,1). O

10 Explicit lifts of matrix polynomials

In this section we combine Section 9 with Theorem 8.2 to get closeness of the spectra of A, (£,, p)
and Ay (p) for a given p and £, from Theorem 8.2. The proof follows two main steps: first we
will use Section 9 to bound the norm of A, (£,, K) for all linear polynomials X, and then using
some operator theoretic tools in the literature, we can upgrade this bound for linear polynomials
into Hausdorff-closeness in spectra for all polynomials.

10.1 Constructing lifts for linear polynomials

In this section our goal is to prove, roughly, that given ¢ > 0, for a linear polynomial K with
bounded coefficients we can construct an N’ ~ N lift in poly(N) time such that || A (K)||o, — € <
HAN’,l(QN’/IC)Hop < HAOO(IC)Hop + &

To get the lower bound, we will require the following deterministic condition by Bordenave-
Collins that ensures 0 (A ) is in an e-neighborhood of (A, 1 ).

Proposition 10.1 ([BC19, Prop. 7]). Let ¢, R > 0. There exists h € INT such that for every n € IN*, if
an n-lift £, has at least one vertex whose h-neighborhood is acyclic, then every matrix bouquet K with
max; ||a;||p < R satisfies

0(Ax(K)) € 0(Ap, 1 (L4, K)) + [—¢, €]
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Remark 10.2. The proposition within Bordenave—Collins is stated for a particular matrix bouquet
IC, but it suffices to prove the proposition for an e-net of matrix bouquets, and use the stability of
the spectra (Theorem 10.3).

The following theorem about the stability of the spectra of self-adjoint bounded linear opera-
tors under symmetric perturbations can be found in Kato, Ch. 5, Thm. 4.10 [Kat95]:

Theorem 10.3. Let T be a self-adjoint bounded linear operator on a Hilbert space 7 and let A : S —
be a symmetric bounded operator. Let S = T + A. Then S is self-adjoint and disty (0(S),o(T)) < || A]] op

We also need a version of Proposition 10.1 for random signed lifts.

Proposition 10.4. Let ¢, R > 0. There exists h € Nt such that for every n € N*, if an n-lift £, has at
least one vertex whose h-neighborhood is acyclic, and K is a matrix bouquet with max; ||a;||p < R, then
any signing x satisfies

0(Ax(K)) € o(An(xLn, K)) + [—¢, €]

Remark 10.5. The proof of this is essentially the same as Proposition 10.1, by noting that for
x € V,, containing no cycle in its h-neighborhood, for 0 < k < 2,

k
J AkdyAn Ztrnxlta” = %Ztrnait = JRA" duy .,
Y b=l

where 7 is a closed length-k walk starting and ending at x. Or in words, the sum of the product
of the weights on closed length-k walks at x is equal to that of the infinite graph A.

Theorem 10.6. Fix an index set %y = {0,1,...,d + 2e} and involution « for a matrix bouquet. Fix
also constants r € Nt and R,e > 0. Then, there is a poly(N)-time deterministic algorithm that, on
input N, outputs an N'-lift £y (with N < N’ < N + o(N)) such that for every matrix bouquet K =
(@0, ..., A442¢) satisfying maXe 4, ||ai||p < R with r'-dimensional matrix weights (r' < r), we have that
HAOOUC)Hop —€s HAN',l(’QN’/K:)Hop < HAOO(K:)HOP +e

Moreover, for h € N given by applying Proposition 10.1, Ly also has at least one vertex whose
h-neighborhood is acyclic.

Proof. By homogeneity, we first reduce to the case where maxic 5 [|ai[[p < max; [|ai[|,, < 1 by
scaling and replacing e with ¢/2R.
The lift £5 we construct will satisfy the hypothesis of Proposition 10.1, hence guaranteeing
that || Ao (K)lop < | Anr(Sx0,
Next, we show that

) lop + ¢

[ ANy, L (€N K op < ([ A (K)|op +

Given a matrix bouquet K = (ap, ..., 4442.) with max; [[a;[|,, < 1, we construct another matrix
bouquet K’ = (ag,...,a),,,) where the coefficients have bounded inverse. For n € IN,, denote

Ap = Ay 1 (£4,K) and A/, 1= A; 1 (£4,K"). We will construct K’ such that for any n-lift £,
[An = Apllop < 8/3 Then, if we show that || A/, LH < A% llop +€/3, it implies
1An L llop < 1A%, Lllop + 14 — Asllop < 1A% llop +28/3 < | Aol + 2

Note it suffices to consider ay, ...,a42. such that each a; is self-adjoint (by replacing a; with
(a; + aj+)/2, this results in the same lift A,(£,,K)). For each a;, i € .#, we can diagonalize
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a; = U;D;U}. Let R’ = 3¢~ 1(d + 2¢). Let D’ be D but replace each diagonal entry in [0,1/R’) with
1/R’ and replace each diagonal entry in (—1/R’,0) with —1/R’, and define 4} := U;D;U;. Then,

a; satisfies that Ha;HOp <1, | < R’ and |4 — il < 1/R’. Furthermore, [|A,; — Ay |, <

Yies, llai —ail] <e/3.
Let y € R with |u| > ||AL,

-1

lop
lop +¢/3. If [u| > (d+2¢+1), then certainly [u] > [|A7[p-
Otherwise, we have |u| < (d +2e + 1) and we construct I@(y) from K’ as in Equation (39). By
Lemma 9.4, we know for each 4; € .7,

il op < 2(e/3)7%2(d +2¢ + 1),

and

12; 1H0p < 2(e/3) R (d +2e + 1)

Let 0 be from Theorem 9.6 with ¢/3 in place of e. Let h € IN* be from applying Propo-
sition 10.1, with R = max{2(e/3)3/2(d + 2¢ + 1),2(¢/3)R' " (d + 2¢ + 1)7%/2}, and &. We then
apply Theorem 8.1 with the same R and ¢ = § and C’ = 1, taking N’ to be large enough that

v/log N’ > h, to obtain an N'-lift £y that simultaneously for all x € R with |u| > [ A% llop + €/3,

p(Bnr, 1 (Lnr, K (1)) < p(Bos(K(p)) + 6. By applying Theorem 9.6 we conclude that [|A}y | [l <
1A% [l op +€/3-

Finally, we note that our application of Theorem 8.1 depended only on R, ¢,¢,d,r and not the
coefficients themselves, hence the lift £5v works for every matrix bouquet satisfying the given
bounds. =

10.2 A linearization trick, and lifts of matrix polynomials

In order to derive norm convergence for polynomials from norm convergence for linear poly-
nomials, we use the following linearization result, which appears in [Pis18] as Corollary 11 and
the following remarks (and first appeared implicitly in [Pis96]). We will first state these results
in terms of their limiting behavior, and derive quantitative bounds later. For complex-valued
random variables (X,),ew and x, we say X, converges in probability to x if for every € > 0,

lim Pr[|X,, —x| > ¢] =0.
n—0o0

Proposition 10.7. Let I be a finite index set, and let (x;);c be free Haar unitaries in a unital C*-algebra

A. Let (X](N)) je1 be a system of random unitary matrices with a common dimension, for each N. If for
every r € IN, and any set of matrix coefficients (a;);c; and a; € C™" we have

ao®1+2aj®X](N) ~|—a}k®(X]<N))* N—oowo a0®1+2aj®xj+a;"®(xj)* in probability,
jel jel
Then, for all matrix-coefficient polynomials P in |I| variables and their adjoints, we have

HP((X;N))]'EI/ (X](N)*)]‘el)H N, HP<(xj)j€I’ (x]’-“)]-el)H in probability.

Finally, the convergence in norm for all polynomials then implies convergence in Hausdorff
distance. The following appears in Proposition 2.1 in [CM14]".

15The proposition there is stated for convergence almost surely, but the same proof works for convergence in
probability. Only the first inclusion in Item 2 is shown, but the other direction is also easy to show.
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Proposition 10.8. Let I be a finite index set, and let (x;)jc; and (X](N)) jer for N € IN be variables in
C*-probability spaces with faithful states. Then, the following are equivalent:

1. For every matrix-coefficient polynomial P in |I| variables and their adjoints,

Hp((x](m)]-e[, (x](m*)]_d)H N, H P(x))jer, (X1)jer) H in probability.

2. For every matrix-coefficient polynomial P in |I| variables and their adjoints, let Yy be the random
variable P((X](N))]-GI, (X](N)*)]-GI), and let Y be P((x))jer, (x]’.")]-el). Then, the spectrum of Yy con-
verges in probability to the spectrum of Y in Hausdorff distance, that is to say, for every € > 0, with
probability going to 1 as N goes to infinity,

c(Yn) € o(Y) + [—¢ €]

and
oY) < o(Yn) +[—¢ €]

Using Theorem 7.2 followed by Theorem 6.5 instead of Theorem 8.1 in the proof of The-
orem 10.6, and also using Proposition 10.4 instead of Proposition 10.1, and finally applying
Propositions 10.7 and 10.8, we can deduce the following probabilistic statement.

Theorem 10.9. Let p be a matrix polynomial. Let £, be a uniformly random n-lift, and let ‘Igl), ce ék)

be k independent uniformly random 2-lifts. Then, (A, l(‘Igl) X ® ‘ng) ® Ly, p)) converges in
probability in Hausdorff distance to 0(Ax(p)) an n — oo.

As a consequence, we get the following theorem, which says that the spectrum of a uniformly
random signed lift converges to that of the co-lift, without the need to project onto the |+>,f space.

Theorem 10.10. Let p be a matrix polynomial, and let x £, be a uniformly random signed n-lift (i.e. by
taking both x and £, uniformly random). Then, o(A,(x£n, p)) converges in probability in Hausdorff
distance to o(Ax(p)).

Proof. We take k = 1 in Theorem 10.9. Proposition 4.16, Item 2 tells us that

(A2, (2@ Ly, p)) = 0(Ay,1(Ln, p)) U ‘T(An,x (L, p))-

We know from Bordenave—Collins’ theorem Theorem 1.1 that o(A,, 1 (£,, p)) converges in prob-
ability in Hausdorff distance to c(A«(p)). The above equation tells us that o (A, (£, p)) <
0(A2,1 (T2 ® Ly, p)), which converges to 0(A(p)) by Theorem 10.9. O

Next, we find the derandomized analogue of Theorem 10.9. To do so, we will need to ex-
amine the proof of Proposition 10.7, which uses the following factorization. We state this only
specialized to our situation of permutations/matchings converging to generators of Z and Z,,
instead of the more general form appearing in [Pis18, Cor. 4, Cor. 7].

Proposition 10.11. Let £, be an n-lift (with n possibly being o). Let p be a matrix polynomial satisfying
| An(Ln, p) Hop < 1. Then, there exists m € IN such that p can be factorized into

p = aoDyay ... Dyatyy,
where each w; is a rectangular complex-valued matrix satisfying H"‘iHop < 1, and each D; is a self-adjoint

linear matrix-coefficient polynomial (possibly of different dimensions) satisfying || An(Ln, Di)||op < 1.
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Using this factorization, we can upgrade the convergence in norm for linear polynomials in
Theorem 10.6 to convergence in the entire spectrum in Hausdorff distance, not just for linear
polynomials but for all self-adjoint polynomials.

We will need to use the spectral mapping theorem (see e.g. [DS88a, Thm VII.3.11]).

Theorem 10.12. Let T : 5 — ¢ be a bounded linear operator on a Hilbert space 5¢. Let f be a
holomorphic function defined on a neighborhood of o(T). Then, f(o(T)) = o(f(T)).

We will only be using this in the case where f is a polynomial. In this case f(A, (L4, p)) =
An(Ly, f(p)), where we interpret f(p) by way of addition and multiplication in the polynomial
ring.

Theorem 10.13. Fix an index set .9y = {0,1,...,d + 2e} and involution = for a matrix bouquet. Fix also
constants v,k € N* and R, e > 0. Then, there is a poly(N)-time deterministic algorithm that, on input N,
outputs an N'-lift Lny (with N < N’ < N + o(N)) such that simultaneously for every self-adjoint matrix
polynomial p with total degree at most k, coefficients in C"*" with ' < r and the Frobenius norm of
the coefficients of p are at most R, we have that c(Ay, | (Env, p)) and o(Ax(p)) are e-close in Hausdorff
distance.

Proof. First, we scale p by 1/2R so that max; ||a;|| < 1, and replace ¢ with ¢/2R.

The lift £5v we construct will satisfy the hypothesis of Proposition 10.1, hence 0 (A« (K)) <
0(An, 1 (£, K)) + [—¢ €.

To show the other inclusion, we proceed by an e-net argument over all polynomials with total
degree at most k. Let & = ¢/(3(k + 1)). Let g~ be the set of matrices in € %" with Frobenius
norm less than 1, and let &, s be a net of matrices in §, (e.g. by taking the entries to be complex
integer multiples of J) with |&,/ 5] < O(r' /8)" such that for every b € §p there is b € &, 5 such
that ||b —b||g <.

Let P,» be the set of polynomials with total degree at most k with coefficients from &, ;. Note
that |B,/| < (|8, 5] + 1)k(d + 2¢)F < O(r/&)krz(d +2e)k. Let p = 3 7 2, X¥ now be some matrix
polynomial with coefficients in §,». There exists a polynomial p in P, where p = >, 5 3, X”
where .7 is the same as in p, awH < 4. Since |9 | < k+1, for any n-lift
L, [[An 1 (Ln,p) — A1 (L0, p H o(k+1) 8/3 and also HAOO OO(B)Hop < ¢/3. Using
Theorem 10.3, we have dlstH( (,Sn, p), An(Ln, p)) < €/3. Therefore, it suffices to find an N’-lift
£\ such that disty (An/ (Snv, p), Ao (p)) < /3 for every p € F, for every ' <r

Now fix a polynomial p € ;. Let T be the interval [—(k+1+¢/3),(k+1+¢/3)],andlet S < T
be the spectrum of A, (p). Let f : R — R be a smooth function such that f(x) = —1 for x € S
and f(x) =1 for x € T\(S + [—¢/3,¢/3]). Let 4’ be a polynomial such that |f — 4’| < 0.1 on T, and
let g be g’ scaled so that ming(x) = —2 for x € T.

Using the spectral mapping theorem Theorem 10.12, we constructed g such that g(S) < [—-2,0]
so we know ||g(A«(p)) — 1H0p = 1. We apply Proposition 10.11 on g(A«(p)) — 1 to get a factor-
ization agD1a1 ... Dy, where each w; is a rectangular scalar matrix, and each D; is the oo-lift of
some self-adjoint linear polynomial (which we view as a matrix bouquet) ;. The factorization
further satisfies ||a;[|,, <1 and ||Dj|y,

We repeat this constructlon and factorlzatlon for every p € P,» and for every ' < r, and let
711 be the maximum number of factors in the factorization, let 7 be the maximum d1mens1on of
the matrix bouquets, and let R be the maximum Frobenius norm of the coefficients of the matrix
bouquets obtained in any of the factorizations. Let € > 0 be small enough such that (1 +&)" < 1.5.
We then apply Theorem 10.6 with the parameters 7, R and € to construct an N’-lift £/ with
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N < N’ < N+ 0o(N) such that simultaneously for every matrix bouquet with maxe s < R
and at most 7-dimensional weights, [|Any, 1 (En7, K)o, < [[Ax (K)o, + € Using this £5v on the
factorization of (A« (p)) +1 (by substituting in £/ for £o,, we have [[g(An (€7, p)) — 1|y, < 1.5.
Applying the spectral mapping theorem to g(An'(£n7, p)), since g > 1 on T\(S + [—¢/3,¢/3]) we
conclude that o(An/(n7, p)) € 0(Aw(p)) + [—€/3,¢/3]. Furthermore, this holds simultaneously
for every p € PB,» for any r < 1, hence we conclude as desired. O

Finally, by applying Theorem 8.2 instead of Theorem 8.1 in the proofs of Theorems 10.6
and 10.13, we can obtain

Theorem 10.14. In the setting of Theorems 10.6 and 10.13, there is also an algorithm that takes as input
a number N and a seed s € {0,1}°0°8N) and in deterministic polylog(N) time outputs a binary circuit ¢
that implements the adjacency list of a “color-regular lift graph” Gg,, (with N < N’ < N + o(N)).
Furthermore, with high probability over the choice of a uniformly random s (namely, except with probability

27 OW1ogN)) the resulting Ge,, satisfies the conclusions of Theorems 10.6 and 10.13 respectively.
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A Gallery

The appendix contains pictures of a few interesting MPL graphs.
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Figure 7: On the left, an illustration of Cy4 x Cy4, the free product of two 4-cycles. On the right, a
hint to how it arises as ¥(Y + Z + Z~1 + Z71YZ).
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Figure 8: An illustration of ¥, (p) with

010001
101000
010100

0

1
0
1

0010

p

] + 1| Z1 + [3)X6] Z2 + [2)(5] Z2Z1 + |4)(1| Z3 +16)(3| Z3 + [5)(2| Z1 Z;.-

1
0

0 01
000

|

76



Y, \y

7
&

N 2

\Uxu
~

Y,
IN

2 &
2 N

A =~

IN s

~

Figure 9: An illustration of C4 x C4 * C4 as ¥ (p) with r = 4 and

7
p =D 1i =3)i — 4] Zi + |i = 4)i = 3| ZF) + |4)1| ZrZoZs + |1)(4| (Z7Z6Z5) "+

a1

1

2
4

(DX Zi + [ ZF + |G Yi + ZEYiZs).
=1

2

1

77



	1 Introduction
	1.1 Bordenave and Collins's work
	1.2 X-Ramanujan graphs
	1.3 Our results, and comparison with prior work
	1.4 Implications for degree-2 constraint satisfaction problems

	2 Setup and definitions
	2.1 Matrix-weighted graphs
	2.2 Matrix polynomials
	2.3 Lifts of matrix polynomials
	2.4 Projections

	3 On MPL graphs
	3.1 Examples of MPL graphs
	3.2 Structure, connectivity and geometry of polynomial lifts
	3.3 Benjamini–Schramm convergence and unimodularity
	3.4 Connectedness of finite lifts produced by our algorithm

	4 Additional analytic setup and definitions
	4.1 Nonbacktracking operators
	4.2 Lifting permutations and product lifts
	4.3 Signed permutations

	5 Derandomization tools
	6 Random 2-lifts
	6.1 A net of bouquets
	6.2 Our main technical theorem
	6.3 Elementary graph theory
	6.4 Encoding and decoding
	6.4.1 Encoding
	6.4.2 Decoding

	6.5 Counting

	7 Weakly derandomizing n-lifts
	7.1 Derandomizing simple arguments about cycles
	7.2 Weakly derandomizing the main argument

	8 Constructing explicit good lifts
	9 Relating the spectra of the adjacency operator and nonbacktracking operator
	10 Explicit lifts of matrix polynomials
	10.1 Constructing lifts for linear polynomials
	10.2 A linearization trick, and lifts of matrix polynomials

	A Gallery

