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Abstract

In this paper we study non-interactive correlation distillation (NICD), a generalization of noise sen-
sitivity previously considered in [5, 31, 39]. We extend the model to NICD on trees. In this model there
is a fixed undirected tree with players at some of the nodes. One node is given a uniformly random
string and this string is distributed throughout the network, with the edges of the tree acting as inde-
pendent binary symmetric channels. The goal of the players is to agree on a shared random bit without
communicating.

Our new contributions include the following:

• In the case of a k-leaf star graph (the model considered in [31]), we resolve the open question
of whether the success probability must go to zero as k → ∞. We show that this is indeed the
case and provide matching upper and lower bounds on the asymptotically optimal rate (a slowly-
decaying polynomial).

• In the case of the k-vertex path graph, we show that it is always optimal for all players to use the
same 1-bit function.

• In the general case we show that all players should use monotone functions. We also show, some-
what surprisingly, that for certain trees it is better if not all players use the same function.

Our techniques include the use of the reverse Bonami-Beckner inequality. Although the usual Bonami-
Beckner has been frequently used before, its reverse counterpart seems not to be well known. To demon-
strate its strength, we use it to prove a new isoperimetric inequality for the discrete cube and a new
result on the mixing of short random walks on the cube. Another tool that we need is a tight bound on
the probability that a Markov chain stays inside certain sets; we prove a new theorem generalizing and
strengthening previous such bounds [2, 3, 6]. On the probabilistic side, we use the “reflection principle”
and the FKG and related inequalities in order to study the problem on general trees.
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1 Introduction

1.1 Non-interactive correlation — the problem and previous work

Our main topic in this paper is the problem of non-interactive correlation distillation (NICD), previously
considered in [5, 31, 39]. In its most general form the problem involves k players who receive noisy copies
of a uniformly random bit string of length n. The players wish to agree on a single random bit but are not
allowed to communicate. The problem is to understand the extent to which the players can successfully
distil the correlations in their strings into a shared random bit. This problem is relevant for cryptographic
information reconciliation, random beacons in cryptography and security, and coding theory; see [39].

In its most basic form, the problem involves only two players; the first gets a uniformly random string
x and the second gets a copy y in which each bit of x is flipped independently with probability ε. If the
players try to agree on a shared bit by applying the same Boolean function f to their strings, they will
fail with probability P[f(x) 6= f(y)]. This quantity is known as the noise sensitivity of f at ε, and the
study of noise sensitivity has played an important role in several areas of mathematics and computer science
(e.g., inapproximability [26], learning theory [17, 30], hardness amplification [33], mixing of short random
walks [27], percolation [10]; see also [34]). In [5], Alon, Maurer, and Wigderson showed that if the players
want to use a balanced function f , no improvement over the naive strategy of letting f(x) = x1 can be
achieved.

The paper [31] generalized from the two-player problem NICD to a k-player problem, in which a uni-
formly random string x of length n is chosen, k players receive independent ε-corrupted copies, and they
apply (possibly different) balanced Boolean functions to their strings, hoping that all output bits agree. This
generalization is equivalent to studying high norms of the Bonami-Beckner operator applied to Boolean
functions (i.e., ‖Tρf‖k); see Section 3 for definitions. The results in [31] include: optimal protocols involve
all players using the same function; optimal functions are always monotone; for k = 3 the first-bit (‘dicta-
tor’) is best; for fixed ε and fixed n and k → ∞, all players should use the majority function; and, for fixed
n and k and ε → 0 or ε → 1/2 dictator is best.

Later, Yang [39] considered a different generalization of NICD, in which there are only two players but
the corruption model is different from the “binary symmetric channel” noise considered previously. Yang
showed that for certain more general noise models, it is still the case that the dictator function is optimal; he
also showed an upper bound on the players’ success rate in the erasure model.

1.2 NICD on trees; our results

In this paper we propose a natural generalization of the NICD models of [5, 31], extending to a tree topol-
ogy. In our generalization we have a network in the form of a tree; k of the nodes have a ‘player’ located
on them. One node broadcasts a truly random string of length n. The string follows the edges of the trees
and eventually reaches all the nodes. Each edge of the tree independently introduces some noise, acting as a
binary symmetric channel with some fixed crossover probability ε. Upon receiving their strings, each player
applies a balanced Boolean function, producing one output bit. As usual, the goal of the players is to agree
on a shared random bit without any further communication; the protocol is successful if all k parties output
the same bit. (For formal definitions, see Section 2.) Note that the problem considered in [31] is just NICD
on the star graph of k + 1 nodes with the players at the k leaves.

We now describe our new results:

The k-leaf star graph: We first study the same k-player star problem considered in [31]. Although
this paper found maximizing protocols in certain asymptotic scenarios for the parameters k, n, and ε, the
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authors left open what is arguably the most interesting setting: ε fixed, k growing arbitrarily large, and n
unbounded in terms of ε and k. Although it is natural to guess that the success rate of the players must go
to zero exponentially fast in terms of k, this turns out not to be the case; [31] notes that if all players apply
the majority function (with n large enough) then they succeed with probability Ω(k−C(ε)) for some finite
constant C(ε) (the estimate [31] provides is not sharp). [31] left as a major open problem to prove that the
success probability goes to 0 as k → ∞.

In this paper we solve this problem. In Theorem 4.1 we show that the success probability must indeed
go to zero as k → ∞. Our upper bound is a slowly-decaying polynomial. Moreover, we provide a matching
lower bound: this follows from a tight analysis of the majority protocol. The proof of our upper bound
depends crucially on the reverse Bonami-Beckner inequality, an important tool that will be described later.

The k-vertex path graph: In the case of NICD on the path graph, we prove in Theorem 5.1 that in
the optimal protocol all players should use the same 1-bit function. In order to prove this, we prove in
Theorem 5.4, a new tight bound on the probability that a Markov chain stays inside certain sets. Our
theorem generalizes and strengthens previous work [2, 3, 6].

Arbitrary trees: In this general case, we show in Theorem 6.3 that there always exists an optimal protocol
in which all players use monotone functions. Our analysis uses methods of discrete symmetrization together
with the FKG correlation inequality.

In Theorem 6.2 we show that for certain trees it is better if not all players use the same function. This
might be somewhat surprising: after all, if all players wish to obtain the same result, won’t they be better
off using the same function? The intuitive reason the answer to this is negative can be explained by Figure
1: players on the path and players on the star each ‘wish’ to use a different function. Those on the star wish
to use the majority function and those on the path wish to use a dictator function. Indeed, we will show that
this strategy yields better success probability than any strategy in which all players use the same function.

Figure 1: The graph T with k1 = 5 and k2 = 3

1.3 The reverse Bonami-Beckner inequality

Let us start by describing the original inequality (see Theorem 3.1), which considers an operator known as
the Bonami-Beckner operator (see Section 3). It is easy to prove that this operator is contractive with respect
to every norm. However, the strength in the above inequality is that it shows that this operator remains
contractive from Lp to Lq for certain values of p and q with q > p. This is the reason it is often referred
to as a hypercontractive inequality. The inequality was originally proved by Bonami in 1970 [12] and then
independently by Beckner in 1973 [8]. It was first used to analyze discrete problems in a a remarkable paper
by Kahn, Kalai and Linial [27] where they considered the influence of variables on Boolean functions.
The inequality has proved to be of great importance in the study of combinatorics of {0, 1}n [15, 16, 22],
percolation and random graphs [38, 23, 10, 14] and many other applications [9, 4, 36, 7, 35, 18, 19, 28, 33].

Far less well-known is the fact that the Bonami-Beckner inequality admits a reversed form. This reversed
form was first proved by Christer Borell [13] in 1982. Unlike the original inequality, the reverse inequality
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says that some low norm of the Bonami-Beckner operator applied to a non-negative function can be bounded
below by some higher norm of the original function. Moreover, the norms involved in the reverse inequality
are all at most 1 while the norms in the original inequality are all at least 1. Technically these should not be
called norms since they do not satisfy the triangle inequality; nevertheless, we use this terminology.

We are not aware of any previous uses of the reverse Bonami-Beckner inequality for the study of dis-
crete problems. The inequality seems very promising and we hope it will prove useful in the future. To
demonstrate its strength, we provide two applications:

Isoperimetric inequality on the discrete cube: As a corollary of the reverse Bonami-Beckner inequality,
we obtain in Theorem 3.4 a type of isoperimetric inequality on the discrete cube. It differs from the usual
isoperimetric inequality in that the “neighborhood” structure is slightly different. Although it is a simple
corollary, we believe that the isoperimetric inequality is interesting. It is also used later to give a sort
of hitting time upper-bound for short random walks. In order to illustrate it, let us consider two subsets
S, T ⊆ {−1, 1}n each containing a constant fraction σ of the 2n elements of the discrete cube. We now
perform the following experiment: we choose a random element of S and flip each of its n coordinates with
probability ε for some small ε. What is the probability that the resulting element is in T ? Our isoperimetric
inequality implies that it is at least some constant independent of n. For example, given any two sets with
fractional size 1/3, the probability that flipping each coordinate with probability .3 takes a random point
chosen from the first set into the second set is at least (1/3)1.4/.6 ≈ 7.7%. We also show that our bound
is close to tight. Namely, we analyze the above probability for diametrically opposed Hamming balls and
show that it is close to our lower bound.

Short random walks: Our second application, Proposition 3.6, is to short random walks on the discrete
cube. We point out however that this does not differ substantially from what was done in the previous
paragraph. Consider the following scenario. We have two sets S, T ⊆ {−1, 1}n of size at least σ2n each.
We start a walk from a random element of the set S and at each time step proceed with probability 1/2 to one
of its neighbors which we pick randomly. Let τn be the length of the random walk. What is the probability
that the random walk terminates in T ? If τ = C log n for a large enough constant C then it is known that
the random walk mixes and therefore we are guaranteed to be in T with probability roughly σ. However,
what happens if τ is, say, 0.2? Notice that τn is then less than the diameter of the cube! For certain sets
S, the random walk might have zero probability to reach certain vertices, but if σ is at least, say, a constant
then there will be some nonzero probability of ending in T . We bound from below the probability that the
walk ends in T by a function of σ and τ only. For example, for τ = 0.2, we obtain a bound of roughly
σ10. The proof crucially depends on the reverse Bonami-Beckner inequality; to the best of our knowledge,
known techniques, such as spectral methods, cannot yield a similar bound.

2 Preliminaries

We now formally define the problem of “non-interactive correlation distillation (NICD) on trees with the
binary symmetric channel (BSC).” In general we have four parameters. The first is T , an undirected tree
giving the geometry of the problem. Later the vertices of T will become labeled by binary strings, and
the edges of T will be thought of as independent binary symmetric channels. The second parameter of the
problem is 0 < ρ < 1 which gives the correlation of bits on opposite sides of a channel. By this we mean
that if a bit string x ∈ {−1, 1}n passes through the channel producing the bit string y ∈ {−1, 1}n then
E[xiyi] = ρ independently for each i. We say that y is a ρ-correlated copy of x. We will also sometimes
refer to ε = 1

2 − 1
2ρ ∈ (0, 1

2), which is the probability with which a bit gets flipped — i.e., the crossover
probability of the channel. The third parameter of the problem is n, the number of bits in the string at every
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vertex of T . The fourth parameter of the problem is a subset of the vertex set of T , which we denote by S.
We refer to the S as the set of players. Frequently S is simply all of V (T ), the vertices of T .

To summarize, an instance of the NICD on trees problem is parameterized by:

1. T , an undirected tree;

2. ρ ∈ (0, 1), the correlation parameter;

3. n ≥ 1, the string length; and,

4. S ⊆ V (T ), the set of players.

Given an instance, the following process happens. Some vertex u of T is given a uniformly random
string x(u) ∈ {−1, 1}n. Then this string is passed through the BSC edges of T so that every vertex of T
becomes labeled by a random string in {−1, 1}n. It is easy to see that the choice of u does not matter, in
the sense that the resulting joint probability distribution on strings for all vertices is the same regardless of
u. Formally speaking, we have n independent copies of a “tree-indexed Markov chain;” or a “Markov chain
on a tree” [24]. The index set is V (T ) and the probability measure P on α ∈ {−1, 1}V (T ) is defined by

P(α) = 1
2

(

1
2 + 1

2ρ
)A(α) (1

2 − 1
2ρ
)B(α)

,

where A(α) is the number of pairs of neighbors where α agrees and B(α) is the number of pairs of neighbors
where α disagrees.

Once the strings are distributed on the vertices of T , the player at the vertex v ∈ S looks at the string
x(v) and applies a (pre-selected) Boolean function fv : {−1, 1}n → {−1, 1}. The goal of the players is to
maximize the probability that the bits fv(x

(v)) are identical for all v ∈ S. In order to rule out the trivial
solutions of constant functions and to model the problem of flipping a shared random coin, we insist that
all functions fv be balanced; i.e., have equal probability of being −1 or 1. As noted in [31], this does
not necessarily ensure that when all players agree on a bit it is conditionally equally likely to be −1 or
1; however, if the functions are in addition antisymmetric, this property does hold. We call a collection
of balanced functions (fv)v∈S a protocol for the players S, and we call this protocol simple if all of the
functions are the same.

To conclude our notation, we write P(T, ρ, n, S, (fv)v∈S) for the probability that the protocol succeeds
– i.e., that all players output the same bit. When the protocol is simple we write merely P(T, ρ, n, S, f).
Our goal is to study the maximum this probability can be over all choices of protocols. We denote by

M(T, ρ, n, S) = sup
(fv)v∈S

P(T, ρ, n, S, (fv)v∈S),

and define
M(T, ρ, S) = sup

n
M(T, ρ, n, S).

3 Reverse Bonami-Beckner and applications

In this section we recall the reverse Bonami-Beckner inequality and obtain as a corollary an isoperimetric
inequality on the discrete cube. These results will be useful in analyzing the NICD problem on the star graph
and we believe they are of independent interest. We also obtain a new result about the mixing of relatively
short random walks on the discrete cube.
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3.1 The reverse Bonami-Beckner inequality

We begin with a discussion of the Bonami-Beckner inequality. Recall the Bonami-Beckner operator Tρ, a
linear operator on the space of functions {−1, 1}n → R defined by

(Tρf)(x) = E[f(y)],

where y is a ρ-correlated copy of x. The usual Bonami-Beckner inequality, first proved by Bonami [12] and
later independently by Beckner [8], is the following:

Theorem 3.1 Let f : {−1, 1}n → R and q ≥ p ≥ 1. Then

‖Tρf‖q ≤ ‖f‖p for all 0 ≤ ρ ≤ (p − 1)1/2/(q − 1)1/2.

The reverse Bonami-Beckner inequality is the following:

Theorem 3.2 Let f : {−1, 1}n → R
≥0 be a nonnegative function and let −∞ < q ≤ p ≤ 1. Then

‖Tρf‖q ≥ ‖f‖p for all 0 ≤ ρ ≤ (1 − p)1/2/(1 − q)1/2. (1)

Note that in this theorem we consider r-norms for r ≤ 1. The case of r = 0 is a removable singularity:
by ‖f‖0 we mean the geometric mean of f . Note also that since Tρ is a convolution operator, it is positivity-
improving for any ρ < 1; i.e., when f is nonnegative so too is Tρf , and if f is further not identically zero,
then Tρf is everywhere positive.

The reverse Bonami-Beckner theorem is proved in the same way the usual Bonami-Beckner theorem is
proved; namely, one proves the inequality in the case of n = 1 by elementary means, and then observes that
the inequality tensors. Since Borell’s original proof may be too compact to be read by some, we provide an
expanded version of it in Appendix A for completeness.

We will actually need the following “two-function” version of the reverse Bonami-Beckner inequality
which follows easily from the reverse Bonami-Beckner inequality using the (reverse) Hölder inequality (see
Appendix A):

Corollary 3.3 Let f, g : {−1, 1}n → R
≥0 be nonnegative, let x ∈ {−1, 1}n be chosen uniformly at random,

and let y be a ρ-correlated copy of x. Then for −∞ < p, q < 1,

E[f(x)g(y)] ≥ ‖f‖p‖g‖q for all 0 ≤ ρ ≤ (1 − p)1/2(1 − q)1/2. (2)

3.2 A new isoperimetric inequality on the discrete cube

In this subsection we use the reverse Bonami-Beckner inequality to prove an isoperimetric inequality on the
discrete cube. Let S and T be two subsets of {−1, 1}n. Suppose that x ∈ {−1, 1}n is chosen uniformly at
random and y is a ρ-correlated copy of x. We obtain the following theorem, which gives a lower bound on
the probability that x ∈ S and y ∈ T as a function of |S|/2n and |T |/2n only.

Theorem 3.4 Let S, T ⊆ {−1, 1}n with |S| = exp(−s2/2)2n and |T | = exp(−t2/2)2n. Let x be chosen
uniformly at random from {−1, 1}n and let y be a ρ-correlated copy of x. Then

P[x ∈ S, y ∈ T ] ≥ exp

(

−1

2

s2 + 2ρst + t2

1 − ρ2

)

. (3)
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Proof: Take f and g to be the 0-1 characteristic functions of S and T , respectively. Then by Corollary 3.3,
for any choice of p, q < 1 with (1 − p)(1 − q) = ρ2, we get

P[x ∈ S, y ∈ T ] = E[f(x)g(y)] ≥ ‖f‖p‖g‖q = exp(−s2/2p) exp(−t2/2q). (4)

Write p = 1 − ρr, q = 1 − ρ/r in (4), with r > 0. Maximizing the right-hand side as a function of r the
best choice is r = ((t/s) + ρ)/(1 + ρ(t/s)) which yields in turn

p = 1 − ρr = 1−ρ2

1+ρ(t/s) , q = 1 − ρ/r = t
s

1−ρ2

ρ+(t/s) .

(Note that this depends only on the ratio of t and s.) Substituting this choice of r (and hence p and q) into (4)
yields exp(− 1

2
s2+2ρst+t2

1−ρ2 ), as claimed.

We now obtain the following corollary of Theorem 3.4.

Corollary 3.5 Let S ⊆ {−1, 1}n have fractional size σ ∈ [0, 1], and let T ⊆ {−1, 1}n have fractional
size σα, for α ≥ 0. If x is chosen uniformly at random from S and y is a ρ-correlated copy of x, then the
probability that y is in T is at least

σ(
√

α+ρ)2/(1−ρ2).

In particular, if |S| = |T | then this probability is at least σ(1+ρ)/(1−ρ) .

Proof: Choosing s and t so that σ = exp(−s2/2) and σα = exp(−t2/2) we obtain

−1

2
(s2 + 2ρst + t2) = log σ − ρ

√

−2 log σ
√

−2α log σ + α log σ = log σ(1 + 2ρ
√

α + α),

and therefore

exp

(

−1

2

s2 + 2ρst + t2

1 − ρ2

)

= σ(1+2ρ
√

α+α)/(1−ρ2).

Theorem 3.4 therefore tells us that conditioned on starting in S, the probability of ending in T is at least

σ(1+2ρ
√

α+α)/(1−ρ2)−1 = σ(
√

α+ρ)2/(1−ρ2).

In Subsection 3.4 below we show that the isoperimetric inequality is almost tight. First, we prove a
similar bound for random walks on the cube.

3.3 Short random walks on the discrete cube

We can also prove a result of a similar flavor about short random walks on the discrete cube:

Proposition 3.6 Let τ > 0 be arbitrary and let S and T be two subsets of {−1, 1}n. Let σ ∈ [0, 1] be
the fractional size of S and let α be such that the fractional size of T is σα. Consider a standard random
walk on the discrete cube that starts from a uniformly random vertex in S and walks for τn steps. Here by
a standard random walk we mean that at each time step we do nothing with probability 1/2 and we walk
along the ith edge with probability 1/2n. Let p(τn)(S, T ) denote the probability that the walk ends in T .
Then,

p(τn)(S, T ) ≥ σ
(
√

α+exp(−τ))2

1−exp(−2τ) − O
(σ(−1+α)/2

τn

)

.

In particular, when |S| = |T | = σ2n then p(τn)(S, T ) ≥ σ
1+exp(−τ)
1−exp(−τ) − O( 1

τn).
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The Laurent series of 1+e−τ

1−e−τ is 2/τ + τ/6 − O(τ 3) so for 1/ log n � τ � 1 our bound is roughly σ2/τ .
For the proof we will first need a simple lemma:

Lemma 3.7 For y > 0 and any 0 ≤ x ≤ y,

0 ≤ e−x − (1 − x/y)y ≤ O(1/y).

Proof: The expression above can be written as

e−x − ey log(1−x/y).

We have log(1 − x/y) ≤ −x/y and hence we obtain the first inequality. For the second inequality, notice
that if x ≥ 0.1y then both expressions are of the form e−Ω(y) which is certainly O(1/y). On the other hand,
if 0 ≤ x < 0.1y then there is a constant c such that

log(1 − x/y) ≥ −x/y − cx2/y2.

The Mean Value Theorem implies that for 0 ≤ a ≤ b, e−a − e−b ≤ e−a(b − a). Hence,

e−x − ey log(1−x/y) ≤ e−x(−y log(1 − x/y) − x) ≤ cx2e−x

y
.

The lemma now follows because x2e−x is uniformly bounded for x ≥ 0.

We now prove Proposition 3.6. The proof uses Fourier analysis; for the required definitions see, e.g.,
[27].

Proof: Let x be a uniformly random point in {−1, 1}n and y a point generated by taking a random walk
of length τn starting from x. Let f and g be the 0-1 indicator functions of S and T , respectively, and say
E[f ] = σ, E[g] = σα. Then by writing f and g in their Fourier decomposition we obtain that

σ · p(τn)(S, T ) = P[x ∈ S, y ∈ T ] = E[f(x)g(y)] =
∑

U,V

f̂(U)ĝ(V )E[xUyV ]

where U and V range over all subsets of {1, . . . , n}. Note that E[xUyV ] is zero unless U = V . Therefore

σp(τn)(S, T ) =
∑

U

f̂(U)ĝ(U)E[(xy)U ] =
∑

U

f̂(U)ĝ(U)
(

1 − |U |
n

)τn

=
∑

U

f̂(U)ĝ(U) exp(−τ |U |) +
∑

U

f̂(U)ĝ(U)
[(

1 − |U |
n

)τn
− exp(−τ |U |)

]

= 〈f, Texp(−τ)g〉 +
∑

U

f̂(U)ĝ(U)
[(

1 − |U |
n

)τn
− exp(−τ |U |)

]

≥ 〈f, Texp(−τ)g〉 − max
|U |

∣

∣

∣

(

1 − |U |
n

)τn
− exp(−τ |U |)

∣

∣

∣

∑

U

|f̂(U)ĝ(U)|.

By Corollary 3.5,

σ−1〈f, Texp(−τ)g〉 ≥ σ
(
√

α+exp(−τ))2

1−exp(−2τ) .

By Cauchy-Schwarz and Parseval’s identity,
∑

U

|f̂(U)ĝ(U)| ≤ ‖f̂‖2‖ĝ‖2 = ‖f‖2‖g‖2 = σ(1+α)/2.
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In addition, from Lemma 3.7 with x = τ |U | and y = τn we have that

max
|U |

∣

∣

∣

(

1 − |U |
n

)τn
− exp(−τ |U |)

∣

∣

∣ = O
( 1

τn

)

.

Hence,

p(τn)(S, T ) ≥ σ
(
√

α+exp(−τ))2

1−exp(−2τ) − O
(σ(−1+α)/2

τn

)

.

3.4 Tightness of the isoperimetric inequality

We now show that Theorem 3.4 is almost tight. Suppose x ∈ {−1, 1}n is chosen uniformly at random and
y is a ρ-correlated copy of x. Let us begin by understanding more about how x and y are distributed. Define

Σ(ρ) =

[

1 ρ
ρ 1

]

and recall that the density function of the bivariate normal distribution φΣ(ρ) : R
2 → R

≥0 with mean 0 and
covariance matrix Σ(ρ), is given by

φΣ(ρ)(x, y) = (2π)−1(1 − ρ2)−
1
2 exp

(

−1

2

x2 − 2ρxy + y2

1 − ρ2

)

= (1 − ρ2)−
1
2 φ(x)φ





y − ρx

(1 − ρ2)
1
2



 .

Here φ denotes the standard normal density function on R, φ(x) = (2π)−1/2e−x2/2.

Proposition 3.8 Let x ∈ {−1, 1}n be chosen uniformly at random, and let y be a ρ-correlated copy of x.
Let X = n−1/2

∑n
i=1 xi and Y = n−1/2

∑n
i=1 yi. Then as n → ∞, the pair of random variables (X,Y )

approaches the distribution φΣ(ρ). As an error bound, we have that for any convex region R ⊆ R
2,

∣

∣

∣

∣

P
[

(X,Y ) ∈ R
]

−
∫∫

R
φΣ(ρ)(x, y) dy dx

∣

∣

∣

∣

≤ O((1 − ρ2)−1/2n−1/2).

Proof: This follows from the Central Limit Theorem (see, e.g., [20]), noting that for each coordinate i,
E[x2

i ] = E[y2
i ] = 1, E[xiyi] = ρ. The Berry-Esséen-type error bound is proved in Sazonov [37, p. 10, Item

6].

Using this proposition we can obtain the following result for two diametrically opposed Hamming balls.

Proposition 3.9 Fix s, t > 0, and let S, T ⊆ {−1, 1}n be diametrically opposed Hamming balls, with
S = {x :

∑

i xi ≤ −sn1/2} and T = {x :
∑

i xi ≥ tn1/2}. Let x be chosen uniformly at random from
{−1, 1}n and let y be a ρ-correlated copy of x. Then we have

lim
n→∞

P[x ∈ S, y ∈ T ] ≤
√

1 − ρ2

2πs(ρs + t)
exp

(

−1

2

s2 + 2ρst + t2

1 − ρ2

)

.
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Proof:

lim
n→∞

P[x ∈ S, y ∈ T ] =

∫ ∞

s

∫ ∞

t
φΣ(−ρ)(x, y) dy dx ( By Lemma 3.8 )

≤
∫ ∞

s

∫ ∞

t

x(ρx + y)

s(ρs + t)
φΣ(−ρ)(x, y) dy dx

(

Since
x(ρx + y)

s(ρs + t)
≥ 1 on x ≥ s, y ≥ t

)

=
1

√

1 − ρ2

∫ ∞

s

∫ ∞

t

x(ρx + y)

s(ρs + t)
φ(x)φ

(

y + ρx
√

1 − ρ2

)

dy dx

≤ 1
√

1 − ρ2

∫ ∞

s

∫ ∞

ρs+t

xz

s(ρs + t)
φ(x)φ

(

z
√

1 − ρ2

)

dz dx

(

Using z = ρx + y and noting
xz

s(ρs + t)
≥ 1 on x ≥ s, z ≥ ρs + t

)

=
1

s(ρs + t)
√

1 − ρ2

(∫ ∞

s
xφ(x)dx

)

(

∫ ∞

ρs+t
zφ

(

z
√

1 − ρ2

)

dz

)

=

√

1 − ρ2

s(ρs + t)
φ(s)φ

(

ρs + t
√

1 − ρ2

)

=

√

1 − ρ2

2πs(ρs + t)
exp

(

−1

2

s2 + 2ρst + t2

1 − ρ2

)

.

The result follows.

By the Central Limit Theorem, the set S in the above statement satisfies (see [1, 26.2.12]),

lim
n→∞

|S|2−n =
1√
2π

∫ ∞

s
e−x2/2 dx ∼ exp(−s2/2)/(

√
2πs).

For large s (i.e., small |S|) this is dominated by exp(−s2/2). A similar statement holds for T . This shows
that Theorem 3.4 is nearly tight.

4 The best asymptotic success rate in the k-star

In this section we consider the NICD problem on the star. Let Stark denote the star graph on k + 1 vertices
and let Sk denote its k leaf vertices. We shall study the same problem considered in [31]; i.e., determining
M(Stark, ρ, Sk). Note that it was shown in that paper that the best protocol in this case is always simple
(i.e., all players should use the same function).

The following theorem determines rather accurately the asymptotics of M(Stark, ρ, Sk):

Theorem 4.1 Fix ρ ∈ (0, 1] and let ν = ν(ρ) = 1
ρ2 − 1. Then for k → ∞,

M(Stark, ρ, Sk) = Θ̃
(

k−ν
)

,

where Θ̃(·) denotes asymptotics to within a subpolynomial (ko(1)) factor. The lower bound is achieved
asymptotically by the majority function MAJn with n sufficiently large.
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Note that if the corruption probability is very small (i.e., ρ is close to 1), we obtain that the success rate
only drops off as a very mild function of k.

Proof of upper bound: We know that all optimal protocols are simple, so assume all players use the same
balanced function f : {−1, 1}n → {−1, 1}. Let F−1 = f−1(−1) and F1 = f−1(1) be the sets where
f obtains the values −1 and 1 respectively. The center of the star gets a uniformly random string x, and
then independent ρ-correlated copies are given to the k leaf players. Let y denote a typical such copy. The
probability that all players output −1 is thus Ex[P[f(y) = −1|x]k]. We will show that this probability is
Õ(k−ν). This complete the proof since we can replace f by −f and get the same bound for the probability
that all players output 1.

Suppose Ex[P[f(y) = −1|x]k] ≥ 2δ for some δ; we will show δ must be small. Define

S = {x : P[f(y) = −1 | x]k ≥ δ}.

By Markov’s inequality we must have |S| ≥ δ2n. Now on one hand, by the definition of S,

P[y ∈ F1 | x ∈ S] ≤ 1 − δ1/k. (5)

On the other hand, applying Corollary 3.5 with T = F1 and α ≤ 1/ log2(1/δ) < 1/ log(1/δ) (since
|F1| = 1

22n), we get

P[y ∈ F1 | x ∈ S] ≥ δ(log−1/2(1/δ)+ρ)2/(1−ρ2). (6)

Combining (5) and (6) yields the desired upper bound on δ in terms of k, δ ≤ k−ν+o(1) by the following
calculations. We have

1 − δ1/k ≥ δ(log−1/2(1/δ)+ρ)2/(1−ρ2).

We want to show that the above inequality cannot hold if

δ ≥
(

ec
√

log k

k

)ν

, (7)

where c = c(ρ) is some constant. We will show that if δ satisfies (7) and c is sufficiently large then for all
large k

δ1/k + δ(log−1/2(1/δ)+ρ)2/(1−ρ2) > 1.

Note first that

δ1/k >

(

1

k

)
ν
k

= exp

(

−ν log k

k

)

> 1 − ν log k

k
. (8)

On the other hand,

δ(log−1/2(1/δ)+ρ)2/(1−ρ2) = δ− log−1 δ/(1−ρ2) · δ2ρ log−1/2(1/δ)/(1−ρ2) · δρ2/(1−ρ2). (9)

Note that

δρ2/(1−ρ2) = δ1/ν ≥ ec
√

log k

k
and

δ2ρ log−1/2(1/δ)/(1−ρ2) = exp

(

− 2ρ

1 − ρ2

√

log(1/δ)

)

≥ exp

(

− 2ρ

1 − ρ2

√

ν log k

)

.

Finally,

δ− log−1 δ/(1−ρ2) = exp

(

− 1

1 − ρ2

)

.

Thus if c = c(ρ) is sufficiently large then the left hand side of (9) is at least ν log k
k . This implies the desired

contradiction by (7) and (8).
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Proof of lower bound: We will analyze the protocol where all players use MAJn, similarly to the analysis
of [31]. Our analysis here is more careful resulting in a tighter bound.

We begin by showing that the probability with which all players agree if they use MAJn, in the case of
fixed k and n → ∞, is:

lim
n→∞
n odd

P(Stark, ρ, n, Sk,MAJn) = 2ν1/2(2π)(ν−1)/2

∫ 1

0
tkI(t)ν−1 dt, (10)

where I = φ ◦ Φ−1 is the so-called Gaussian isoperimetric function, with φ(x) = (2π)−1/2 exp(−x2/2)
and Φ(x) =

∫ x
−∞ φ(t)dt the density and distribution functions of a standard normal random variable respec-

tively.
Apply Proposition 3.8, with X ∼ N(0, 1) representing n−1/2 times the sum of the bits in the string at

the star’s center, and Y |X ∼ N(ρX, 1 − ρ2) representing n−1/2 times the sum of the bits in a typical leaf
player’s string. Thus as n → ∞, the probability that all players output +1 when using MAJn is precisely

∫ ∞

−∞
Φ

(

ρ x
√

1 − ρ2

)k

φ(x) dx =

∫ ∞

−∞
Φ
(

ν−1/2x
)k

φ(x) dx.

Since MAJn is antisymmetric, the probability that all players agree on +1 is the same as the probability they
all agree on −1. Making the change of variables t = Φ(ν−1/2x), x = ν1/2Φ−1(t), dx = ν1/2I(t)−1 dt, we
get

lim
n→∞
n odd

P(Stark, ρ, n, Sk,MAJn) = 2ν1/2

∫ 1

0

tkφ(ν1/2Φ−1(t))

I(t)
dt

= 2ν1/2(2π)(ν−1)/2

∫ 1

0
tkI(t)ν−1 dt,

as claimed.
We now estimate the integral in (10). It is known (see, e.g., [11]) that I(s) ≥ J(s(1 − s)), where

J(s) = s
√

ln(1/s). We will forego the marginal improvements given by taking the logarithmic term and
simply use the estimate I(t) ≥ t(1 − t). We then get

∫ 1

0
tkI(t)ν−1 dt ≥

∫ 1

0
tk(t(1 − t))ν−1 dt

=
Γ(ν)Γ(k + ν)

Γ(k + 2ν)
([1, 6.2.1, 6.2.2])

≥ Γ(ν)(k + 2ν)−ν (Stirling approximation).

Substituting this estimate into (10) we get limn→∞P(Stark, ρ, n, Sk,MAJn) ≥ c(ν)k−ν where c(ν) >
0 depends only on ρ, as desired.

We remark that in the upper bound above we have in effect proved the following theorem regarding high
norms of the Bonami-Beckner operator applied to Boolean functions:

Theorem 4.2 Let f : {−1, 1}n → {0, 1} and suppose E[f ] ≤ 1/2. Then for any fixed ρ ∈ (0, 1], as
k → ∞, ‖Tρf‖k

k ≤ k−ν+o(1), where ν = 1
ρ2 − 1.
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Since we are trying to bound a high norm of Tρf knowing the norms of f , it would seem as though the usual
Bonami-Beckner inequality would be effective. However this seems not to be the case: a straightforward
application yields

‖Tρf‖k ≤ ‖f‖ρ2(k−1)+1 = E[f ]1/(ρ2(k−1)+1)

⇒ ‖Tρf‖k
k ≤ (1/2)k/(ρ2(k−1)+1) ≈ (1/2)1/ρ2

,

only a constant upper bound.

5 The optimal protocol on the path

In this section we prove the following theorem which gives a complete solution to the NICD problem on a
path. In this case, simple dictator protocols are the unique optimal protocols, and any other simple protocol
is exponentially worse as a function of the number of players.

Theorem 5.1 • Let Pathk = {v0, v1, . . . , vk} be the path graph of length k, and let S be any subset
of Pathk of size at least two. Then simple dictator protocols are the unique optimal protocols for
P(Pathk, ρ, n, S, (fv)). In particular, if S = {vi0 , . . . , vi`} where i0 < i1 < · · · < i`, then we have

M(Pathk, ρ, S) =
∏̀

j=1

(

1

2
+

1

2
ρij−ij−1

)

.

• Moreover, for every ρ and n there exists c = c(ρ, n) < 1 such that if S = Pathk then for any simple
protocol f which is not a dictator,

P(Pathk, ρ, n, S, f) ≤ P(Pathk, ρ, n, S,D)c|S|−1

where D denotes the dictator function.

5.1 A bound on inhomogeneous Markov chains

A crucial component of the proof of Theorem 5.1 is a bound on the probability that a reversible Markov chain
stays inside certain sets. In this subsection, we derive such a bound in a fairly general setting. Moreover, we
exactly characterize the cases in which the bound is tight. This is a generalization of Theorem 9.2.7 in [6]
and of results in [2, 3].

Let us first recall some basic facts concerning reversible Markov chains. Consider an irreducible Markov
chain on a finite set S. We denote by M =

(

m(x, y)
)

x,y∈S
the matrix of transition probabilities of this chain,

where m(x, y) is the probability to move in one step from x to y. We will always assume that M is ergodic
(i.e., irreducible and aperiodic).

The rule of the chain can be expressed by the simple equation µ1 = µ0M , where µ0 is a starting distri-
bution on S and µ1 is the distribution obtained after one step of the Markov chain (we think of both as row
vectors). By definition,

∑

y m(x, y) = 1. Therefore, the largest eigenvalue of M is 1 and a corresponding
right eigenvector has all its coordinates equal to 1. Since M is ergodic, it has a unique (left and right)
eigenvector corresponding to an eigenvalue with absolute value 1. We denote the unique right eigenvector
(1, . . . , 1)t by 1. We denote by π the unique left eigenvector corresponding to the eigenvalue 1 whose co-
ordinate sum is 1. π is the stationary distribution of the Markov chain. Since we are dealing with a Markov
chain whose distribution π is not necessarily uniform it will be convenient to work in L2(S, π). In other
words, for any two functions f and g on S we define the inner product 〈f, g〉 =

∑

x∈S π(x)f(x)g(x). The
norm of f equals ‖f‖2 =

√

〈f, f〉 =
√
∑

x∈S π(x)f2(x).

12



Definition 5.2 A transition matrix M =
(

m(x, y)
)

x,y∈S
for a Markov chain is reversible with respect to a

probability distribution π on S if π(x)m(x, y) = π(y)m(y, x) holds for all x, y in S.

It is known that if M is reversible with respect to π, then π is the stationary distribution of M . Moreover,
the corresponding operator taking L2(S, π) to itself defined by Mf(x) =

∑

y m(x, y)f(y) is self-adjoint,
i.e., 〈Mf, g〉 = 〈f,Mg〉 for all f, g. Thus, it follows that M has a complete set of orthonormal (with respect
to the inner product defined above) eigenvectors with real eigenvalues.

Definition 5.3 If M is reversible with respect to π and λ1 ≤ . . . ≤ λr−1 ≤ λr = 1 are the eigenvalues of
M , then the spectral gap of M is defined to be δ = min

{

| − 1 − λ1|, |1 − λr−1|
}

.

For transition matrices M1,M2, . . . on the same space S, we can consider the time-inhomogeneous
Markov chain which at time 0 starts in some state (perhaps randomly) and then jumps using the matrices
M1,M2, . . . in this order. In this way, Mi will govern the jump from time i−1 to time i. We write IA for the
indicator function of the set A and πA for the function defined by πA(x) = IA(x)π(x) for all x. Similarly,
we define π(A) =

∑

x∈A π(x). The following theorem provides a tight estimate on the probability that the
inhomogeneous Markov chain stays inside certain specified sets.

Theorem 5.4 Let M1,M2, . . . ,Mk be ergodic transition matrices on the state space S, all of which are
reversible with respect to the same probability measure π with full support. Let δi > 0 be the spectral gap
of matrix Mi and let A0, A1, . . . , Ak be nonempty subsets of S.

• If {Xi}k
i=0 denotes the time-inhomogeneous Markov chain using the matrices M1,M2, . . . ,Mk and

starting according to distribution π, then

P[Xi ∈ Ai ∀i = 0 . . . k] ≤
√

π(A0)
√

π(Ak)

k
∏

i=1

[

1 − δi

(

1 −
√

π(Ai−1)
√

π(Ai)
) ]

. (11)

• Suppose we further assume that for all i, δi < 1 and that λi
1 > −1 + δi (λi

1 here is the smallest
eigenvalue for the ith chain). Then equality in (11) holds if and only if all the sets Ai are the same set
A and for all i the function IA − π(A)1 is an eigenfunction of Mi corresponding to the eigenvalue
1 − δi.

• Finally, suppose even further that all the chains Mi are identical. Then there exists a constant c =
c(M) < 1 such that for all sets A for which strict inequality holds in (11) when each Ai is taken to
be A, we have the stronger inequality

P[Xi ∈ A ∀i = 0 . . . k] ≤ ckπ(A)
k
∏

i=1

[

1 − δ(1 − π(A))
]

for every k.

Remark: Notice that if all the sets Ai have π-measure at most σ < 1 and all the Mi’s have spectral gap at
least δ, then the upper bound in (11) is bounded above by

σ[σ + (1 − δ)(1 − σ)]k.

Hence, the above theorem generalizes Theorem 9.2.7 in [6] and strengthens the estimate from [3].
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5.2 Proof of Theorem 5.1

If we look at the NICD process restricted to positions xi0 , xi1 , . . . , xi` , we obtain a time-inhomogeneous
Markov chain {Xj}`

j=0 where X0 is uniform on {−1, 1}n and the ` transition operators are powers of the

Bonami-Beckner operator, T i1−i0
ρ , T i2−i1

ρ , · · · , T
i`−i`−1
ρ . Equivalently, these operators are Tρi1−i0 , Tρi2−i1 ,

. . . , Tρi`−i`−1 . It is easy to see that the eigenvalues of Tρ are 1 > ρ > ρ2 > · · · > ρn and therefore its
spectral gap is 1 − ρ. Now a protocol for the ` + 1 players consists simply of ` + 1 subsets A0, . . . , A` of
{−1, 1}n, where Aj is a set of strings in {−1, 1}n on which the jth player outputs the bit 1. Thus, each Aj

has size 2n−1, and the success probability of this protocol is simply

P[Xi ∈ Ai ∀i = 0 . . . `] + P[Xi ∈ Āi ∀i = 0 . . . `].

But by Theorem 5.4 each summand is bounded by

1

2

∏̀

j=1

(

1

2
+

ρij−ij−1

2

)

,

yielding our desired upper bound. It is easy to check that this is precisely the success probability of a simple
dictator protocol.

To complete the proof of the first part it remains to show that every other protocol does strictly worse.
By the second statement of Theorem 5.4 (and the fact that the simple dictator protocol achieves the upper
bound in Theorem 5.4), we can first conclude that any optimal protocol is a simple protocol, i.e., all the sets
Aj are identical. Let A be the set corresponding to any potentially optimal simple protocol. By Theorem 5.4
again the function IA − (|A|2−n)1 = IA − 1

21 must be an eigenfunction of Tρr for some r corresponding
to its second largest eigenvalue ρr. This implies that f = 2IA − 1 must be a balanced linear function,
f(x) =

∑

|S|=1 f̂(S)xS . It is well known (see, e.g., [32]) that the only such Boolean functions are dictators.
This completes the proof of the first part. The second part of the theorem follows immediately from the third
part of Theorem 5.4

5.3 Inhomogeneous Markov chains

In order to prove Theorem 5.4 we need a lemma that provides a bound for one step of the Markov chain.

Lemma 5.5 Let M be an ergodic transition matrix for a Markov chain on the set S which is reversible with
respect to the probability measure π and which has spectral gap δ > 0. Let A1 and A2 be two subsets of
S and let P1 and P2 be the corresponding projection operators on L2(S, π) (i.e., Pif(x) = f(x)IAi(x) for
every function f on S). Then

‖P1MP2‖ ≤ 1 − δ
(

1 −
√

π(A1)
√

π(A2)
)

,

where the norm on the left is the operator norm for operators from L2(S, π) into itself.
Further, suppose we assume that δ < 1 and that λ1 > −1 + δ. Then equality holds above if and only if

A1 = A2 and the function IA1 − π(A1)1 is an eigenfunction of M corresponding to 1 − δ.

Proof: Let e1, . . . , er−1, er = 1 be an orthonormal basis of right eigenvectors of M with corresponding
eigenvalues λ1 ≤ . . . ≤ λr−1 ≤ λr = 1. For a function f on S, denote by supp(f) = {x ∈ S | f(x) 6= 0}.
It is easy to see that

‖P1MP2‖ = sup
{

|〈f1,Mf2〉| : ‖f1‖2 = 1, ‖f2‖2 = 1, supp(f1) ⊆ A1, supp(f2) ⊆ A2

}

.

14



Given such f1 and f2, expand them as

f1 =

r
∑

i=1

uiei, f2 =

r
∑

i=1

viei

and observe that for j = 1, 2,

|〈fj,1〉| = |〈fj, IAj 〉| ≤ ‖fj‖2‖IAj‖2 =
√

π(Aj). (12)

But now by the orthonormality of the ei’s we have

|〈f1,Mf2〉| =

∣

∣

∣

∣

∣

r
∑

i=1

λiuivi

∣

∣

∣

∣

∣

≤
r
∑

i=1

|λiuivi| ≤ |〈f1,1〉〈f2,1〉| + (1 − δ)
∑

i≤r−1

|uivi| (13)

≤ |〈f1,1〉〈f2,1〉| + (1 − δ)(1 − |〈f1,1〉〈f2,1〉|) (14)

≤
√

π(A1)
√

π(A2) + (1 − δ)
(

1 −
√

π(A1)
√

π(A2)
)

(15)

= 1 − δ
(

1 −
√

π(A1)
√

π(A2)
)

.

For the third inequality, we used that
∑

i |uivi| ≤ 1 which follows from f1 and f2 having norm 1.
As for the second part of the lemma, if equality holds then all the derived inequalities must be equalities.

In particular, if (12) holds as an equality, it follows that for j = 1, 2, fj = ±
(

1/
√

π(Aj)
)

IAj . Since δ < 1
is assumed, it follows from the third inequality in (13) that we must also have that

∑

i |uivi| = 1 from which
we can conclude that |ui| = |vi| for all i. Since −1+δ is not an eigenvalue, for the second inequality in (13)
to hold we must have that the only nonzero ui’s (or vi’s) correspond to the eigenvalues 1 and 1 − δ. Next,
for the first inequality in (13) to hold, we must have that u = (u1, . . . , un) = ±v = (v1, . . . , vn) since λi

can only be 1 or 1 − δ and |ui| = |vi| for each i. This gives us that f1 = ±f2 and therefore A1 = A2.
Finally, we also get that f1 − 〈f1,1〉1 is an eigenfunction of M corresponding to the eigenvalue 1 − δ.

To conclude the proof, note that if A1 = A2 and IA1 − π(A1)1 is an eigenfunction of M corresponding to
1− δ, then it is easy to see that when we take f1 = f2 = IA1 −π(A1)1, all inequalities in our proof become
equalities.

Proof of Theorem 5.4: Let Pi denote the projection onto Ai, as in Lemma 5.5. It is easy to see that

P[Xi ∈ Ai ∀i = 0 . . . k] = πA0P0M1P1M2 · · ·Pk−1MkPkIAk
.

Rewriting in terms of the inner product, this is equal to

〈IA0 , (P0M1P1M2 · · ·Pk−1MkPk)IAk
〉.

By Cauchy-Schwarz it is at most

‖IA0‖2‖IAk
‖2‖P0M1P1M2 · · ·Pk−1MkPk‖,

where the third factor is the norm of P0M1P1M2 · · ·Pk−1MkPk as an operator from L2(S, π) to itself.
Since P 2

i = Pi (being a projection), this in turn is equal to
√

π(A0)
√

π(Ak)‖(P0M1P1)(P1M2P2) · · · (Pk−1MkPk)‖.

By Lemma 5.5 we have that for all i = 1, . . . , k

‖Pi−1M`Pi‖ ≤ 1 − δi

(

1 −
√

π(Ai−1)
√

π(Ai)
)

.
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Hence
∥

∥

∥

k
∏

i=1

(Pi−1MPi)
∥

∥

∥ ≤
k
∏

i=1

[

1 − δi

(

1 −
√

π(Ai−1)
√

π(Ai)
)]

, (16)

and the first part of the theorem is complete.
For the second statement note that if we have equality, then we must also have equality for each of the

norms ‖Pi−1MiPi‖. This implies by Lemma 5.5 that all the sets Ai are the same and that IAi − π(Ai)1 is
in the 1 − δi eigenspace of Mi for all i. For the converse, suppose on the other hand that Ai = A for all i
and IA − π(A)1 is in the 1 − δi eigenspace of Mi. Note that

Pi−1MiPiIA = Pi−1MiIA = Pi−1Mi

(

π(A)1 + (IA − π(A)1)
)

= Pi−1

(

π(A)1 + (1 − δi)(IA − π(A)1)
)

= π(A)IA + (1 − δi)IA − (1 − δi)π(A)IA =
(

1 − δi(1 − π(A)
)

IA.

Since P 2
i = Pi, we can use induction to show that

πA0P0M1P1M2 · · ·Pk−1MkPkIAk
= πA

[

k
∏

i=1

(Pi−1MiPi)
]

IA = π(A)

k
∏

i=1

(

1 − δi(1 − π(A)
)

,

completing the proof of the second statement.
In order to prove the third statement, first note that if strict inequality holds in (11) when each A i is

taken to be A, then, by the second part of this result, the function IA − π(A)1 is not an eigenfunction of M
corresponding to the eigenvalue 1 − δ. It then follows from Lemma 5.5 that ‖PMP‖ < 1 − δ(1 − π(A))
where P is the corresponding projection onto A. The result now immediately follows from (16).

6 NICD on general trees

In this section we give some results for the NICD problem on general trees. Theorem 1.3 in [31] stated that
for the star graph where S is the set of leaves, the simple dictator protocols constitute all optimal protocols
when |S| = 2 or |S| = 3. The proof of that result immediately leads to the following.

Theorem 6.1 For any NICD instance (T, ρ, n, S) in which |S| = 2 or |S| = 3 the simple dictator protocols
constitute all optimal protocols.

6.1 Example with no simple optimal protocols

It appears that the problem of NICD in general is quite difficult. In particular, using Theorem 5.1 we show
that there are instances for which there is no simple optimal protocol. Note the contrast with the case of
stars, where it is proven in [31] that there is always a simple optimal protocol.

Proposition 6.2 There exists an instance (T, ρ, n, S) for which there is no simple optimal protocol. In fact,
given any ρ and any n ≥ 4, there are integers k1 and k2, such that if T is a k1-leaf star together with a path
of length k2 coming out of the center of the star (see Figure 1) and S is the full vertex set of T , then this
instance has no simple optimal protocol.

Proof: Fix ρ and n ≥ 4. Recall that we write ε = 1
2 − 1

2ρ and let Bin(3, ε) be a binomially distributed
random variable with parameters 3 and ε. As was observed in [31],

P(Stark, ρ, n, Sk,MAJ3) ≥
1

8
P[Bin(3, ε) ≤ 1]k.
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To see this, note that with probability 1/8 the center of the star gets the string (1, 1, 1). Since
P[Bin(3, ε) ≤ 1] = (1 − ε)2(1 + 2ε) > 1 − ε for all ε < 1/2, we can pick k1 large enough so that

P(Stark1 , ρ, n, Sk1 ,MAJ3) ≥ 8(1 − ε)k1 .

Next, by the last statement in Theorem 5.4, there exists c2 = c2(ρ, n) > 1 such that for all balanced
non-dictator functions f on n bits

P(Pathk, ρ, n,Pathk,D) ≥ P(Pathk, ρ, n,Pathk, f)ck
2 .

Choose k2 large enough so that
(1 − ε)k1ck2

2 > 1.

Now let T be the graph consisting of a star with k1 leaves and a path of length k2 coming out of its
center (see Figure 1), and let S = V (T ). We claim that the NICD instance (T, ρ, n, S) has no simple
optimal protocol. We first observe that if it did, this protocol would have to be D, i.e., P(T, ρ, n, S, f) <
P(T, ρ, n, S,D) for all simple protocols f which are not equivalent to dictator. This is because the quantity
on the right is (1 − ε)k1+k2 and the quantity on the left is at most P(Pathk2 , ρ, n,Pathk2 , f) which in turn
by definition of c2 is at most (1 − ε)k2/ck2

2 . This is strictly less than (1 − ε)k1+k2 by the choice of k2.
To complete the proof it remains to show that D is not an optimal protocol. Consider the protocol where

k2 vertices on the path (including the star’s center) use the dictator D on the first bit and the k1 leaves of
the star use the protocol MAJ3 on the last three out of n bits. Since n ≥ 4, these vertices use completely
independent bits from those that vertices on the path are using. We will show that this protocol, which we
call f , does better than D.

Let A be the event that all vertices on the path have their first bit being 1. Let B be the event that each
of the k1 leaf vertices of the star have 1 as the majority of their last 3 bits. Note that P (A) = 1

2(1− ε)k2 and
that, by definition of k1, P (B) ≥ 4(1 − ε)k1 . Now the protocol f succeeds if both A and B occur. Since A
and B are independent (as distinct bits are used), f succeeds with probability at least 2(1 − ε)k2(1 − ε)k1

which is twice the probability that the dictator protocol succeeds.

Remark: It was not necessary to use the last 3 bits for the k1 vertices; we could have used the first 3 (and
had n = 3). Then A and B would not be independent but it is easy to show (using the FKG inequality) that
A and B would then be positively correlated which is all that is needed.

6.2 Optimal monotone protocols always exist

Next, we present some general statements about what optimal protocols must look like. Using discrete
symmetrization together with the FKG inequality we prove the following theorem, which extends one of the
results in [31] from the case of the star to the case of general trees.

Theorem 6.3 For all NICD instances on trees, there is an optimal protocol in which all players use a
monotone function.

One of the tools that we need to prove Theorem 6.3 is the correlation inequality obtained by Fortuin et
al. [21] which is usually called the FKG inequality. We first recall some basic definitions.

Let D be a finite linearly ordered set. Given two strings x, y in Dm we write x ≤ y iff xi ≤ yi for all
indices 1 ≤ i ≤ m. We denote by x ∨ y and x ∧ y two strings whose ith coordinates are max(xi, yi) and
min(xi, yi) respectively. A probability measure µ : Dm → R

≥0 is called log-supermodular if

µ(η)µ(δ) ≤ µ(η ∨ δ)µ(η ∧ δ) (17)
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for all η, δ ∈ Dm. If µ satisfies (17) we will also say that µ satisfies the FKG lattice condition. A subset
A ⊆ Dm is increasing if whenever x ∈ A and x ≤ y then also y ∈ A. Similarly, A is decreasing if x ∈ A
and y ≤ x imply that y ∈ A. Finally, the measure of A is µ(A) =

∑

x∈A µ(x). The following well known
fact is a special case of the FKG inequality.

Proposition 6.4 Let µ : {−1, 1}m → R
≥0 be a log-supermodular probability measure on the discrete cube.

If A and B are two increasing subsets of {−1, 1}m and C is a decreasing subset then

µ(A ∩ B) ≥ µ(A) · µ(B) and µ(A ∩ C) ≤ µ(A) · µ(C).

It is known that in order to prove that µ satisfies the FKG lattice condition, it suffices to check this for
“smallest boxes” in the lattice, i.e., for η and δ that agree at all but two locations. Since we don’t know a
reference, for completeness we prove this here.

Lemma 6.5 Let µ be a measure with full support. Then µ satisfies the FKG lattice condition (17) if and
only if it satisfies (17) for all η and δ that agree at all but two locations.

Proof: We will prove the non-trivial direction by induction on d = d(η, δ), the Hamming distance between
η and δ. The cases where d(η, δ) ≤ 2 follow from the assumption. The proof will proceed by induction on
d. Let d = d(η, δ) ≥ 3 and assume the claim holds for all smaller d. We can partition the set of coordinates
into 3 subsets I=, I{η>δ} and I{η<δ}, where η and δ agree, where η > δ and where η < δ respectively.
Without loss of generality |I{η>δ}| ≥ 2. Let i ∈ I{η>δ} and let η′ be obtained from η by setting η′

i = δi and
letting η′j = ηj otherwise. Then since η′ ∧ δ = η ∧ δ,

µ(η ∧ δ)µ(η ∨ δ)

µ(η)µ(δ)
=

(

µ(η′ ∧ δ)µ(η′ ∨ δ)

µ(η′)µ(δ)

)

×
(

µ(η′)µ(η ∨ δ)

µ(η)µ(η′ ∨ δ)

)

.

The first factor is ≥ 1 by the induction hypothesis since d(δ, η ′) = d(δ, η) − 1. Note that η′ = η ∧ (η′ ∨ δ),
η ∨ δ = η ∨ (η′ ∨ δ), and d(η′, η ∨ δ) = 1 + |I{η<δ}| < d. Therefore by induction, the second term is also
≥ 1.

The above tools together with symmetrization now allow us to prove Theorem 6.3.

Proof of Theorem 6.3: The general strategy of the proof is a shifting technique together with using FKG
to prove that this shifting improves things.

Recall that we have a tree T with m vertices, 0 < ρ < 1, and a probability measure P on α ∈
{−1, 1}V (T ) which is defined by

P(α) = 1
2 (1

2 + 1
2ρ)A(α)(1

2 − 1
2ρ)B(α),

where A(α) is the number of pairs of neighbors where α agrees and B(α) is the number of pairs of neigh-
bors where α disagrees. To use Proposition 6.4 we need to show that P is a log-supermodular probability
measure.

Lemma 6.5 tells us that we need only check the FKG condition for configurations that differ in only two
sites. Note that (17) holds trivially if α ≤ β or β ≤ α. Thus it suffices to consider the case where there
are two vertices u, v of T on which α and β disagree and that αv = βu = 1 and αu = βv = −1. If these
vertices are not neighbors then by definition of P we have that P(α)P(β) = P(α∨β)P(α∧β). Similarly,
if u is a neighbor of v in T , then one can easily check that

P(α)P(β)

P(α ∨ β)P(α ∧ β)
=

(

1 − ρ

1 + ρ

)2

≤ 1.
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Hence we conclude that measure P is log-supermodular.
Let f1, . . . , fk be the functions used by the parties at nodes S = {v1, . . . , vk}. We will shift the functions

in the sense of Kleitman’s monotone “down-shifting” [29]. Namely, define functions g1, . . . , gk as follows:
If fi(−1, x2, . . . , xn) = fi(1, x2, . . . , xn) then we set

gi(−1, x2, . . . , xn) = gi(1, x2, . . . , xn) = fi(−1, x2, . . . , xn) = fi(1, x2, . . . , xn).

Otherwise, we set gi(−1, x2, . . . , xn) = −1 and gi(1, x2, . . . , xn) = 1. We claim that the agreement
probability for the gi’s is at least the agreement probability for the fi’s. Repeating this argument for all bit
locations will prove that there exists an optimal protocol for which all functions are monotone.

To prove the claim we condition on the value of x2, . . . , xn at all the nodes vi and let αi be the remaining
bit at vi. For simplicity we will denote the functions of this bit by fi and gi.

Let S1 = {i : fi(−1) = fi(1) = 1}, S2 = {i : fi(−1) = fi(1) = −1}, S3 = {i : fi(−1) =
−1, fi(1) = 1}, and S4 = {i : fi(−1) = 1, fi(1) = −1}.

If S1 and S2 are both nonempty, then the agreement probability for both f and g is 0. Now without loss
of generality, assume that S2 is empty. Assume first that S1 is nonempty. Then the agreement probability for
g is P(αi = 1 : i ∈ S3∪S4) while the agreement probability for f is P(αi = 1 : i ∈ S3, αi = −1 : i ∈ S4).
By FKG, the first probability is at least P(αi = 1 : i ∈ S3)P(αi = 1 : i ∈ S4) while the second probability
is at most P(αi = 1 : i ∈ S3)P(αi = −1 : i ∈ S4). By symmetry, the two second factors are the same,
completing the proof when S1 is nonempty. An easy modification, left to the reader, takes care of the case
when S1 is also empty.

Remark: The last step in the proof above may be replaced by a more direct calculation showing that in
fact we have strict inequality unless the sets U ′, U ′′ are empty. This is similar to the monotonicity proof in
[31]. This implies that every optimal protocol must consist of monotone functions (in general, it may be
monotone increasing in some coordinates and monotone decreasing in the other coordinates).

Remark: The above proof works in a much more general setup than just our tree-indexed Markov chain
case. One can take any measure on {−1, 1}m satisfying the FKG lattice condition with all marginals having
mean 0, take n independent copies of this and define everything analogously in this more general framework.
The proof of Theorem 6.3 extends to this context.

6.3 Monotonicity in the number of parties

Our last theorem yields a certain monotonicity when comparing the simple dictator protocol D and the
simple protocol MAJr, which is majority on the first r bits. The result is not very strong – it is interesting
mainly because it allows to compare protocols behavior for different number of parties. It shows that if
MAJr is a better protocol than dictatorship for k1 parties on the star, then it is also better than dictatorship
for k2 parties if k2 > k1.

Theorem 6.6 Fix ρ and n and suppose k1 and r are such that

P(Stark1 , ρ, n,Stark1 ,MAJr) ≥ (>) P(Stark1 , ρ, n,Stark1 ,D).

Then for all k2 > k1,

P(Stark2 , ρ, n,Stark2 ,MAJr) ≥ (>) P(Stark2 , ρ, n,Stark2 ,D).

Note that it suffices to prove the theorem assuming r = n. In order to prove the theorem, we first
introduce or recall some necessary definitions including the notion of stochastic domination.
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Definitions and set-up: We define an ordering on {0, 1, . . . , n}I , writing η � δ if ηi ≤ δi for all i ∈ I . If
ν and µ are two probability measures on {0, 1, . . . , n}I , we say µ stochastically dominates ν, written ν � µ,
if there exists a probability measure m on {0, 1, . . . , n}I × {0, 1, . . . , n}I whose first and second marginals
are respectively ν and µ and such that m is supported on {(η, δ) : η � δ}. Fix ρ, n ≥ 3, and any tree T .
Let our tree-indexed Markov chain be {xv}v∈T , where xv ∈ {−1, 1}n for each v ∈ T . Let A ⊆ {−1, 1}n

be the strings which have a majority of 1’s. Let Xv denote the number of 1’s in xv . Given S ⊆ T , let µS be
the conditional distribution of {Xv}v∈T given ∩v∈S{xv ∈ A} (= ∩v∈S{Xv ≥ n/2}).

The following lemma is key and might be of interest in itself. It can be used to prove (perhaps less
natural) results analogous to Theorem 6.6 for general trees. Its proof will be given later.

Lemma 6.7 In the above setup, if S1 ⊆ S2 ⊆ T , we have

µS1 � µS2 .

Before proving the lemma or showing how it implies Theorem 6.6, a few remarks are in order.

• Note that if {xk} is a Markov chain on {−1, 1}n with transition matrix Tρ, then if we let Xk be the
number of 1’s in xk, then {Xk} is also a Markov chain on the state space {0, 1, . . . , n} (although it is
certainly not true in general that a function of a Markov chain is a Markov chain.) In this way, with
a slight abuse of notation, we can think of Tρ as a transition matrix for {Xk} as well as for {xk}.
In particular, given a probability distribution µ on {0, 1, . . . , n} we will write µTρ for the probability
measure on {0, 1, . . . , n} given by one step of the Markov chain.

• We next recall the easy fact that the Markov chain Tρ on {−1, 1}n is attractive meaning that if ν and
µ are probability measures on {−1, 1}n with ν � µ, then it follows that νTρ � µTρ. (This is easily
verified for one coordinate and the one coordinate case easily implies the n-dimensional case.) The
same is true for the Markov chain {Xk} on {0, 1, . . . , n}.

Along with these observations, Lemma 6.7 is enough to prove Theorem 6.6:

Proof: Let v0, v1, . . . , vk be the vertices of Stark, where v0 is the center. Clearly, P(Stark, ρ,Stark,D) =
(1
2 + 1

2ρ)k. On the other hand, a little thought reveals that

P(Stark, ρ, n,Stark,MAJn) =
k−1
∏

`=0

(µ{v0,...,v`} |v0 Tρ)(A),

where by µ |v we mean the xv marginal of a distribution µ (recall that A ⊆ {−1, 1}n is the strings which
have a majority of 1’s). By Lemma 6.7 and the attractivity of the process, the terms (µ{v0,...,v`} |v0 Tρ)(A)
(which do not depend on k as long as ` ≤ k) are nondecreasing in `. Therefore if

P(Stark, ρ, n,Stark,MAJn) ≥ (>)( 1
2 + 1

2ρ)k,

then (µ{v0,...,vk−1} |v0 Tρ)(A) ≥ (>) 1
2 + 1

2ρ which implies in turn that for every k ′ ≥ k, (µ{v0 ,...,vk′−1} |v0

Tρ)(A) ≥ (>) 1
2 + 1

2ρ and thus for all k′ > k

P(Stark′ , ρ, n,Stark′ ,MAJn) ≥ (>)( 1
2 + 1

2ρ)k
′
.
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Before proving Lemma 6.7, we recall the definition of positive associativity. If µ is a probability measure
on {0, 1, . . . , n}I , µ is said to be positively associated if any two monotone functions on {0, 1, . . . , n}I

are positively correlated. This is equivalent to the fact that if B ⊆ {0, 1, . . . , n}I is an upset, then µ
conditioned on B is stochastically larger than µ. (It is immediate to check that this last condition is equivalent
to monotone events being positively correlated. However, it is well known that monotone events being
positively correlated implies that monotone functions are positively correlated; this is done by writing out a
monotone function as a positive linear combination of indicator functions.)

Proof of Lemma 6.7: It suffices to prove this when S2 is S1 plus an extra vertex z. We claim that for any
set S, µS is positively associated. Given this claim, we form µS2 by first conditioning on ∩v∈S1{xv ∈ A},
giving us the measure µS1 , and then further conditioning on xz ∈ A. By the claim, µS1 is positively
associated and hence the last further conditioning on Xz ∈ A stochastically increases the measure, giving
µS1 � µS2 .

To prove the claim that µS is positively associated, we first claim that the distribution of {Xv}v∈T ,
which is just a probability measure on {0, 1, . . . , n}T , satisfies the FKG lattice condition (17).

Assuming the FKG condition holds for {Xv}v∈T , it is easy to see that the same inequality holds when
we condition on the sublattice ∩v∈S{Xv ≥ n/2} (it is crucial here that the set ∩v∈S{Xv ≥ n/2} is a
sublattice meaning that η, δ being in this set implies that η ∨ δ and η ∧ δ are also in this set).

The FKG theorem, which says that the FKG lattice condition (for any distributive lattice) implies positive
association, can now be applied to this conditioned measure to conclude that the conditioned measure has
positive association, as desired.

Finally, by Lemma 6.5, in order to prove that the distribution of {Xv}v∈T satisfies the FKG lattice
condition, it is enough to check this for “smallest boxes” in the lattice, i.e., for η and δ that agree at all but
two locations. If these two locations are not neighbors, it is easy to check that we have equality. If they are
neighbors, it easily comes down to checking that if a > b and c > d, then

P (X1 = c|X0 = a)P (X1 = d|X0 = b) ≥ P (X1 = d|X0 = a)P (X1 = c|X0 = b)

where {X0, X1} is the distribution of our Markov chain on {0, 1, . . . , n} restricted to two consecutive times.
It is straightforward to check that for ρ ∈ (0, 1), the above Markov chain can be embedded into a continuous
time Markov chain on {0, 1, . . . , n} which only takes steps of size 1. The last claim now follows from
Lemma 6.8 stated and proved below.

Lemma 6.8 If {Xt} is a continuous time Markov chain on {0, 1, . . . , n} which only takes steps of size 1,
then if a > b and c > d, it follows that

P(X1 = c | X0 = a) P(X1 = d | X0 = b) ≥ P(X1 = d | X0 = a) P(X1 = c | X0 = b).

(Of course, by time scaling, X1 can be replaced by any time Xt.)

Proof: Let Ra,c be the set of all possible realizations of our Markov chain during [0, 1] starting from a and
ending in c. Define Ra,d, Rb,c and Rb,d analogously. Letting Px denote the measure on paths starting from
x, we need to show that

Pa(Ra,c)Pb(Rb,d) ≥ Pa(Ra,d)Pb(Rb,c)

or equivalently that
Pa × Pb[Ra,c × Rb,d] ≥ Pa × Pb[Ra,d × Rb,c]

We do this by giving a measure preserving injection from Ra,d ×Rb,c to Ra,c ×Rb,d. We can ignore pairs of
paths where there is a jump in both paths at the same time since these have Pa ×Pb measure 0. Given a pair
of paths in Ra,d × Rb,c, we can switch the paths after their first meeting time. It is clear that this gives an
injection from Ra,d ×Rb,c to Ra,c ×Rb,d and the Markov property guarantees that this injection is measure
preserving, completing the proof.
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7 Conclusions and open questions

In this paper we have exactly analyzed the NICD problem on the path and asymptotically analyzed the NICD
problem on the star. However, we have seen that results on more complicated trees may be hard to come by.
Many problems are still open. We list a few:

• Is it true that for every tree NICD instance, there is an optimal protocol in which each player uses
some majority rule? This question was already raised in [31] for the special case of the star.

• Our analysis for the star is quite tight. However, one can ask for more. In particular, what is the best
bound that can be obtained on

rk =
M(Stark, ρ, Sk)

limn→∞
n odd

P(Stark, ρ, n, Sk,MAJn)

for fixed value of ρ. Our results show that rk = ko(1). Is it true that limk→∞ rk = 1?

• Finally, we would like to find more applications of the reverse Bonami-Beckner inequality in computer
science and combinatorics.
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A Proof of the reverse Bonami-Beckner inequality

Borell’s proof of the reverse Bonami-Beckner inequality [13] follows the same lines as the traditional proofs
of the usual Bonami-Beckner inequality [12, 8]. Namely, he proves the result in the case n = 1 (i.e., the
“two-point inequality”) and then shows that this can be tensored to produce the full theorem. The usual
proof of the tensoring is easily modified by replacing Minkowski’s inequality with the reverse Minkowski
inequality [25, Theorem 24]. Hence, it is enough to consider functions f : {−1, 1} → R

≥0 (i.e., n = 1).
By monotonicity of norms, it suffices to prove the inequality in the case that ρ = (1− p)1/2/(1− q)1/2; i.e.,
ρ2 = (1 − p)/(1 − q). Finally, it turns out that it suffices to consider the case where 0 < q < p < 1 (see
Lemma A.3).

Lemma A.1 Let f : {−1, 1} → R
≥0 be a nonnegative function, 0 < q < p < 1, and ρ2 = (1− p)/(1− q).

Then ‖Tρf‖q ≥ ‖f‖p.

Proof (Borell): If f is identically zero the lemma is trivial. Otherwise, using homogeneity we may assume
that f(x) = 1 + ax for some a ∈ [−1, 1]. We shall consider only the case a ∈ (−1, 1); the result at the
endpoints follows by continuity. Note that Tρf(x) = 1 + ρax.

Using the Taylor series expansion for (1 + a)q around 1, we get

‖Tρf‖q
q =

1

2
((1 + aρ)q + (1 − aρ)q) =

1

2

(

(1 +

∞
∑

n=1

(

q

n

)

anρn) + (1 +

∞
∑

n=1

(

q

n

)

(−a)nρn)

)

= 1 +

∞
∑

n=1

(

q

2n

)

a2nρ2n. (18)
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(Absolute convergence for |a| < 1 lets us rearrange the series.) Since p > q, it holds for all x > −1 that
(1 + x)p/q ≥ 1 + px/q. In particular, from (18) we obtain that

‖Tρf‖p
q =

(

1 +

∞
∑

n=1

(

q

2n

)

a2nρ2n

)p/q

≥ 1 +

∞
∑

n=1

p

q

(

q

2n

)

a2nρ2n. (19)

Similarly to (18) we can write

‖f‖p
p = 1 +

∞
∑

n=1

(

p

2n

)

a2n. (20)

From (19) and (20) we see that in order to prove the theorem it suffices to show that for all n ≥ 1

p

q

(

q

2n

)

ρ2n ≥
(

p

2n

)

. (21)

Simplifying (21) we see the inequality

(q − 1) · · · (q − 2n + 1)ρ2n ≥ (p − 1) · · · (p − 2n + 1),

which is equivalent in turn to

(1 − q) · · · (2n − 1 − q)ρ2n ≤ (1 − p) · · · (2n − 1 − p). (22)

Note that we have (1 − p) = (1 − q)ρ2. Inequality (21) would follow if we could show that for all m ≥ 2 it
holds that ρ(m − q) ≤ (m − p). Taking the square and recalling that ρ2 = (1 − p)/(1 − q) we obtain the
inequality

(1 − p)(m − q)2 ≤ (m − p)2(1 − q),

which is equivalent to
m2 − 2m + p + q − pq ≥ 0.

The last inequality holds for all m ≥ 2 thus completing the proof.

We also prove the two-function version promised in Section 3.1. Recall first the reverse Hölder inequal-
ity [25, Theorem 13] for discrete measure spaces:

Lemma A.2 Let f and g be nonnegative functions and suppose 1/p + 1/p′ = 1, where p < 1 (p′ = 0 if
p = 0). Then

E[fg] = ‖fg‖1 ≥ ‖f‖p‖g‖p′ ,

where equality holds if g = f p/p′ .

Proof of Corollary 3.3: By definition, the left-hand side of (2) is E[fTρg]. We claim it suffices to prove
(2) for ρ = (1 − p)1/2(1 − q)1/2. Indeed, otherwise, let r satisfy ρ = (1 − p)1/2(1 − r)1/2 and note that
r ≥ q. Then, assuming (2) holds for p, r and ρ we obtain:

E[fTρg] ≥ ‖f‖p‖g‖r ≥ ‖f‖p‖g‖q ,

as needed.
We now assume ρ = (1 − p)1/2(1 − q)1/2. Let p′ satisfy 1/p + 1/p′ = 1. Applying the reverse

Hölder inequality we get that E[fTρg] ≥ ‖f‖p‖Tρg‖p′ . Note that, since 1/(1 − p′) = 1 − p, the fact that
ρ = (1−p)1/2(1− q)1/2 implies ρ = (1− q)1/2(1−p′)−1/2. Therefore, using the reverse Bonami-Beckner
inequality with p′ ≤ q ≤ 1, we conclude that

E[f(x)g(y)] ≥ ‖f‖p‖Tρg‖p′ ≥ ‖f‖p‖g‖q.
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Lemma A.3 It suffices to prove (1) for 0 < q < p < 1.

Proof: Note first that the case p = 1 follows from the case p < 1 by continuity. Recall that 1−p = ρ2(1−q).
Thus, p > q. Suppose (1) holds for 0 < q < p < 1. Then by continuity we obtain (1) for 0 ≤ q < p < 1.
From 1− p = ρ2(1− q), it follows that 1− q′ = 1/(1− q) = ρ2/(1− p) = ρ2(1− p′). Therefore if p ≤ 0,
then p′ = 1− 1/(1− p) ≥ 0 and q′ = 1− ρ2/(1− p) > p′ ≥ 0. We now conclude that if f is non-negative,
then

‖Tρf‖q = inf{‖gTρf‖1 : ‖g‖q′ = 1, g ≥ 0} (by reverse Hölder)

= inf{‖fTρg‖1 : ‖g‖q′ = 1, g ≥ 0} (by reversibility)

≥ inf{‖f‖p‖Tρg‖p′ : ‖g‖q′ = 1, g ≥ 0} (by reverse Hölder)

≥ ‖f‖p inf{‖g‖q′ : ‖g‖q′ = 1, g ≥ 0} = ‖f‖p (by (1) for 0 ≤ p′ < q′ < 1).

We have thus obtained that (1) holds for p ≤ 0. The remaining case is p > 0 > q. Let r = 0 and choose
ρ1, ρ2 such that (1 − p) = ρ2

2(1 − r) and (1 − r) = ρ2
1(1 − q). Note that 0 < ρ1, ρ2 < 1 and that ρ = ρ1ρ2.

The latter equality implies that Tρ = Tρ1Tρ2 (this is known as the “semi-group property”). Now

‖Tρf‖q = ‖Tρ1Tρ2f‖q ≥ ‖Tρ2f‖r ≥ ‖f‖p,

where the first inequality follows since q < r ≤ 0 and the second since p > r ≥ 0.
We have thus completed the proof.
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