
On the noise sensitivity of monotone functions

Elchanan Mossel

Hebrew University of Jerusalem

and Microsoft Research

mossel@microsoft.com

Ryan O’Donnell

MIT Mathematics Department

odonnell@theory.lcs.mit.edu

May 28, 2003

Abstract

It is known that for all monotone functions f : {0, 1}n → {0, 1}, if x ∈ {0, 1}n is chosen
uniformly at random and y is obtained from x by flipping each of the bits of x independently
with probability ε = n−α, then P[f(x) 6= f(y)] < cn−α+1/2, for some c > 0.

Previously, the best construction of monotone functions satisfying P[fn(x) 6= fn(y)] ≥ δ,
where 0 < δ < 1/2, required ε ≥ c(δ)n−α, where α = 1 − ln 2/ ln 3 = 0.36907. . . , and c(δ) > 0.
We improve this result by achieving for every 0 < δ < 1/2, P[fn(x) 6= fn(y)] ≥ δ, with:

• ε = c(δ)n−α for any α < 1/2, using the recursive majority function with arity k = k(α);

• ε = c(δ)n−1/2 logtn for t = log2

√

π/2 = .3257. . . , using an explicit recursive majority
function with increasing arities; and,

• ε = c(δ)n−1/2, non-constructively, following a probabilistic CNF construction due to Ta-
lagrand.

We also study the problem of achieving the best dependence on δ in the case that the noise
rate ε is at least a small constant; the results we obtain are tight to within logarithmic factors.

1 Introduction

1.1 Noise sensitivity and Fourier coefficients

The papers [KKL88, BL90] suggested the importance of the Fourier expansion and the influence
of variables for the study of boolean functions. The ideas developed in these papers proved to be
extremely fruitful in later work; see, e.g., [LMN93, FK96, F98, BKS99].

Let Ωn = {−1, +1}n be the Hamming cube endowed with the uniform probability measure P.
We consider boolean functions f : Ωn → {−1, +1}. For −1 ≤ η ≤ 1 and x ∈ Ωn, define Nη(x) to
be a random element y of Ωn which satisfies E[yixi] = η (equivalently, P[xi 6= yi] = (1 − η)/2),
independently for all i. We will mostly be interested in the case 0 ≤ η ≤ 1, i.e., in the case that
y and x are correlated. It is natural to measure how stable f is under η-noise by the correlation
between f(x) and f(Nη(x)),

Z(f, η) := E[f(Nη(x))f(x)] = 1 − 2P[f(Nη(x)) 6= f(x)]. (1)

1

For 0 < η < 1 we expect that if f is stable under the noise operator Nη, then typically f(x) and
f(Nη(x)) should have the same value for and therefore Z(f, η), the expression in (1), should be
close to 1; if f is sensitive to noise, then Z(f, η) should be close to 0.

The space Ωn with the uniform probability measure naturally gives rise to an inner product
space on all functions f : Ωn → R:

〈f, g〉 = E[fg] = 2−n
∑

x∈Ωn

f(x)g(x).

For a set S ⊆ [n], define uS(x) =
∏

i∈S xi. Since uSuS′ = uS∆S′ , where ∆ denotes symmetric

difference, it follows that (uS)S⊆[n] is an orthonormal basis. We call f̂(S) = 〈uS , f〉 the S Fourier

coefficient of f , and f =
∑

S⊆[n] f̂(S)uS the Fourier expansion of f .

The basis (uS)S⊆[n] has very nice properties with respect to the noise operator; most notably,

for all x and S, E[uS(Nη(x))] = η|S|uS(x), which implies

Z(f, η) = E[f(Nη(x))f(x)] =
∑

S⊆[n]

η|S|f̂2(S) (2)

(see e.g. [BKS99, BJT99, O02]).

The stability of the function f under noise, Z(f, η), is therefore closely related to how much of
the `2 mass of the Fourier coefficients of f lies on coefficients f̂(S) for large sets S.

In addition to the sum in (2), it is common to study several other weighted sums of f ’s squared
Fourier coefficients. By Parseval’s identity,

∑

S f̂2(S) = 1. The average sensitivity of f is defined
by I(f) =

∑n
k=1 Ik(f), where Ik(f) is the probability that flipping the kth bit of a random input

to f flips f ’s value; it is shown in [KKL88] that I(f) =
∑

S |S|f̂2(S). Note also that if f is

monotone (we define monotonicity shortly), then Ik(f) = |f̂({k})|. Finally, we have the quantity
II(f) :=

∑n
k=1 I2

k(f), introduced in [BKS99].

1.2 Sensitivity of monotone functions

By any measure, the parity function f = u[n] = ⊕ is the n-bit boolean function which is most
sensitive to noise: Z(f, η) = ηn is minimal, and I(f) = n is maximal. In this paper we investigate
the problem of extremal noise sensitivity when restricted to n-bit monotone boolean functions.
Recall that a function f is monotone if for all x, y ∈ Ωn we have f(x) ≤ f(y) whenever x ≤ y (in
the sense xi ≤ yi for all i).

There are several reasons why it is interesting and natural to study the noise sensitivity of
monotone functions. The first is that in some sense they are the “least noise sensitive” boolean
functions. Benjamini, Kalai, and Schramm [BKS99] showed that applying combinatorial down-
shifting (in the sense of Kleitman [K66]) to f only increases Z(f, η), and repeated down-shifting
eventually produces a monotone function.

A second reason for studying monotone functions is that they play an important role in the study
of the influences of variables on boolean functions; see, e.g., [KKL88, T94, T96, FK96, T97, BKS99].

2

Finally, there are some well-known bounds on how noise-sensitive monotone functions can be.
We now recall these bounds; for the remainder of the paper we will seek constructions which match
or nearly match these bounds.

It is known that the majority function has maximal I among all monotone functions on n
inputs (this is a simple isoperimetric inequality; for one proof, see Lemma 6.1 of [FK96]). Since
this average sensitivity, In, is easily computed to be

In = (
√

2/π + o(1))
√

n, (3)

we get that for all monotone f on n inputs,

I(f) ≤ (
√

2/π + o(1))
√

n. (4)

It remains to determine how small Zη(f) can be for monotone functions. A natural goal is to find
a monotone function f on n bits such that Z(f, 1− δ) ≤ 1−Ω(1) for the smallest possible quantity
δ. This problem was implicitly posed in [BKS99].

The following fact is considered folklore:

Proposition 1 Let f : Ωn → {−1, +1} be monotone. Then

• Z(f, 1 − δ) ≥ (1 − δ)In = (1 − δ)

(√
2/π+o(1)

)√
n
.

• Therefore if Z(f, 1 − δ) ≤ 1 − ε, then:

δ ≥
√

π/2√
n

ε + o(1/
√

n).

Proof: The second statement follows directly from the first one, which we now prove. For a
monotone function f it holds that

∑

S f̂2(S) = 1, and
∑

S |S|f̂2(S) ≤ In, where In is defined in

(3). We want to bound Z(f, η) =
∑

S f̂2(S)η|S|. Clearly a bound is the solution to the following
linear programming problem:

Minimize
∑n

k=0 ηkxk subject to:
∑n

k=0 xk = 1,
∑n

k=0 kxk ≤ In, 0 ≤ xk ≤ 1 for all k.
(5)

Since the optimum of a linear program occurs at a vertex, an optimal solution is of the form
xm = 1 and xi = 0 for all i 6= m, for some m. The constraint

∑n
k=0 kxk ≤ In implies that m ≤ In.

Therefore the value of
∑n

k=0 ηkxk is at least ηIn , as claimed. 2

Prior to this work, the best sensitivity with respect to Nη was achieved via the recursive majority
of 3 function (folklore, see [BL90, BKS99]; we formally define the recursive majority function in
Subsection 2.2). This function satisfies Z(f, 1−δ) ≤ 1−Ω(1), for δ = n−α, where α = 1−ln 2/ ln 3 =
0.36907. . .

3

1.3 Our results

Recursive majority functions seem to be sensitive to noise. Previous techniques for analyzing
recursive majorities had suggested that recursive majorities of 5, 7, etc. might be less sensitive than
recursive majority of 3. However, this is not the case.

Theorem 1 For every constant α < 1/2, and 0 < ε < 1, there exists an odd k ≥ 3 such that for `
sufficiently large, and n = k`, fn = REC-MAJ-k` : Ωn → {−1, +1} is a balanced function with

Z(fn, 1 − n−α) ≤ ε.

Note that this construction is explicit. Moreover, using k-majority gates, we obtain a read-once,
log-depth circuit which implements the function. The proof technique we use is closely related to
techniques in classical branching processes [AN72] (see also [M98]).

By relaxing the bounded degree property, and instead using majority gates of varying fan-in,
we obtain an explicit read-once construction of log log-depth which is sensitive to a noise rate of
about n−1/2, up to a sub-logarithmic correction.

Theorem 2 There exists an explicit infinite family of balanced monotone functions fn : Ωn →
{−1, +1} such that for every sufficiently small ε > 0:

Z(fn, 1 − ε/M) ≤ 1 − ε + O(ε2),

where M =
√

n/Θ(logt n), and t = log2

√

π/2 = .3257. . . .

Finally, analyzing a probabilistic construction due to Talagrand [T96], we obtain a tight result
up to constant factors.

Theorem 3 There exists an infinite family of balanced monotone functions fn : Ωn → {−1, +1}
with the following property:

Z(fn, 1 − n−1/2) ≤ 1 − Ω(1). (6)

In the above theorems we aim for the smallest ε such that there is a monotone function f
satisfying Z(f, 1 − ε) ≤ 1 − Ω(1). At the other end of the spectrum, one can ask for a function
which is as sensitive as possible to large noise. In Section 5 we prove:

Theorem 4 Let δ ≤ 1 − Ω(1). Then there is an infinite family of monotone functions {gn}
satisfying:

Z(gn, δ) ≤ log1+u′
n

n
,

where u′ is any number exceeding u = log 4/3 3 = 3.818. . . .

Combining Theorem 4 with Theorem 3 and Theorem 2 (via Proposition 7 below), it is easy to
deduce the following:

4

Corollary 5 For every δ > 0, there exists a constant c(δ) > 0, such that

• There exists an explicit infinite family of balanced monotone fn : Ωn → {−1, +1} such that

Z(fn, 1 − ε) < δ,

where ε = c(δ) logt n/
√

n, and t = log2

√

π/2 = .3257. . . .

• There exists an infinite family of monotone functions fn : Ωn → {−1, +1} with the following
property

Z(fn, 1 − c(δ)n−1/2) < δ.

In Section 1.4 we briefly discuss how our results are related to problems in learning, hardness
amplification, neural networks, and voting schemes. In Section 2 we analyze the sensitivity of the
recursive majority function and prove Theorem 1. In Section 3 we prove Theorem 2. In Section 4
we analyze Talagrand’s construction and prove Theorem 3. In Sections 5 and 6, we discuss high
sensitivity, and prove Theorem 4.

1.4 Related problems

Our constructions have interesting implications for computational learning theory, in particular
the “PAC learning” model of Valiant [V84] and its restricted setting, “uniform PAC learning” (see,
e.g., [LMN93, M94]). In particular, in Corollary 17 we give an explicit construction which shows
the tightness of a learning algorithm by Bshouty and Tamon [BT96] for the class of monotone
functions.

In [O02] the second author constructs noise-sensitive monotone functions in order to amplify the
“hardness-on-average” of languages in NP. In fact, the proof of Proposition 16 is closely related to
the construction in [O02].

Finally, Theorem 1 implies that “read-once” neural networks (see, e.g., [H99]) may have high
sensitivity to noise compared to a single neuron (see [Pe98]). Similarly, it may also be interpreted
as saying that in an i.i.d. voter model the simple majority scheme is more stable than a recursive
majority scheme.

2 Sensitivity of majorities

2.1 Majority

We denote the majority function on k bits by MAJk, where k is assumed to be odd. The following
lemma concerning the sensitivity of the majority function is used in the proof of Theorem 2.

Lemma 6 Suppose k ≥ 3 and δ ≤ 1/k. Say we pick a random input to MAJk — call it x — and
then construct y by flipping each bit of x independently with probability δ. Then

P[MAJk(x) 6= MAJk(y)] ≥
√

2

π

√
k δ exp(−1/3k) exp(−δk).

5

Proof: Clearly,

P[MAJk(x) 6= MAJk(y)] ≥ P[MAJk(x) 6= MAJk(y) | exactly one flip] × P[exactly one flip], (7)

and P[exactly one flip] = kδ(1−δ)k−1. By elementary calculus, (1−δ)k−1 ≥ exp(−δk) for δ ≤ 1/k.
Therefore,

P[exactly one flip] = kδ(1 − δ)k−1 ≥ kδ exp(−δk). (8)

The probability that the majority flips given that there is exactly one flipped bit in x, is exactly
the probability that the remaining input bits split evenly — i.e.,

P[MAJk(x) 6= MAJk(y) | exactly one flip]

=

(
k − 1

(k − 1)/2

)

2−(k−1) ≥
√

2

πk
(1 − 1/4k) ≥

√

2

πk
exp(−1/3k), (9)

where the first inequality follows by Stirling’s formula and the second since 1− 1/4k ≤ exp(−1/3k)
for k ≥ 3. Combining (7), (8) and (9) we obtain the required result. 2

2.2 Recursive majorities

We begin by defining a way to compose two boolean functions, and with the definition of the
recursive majority function.

Definition 1 For f : Ωn → {−1, +1}, g : Ωm → {−1, +1}, we let f ⊗ g denote the function
f ⊗ g : Ωnm → {−1, +1} defined by

f ⊗ g (x1, . . . , xnm) = f
(
g(x1, . . . , xm), . . . , g(x(n−1)m+1, . . . , xnm)

)
.

For ` a positive integer, we define f⊗`

= f if ` = 1, and f⊗`

= f ⊗ (f⊗`−1

) otherwise. For any odd

k, we write REC-MAJ-k` for MAJ
⊗`

k .

The following proposition is immediate, yet useful:

Proposition 7 If g is a balanced function and f is any function, then Z(f ⊗ g, η) = Z(f, Z(g, η)).

We now present a simple asymptotic formula for calculating the noise sensitivity of f⊗`

as ` → ∞
for any balanced f . Following this, we will apply the formula to the majority function to recover
Theorem 1

Proposition 8 Let f : Ωk → {−1, +1} be a balanced function, and let

a = I(f) =
∑

S

|S|f̂2(S), b =
∑

|S|=1

f̂2(S).

(Note that if f is monotone then b = II(f).) If a > 1 and b < 1, then Z(f⊗`

, 1 − δ) ≤ ε, for
` ≥ loga(1/δ)(1+oδ(1))+ log1/b(1/ε)(1+oε(1)), where oδ(1) → 0 as δ → 0 and oε(1) → 0 as ε → 0.

6

The proof of this is a straightforward analysis of the iteration of convex functions. We will use
a simple lemma:

Lemma 9 Let p : [0, 1] → [0, 1] be a positive increasing function.

• Suppose that p(η) ≤ bη + cη2 for all η < ε′ where 0 ≤ b < 1 and 0 ≤ c. Let ε′ be such that
b+cε′ < 1. Then for all η < ε′, all ε > 0 and k ≥ ln(ε/η)/ ln(b+cε′), it holds that p(k)(η) ≤ ε.

• Similarly, suppose that p(1 − δ) ≤ 1 − aδ + cδ2, where a > 1 and c ≥ 0. Let ε′ be such
that a − cε′ > 1. Then for all δ < ε′, all ε > 0 and k ≥ ln(ε/δ)/ ln(a − cε′), it holds that
p(k)(1 − δ) ≤ 1 − ε.

Proof: We prove the first claim; the second is proved in essentially the same way. If η < ε′, then
p(η) ≤ bη + cη2 < (b + cε′)η. Therefore p(k)(η) ≤ (b + cε′)kη. So in order to get p(k)(η) ≤ ε, it
suffices to take k ≥ ln(ε/η)/ ln(b + cε′). 2

Proof of Proposition 8: Let f =
∑

S f̂2(S)uS be the Fourier expansion of f . Letting p(η) :=

Z(f, η) =
∑

S f̂2(S)η|S|, we see that p(η) is a convex polynomial function of η which satisfies:

p(0) = 0, p(1) = 1, p′(0) =
∑

|S|=1 f̂2(S) =
∑k

j=1 I2
j (k) = b, p′(1) =

∑

S |S|f̂2(S) = a. (10)

Proposition 7 implies that

Z(f⊗`

, η) = p(`)(η) := p(p(· · · p(η) · · ·))
︸ ︷︷ ︸

` times

. (11)

The rest of the proof consists of studying the iterations (11) using properties (10) and Lemma 9.

For a function q which depends on ε and δ, write q = O(1), if q is uniformly bounded, q = oδ(1),
if q(δ) → 0 as δ → 0 and similarly q = oε(1).

We are going to analyze the recursion in five steps.

• Note that p(1 − δ) ≤ 1 − aδ + cδ2 for some constant c which depends on p only. Recall that
a > 1 and let r = (a − 1)/2c. Let δ′ = 1/ ln(1/δ). We may assume without loss of generality
that δ′ < r. By Lemma 9 it follows that p(k)(1 − δ) ≤ 1 − δ′ for k larger than

ln(δ′/δ)
ln(a − cδ′)

<
ln(1/δ)

(1 + O(δ′)) ln(a)
= (1 + oδ(1)) loga(1/δ).

• Similarly p(k)(1 − δ′) ≤ 1 − r for k larger than

ln(r/δ′)
ln(a − cr)

<
ln(1/δ′)

ln((a + 1)/2)
= O(ln ln(1/δ)) = oδ(loga(1/δ)).

• By our assumption p(η) ≤ bη + c′η2 for some c′. Recall that b < 1 and let r′ = (1 − b)/2c′.
Since the function p is strictly convex with p(0) = 0 and p(1) = 1, there exists a constant k
(which depends only on p) such that p(k)(1 − r) ≤ r′.

7

• Letting η′ = 1/ ln(1/η) and assuming that η′ < r′, we obtain as before that pk(r′) ≤ η′ for k
larger than

ln(η′/r)
ln(b + c′r′)

<
ln(η′)

ln((b + 1)/2)
= O(ln ln(1/η)) = oη(log1/b(1/η)).

• Finally we obtain p(k)(η′) ≤ η for k greater than

ln(η/η′)
ln(b + cη′)

<
ln(η)

(1 + O(η′)) ln(b)
= (1 + oη(1)) log1/b(1/η).

Combining the above five steps, we obtain the required result. 2

Proof of Theorem 1: We now apply Proposition 8 to REC-MAJ-k`. It is easy to calculate (and
well known) that for the majority function on k = 2r + 1 inputs, we have:

II(MAJk) =
2r + 1

24r

(
2r

r

)2

, I(MAJk) =
2r + 1

22r

(
2r

r

)

.

Note therefore that I(MAJk) = Θ(
√

k). By substituting these values into Proposition 8, we get
Theorem 1. 2

3 Sensitivity to small noise

In this section we prove Theorem 2. The construction in Theorem 2 again consists of recursive
majorities, where now the number of inputs to the majority varies with the level. The estimates
on the sensitivity of these majority functions are derived via Lemma 6.

Proof of Theorem 2: Since we are dealing with correlations close to 1, it will be more helpful
to look at their difference from 1. In particular, we will prove the following equivalent formulation
of the theorem: Let x be a randomly chosen input to fn, and suppose we flip each bit of x
independently with probability ε/M , forming y. Then the probability that fn(x) 6= fn(y) is at least
ε − O(ε2).

The function fn will be given by recursive majorities of increasing arity: fn = MAJk1
⊗MAJk2

⊗
· · · ⊗ MAJk`

. We will select ki = 32i−1+1, so “from the top down” the majorities have arity 9, 27,

243, etc. Note that ki+1 = k2
i /3. With these choices, the number of inputs is n = 32`+`−1. Hence

` ≤ log2 log3 n.

Let δ0 = ε/M , and recursively define δi+1 to be the probability that the output of a MAJk`−i

flips, given that each of its inputs is flipped independently with probability δi. Since all MAJ

functions are balanced, Proposition 7 tells us that the probability the output of fn is flipped is δ`.
We will show that δ` ≥ ε − O(ε2).

By Lemma 6,
δi+1 ≥ g(k`−i) exp(−δik`−i)δi,

where:

g(t) :=
1

√

π/2

√
t exp(−1/3t).

8

Recursively define η0 = η′0 = δ0, and:

ηi+1 = g(k`−i) exp(−ηik`−i)ηi, η′i+1 = g(k`−i)η
′
i.

Since the probability that the output of MAJ flips is an increasing function of δ, we can conclude that
δi ≥ ηi for every i. But clearly η′

i ≥ ηi for every i. Hence, for every i, ηi+1 ≥ g(k`−i) exp(−η′ik`−i)ηi.
It follows immediately that:

η` ≥
(`−1∏

i=0

g(k`−i) exp(−η′ik`−i)
)

η0

=
(1
√

π/2

)` ∏̀

j=1

√

kj exp(−1

3

∑̀

j=1

k−1
j) · exp

[`−1∑

i=0

−η′ik`−i

]

· δ0

Defining

M :=
∏̀

m=1

g(km) =
(1
√

π/2

)log
2
log

3
n ∏̀

j=1

√

kj exp(−1

3

∑̀

j=1

k−1
j) =

(1
√

π/2

)log
2
log

3
n√

n exp(−O(1)),

and recalling δ0 = ε/M , we obtain:

η` ≥ M · exp
[`−1∑

i=0

−η′ik`−i

]

· (ε/M) = ε · exp
[`−1∑

i=0

−η′ik`−i

]

.

Since δ` ≥ η`, it remains to show:

exp
[`−1∑

i=0

−η′ik`−i

]

≥ 1 − O(ε).

By the recursive definition of η′
i, we immediately have η′i = (

∏i−1
j=0 g(k`−j))η

′
0. Hence η′i =

M(
∏`−i

m=1 g(km)−1)η′0 = ε(
∏`−i

m=1 g(km)−1). Therefore:

exp
[`−1∑

i=0

−η′ik`−i

]

= exp
[

−ε
∑̀

m=1

km

g(k1)g(k2) · · · g(km)

]

.

Hence if we can show
∑`

m=1 km/g(k1)g(k2) · · · g(km) = O(1) then we’re done. The first term in
this sum is k1/g(k1) = O(1). The ratio of the mth term to the (m − 1)th term is km/km−1g(km).
But km−1 =

√
3
√

km by definition, so this ratio is
√

km/
√

3g(km) =
√

π/2/
√

3 exp(−1/3km) < 1.
Hence the terms in the sum decrease geometrically, so the sum is indeed O(1). 2

4 Talagrand’s function

In [T96], Talagrand gives a randomized construction of a monotone fn : Ωn → {−1, +1} with
the following property: at least an Ω(1) fraction of points x in Ωn satisfy both fn(x) = −1, and

9

#{x′ : ∆(x, x′) = 1 and f(x) = +1} ≥ Ω(n1/2), where ∆ denotes Hamming distance. It is natural
to conjecture that this function is sensitive to noise as small as n−1/2, and indeed we prove this
below.

The function of [T96] may not be balanced. However, the following Lemma implies that by
slightly modifying the function, one can easily obtain a balanced function.

Lemma 10 Let f : {−1, +1}n → {−1, +1} be a monotone function and η > 0, such that P[f 6=
f(Nη(x))] ≥ δ. Then there exists a balanced monotone function g : {−1, +1}n+1 → {−1, +1} such
that P[gn(x) 6= g(Nη(x))] ≥ δ/4.

Proof: In order to define g from f , assume without loss of generality that P[f(x) = 1] ≥ P[f(x) =
−1]. We claim that there exists a balanced monotone function g : {−1, +1}n → {−1, +1}, such
that for all z, g(1z) = f(z). Note that the existence of g implies the required result, as

P[g(yz) 6= g(Nη(yz))] ≥ P[y = 1, Nη(y) = 1] × P[f(z) 6= f(Nη(z))] ≥ δ/4.

To prove the existence of g, let h̃(yz) = f(z) for all y and z; and h(1z) = f(z), h(−1z) = −1 for all
z. Then both h and h̃ are monotone functions such that the value at y = 1z, is the same as the value
of f at z. Moreover, for all y and z, h(yz) ≤ h̃(yz), and P[h̃(yz) = −1] = P[f(z) = −1] ≤ 1/2,
and P[h(yz) = −1] ≥ 1/2. It follows that there exists a monotone balanced function g “between”
h̃ and h, as needed. 2

Talagrand’s function f = fn is a random CNF formula on its n inputs. Specifically, f is the
2
√

n-wise AND of
√

n-wise ORs, where each OR’s inputs are selected independently and uniformly
at random (with replacement) from [n]. To prove Theorem 3, it suffices to prove that if we pick f ,
x, and x′ := N1−2ε(x) at random (where ε = n−1/2), then:

Ef

[
P[f(x) 6= f(N1−2ε(x))]

]
≥ Ω(1).

Proof of Theorem 3:

For notational simplicity, let’s revert to using 0 and 1 for false and true, instead of +1 and
−1. Consider two fixed inputs to f , x and x′. Let n00 denote the number of indices i such that
xi = 0, x′

i = 0, let n01 denote the number of indices i such that xi = 0, x′
i = 1, and analogously

define n10 and n11. Also define n0? to be n00+n01, the number of 0’s in x, and similarly n?0, n1?, n?1.

Consider any particular OR, call it ∨. Let p00 denote the probability — over the choice of f —
that ∨(x) = 0 and ∨(x′) = 0. Again, define p01, p10, p11, p0?, etc. analogously.

We immediately get:

p00 =
(n00

n

)√n

p10 =
(n?0

n

)√n
−
(n00

n

)√n
(12)

p01 =
(n0?

n

)√n
−
(n00

n

)√n
,

10

and by subtracting these quantities from 1,

p11 = 1 −
(n?0

n

)√n
−
(n0?

n

)√n
+
(n00

n

)√n
.

All of the ORs are independent, so we may make a similar calculation for the main AND in f .
Let q00 denote the probability — over the choice of f still — that f(x) = 0, f(x′) = 0, and again
define q01, etc.

Calculating as before:

q11 = p2
√

n

11

q10 = p2
√

n

1? − p2
√

n

11

q01 = p2
√

n

?1 − p2
√

n

11 .

Now the probability that f(x) 6= f(x′) is simply q01 + q10. Hence:

Ef

[
P[f(x) 6= f(N1−2ε(x))]

]
= Ex, x′:=N1−2ε(x)

[
Pf [f(x) 6= f(x′)]

]

= Ex,x′ [q01 + q10]

= Ex,x′ [q01] + Ex,x′ [q10]. (13)

Since x and x′ have the same distribution, Ex,x′ [q01] = Ex,x′ [q10] by symmetry. Hence (13) =
2Ex,x′ [q10]. Thus it suffices to show:

Ex,x′ [q10] = Ex,x′ [p2
√

n

1? − p2
√

n

11] ≥ Ω(1).

We now focus on the quantity (∗) := p2
√

n

1? − p2
√

n

11 . Let g(t) = t2
√

n

. By the mean value theorem,
g(b) − g(a) = (b − a)g′(c) for some c ∈ [a, b]. Thus:

(∗) = (p1? − p11)2
√

nc2
√

n−1 = 2
√

np10c
2
√

n−1,

for some c ∈ [p11, p1?]. Since c2
√

n−1 is no smaller than p2
√

n

11 , we conclude:

(∗) ≥ 2
√

np10p
2
√

n

11 . (14)

We proceed by conditioning on (n00, n01, n10, n11). Since n0? ∼ Binomial(n, 1/2), the probability
that n0? is outside the range [n

2 −√
n, n

2 +
√

n] is at most .05, for sufficiently large n (by a standard
tail bound;

√
n is two standard deviations). Assuming that n0? is some fixed quantity in this

range, n00 ∼ Binomial(n0?, 1 − ε). By a similar tail bound, the probability that n00 is larger than
(1− ε + 2

√

ε/n0?)n0?] is again at most .05. So assuming n is sufficiently large, we have that except
with probability .1:

n0? ∈
[n

2
−
√

n,
n

2
+
√

n
]

(15)

n00/n0? < 1 − ε + 3
√

ε/n, (16)

where (16) uses the bound n0? > n/2.1.

11

Finally, just as n0? ∈ [n
2 −√

n, n
2 +

√
n] except with probability .05, so too may we conclude:

n?0 ∈
[n

2
−

√
n,

n

2
+
√

n
]

, (17)

except with probability .05.

In conclusion, (15), (16), (17) hold, except with probability at most .15. Since (∗) ≥ 0 always,

Ex,x′ [(∗)] ≥ Ex,x′ [(∗) | (15), (16), (17)] × P[(15), (16), (17)]

≥ .85Ex,x′ [(∗) | (15), (16), (17)].

Since we are only trying to prove Ex,x′ [(∗)] ≥ Ω(1), we will henceforth assume (15), (16), (17)
hold, and it suffices to prove Ex,x′ [(∗)] ≥ Ω(1) conditioned on this assumption. I.e., all future
expectations are conditioned on (15), (16), (17).

Continuing from (14),

(∗) ≥ 2
√

np10

(

1 −
(

n?0

n

)√n
−
(

n0?

n

)√n
+
(

n00

n

)√n
)2

√
n

≥ 2
√

np10

(

1 −
(

n?0

n

)√n
−
(

n0?

n

)√n
)2

√
n

≥ 2
√

np10

(

1 − (1/2 + 1/
√

n)
√

n − (1/2 + 1/
√

n)
√

n
)2

√
n

(by (15) and (17)))

≥ 2
√

np10(1 − 2e/2
√

n)2
√

n

(asymptotically)

≥ e−2e2
√

np10

≥ .004 · 2
√

np10 (for all n)

Hence showing Ex,x′ [(∗)] ≥ Ω(1) amounts to showing Ex,x′ [2
√

np10] ≥ Ω(1). By (12):

2
√

np10 =
(

2
n?0

n

)√n(

1 −
(n00

n?0

)√n)

≥ (1 − 2/
√

n)
√

n
(

1 −
(n00

n?0

)√n)

(by (17))

≥ e−2
(

1 −
(n00

n?0

)√n)

≥ e−2
(

1 − (1 − ε + 2
√

ε/n)
√

n
)

(by (16))

When ε = 1/
√

n, the quantity (1 − ε + 2
√

ε/n)
√

n is asymptotically e−1 for large n. Hence:

Ex,x′ [2
√

np10] ≥ e−2(1 − e−1) ≥ Ω(1),

as needed. 2

12

5 Tribes and high sensitivity

We have mostly settled the question of how small ε can be, such that there is a monotone function
f satisfying Z(f, 1 − ε) ≤ 1 − Ω(1). At the other end of the spectrum, one can ask for a function
which is as sensitive as possible to large noise. An essentially optimal function for this problem (if
the initial correlation is small enough) is the so-called tribes function of Ben-Or and Linial [BL90].

Let ANDk denote the AND function on k bits, and let ORk denote the or function on k bits.
For each b ∈ N, define n = nb to be the smallest integral multiple of b such that (1− 2−b)n/b ≤ 1/2,
so n is very roughly (ln 2)b2b, and b = log2 n − log2 ln n + o(1). Now define the tribes function Tn

to be ORn/b ⊗ ANDb. This function is monotone, and by construction it’s near-balanced; it’s easy

to see that P[Tn = +1] = (1 − 2−b)n/b = 1/2 − O(log n/n).

There is a near-tight estimation of Z(Tn, η) in [O02] based on Fourier coefficients. A simpler
and exact analysis is given here.

Proposition 11

Z(Tn, η) = 1 − 4

(

1 − 2−b
)n/b

−
(

1 −
(

2 −
(

1

2
+

1

2
η

)b
)

2−b

)n/b

Proof: As in the proof of Theorem 3, we will temporarily switch to writing 0 and 1 for false and
true, for notational ease.

Suppose x is a uniformly random input to Tn, and y is chosen so that yi = xi independently
with probability p. Call x’s length-b blocks x1, x2, . . . , xn/b, and similarly for y. We have

P[Tn(x) = 0] = (1 − 2−b)n/b.

We now calculate

P[Tn(y) = 1 and Tn(x) = 0]. (18)

Since x given y is distributed as y given x, by symmetry we have,

P[ANDb(y
1) = 1 and ANDb(x

1) = 0] = P[ANDb(x
1) = 1 and ANDb(y

1) = 0] = 2−b(1 − pb).

Also,
P[ANDb(y

1) = 1 and ANDb(x
1) = 1] = 2−bpb;

hence,

P[ANDb(y
1) = 0 and ANDb(x

1) = 0] = 1 − 2−bpb − 2 · 2−b(1 − pb)

= 1 − (2 − pb)2−b.

In order to have Tn(y) = 1 and Tn(x) = 0, we must have ANDb(x
i) = 0 for each i, but not have

ANDb(y
i) = 0 for every i. The probability of this is thus:

(1 − 2−b)n/b − (1 − (2 − pb)2−b)n/b.

13

Hence by symmetry again, the probability that Tn(x) 6= Tn(y) is

2[(1 − 2−b)n/b − (1 − (2 − pb)2−b)n/b].

Therefore by definition,

Z(Tn, η) = 1 − 4

(

1 − 2−b
)n/b

−
(

1 −
(

2 −
(

1

2
+

1

2
η

)b
)

2−b

)n/b

 .

2

This is of course an unappealing expression. We estimate it thus:

Corollary 12

Z(Tn, η) ≤ (1 + o(1))
log2

2 n

n
η(1 + η)log2

n + O(log2 n/n2)

Proof: From the definition, one can see that Z(f, 0) = 1 − 4P[f = 0]P[f = 1]. Since we know
P[Tn = 0] = 1/2 − O(log n/n), we get Z(Tn, 0) = O(log2 n/n2). By the mean value theorem,
Z(Tn, η) − Z(Tn, 0) = ηZ ′(Tn, c), for some 0 ≤ c ≤ η, where the derivative is with respect η.
Differentiating Proposition 11, we get

Z ′(Tn, c) =

(
1

4
+

1

4
c

)b

n
4

1 + c

(

1 − 21−b +

(
1

4
+

1

4
c

)b
)n/b−1

.

Even if c were as large as 1, the factor 4
1+c(1 − 21−b + (1

4 + 1
4c)b)n/b−1 would be at most 1 + o(1).

Using the upper bound c ≤ η for the (1
4 + 1

4c)b n factor, we conclude:

Z(Tn, η) ≤ η 4−bn(1 + η)b(1 + o(1)) + O(log2 n/n2)

= (1 + o(1))
log2

2 n

n
η(1 + η)log2 n + O(log2 n/n2),

as claimed. 2

Making another simple estimate, we get:

Corollary 13 If η ≤ O(1/ log n), then Z(Tn, η) ≤ O(η log2 n/n).

We now prove Theorem 4, giving a monotone function for which Z(f, δ) is small when δ ≤
1 − Ω(1).

Proof of Theorem 4: The idea is to first use REC-MAJ-3 to reduce δ to η := 1/ log n; then, apply
a tribes function.

Let Tn be any tribes function. We will construct gn′ on n′ := n logu′
n inputs. Let ` be the

REC-MAJ-3 depth necessary from Theorem 1 to reduce δ correlation down to 1/ log n correlation.
Hence ` = (1 + o(1)) log 4/3(log n) (since 1− δ ≥ Ω(1)). Put h = REC-MAJ-3`, so h is a function on

3` = logu′
n inputs. Let gn′ = Tn ⊗ h.

By construction, Z(h, δ) ≤ 1/ log n. By Corollary 13, Z(Tn, 1/ log n) ≤ O(log n/n). Since h is
balanced, by Proposition 7 we get Z(gn′ , δ) ≤ O(log n/n). The result follows, since as a function
of n′, O(log n/n) is log1+u′

n′/n′ (taking u′ slightly larger to kill any constant factors). 2

14

Remark 1 It seems possible to improve Theorem 4 to log2+o(1) n/n by using recursive tribes func-
tions, possibly in the manner of Theorem 1. However the fact that the tribes functions are not
perfectly balanced is a stumbling block.

Theorem 4 and Corollary 13 are close to being tight, as we shall now show. In Theorem 3.1
of [KKL88] it is show that for all f : Ω)n → {−1, +1}, if min{P[f = 1],P[f = −1]} = p, then
II(f) ≥ Ω(p2 log2 n/n), where II(f) is as defined at the end of Section 1.1. Note that when f is
monotone, II(f) =

∑

|S|=1 f̂2(S). Hence we conclude that for monotone f ,

Z(f, η) =
∑

S

η|S|f̂2(S) ≥
∑

|S|=1

ηf̂2(S) = ηII(f) ≥ ηΩ(p2 log2 n/n).

But note also that for any f , Z(f, η) ≥ Z(f, 0) = E[f]2 = (1 − 2p)2. Hence, if p < 1/4, say, then
Z(f, η) ≥ 1/4, and this is much greater than ηΩ(log2 n/n). Hence we conclude:

Proposition 14 If f : Ωn → {−1, +1} is any monotone function, then Z(f, η) ≥ Ω(η log2 n/n).

This proposition shows that Theorem 4 is tight up to a factor log2.818 n factor, and Corollary 13 is
tight up to a constant factor. In particular, when the initial correlation η is O(1/ log n), the tribes
function by itself is maximally sensitive among monotone functions (to within a constant factor).

6 Fourier concentration around
√

n

It seems natural to combine via Proposition 7 the functions from Theorems 1, 2, and 3 which are
somewhat sensitive to very small amounts of noise with the function from Theorem 4 which is very
sensitive to moderate noise.

Using the Talagrand construction, we prove:

Proposition 15 There exists an infinite family of monotone functions fn : Ωn → {−1, +1} such
that for all large n, Z(fn, 1 − 1/Q) ≤ ε, where:

Q =

√
nε

log(1+u′)/2(1/ε)
,

and (1 + u′)/2 = 2.409. . . .

Proof: Let fn = Tn2
⊗ Taln1

where n1 = Q2, n2 = n/Q2 = log1+u′
(1/ε)/ε, Taln1

denotes the
function on n1 inputs from Theorem 3, and Tn2

denotes the tribes function on n2 inputs. Applying
Proposition 7 with Theorems 3 and 4, we get Z(fn, 1 − 1/Q) ≤ log1+u′

(n2)/n2 ≤ ε (changing u′

slightly as necessary). 2

For certain applications (such as hardness amplification within NP as discussed in Section 1.4),
one might prefer an explicit function family. Using the previous proof with the function from
Theorem 2 in place of Talagrand’s function, we get:

15

Proposition 16 There exists an explicit infinite family of monotone functions fn : Ωn → {−1, +1}
computable in P such that for all large n: Z(fn, 1 − 1/Q′) ≤ ε, where:

Q′ =

√
nε

logt(nε) log(1+u′)/2(1/ε)
,

t = .3257. . . , and (1 + u′)/2 = 2.409. . . .

Using the relationship Z(f, η) =
∑

S η|S|f̂2(S), it’s easy to derive the following from Proposi-
tion 15:

Corollary 17 There exists an explicit infinite family of monotone functions fn : Ωn → {−1, +1}
satisfying for all large n:

∑

|S|≤Q

f̂n
2
(S) ≤ ε,

where Q = Ω̃(
√

nε) is the quantity from Proposition 16.

Remark 2 Gil Kalai (private communication) noted to us that Corollary 17 is tight up to poly-
logarithmic factors. Indeed, let f be a monotone function and note that if

∑

|S|≤Q f̂2(S) ≤ ε,
then

∑

|S|=1

|f̂(S)| =
∑

S

|S|f̂2(S) ≥ Q(1 − ε).

On the other hand, by Cauchy-Schwartz,

∑

|S|=1

|f̂(S)| ≤
√

n

√
∑

|S|=1

f̂2(S) ≤
√

nε.

We thus obtain
√

nε ≥ Q(1−ε), or Q ≤
√

nε
1−ε , thus showing Corollary 17 is tight up to polylogarithmic

factors.

Acknowledgments: We would like to thank Gil Kalai for providing encouragement to write
this paper and for Remark 2, Yuval Peres for interesting discussions, and the anonymous referees
for helpful comments.

References

[AN72] K. Athreya, P. Ney. Branching processes. Springer-Verlag, New York-Heidelberg, 1972.

[BDG88] J. Balcázar, J. Dı́az, J. Gabarró. Structural Complexity I, II. Springer-Verlag, Heidelberg,
1988.

16

[BJT99] N. Bshouty, J. Jackson, T. Tamon. Uniform-distribution attribute noise learnability.
Workshop on Computational Learning Theory, 1999.

[BKS99] I. Benjamini, G. Kalai, O. Schramm. Noise sensitivity of boolean functions and applica-
tions to percolation. Inst. Hautes Études Sci. Publ. Math., 1999.

[BL90] M. Ben-Or, N. Linial. Collective coin flipping. In Randomness and Computation, S.
Micali ed. Academic Press, New York, 1990.

[BT96] N. Bshouty, C. Tamon. On the Fourier spectrum of monotone functions. Journal of the
ACM 43(4), 1996.

[DK00] D.-Z. Du, K.-I Ko. Theory of Computational Complexity. Wiley Interscience, New York,
2000.

[F98] E. Friedgut. Boolean functions with low average sensitivity depend on few coordinates.
Combinatorica 18(1), 1998, 27–36.

[FK96] E. Friedgut, G. Kalai. Every monotone graph property has a sharp threshold. Proc.
Amer. Math. Soc. 124, 1996, 2993–3002.

[H99] S. Haykin. Neural Networks, 2nd Edition. Prentice Hall, 1999.

[J97] J. Jackson. An efficient membership-query algorithm for learning DNF with respect to
the uniform distribution. Journal of Computer and System Sciences, 55(3), 1997.

[KKL88] J. Kahn, G. Kalai, N. Linial. The influence of variables on boolean functions. Foundations
of Computer Science, 1988.

[K66] D. Kleitman. Families of non-disjoint subsets. Journal of Combinatorial Theory, 1966.

[KOS02] A. Klivans, R. O’Donnell, R. Servedio. Learning intersections and thresholds of halfspaces.
To appear.

[LMN93] N. Linial, Y. Mansour, N. Nisan. Constant depth circuits, Fourier transform, and learn-
ability. J. Assoc. Comput. Mach. 40, 1993, 607–620.

[M94] Y. Mansour. Learning boolean functions via the Fourier transform. Theoretical Advances
in Neural Computing and Learning, Kluwer Acad. Publ., Dordrecht (1994), 391–424.

[M98] E. Mossel. Recursive reconstruction on periodic trees. Random Structures Algorithms,
13, 1998, no. 1, 81–97.

[O02] R. O’Donnell. Hardness amplification within NP. Symposium on the Theory Of Compu-
tation, 2002.

[Pa93] C. Papadimitriou. Computational Complexity. Addison Wesley, Reading, MA, 1993.

[Pe98] Y. Peres. Personal communication, 1998.

[T94] M. Talagrand. On Russo’s approximate 0-1 law. Annals of Probability, 1994.

17

[T96] M. Talagrand. How much are increasing sets positively correlated? Combinatorica 16,
1996, no. 2, 243–258.

[T97] M. Talagrand. On boundaries and influences. Combinatorica, 1997.

[V84] L. Valiant. A theory of the learnable. Communications of the ACM, 40, 1994, no. 2,
445–474.

18

