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Abstract

Consider a finite irreducible Markov chain with invariant distribution π. We use the inner
product induced by π and the associated heat operator to simplify and generalize some results
related to graph partitioning and the small-set expansion problem. For example, Steurer showed
a tight connection between the number of small eigenvalues of a graph’s Laplacian and the
expansion of small sets in that graph. We give a simplified proof which generalizes to the
nonregular, directed case. This result implies an approximation algorithm for an “analytic”
version of the Small-Set Expansion Problem, which, in turn, immediately gives an approximation
algorithm for Small-Set Expansion. We also give a simpler proof of a lower bound on the
probability that a random walk stays within a set; this result was used in some recent works on
finding small sparse cuts.

1 Overview

Graph partitioning using spectral methods has recently been the subject of intensive study. Many
results in this area have been proven using discrete-time random walks. However, these techniques
work best when applied to regular graphs with nonnegative eigenvalues. As a result, it has become
standard to move to a lazy version of a graph by adding self-loops, i.e. using (I + K)/2 instead
of K as the adjacency matrix. Much work has also focused on regular graphs only or considered
the normalized Laplacian D−1/2LD−1/2.

In this work we show that these problems can be avoided using Markov chain techniques, leading
to simpler and more general proofs of results related to spectral graph partitioning. Rather than
using discrete-time random walks, we consider continuous-time random walks and the associated
heat operator. “Smoothing out” the random walk makes the eigenvalues nonnegative, avoiding
the need to move to lazy graphs and allowing our techniques to be directly applied to the original
instance. In addition, we use the inner product defined with respect the invariant distribution π of
the Markov chain representing a random walk on the graph. We are then able to use our methods
directly on nonregular graphs.

We will now give a brief description of some previous results in spectral graph partitioning.
Let G = (V,E) be a graph on n vertices. Let K be its (normalized) adjacency matrix, let L
be its (normalized) Laplacian matrix (namely I − K), and let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 be

the eigenvalues of L. The conductance Φ[S] of a set S ⊆ V is defined to be E(S,S)∑
v∈S deg(v) . The

conductance profile of G, denoted ΦG , was defined by Lovász and Kannan [LK99] as

ΦG(r) = min{Φ[S] : S ⊆ V, µ[S] ≤ r}.
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Cheeger’s inequality for graphs [AM85, Alo86, SJ89] states that V can be partitioned into
nonempty S1, S2 such that Φ[Si] ≤ O(

√
λ2). Very recently, Louis, Raghavendra, Tetali, and

Vempala [LRTV12] and Lee, Oveis Gharan, and Trevisan [LOT12] have given a “higher order
Cheeger inequality” involving higher eigenvalues. Specifically, the two results show that for any k,
one can partition V into Ω(k) disjoint nonempty sets Si, each of which has conductance Φ[Si] ≤
O(
√
λk log k). Since one of these parts has volume µ[Si] := |Si|/|V | ≤ O(1/k) we may conclude

that
ΦG( const

k ) ≤ O(
√
λk log k). (1)

As noted in these works, for a fixed k the “extra factor” of Θ(
√

log k) in (1) is necessary; indeed
this is true [LOT12] for all k ≤ log2 n. However, somewhat intriguingly, the extra factor becomes
unnecessary once k is as large as nΩ(1) — at least, if one is willing to compromise somewhat on the
volume parameter. Specifically, Arora, Barak, and Steurer [ABS10] showed for regular graphs that

ΦG(O(k−1/100)) ≤ O(
√
λk logk n). (2)

In his thesis, Steurer [Ste10] improved this bound to

ΦG(k−1+1/A) ≤ O(
√
Aλk logk n) for any (sufficiently large) constant A. (3)

Using Markov chain methods, we give what we feel is a much simpler proof of this result, which
also works for the nonregular (and also directed) case. Our result also implies an approximation
algorithm for an “analytic” version of the Small-Set Expansion problem. This, in turn, immediately
gives an approximation algorithm for Small-Set Expansion by a standard version of Cheeger’s
Inequality,

In somewhat related recent work, Oveis Gharan and Trevisan [OT12] proved a weaker version of
this bound with k−1/3 in place of k−1+1/A. The main point of that work, along with the independent
work of Kwok and Lau [KL12] give a polynomial-time algorithm for the Small-Set Expansion
problem in an unweighted (nonregular) graph G = (V,E) with the following guarantee: if there
exists S ⊆ V with µ[S] ≤ δ and Φ[S] ≤ ε, the algorithm finds T ⊆ V with µ[T ] ≤ O(δ) · (δ|E|)α
and µ[S] ≤ O(

√
ε/α) (for any small α > 0). To achieve this, both papers prove a theorem stating

that for any S ⊆ V and integer t > 0, the probability that a t-step random walk starting from a

random x ∈ S stays entirely within S is at least
(

1− Φ[S]
2

)t
. We also give a simpler proof of this

result for continuous-time random walks.

1.1 Our results

1.1.1 Bounding the spectral profile

In this work we provide a different, simple proof of Steurer’s improved result using continuous-time
random walks instead of lazy discrete-time random walks:

Theorem 1.1. In any strongly connected graph G, ΦG(16k−1+1/A) ≤ 2
√
A ·
√
λk logk n for any

real A ≥ 3.

For example, ΦG(k−.999) ≤ O(
√
λk logk n) for k sufficiently large. See Section 2 for the appropriate

definitions of ΦG, L, λi, etc. in the context of general graphs G.

In fact, our result is stronger than this in that we are able to directly bound the spectral
profile of G. (The same is true of the result in Arora–Barak–Steurer [ABS10] and in Steurer’s
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thesis [Ste10].) Recall that the spectral profile ΛG of G, introduced by Goel, Montenegro, and
Tetali [GMT06], is defined by

ΛG(r) = min
{
〈f,Lf〉
‖f‖22

: nonzero f : V → R≥0 with π(supp(f)) ≤ r
}
.

Goel, Montenegro, and Tetali showed that the “Cheeger rounding analysis” yields the following
relationship with conductance profile: ΦG(r) ≤

√
2ΛG(r) for all r.1 As in [ABS10] we work with a

slightly different definition of spectral profile, for technical convenience:

Λ′G(r) = min{Φ[f ] : µ[f ] ≤ r}, where Φ[f ] =
〈f, Lf〉
‖f‖22

, µ[f ] =
‖f‖21
‖f‖22

are appropriate generalizations of boundary size and volume to functions f : V → R. (These
definitions agree with our earlier ones when f is the 0-1 indicator of a set S ⊆ V .) As noted
in [ABS10, Lemma A.2] we have ΛG(4r) ≤ 2Λ′G(r) for all r. (A similar reverse connection also
holds.) Thus:

Theorem 1.2. (Essentially from [GMT06].) ΦG(4r) ≤ 2
√

Λ′G(r) for all r.

We use this connection to obtain Theorem 1.1; our main theorem is in fact:

Theorem 1.3. In any strongly connected graph G, Λ′G(4k−1+1/A) ≤ A·λk logk n for any real A ≥ 3.

This route to bounding the conductance profile is somewhat in contrast to the works [LRTV12,
LOT12], both of which combine their spectral analysis and “rounding algorithm”.

Indeed, in this work we consider the “analytic” version of the Raghavendra–Steurer [RS10]
Small-Set Expansion problem: given a graph G = (V,E) with the promise that there is a function
f : V → R which has µ[f ] ≤ δ and Φ[f ] ≤ ε, find a function g : V → R with µ[g] ≤ O(δ) and
Φ[g] as small as possible. Following [ABS10], we provide an eigenspace enumeration lemma which,
when combined with Theorem 1.3, yields the following:

Theorem 1.4. For any α ≤ 1
3 and C ≥ 1, there exists an algorithm running in time exp(O(nα) ·

1
δ log(C/δ)) with the following guarantee: If there exists f : V → R with µ[f ] ≤ δ ≤ 1/2 and

Φ[f ] ≤ ε ≤ 1/4, the algorithm finds g : V → R with µ[g] ≤ δ · (1 + 1/C) and Φ[g] ≤ O(C
2

αδ ) · ε.

As a byproduct, using Theorem 1.2 we can immediately deduce the following approximation
algorithm for Small-Set Expansion:

Corollary 1.5. Fix any small constants α, δ > 0. Then there is an algorithm running in time
exp(O(nα)) with the following guarantee: If there exists S ⊆ V with µ[S] ≤ δ and Φ[S] ≤ ε, the
algorithm finds T ⊆ V with µ[T ] ≤ 5δ and Φ[T ] ≤ O(

√
ε).

More generally, one can obtain Φ[T ] ≤ O(εβ/2) in time exp(O(nαε
1−β

)) for any 0 < β ≤ 1.

This result is incomparable with the Arora–Barak–Steurer Small-Set Expansion algorithm: their
work had O(εβ/3) in place of O(εβ/2) and was analyzed only for regular graphs. On the other hand,

our Corollary 1.5 holds only for δ a constant, whereas their algorithm works for δ as small as n−ε
1−β

(which is the more interesting parameter range).

1Actually, [GMT06] defined ΛG(r) as the minimization of 〈f,Lf〉
‖f‖22−‖f‖

2
1
. But their proof of this relationship still goes

through.
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1.1.2 Continuous-time random walks

In [OT12], Oveis Gharan and Trevisan prove a lower bound on the probability that a random
walk stays within a set. (Kwok and Lau [KL12] prove a similar but somewhat weaker bound.)
Specifically, they show:

Theorem 1.6. Let G = (V,E) be an undirected graph with invariant distribution π. Let ∅ 6= S ⊆ V
and let t > 0 be an integer. Choose x ∼ π conditioned on x ∈ S, and then perform a t-step
discrete-time random walk from x. Then the probability that the walk stays entirely within S is at

least
(

1− Φ[S]
2

)t
.

We provide a simple proof of a similar theorem using Markov chain methods.

Theorem 1.7. In the setting of Theorem 1.6, if we instead perform a time-t continuous-time
random walk, the probability that the walk stays entirely within S is at least exp(−tΦ[S]).

2 Preliminaries

Instead of directed graphs, we will use the language of Markov chains; for background, see e.g. [DSC96,
MT06].

Throughout this work, G will denote an irreducible Markov chain on state space V of cardinal-
ity n, with no isolated states. We will be considering elements f in the vector space of functions
V → R. We write K for the adjacency matrix operator: Kf(x) = Ey∼x[f(y)], where y ∼ x
denotes that y is obtained by taking one step from x in the chain. K has a unique invariant
probability distribution π on V which is nowhere 0. It gives rise to an inner product on functions,
〈f, g〉 = Ex∼π[f(x)g(x)]. We write L = id−K for the Laplacian operator and Ht = exp(−tL) for
the heat kernel (continuous-time transition) operator.

Definition 2.1. Given nonzero f : V → R we define its analytic boundary size/conductance to be

Φ[f ] =
〈f, Lf〉
〈f, f〉

= 1− 〈f,Kf〉
〈f, f〉

.

Note that if f is the 0-1 indicator of a set S ⊆ V then Φ[f ] = Prx∼π,y∼x[y 6∈ S | x ∈ S]. We will
also write Φ[S] in this case.

Definition 2.2. Given a nonzero f : V → R we define its analytic sparsity to be

µ[f ] =
‖f‖21
‖f‖22

.

Note that if f is the 0-1 indicator of a set S ⊆ V then µ[f ] = π(S).

These definitions motivate consideration of an “analytic” version of the Small-Set Expansion
Problem: Assuming there is an analytically sparse f with small analytic boundary, find such an f .
More precisely:
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Analytic Small-Set Expansion Problem: Given as input G with the promise that there exists
f : V → R with µ[f ] ≤ δ ≤ 1/2 and Φ[f ] ≤ ε, find f ′ : V → R with µ[f ′] ≤ δ′ and Φ[f ′] ≤ ε′. In
this bicriteria problem, we typically insist that δ′ = O(δ) and then try to minimize ε′.

Note that the standard Small-Set Expansion problem is the above problem with the additional
restriction that f and f ′ should be 0-1-valued functions.

For the remainder of this work we will assume that G is reversible. However, this is without loss
of generality since, given a non-reversible Markov chain G′ with adjacency matrix operator K ′, we
can replace it with the reversible Markov chain G having adjacency matrix operator K = K′+K′∗

2 .
The chain G has the same invariant distribution π as G′ which means that the notion of analytic
sparsity is unchanged. Further, if L and L′ are the Laplacians of G and G′, respectively, then
〈f, Lf〉 = 〈f, L′f〉 for any f : V → R; hence the notion of analytic boundary is also unchanged.

Given a reversible chain G, the operators K, L, and Ht have a common orthogonal basis of
eigenfunctions. We will write 0 = λ1 ≤ λ2 ≤ · · · ≤ λn for the eigenvalues of L; note that the ith
eigenvalue of K is 1 − λi and the ith eigenvalue of Ht is exp(−tλi). All of our theorems which
mention the eigenvalues λi hold also for non-reversible chains G′, with the λi’s being those for the
associated reversible chain G.

Following [ABS10], our algorithm for the Analytic Small-Set Expansion problem (Theorem 1.4)
breaks into two cases, depending on the “analytic nullity” of L (called “threshold rank” in [ABS10]):

Definition 2.3. We define nullityη(L) = #{i : λi ≤ η}. Note that nullity0(L) is the usual nullity.

Remark 2.4. Throughout we will present algorithms in the model of exact arithmetic. E.g., we
will assume that given G, the eigenvalues and eigenfunctions of L can be computed exactly. We
believe (but have not verified) that our results can be extended to standard computational models
(e.g., Turing machines).

3 A new bound on the spectral profile

Here we give our new spectral criterion, based on the trace of the heat kernel, which ensures the
existence of an analytically sparse function with small analytic boundary.

Theorem 3.1. Fix 0 < γ ≤ 1 ≤ ∆ and suppose there exists t > 0 such that

tr(Ht)− 1
γ tr(LHt) ≥ ∆. (4)

Then in poly(n) time one can find g : V → R≥0 satisfying µ[g] ≤ 1/∆ and Φ[g] ≤ γ.

Proof. Let φx = 1
π(x) · 1x for x ∈ V , so E[φx] = 1. Write φ′x =

√
π(x) ·φx, so the collection (φ′x)x∈V

forms an orthonormal basis. Since trace is “the sum of the diagonal entries”, we have

tr(Ht) =
∑
x∈V
〈φ′x, Htφ

′
x〉 =

∑
x∈V

π(x)〈φx, Htφx〉 = E
x∼π
〈Ht/2φx, Ht/2φx〉.

Similarly, tr(LHt) = Ex∼π[〈Ht/2φx, LHt/2φx〉]. Thus the assumption (4) implies

E
x∼π

[〈Ht/2φx, Ht/2φx〉 − 1
γ 〈Ht/2φx, LHt/2φx〉] ≥ ∆.
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Select (in poly(n) time) a particular x0 ∈ V achieving at least ∆ in this expectation. We define
g = Ht/2φx0 and therefore we have

〈g, g〉 − 1
γ 〈g, Lg〉 ≥ ∆. (5)

Note that g ≥ 0 since φx0 ≥ 0 and Ht/2 is positivity-preserving. Thus ‖g‖1 = E[g] = E[φx0 ] = 1.
Further, from (5) we deduce 〈g, g〉 ≥ ∆; thus µ[g] ≤ 1/∆ as desired. Finally, (5) certainly implies
〈g, g〉 − 1

γ 〈g, Lg〉 ≥ 0, which is equivalent to Φ[g] ≤ γ.

A straightforward calculation now shows that if L has large analytic nullity then we can get
good bounds from Theorem 3.1:

Corollary 3.2. Fix 0 < γ ≤ 1. Let 0 < α ≤ 1
3 and let k = nullityαγ(L). Assume k ≥ nα

lnn . Then

in poly(n) time one can find g : V → R≥0 satisfying Φ[g] ≤ γ and µ[g] ≤ 1/∆, where ∆ = k
4nα .

Proof. We show that (4) from Theorem 3.1 holds with γ, ∆, and t = 1
γ lnn. We have

tr(Ht)− 1
γ tr(LHt) =

n∑
i=1

(1− λi
γ ) exp(−tλi) =

n∑
i=1

(1− λi
γ )n−λi/γ . (6)

The expression (1 − r)n−r is decreasing for r ∈ [0, 1]; for larger r, it attains its minimum at
r = 1 + 1

lnn , where it has value − 1
en lnn . Thus by distinguishing r = λi

γ ≷ α in (6) we may obtain

(6) ≥ #{i : λi ≤ αγ} · (1− α)n−α −#{i : λi > αγ} · 1
en lnn ≥

k

nα
(1− α)− 1

e lnn .

Using α ≤ 1
3 and k ≥ nα

lnn , the above is indeed at least ∆ = k
4nα .

Restating the parameters yields:

Corollary 3.3. Let 0 < δ ≤ 1. If there exists α ≤ 1
3 such that nullityαγ(L) ≥ 4

δn
α, then in poly(n)

time one can find g : V → R≥0 satisfying µ[g] ≤ δ and Φ[g] ≤ γ.

An alternative restatement of the parameters yields our main Theorem 1.3: simply take α =
1

A logk n
and γ = Aλk logk n in Corollary 3.2.

4 An algorithm for Analytic Small-Set Expansion

In [ABS10] it is shown that when L has small analytic nullity, one can find sparse sets by brute-
force search through low-eigenvalue eigenspace. We present a very similar algorithm for finding
analytically sparse sets.

Lemma 4.1. Suppose there exists f : V → R with

µ[f ] ≤ δ ≤ 1/2, Φ[f ] ≤ ε ≤ 1/4.

Let 2ε ≤ η ≤ 1. Then in time exp(O(nullityη(L) log(η/ε))) · poly(n) one can find g : V → R

satisfying
µ[g] ≤ δ +O(ε/η +

√
δε/η) ≤ O(δ + ε/η), Φ[g] ≤ η.

Remark 4.2. It is also quite easy to show g will satisfy Φ[g] ≤ O(
√
ε/η), which is useful if η � ε1/3.

We will not need this parameter setting, so we omit the proof.
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Proof. Let ψ1, . . . , ψm be an orthonormal basis of eigenfunctions for L, corresponding to eigenvalues
λ1, . . . , λn. Without loss of generality, assume ‖f‖2 = 1. Write m = nullityη(L) and write U for
the dimension-m subspace spanned by ψ1, . . . , ψm. Express f =

∑n
i=1 ciψi, so

∑
c2
i = 1 by the

orthonormality of the ψi’s. We have

ε ≥ Φ[f ] = 〈f, Lf〉 =
n∑
i=1

λic
2
i ≥

∑
i>m

λic
2
i ≥ η

∑
i>m

c2
i .

In other words, if fU denotes
∑

i≤m ciψi then ‖f − fU‖22 ≤ ε/η (which is at most 1/2 by the
assumption on η). If we define u ∈ U to be the unit vector fU/‖fU‖2, it follows that

‖f − u‖2 ≤
√

2ε/η.

As in [ABS10] we can now consider all g in a .5
√
ε/η-net for the unit sphere of U . The cardinality

of this net is exp(O(m log(η/ε))). One such g will satisfy

‖u− g‖2 ≤ .5
√
ε/η and hence ‖f − g‖2 ≤ 2

√
ε/η.

For this g we have

‖g‖1 ≤ ‖f‖1 + ‖f − g‖1 ≤
√
µ[f ] + ‖f − g‖2 ≤

√
δ + 2

√
ε/η

and hence µ[g] ≤ δ + O(ε/η +
√
δε/η), as desired. Since g is a unit vector in U we may also

immediately conclude Φ[g] ≤ η.

From Corollary 3.3 we know that if L has large analytic nullity then there is automatically an
(easily findable) f : V → R which is analytically sparse and has small analytic boundary. On
the other hand, if L has small analytic nullity, the above lemma can solve the Analytic Small-Set
Expansion problem in not too much time. Combining these facts lets us prove our Theorem 1.4,
restated here for convenience:

Theorem 1.4. For any α ≤ 1
3 and C ≥ 1, there exists an algorithm running in time exp(O(nα) ·

1
δ log(C/δ)) with the following guarantee: If there exists f : V → R with µ[f ] ≤ δ ≤ 1/2 and

Φ[f ] ≤ ε ≤ 1/4, the algorithm finds g : V → R with µ[g] ≤ δ · (1 + 1/C) and Φ[g] ≤ O(C
2

αδ ) · ε.

Proof. Set γ = B
αδ · ε; we will eventually take B = O(C2). If nullityαγ(L) ≥ 4

δn
α then from

Corollary 3.3 we can find g with µ[g] ≤ δ, Φ[g] ≤ γ in poly(n) time; in fact, here we don’t even need
to assume the existence of f . Otherwise, Lemma 4.1 tells us that in time exp(O(nα) · 1

δ log(B/δ))
we can find a g satisfying

µ[g] ≤ δ +O( δB +

√
δ2

B ) = δ · (1 +O(1/
√
B)), Φ[g] ≤ αγ ≤ γ.

Thus the result follows by taking B = O(C2).

5 The probability a random walk stays entirely within a set

In [OT12] the authors show that a t-step discrete time random walk starting from a random vertex

in S ⊆ V stays entirely within S with probability at least
(

1− Φ[S]
2

)t
. We give a proof of a similar

result for continuous-time random walks using Markov chain methods.
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Theorem 1.7 restated. For any ∅ 6= S ⊆ V and real t > 0, let C(t, S) denote the probability
that a continuous-time-t random walk, started from a random x ∼ S, stays entirely within S. Then
C(t, S) ≥ exp(−tΦ[S]).

Proof. Let us define an operatorKS on functions f : V → R as follows: KSf(x) = Ey∼x[1S(x)1S(y)f(y)],
where 1S is the indicator function for S. It is easy to see that KS is self-adjoint; thus it has n
real eigenvalues and n linearly independent eigenvectors. We also define LS = id − KS and
Ht,S = exp(−tLS). Let v1, . . . , vn be an orthonormal basis of eigenvectors of LS (which are also
eigenvectors of KS and Ht,S) and let λ1, . . . , λn be the corresponding eigenvalues of LS . Finally,
we define φ′S = 1√

π(S)
· 1S and write φ′S =

∑
i civi for some constants ci. Since ‖φ′S‖2 = 1 it follows

that
∑

i c
2
i = 1:

First, we will show that Φ[S] =
∑

i c
2
iλi.

Φ[S] = Pr
x∼π
y∼x

[y /∈ S | x ∈ S]

= Pr
x∼π
y∼x

[y /∈ S ∧ x ∈ S]/ Pr
x∼π

[x ∈ S]

= 1
π(S) E

x∼π
y∼x

[1S(x)(1S(x)− 1S(y))]

= 1
π(S) E

x∼π
y∼x

[1S(x)(1S(x)− 1S(x)1S(y))]

= 1
π(S) E

x∼π
[1S(x)(1S(x)− 1S(x) E

y∼x
[1S(y)])]

= 1
π(S) E

x∼π
[1S(x)(id1S(x)−KS1S(x))]

= 〈φ′S , LSφ′S〉

=
∑
i

c2
iλi.

Now we show that C(t, S) =
∑

i c
2
i exp(−tλi). Let w0, . . . ,wτ be the states of a time-t

continuous-time random walk in G; note that this is the same as a τ -step discrete-time random
walk, where τ ∼ Poisson(t). Let W denote the set of all states visited. Then:

C(t, S) = Pr[W ⊆ S | w0 ∈ S]

= 1
π(S) E[1S(w0)1S(w1) . . . 1S(wτ )]

= 1
π(S) E

x∼π
E

τ∼Poisson(t)
[1S(x)Kτ

S 1S(x)]

= 1
π(S) E

x∼π
[1S(x)Ht,S1S(x)]

= 〈φ′S , Ht,Sφ
′
S〉

=
∑
i

c2
i exp(−tλi).

To complete the proof, we need to show that
∑

i c
2
i exp(−tλi) ≥ exp(−t

∑
i c

2
iλi). This follows

immediately by the convexity of the exponential function and Jensen’s inequality.

Acknowledgments

We thank James Lee, David Steurer, Yu Wu, and Yuan Zhou for helpful discussions.

8



References

[ABS10] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for Unique
Games and related problems. In Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science, pages 563–572, 2010. 1, 1.1.1, 1.1.1, 2, 4, 4

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986. 1

[AM85] Noga Alon and Vitali Milman. λ1, isoperimetric inequalities for graphs, and supercon-
centrators. Journal of Combinatorial Theory, Series B, 38(1):73–88, 1985. 1

[DSC96] Persi Diaconis and Laurent Saloff-Coste. Logarithmic Sobolev inequalities for finite
Markov chains. Annals of Applied Probability, 6(3):695–750, 1996. 2

[GMT06] Sharad Goel, Ravi Montenegro, and Prasad Tetali. Mixing time bounds via the spectral
profile. Electronic Journal of Probability, 11(1):1–26, 2006. 1.1.1, 1.2, 1

[KL12] Tsz Chiu Kow and Lap Chi Lau. Finding small sparse cuts by random walk. In Proceed-
ings of the 16th Annual International Workshop on Randomized Techniques in Compu-
tation, pages 615–626, 2012. 1, 1.1.2

[LK99] Lászlo Lovász and Ravi Kannan. Faster mixing via average conductance. In Proceedings
of the 31st Annual ACM Symposium on Theory of Computing, pages 282–287, 1999. 1

[LOT12] James Lee, Shayan Oveis Gharan, and Luca Trevisan. Multi-way spectral partitioning
and higher-order Cheeger inequalities. In Proceedings of the 44th Annual ACM Sympo-
sium on Theory of Computing, 2012. 1, 1, 1.1.1

[LRTV12] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Many sparse
cuts via higher eigenvalues. In Proceedings of the 44th Annual ACM Symposium on
Theory of Computing, 2012. 1, 1.1.1

[MT06] Ravid Montenegro and Prasad Tetali. Mathematical aspects of mixing times in Markov
chains. Foundations and Trends in Theoretical Computer Science, 1(3):237–354, 2006.
2

[OT12] Shayan Oveis Gharan and Luca Trevisan. Approximating the expansion profile and
almost optimal local graph clustering. http://arxiv.org/abs/1204.2021, 2012. 1,
1.1.2, 5

[RS10] Prasad Raghavendra and David Steurer. Graph expansion and the Unique Games Con-
jecture. In Proceedings of the 42nd Annual ACM Symposium on Theory of Computing,
pages 755–764, 2010. 1.1.1

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and
rapidly mixing Markov chains. Information and Computation, 82(1):93–133, 1989. 1

[Ste10] David Steurer. On the Complexity of Unique Games and Graph Expansion. PhD thesis,
Princeton University, 2010. 1, 1.1.1

9

http://arxiv.org/abs/1204.2021

	Overview
	Our results
	Bounding the spectral profile
	Continuous-time random walks


	Preliminaries
	A new bound on the spectral profile
	An algorithm for Analytic Small-Set Expansion
	The probability a random walk stays entirely within a set

