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Abstract

We give an algorithm that learns any monotone Boolean function f : {−1, 1}n → {−1, 1}
to any constant accuracy, under the uniform distribution, in time polynomial in n and in the
decision tree size of f. This is the first algorithm that can learn arbitrary monotone Boolean
functions to high accuracy, using random examples only, in time polynomial in a reasonable
measure of the complexity of f. A key ingredient of the result is a new bound showing that the
average sensitivity of any monotone function computed by a decision tree of size s must be at
most

√
log s.

We generalize the basic inequality and learning result described above in various ways; specif-
ically, to partition size (a stronger complexity measure than decision tree size), p-biased measures
over the Boolean cube (rather than just the uniform distribution), and real-valued (rather than
just Boolean-valued) functions.
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1 Introduction

1.1 Computationally efficient learning from random examples. In the two decades since
Valiant introduced the Probably Approximately Correct (PAC) learning model [31], a major goal
in computational learning theory has been the design of computationally efficient algorithms for
learning Boolean functions from random examples. The original distribution-free PAC learning
model of Valiant required that for any distribution D over the domain of examples (which through-
out this paper is {−1, 1}n), the learning algorithm must with high probability succeed in generating
a hypothesis for the unknown target function which is highly accurate relative to D. Despite much
effort over a twenty year span, very few efficient learning algorithms have been obtained in this de-
manding model. Thus the focus of much work has shifted to the natural uniform distribution PAC
learning model, in which the examples used for learning are uniformly distributed over {−1, 1}n

(we give a precise definition of this learning model in Section 2).
An easy information-theoretic argument shows that no poly(n)-time algorithm can learn ar-

bitrary Boolean functions f : {−1, 1}n → {−1, 1} to accuracy nonnegligibly better than 1/2.
Consequently, the most ambitious conceivable goal in uniform distribution learning is to obtain an
algorithm that can learn any Boolean function f : {−1, 1}n → {−1, 1} in time polynomial in n
and in a reasonable measure of the “size” or complexity of f . Different complexity measures for
Boolean functions thus give rise to different notions of efficient learnability; for example, one might
hope for an algorithm that can learn any Boolean function f in time polynomial in n and DT (f),
the number of leaves in the smallest Boolean decision tree that computes f (this is the well-studied
— and notoriously difficult — problem of “learning decision trees under the uniform distribution”).
A more ambitious goal would be to learn in time polynomial in DNF (f), the number of terms in
the smallest disjunctive normal form formula for f , or AC0

d(f), the size of the smallest depth-d
AND/OR/NOT circuit for f.

Unfortunately, learning arbitrary Boolean functions in polynomial time in this sense has proved
to be intractably difficult for all “reasonable” size measures. For the strongest reasonable size
measure (Boolean circuit size), Valiant already observed in [31] that the existence of cryptographic
pseudorandom functions [11] implies the nonexistence of uniform distribution algorithms that can
learn any function f in time polynomial in the Boolean circuit size of f. This negative result was
strengthened by Kharitonov [20], who showed that (under a strong but plausible assumption on
the hardness of integer factorization) no uniform distribution algorithm can learn every f in time
polynomial in AC0

d(f) for some fixed constant d. In fact, despite intensive research, no algorithm is
currently known that learns arbitrary Boolean functions in time polynomial in any reasonable size
measure; such an algorithm would constitute a tremendous breakthrough in computational learning
theory, see e.g. [1]. (We stress that simple arguments such as those in [5] show that there is no
information-theoretic impediment to learning from a polynomial number of examples; the apparent
difficulty is in designing a polynomial-time algorithm.)

1.2 Background: learning monotone functions. Confronted with the difficulties described
above, researchers have tried to learn various restricted classes of Boolean functions. The most
natural and intensively studied such class is the class of all monotone functions f : {−1, 1}n →
{−1, 1}, i.e. functions that satisfy f(x) ≥ f(y) whenever x ≥ y in the partial order on {−1, 1}n.

Many partial results on learning restricted subclasses of monotone functions under the uniform
distribution have been obtained. Sakai and Maruoka [27] gave a poly(n)-time algorithm that can
learn any monotone size-O(log n) DNF under uniform; this result was subsequently generalized by
Bshouty [6] to a somewhat broader class than O(log n)-term DNF. The main result of Bshouty and

Tamon in [7] is a proof that any monotone function can be learned to accuracy ε in 2Õ(
√

n/ε) time;
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they used this result to obtain a poly(n)-time algorithm (for ε constant) that can learn a class
of functions that includes monotone O(log2 n/(log log n)3)-term DNF. More recently, Servedio [29]
showed that monotone 2O(

√
log n)-term DNF can be learned to constant accuracy ε in poly(n) time.

Other researchers have also studied the problem of learning monotone functions under uniform
(see e.g. [18, 3, 33, 12, 21]), but prior to the current work no algorithms were known for learning
arbitrary monotone functions in time polynomial in a reasonable size measure.

1.3 The main learning result. We give the first algorithm that learns any monotone Boolean
function f , under the uniform distribution, in time polynomial in a reasonable measure of the size
of f . Given a Boolean function f : {−1, 1}n → {−1, 1}, the partition size P (f) of f is the minimum
size partition of the Boolean cube {−1, 1}n into disjoint subcubes such that f is constant on each
subcube. Note that this is a strictly stronger measure of complexity than decision tree size; i.e.,
P (f) ≤ DT (f). Our main learning result is the following:

Theorem 1 There is an algorithm that (with confidence 1 − δ) can learn any monotone Boolean
function f : {−1, 1}n → {−1, 1} to accuracy ε, given uniform random examples (x, f(x)), in time
poly(n, P (f)1/ε2) · log(1/δ).

For any constant accuracy ε = Θ(1), the algorithm runs in time polynomial in the partition size of
f , and hence also in the decision tree size of f . We feel that this constitutes significant progress
towards learning monotone functions in time polynomial in their DNF size, an outstanding open
problem in computational learning theory (see e.g. the open questions posed in [15], [3] and [2]).

1.4 The approach: bounding average sensitivity of monotone functions. The main
ingredient of our learning algorithm is a new inequality bounding the average sensitivity (sum of
influences of all coordinates) of monotone Boolean functions. We give here a simplified version of
the theorem (the full result is given in Theorem 3):

Theorem 2 Every monotone Boolean function f has average sensitivity at most
√

log P (f). 1

We believe this edge-isoperimetric-type result is of independent interest. Combining this bound
with a result of Friedgut [8] that says that Boolean functions with low average sensitivity essentially
depend on only a small number of coordinates, we can show that (i) there is a set of P (f)O(1/ε2)

many Fourier coefficients of f which contain all but ε of the “Fourier weight” of f , and (ii) this
set of Fourier coefficients can be efficiently identified from uniform random examples only. Apply-
ing standard machinery on approximating Boolean functions via their Fourier representations, we
obtain Theorem 1.

Our approach seems quite robust. We generalize the basic scenario described above by (i) con-
sidering real-valued monotone functions that map {−1, 1}n into the continuous interval [−1, 1]
rather than the discrete range {−1, 1}, and (ii) considering general p-biased product measures over
{−1, 1}n rather than the uniform distribution. We show that suitable variants of all of our inter-
mediate results holds, and that our main learning result holds exactly as before (i.e., runs in time
P (f)O(1/ε2)) in these generalized scenarios.

2 Preliminaries

2.1 Boolean functions and complexity measures. As is standard in complexity theory and
learning theory, we will be interested in complexity measures for Boolean functions f given by the

1Here and throughout the paper log denotes logarithm to the base two.
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syntactic size of the smallest representation of f under various natural representation schemes. We
will chiefly be concerned with partition size and decision tree size, two complexity measures that
we now define.

Given a Boolean function f : {−1, 1}n → {−1, 1}, the decision tree size of f , denoted DT (f), is
the number of leaves in the smallest Boolean decision tree (with variables x1, . . . , xn at the internal
nodes and bits −1, 1 at the leaves) that computes f . The partition size P (f) of f is the minimum
number of disjoint subcubes that the Boolean cube {−1, 1}n can be partitioned into such that f
is constant on each subcube. Since any s-leaf decision tree induces a partition of {−1, 1}n into s
disjoint subcubes (corresponding to the root-to-leaf paths in the tree), we have that P (f) ≤ DT (f)
for all f. In fact, P (·) is known to be a superpolynomially stronger measure than DT (·) even for
monotone functions; Savický [28] has given a monotone Boolean function g : {−1, 1}n → {−1, 1}
which has P (g) = poly(n) and DT (g) = 2Ω(log1.26(n)).

2.2 Background: uniform distribution learning. A concept class F is a collection ∪n≥1Fn

of Boolean functions where each f ∈ Fn is a function from {−1, 1}n to {−1, 1}. Throughout this
paper we consider the concept class consisting of all monotone Boolean functions.

The uniform distribution Probably Approximately Correct (PAC) learning model has been
studied by many authors; see e.g. [4, 7, 13, 14, 20, 22, 24, 27, 29, 32]. In this framework a learning
algorithm has access to an example oracle EX(f), where f ∈ Fn is the unknown target function
the algorithm is trying to learn. The oracle EX(f) takes no inputs and, when queried, outputs a
labelled example (x, f(x)), where x is drawn from the uniform distribution U over {−1, 1}n.

We say that a Boolean function h : {−1, 1}n → {−1, 1} is an ε-approximator for f if it satisfies
Prx∈U [h(x) = f(x)] ≥ 1 − ε. The goal of a uniform distribution PAC learning algorithm is to
generate an ε-approximator for the unknown target function f. More precisely, an algorithm A is
a learning algorithm for concept class F if the following condition holds: for all n ≥ 1, all f ∈ Fn,
and all 0 < ε, δ < 1, if A is given ε and δ as input and has access to EX(f), then with probability
at least 1 − δ algorithm A outputs an ε-approximator for f . We further say that A PAC learns F
in time t if A runs for at most t time steps and outputs a hypothesis h which can be evaluated on
any point x ∈ {−1, 1}n in time t. Here t will depend on the dimension n and the size s of f under
some complexity measure, as well as on ε and δ.

2.3 Fourier representation. Fourier techniques have proven to be a powerful tool for obtaining
uniform distribution learning algorithms; see the survey of Mansour [23] for an overview.

Except in Section 5, we will always view {−1, 1}n as a probability space under the uniform
distribution which we denote by U . Let f : {−1, 1}n → R be a real-valued function. Recall that
the Fourier expansion of f is

f(x) =
∑

S⊆[n]

f̂(S)χS(x),

where χS(x) denotes
∏

i∈S xi and f̂(S) denotes Ex∈U [f(x)χS(x)]. It is well known that every f
has a unique Fourier expansion. Pareseval’s theorem states that for any f : {−1, 1}n → R we have
∑

S⊆[n] f̂(S)2 = Ex∈U [f(x)2], which is clearly 1 if f ’s range is {−1, 1}.
For Boolean-valued functions f : {−1, 1}n → {−1, 1}, the influence of coordinate i on f is

defined as Inf i(f) = Prx∈U [f(x) 6= f(x(⊕i))], where x(⊕i) denotes x with the ith bit flipped. In
general we have Inf i(f) =

∑

S3i f̂(S)2; it is also well known (see e.g. [17]) that if f is monotone

then Inf i(f) = f̂({i}). For notational ease we will henceforth write f̂(i) in place of f̂({i}). The
average sensitivity of a Boolean function f is I(f) =

∑n
i=1 Inf i(f); this is the expected number of

sensitive coordinates for a random input x ∈ {−1, 1}n. Note that I(f) =
∑n

i=1 f̂(i) for monotone f.
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3 The average sensitivity of monotone functions

A well known, folkloric edge-isoperimetric inequality for the Boolean cube states that for any
monotone function f : {−1, 1}n → {−1, 1}, we have I(f) ≤ I(Majn) = Θ(

√
n). (This follows from,

e.g., the Kruskal-Katona theorem; see [9] for an explicit proof.) This bound I(f) ≤ O(
√

n) is the
key to the main result of [7] that any monotone Boolean function can be learned to accuracy ε in

time 2Õ(
√

n/ε).
In this section we give a more refined bound on I(f) that depends on P (f), the partition size

of f . Our new bound states that I(f) ≤
√

log P (f) for any monotone f . This yields the usual
isoperimetric inequality mentioned as a special case but is much stronger for functions f which
have partition size P (f) = 2o(n).

3.1 Subcube partitions. Let f : {−1, 1}n → {−1, 1} be a Boolean function and let C =
{C1, . . . , Cs} be a subcube partition for f , so C1, . . . , Cs partition {−1, 1}n into s subcubes on
each of which f is constant. By abuse of notation we will also identify a cube C t with a length-n
vector over {−1, 0, 1} in the obvious way; i.e. the ith coordinate of the string C t is

(Ct)i =











1 if xi = 1 for all x ∈ Ct,

−1 if xi = −1 for all x ∈ Ct,

0 otherwise.

Let us also introduce notation for the sets of coordinates which cubes fix:

pluses(Ct) = {i : (Ct)i = 1}, minuses(Ct) = {i : (Ct)i = −1},

fixed(Ct) = pluses(Ct) ∪ minuses(Ct).

Given an input x ∈ {−1, 1}n, we write C(x) to denote the subcube C t in C to which x belongs.
We also write δi to denote Prx∈U [i ∈ fixed(C(x))], the probability that the subcube partition
“queries” xi. Note that

∑n
i=1 δi equals Ex∈U [|fixed(C(x))|], the average number of coordinates C

“queries”.
When we draw x ∈ U , this determines C(x). However, we can equally well view the random

determination of (x, C(x)) via the following two-step procedure:

1. Pick a random subcube R from C by choosing each C t with probability 2−|fixed(Ct)|. In general
we will write R ∈ C to indicate that R is a random variable given by choosing a subcube from
among C1, . . . , Cs according to this natural probability distribution on subcubes. Form part
of x by letting it agree with R on the coordinates of fixed(R).

2. Choose the remaining bits of x, i.e. {xi}i6∈fixed(R), uniformly at random. We will write xR for
these bits.

After this procedure, (x, R) has the required distribution. Note that the value f(x) is determined
as soon as R is chosen; thus we may abuse notation and write f(R) for this quantity.

With this viewpoint, the following lemma becomes easy:

Lemma 1 For all i ∈ [n] and all j 6= i we have ER∈C [Ri] = 0 and ER∈C [RiRj ] = 0.

Proof: To prove the first statement note that 0 = Ex∈U [xi] = ER∈CEx
R
[xi]. Consider the quantity

xi after R ∈ C has been chosen but before xR has been chosen. If i ∈ fixed(R) then xi is determined
to be Ri, and we can replace Ex

R
[xi] with Ri. On the other hand, if i 6∈ fixed(R) then Ex

R
[xi] = 0,
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so we could still replace Ex
R
[xi] with Ri, since Ri = 0 when i 6∈ fixed(R). So either way we may

write ER∈CEx
R
[xi] = ER∈C [Ri], and the first statement is proved.

The proof of the second statement is very similar. We have 0 = Ex∈U [xixj ] = ER∈CEx
R
[xixj ].

Consider the quantity xixj after R has been chosen but before xR has been chosen. Again, if
i ∈ fixed(R) then xi is determined to be Ri and this can be pulled out of the inside expectation,
and similarly if j ∈ fixed(R). On the other hand, if xi is still undetermined then regardless of R
we have Ex

R
[xi] = 0, and similarly for xj and indeed for xixj if both are still undetermined. Thus

ER∈CEx
R
[xixj ] = ER∈C [RiRj ], and the second statement is proved.

3.2 Proof of the main inequality. We begin the proof with an easy lemma:

Lemma 2 Let f : {−1, 1}n → {−1, 1} be a Boolean function with a subcube partition C = {C1, . . . , Cs}.
Then

∑n
i=1 f̂(i) = ER∈C

[

f(R) ·∑n
i=1 Ri

]

.

Proof: We have
n
∑

i=1
f̂(i) =

n
∑

i=1
E

x∈U
[f(x)xi] = E

R∈C
E
x

R

[

f(x)
n
∑

i=1
xi

]

= E
R∈C

[

f(R) E
x

R

[

∑

i∈fixed(R)

xi +
∑

i6∈fixed(R)

xi

]]

= E
R∈C

[

f(R)
(

∑

i∈fixed(R)

Ri + E
x

R

[
∑

i6∈fixed(R)

xi

]

)]

= E
R∈C

[

f(R)
(

∑

i∈fixed(R)

Ri

)]

= E
R∈C

[

f(R)
∑

i∈n
Ri

]

.

With this lemma in hand we can give the proof that I(f) ≤
√

log P (f) for monotone f :

Theorem 3 Let f : {−1, 1}n → {−1, 1} be a Boolean function with a subcube partition C =
{C1, . . . , Cs}. Then we have

n
∑

i=1
f̂(i) ≤

√

n
∑

i=1
δi ≤

√

log s,

and if f is monotone we may thus write I(f) ≤
√

log s.

Proof: Since f is ±1-valued, from Lemma 2 we have

n
∑

i=1
f̂(i) ≤ E

R∈C

[
∣

∣

∣

n
∑

i=1
Ri

∣

∣

∣

]

(1)

with equality iff f(x) = sgn(
∑n

i=1 C(x)i) for all x, i.e. f(x) is the majority of the bits that are set
in C(x). Applying Cauchy-Schwarz, we have

E
R∈C

[
∣

∣

∣

n
∑

i=1
Rj

∣

∣

∣

]

≤
√

E
R∈C

[( n
∑

i=1
Ri

)2]

=

√

E
R∈C

[ n
∑

i=1
R2

i + 2
∑

i<j
RiRj

]

=

√

E
R∈C

[

|fixed(R)|
]

(2)

=

√

E
x∈U

[

|fixed(C(x))|
]

=

√

n
∑

i=1
δi,
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where (2) uses Lemma 1.
This proves the first inequality; to finish the proof we must show that

∑n
i=1 δi ≤ log s. We have

n
∑

i=1
δi = E

R∈C
[|fixed(R)|] =

s
∑

t=1
2−|fixed(Ct)| · |fixed(Ct)| = H(R),

where H(R) denotes the binary entropy of the random variable R ∈ C. Since C, the support of R,
is of cardinality s, this entropy is at most log s.

Remarks:

1. We note that our proof can easily be used to recover the standard bound I(f) ≤ I(Majn) ∼
√

2
π

√
n for arbitrary monotone Boolean functions on n variables. This is because in upper-

bounding ER∈C [|
∑n

i=1 Ri|], we may assume without loss of generality that each subcube
Ct ∈ C fixes exactly n bits. (To see this, suppose that C t fixes n′ < n bits and we subdivide
Ct into two subcubes each fixing one more bit. If

∑n
i=1(C

t)i 6= 0 then the contribution
of Ct to ER∈C [|

∑n
i=1 Ri|] is unchanged by this subdivision, and if

∑n
i=1(C

t)i = 0 then the
contribution increases.) But now observe that equality occurs in inequality (1), as noted
above, if f(x) always equals the majority of the bits set in C(x), i.e. if f(x) = Majn(x) for all
x.

2. The bound I(f) ≤
√

log P (f) need not hold for nonmonotone f ; an easy example is the parity
function on n variables for which I(f) = log P (f) = n.

4 Learning monotone Boolean functions

4.1 Spectral concentration. In this subsection we show that any monotone Boolean function
has all but ε of its Fourier spectrum concentrated on a set of P (f)O(1/ε2) many Fourier coefficients.

In [8] Friedgut showed that any Boolean function with “low” average sensitivity is well approx-
imated by a function that depends only on a “small” number of coordinates. In particular, the
proof of Corollary 3.2 in [8] yields the following:

Theorem 4 There is a universal constant C < ∞ such that for all f : {−1, 1}n → {−1, 1} and
ε > 0, if

t = 2I(f)/ε, J = {i : Inf i(f) ≥ C−t}, S = {S : S ⊆ J, |S| ≤ t},
then

∑

S 6∈S f̂(S)2 ≤ ε.

Combining this result with Theorem 3, we obtain:

Theorem 5 Let f : {−1, 1}n → {−1, 1} be a monotone function, ε > 0, and t = 2
√

log P (f)/ε.

Let J and S be as in Theorem 4. Then |S| = P (f)O(1/ε2) and
∑

S 6∈S f̂(S)2 ≤ ε.

Proof: The second part of the conclusion follows immediately from combining Theorems 3 and 4.
As for bounding |S|, we have |S| =

∑t
i=0

(|J |
i

)

≤ O(|J |t). But we also have |J | ≤ I(f)Ct ≤ tCt

using Theorem 3, and so |J |t ≤ 2O(t2) = P (f)O(1/ε2), as claimed.
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4.2 Approximating Boolean functions with spectral concentration. The following propo-
sition is a straightforward generalization of the “low-degree” algorithm of Linial, Mansour, and
Nisan [22].

Proposition 3 There is an algorithm A with the following property: Let f : {−1, 1}n → [−1, 1]
and let S ⊆ 2[n] be a collection of subsets of [n] with the property that

∑

S∈S f̂(S)2 ≥ 1 − ε. Then
if A is given S, access to EX(f), and parameters δ, θ > 0, it runs in poly(n, |S|, 1/θ) · log(1/δ)
time and with probability 1 − δ outputs a real-valued function g : {−1, 1}n → R of the form
g(x) =

∑

S∈S cSχS(x) such that Ex∈U [(f(x) − g(x))2] ≤ ε + θ.

Proof sketch: Algorithm A draws a sample of m labelled examples from EX(f) and uses them
to empirically estimate each of the Fourier coefficients f̂(S) for S ∈ S, using the fact that f̂(S) =
E[f(x)χS(x)]; the coefficients cS are the empirical estimates thus obtained. A standard analysis
(see e.g. Theorem 4.3 of [23]) shows that m = poly(|S|, 1/θ)·log(1/δ) suffices to give the proposition.

We remark that if f : {−1, 1}n → {−1, 1} is Boolean-valued, and g : {−1, 1}n → R satisfies
Ex∈U [(f(x) − g(x))2] ≤ ε′, then defining h : {−1, 1}n → {−1, 1} by h(x) = sgn(g(x)), it is easily
seen that Prx∈U [h(x) 6= f(x)] ≤ ε′ (see e.g. [22, 23]).

4.3 Learning monotone Boolean functions in polynomial time. We now give the proof of
Theorem 1. Given Theorem 5 and Proposition 3, the idea behind our main learning algorithm is
obvious: Given uniform examples from a target function f , identify all coordinates with influence

at least 2−O(
√

log P (f)/ε), and then run the algorithm from Proposition 3 using the set S from
Theorem 5. (We note that a similar algorithm is used by Servedio in [29], though the analysis is
completely different.)

By a standard doubling argument, we may assume the partition size P (f) is known to the
learner (see Exercise 1.5 of [19]). We now show that the learner can actually identify the suffi-
ciently influential coordinates. This is because f is monotone, and consequently Inf i(f) = f̂(i) =
Ex∈U [f(x)xi]. Since the learner can empirically estimate this latter quantity to within ±θ in time
poly(n, 1/θ) · log(1/δ) (with confidence 1−δ) by sampling, the learner can determine each influence

Inf i(f) of f to within an additive 2−O(
√

log P (f)/ε) in poly(n, 2O(
√

log P (f)/ε)) time steps, and it’s
easy to see this is sufficient to maintain correctness and the same time bounds. Complete details
can be found in a more general setting in Appendix C.

5 Generalizations: real-valued functions and p-biased measures

In this section we extend our learning result to real-valued functions f : {−1, 1}n → [−1, 1] on
the p-biased discrete cube. As in the Boolean case, we say a real-valued function f is monotone
if f(x) ≥ f(y) whenever x ≥ y. The partition size P (f) of f : {−1, 1}n → [−1, 1] is still defined
as the minimum number of disjoint subcubes that {−1, 1}n can be partitioned into such that f is
constant on each subcube.

The p-biased measure on {−1, 1}n is the probability distribution assigning probability
p|pluses(x)|q|minuses(x)| to the input x ∈ {−1, 1}n. (Here and throughout q denotes 1 − p). We
will write {−1, 1}n

(p) to indicate that {−1, 1}n is endowed with the p-biased measure and write

Prp[·] and Ep[·] to denote probabilities and expectations over x ∈ {−1, 1}n
(p).

We use standard notions of PAC learning for functions f : {−1, 1}n
(p) → [−1, 1]. This only

involves slightly altering the definitions from Section 2.2. Specifically, examples are now from the
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p-biased distribution {−1, 1}n
(p) instead of the uniform distribution2; and, the definition of an ε-

approximator is a function h : {−1, 1}n
(p) → R satisfying Ep[(h − f)2] ≤ ε (note that we use the

“square loss” as is common in learning or approximating real-valued functions). For other work
studying PAC learning under the p-biased distribution see e.g. [10, 12, 25, 29].

Our main learning theorem completely extends to the p-biased, real-valued case, as follows:

Theorem 6 There is an algorithm that (with confidence 1 − δ) can learn any monotone Boolean
function f : {−1, 1}n

(p) → [−1, 1] to accuracy ε, given p-biased random examples (x, f(x)), in time

poly(n, P (f)1/ε2) · log(1/δ).

Again, note that for any constant accuracy ε = Θ(1), the algorithm runs in polynomial time in the
partition size of f . Further note that unlike some p-biased PAC learning algorithms such as [10, 29],
our algorithm’s running time has no dependence on p and thus we have the claimed runtime bound
even if p depends on n or P (f), such as p = 1/

√
n.

5.1 Background: Fourier analysis under p-biased measures. Given two functions f, g :
{−1, 1}n

(p) → R, the p-biased inner product is defined as 〈f, g〉p = Ep[f(x)g(x)]. For S ⊆ [n] the

function φS(x) : {−1, 1}n
(p) → R is defined by

φS(x) =
∏

i∈S

φ(xi) where φ(xi) =

{

√

q/p if xi = 1,

−
√

p/q if xi = −1.

The functions {φS}S⊆[n] form an orthonormal basis with respect to 〈·, ·〉p. The p-biased Fourier

expansion of f : {−1, 1}n
(p) → R is f(x) =

∑

S⊆[n] f̃(S)φS(x) where f̃(S) = Ep[f(x)φS(x)]; note

that we write f̃ rather than f̂ to denote p-biased Fourier coefficients. Parseval’s identity continues
to hold, Ep[f

2] =
∑

S f̃(S)2.

We define the operator Di on functions f : {−1, 1}n
(p) → R by (Dif)(x) =

√
pq(f(x(i=1)) −

f(x(i=−1)), where x(i=b) denotes x with the ith bit set to b. It is not difficult to verify that (Dif)(x) =
∑

S3i f̃(S)φS\i(x). We now give the definition of p-biased influence:

Definition 1 The p-biased influence of the ith coordinate on f : {−1, 1}n
(p) → R is

Inf
(p)
i (f) = Ep[(Dif)2] =

∑

S3i

f̃(S)2.

Note that if f : {−1, 1}n
(p) → {−1, 1} then Inf

(p)
i (f) = 4pq Prp[f(x) 6= f(x⊕i)].

(We remark that this definition differs from the ones in [8, 9] by a multiplicative factor of 4pq.)

We define the p-biased average sensitivity to be I(p)(f) =
∑n

i=1 Inf
(p)
i (f) =

∑

S⊆[n] |S|f̃(S)2. Note
that in the case when p = 1/2 and f ’s range is {−1, 1}, these definitions agree with the standard
uniform-distribution definitions from Section 2.3.

We conclude this section with a useful relationship in the p-biased case between influences of
monotone real-valued functions and singleton Fourier coefficients:

Fact 4 For any monotone f : {−1, 1}n → [−1, 1] we have Inf
(p)
i (f) ≤ 2

√
pq · f̃(i), with equality iff

the range of f is {−1, 1}.
2There is a question as to whether or not the learning algorithm “knows” the value of p in advance. We show in

Appendix C that we may assume without loss of generality that the learning algorithm knows p.
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Proof: We have Inf
(p)
i (f) = Ep[(Dif)2]. Since f is monotone and has range [−1, 1] it is easy to

see that 0 ≤ (Dif)(x) ≤ 2
√

pq for all x. Thus (Dif)2 ≤ 2
√

pq · (Dif) with equality iff f ’s range is

{−1, 1}, and hence Inf
(p)
i (f) ≤ 2

√
pq · Ep[Dif ] = 2

√
pq · f̃(i).

5.2 Bounding influence in monotone real-valued functions under p-biased measures.

In this section we describe our analogue of Theorem 3 for real functions under p-biased measures.
We will need one more piece of notation: given a subcube partition C = {C1, . . . , Cs} for {−1, 1}n

(p),

we write δ
(p)
i = Prx∈{−1,1}n

(p)
[i ∈ fixed(C(x))] for the p-biased probability that C “queries” xi. We

now have:

Theorem 7 Let f : {−1, 1}n
(p) → R be a function with subcube partition C = {C1, . . . , Cs}. Then

we have
n
∑

i=1
f̃(i) ≤ ‖f‖2 ·

√

n
∑

i=1
δ
(p)
i ≤ ‖f‖2 ·

√

log s/
√

H(p),

where H(p) = p log(1/p) + q log(1/q). If f : {−1, 1}n
(p) → [−1, 1] is monotone then by Fact 4 we

may write I(p)(f) ≤
√

4pq/H(p)
√

log s.

The proof of Theorem 7 appears in Appendix A. The proof is analogous to that of Theorem 3;
the extension to real-valued functions is almost immediate, but the extension to p-biased measures
requires some care.

Using the bound pq log(1/pq) ≤ H(p), we have the following corollary:

Corollary 5 If f : {−1, 1}n
(p) → [−1, 1] is monotone then I(p)(f) ≤ 2

√

log P (f)/
√

log(1/pq).

5.3 Spectral concentration under p-biased measures. We now need to extend Friedgut’s
result to the p-biased, real-valued case. There are some difficulties involved. In [8], Friedgut gave
a p-biased version of Theorem 4; however, he left the quantitative details of the dependence on p
unspecified. More seriously, Friedgut’s theorem is simply not true for [−1, 1]-valued functions, even
in the p = 1/2 case. (See Appendix B for an example demonstrating this.)

However, we are able to circumvent this problem. The necessary insight is the following: A
real-valued function with small average sensitivity depends on only a small number of coordinates
if its range is sufficiently “discrete”. And for the purposes of learning an unknown function to some
prescribed accuracy, we don’t lose much by “rounding” the function’s values to a discrete range.

For γ > 0, let γZ denote the set of real numbers of the form γm, where m is an integer. By
making some small changes to Friedgut’s proof we can derive the following result (the proof is in
Appendix B):

Theorem 8 There is a universal constant C < ∞ such that for all 0 < ε, γ < 1/2 and all f :
{−1, 1}n

(p) → [−1, 1] ∩ (γZ), if

t = 2I(p)(f)/ε, τ = γC(pq)Ct, J = {i : Inf
(p)
i (f) ≥ τ}, S = {S : S ⊆ J, |S| ≤ t},

then
∑

S 6∈S f̃(S)2 ≤ ε.

We now combine Theorem 8 with Corollary 5, exactly in the manner of Theorem 5. The
√

log(1/pq) saved in Corollary 5 cancels with the pq paid in the τ from Theorem 8, and the factor
of γO(1) becomes negligible if we take γ = ε (indeed, even γ = 2−O(1/ε) would be negligible). We
get:

9



Theorem 9 Let ε > 0, f : {−1, 1}n
(p) → [−1, 1] ∩ (εZ) be a monotone function, and let t =

4
√

log P (f)/(ε
√

log(1/pq)). Let J = {i : Inf i(f) ≥ (C ′)−t log(1/pq)}, where C ′ < ∞ is a universal

constant, and let S = {S : S ⊆ J, |S| ≤ t}. Then |S| = P (f)O(1/ε2) and
∑

S 6∈S f̃(S)2 ≤ ε.

5.4 Learning monotone real-valued functions under p-biased measures. With Theo-
rem 9 in hand, the proof of our main learning result Theorem 6 is now not very difficult. Given
an unknown target function f : {−1, 1}n

(p) → [−1, 1] and ε > 0, let fε denote f with its values

“rounded” to the nearest integer multiples of ε. Clearly given examples from EX(f, p) we can
simulate examples from EX(fε, p). We now simply try to learn fε. It is easy to check that an ε-
approximator hypothesis for fε is also an O(ε)-approximator for f . Further, we have P (fε) ≤ P (f)
so a P (fε)

O(1/ε2) runtime is also P (f)O(1/ε2) as desired. The p-biased analogue of Proposition 3
holds with essentially the same proof. The only new difficulty is that we cannot exactly estimate the
quantities Inf i(fε). However from Fact 4, the quantities f̃(i) — which we can estimate empirically
— are upper bounds on the influences; so by taking all the coordinates i with f̃(i) ≥ τ , we get
all the sufficiently influential coordinates. There cannot be too many coordinates with large f̃(i),
since

∑n
i=1 f̃(i)2 ≤ 1.

For completeness, we give all the details of the proof of Theorem 6 in Appendix C.

6 Extension to stronger complexity measures?

It is natural to wonder whether our results can be extended to stronger complexity measures
than decision tree size and partition size. An obvious next complexity measure to consider is the
minimum number of (not necessarily disjoint) subcubes that cover {−1, 1}n and are such that f is
constant on each subcube. We refer to this as the subcube covering complexity of f and denote it
by CDNF (f), since it is equal to the minimum number of terms in any DNF formula for f plus
the minimum number of clauses in any CNF formula for f .

The following theorem shows that Theorem 3 does not hold for subcube covering complexity:

Theorem 10 There is a monotone Boolean function g : {−1, 1}n → {−1, 1} for which I(g) =

Ω(nlog4(6−2
√

5)) = Ω(n0.305) but
√

log CDNF (g) = O(n1/4).

The proof is by the probabilistic method. We define a distribution D over monotone Boolean
functions and show that some function g that is assigned nonzero weight under D must satisfy the
bounds of the theorem. See Appendix D.

7 Conclusion

In this paper we established a new bound on average sensitivity of monotone functions, and used
this bound to give the first algorithm that uses random examples to learn any monotone function
to high accuracy in time polynomial in the function’s decision tree or partition size.

A natural goal for future work is to obtain even stronger learning results for monotone functions.
Can the boosting methods used by Jackson in his Harmonic Sieve algorithm [13] be applied here?
We note that while the Harmonic Sieve algorithm makes essential use of membership queries, related
algorithms that combine boosting with Fourier techniques have been successfully developed for the
framework of learning from random examples only [14].
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A Proof of Theorem 7

We set up some p-biased preliminaries before proving the theorem. Let C = {C1, . . . , Cs} be a
subcube partition of {−1, 1}n

(p). We will identify the Ct’s with length-n vectors in a way compatible
with the φ-basis, i.e.

(Ct)i =











φ(1) =
√

q/p if xi = 1 for all x ∈ Ct,

φ(−1) = −
√

p/q if xi = −1 for all x ∈ Ct,

0 otherwise.

The definitions of pluses(Ct), minuses(Ct) and fixed(Ct) are as before; we define δ
(p)
i to be the

p-biased version of δi:

δ
(p)
i = Pr

p∈{−1,1}n
(p)

[i ∈ fixed(C(x))].

The observation that choosing x ∈ {−1, 1}n
(p) and considering (x, C(x)) can be viewed as choos-

ing R ∈ C and then xR still holds with the obvious p-biased interpretation. Specifically, the random

choice R ∈ C means selecting the cube C t with probability p|pluses(Ct)|q|minuses(Ct)|; we then set xi

for i ∈ fixed(R) so that φ(xi) = Ri; then we choose the coordinates xR at random from {−1, 1}(p).
The analogue of Lemma 1 and the analogue of Lemma 2 (for functions f : {−1, 1}n

(p) → R)
now hold immediately; to prove them we simply repeat the proofs, replacing xi and xj everywhere
with φ(xi) and φ(xj). As a consequence, we have the following simple lemma:

Lemma 6 Given α, β ∈ R, the quantity ER∈C [α · pluses(R) + β · minuses(R)] depends only on
pα + qβ.

Proof: Sum the first statement of the p-biased analogue of Lemma 1 over all i, and then expand
the definition of Ri; one gets:

E
R∈C

[

√

q/p · pluses(R) −
√

p/q · minuses(R)
]

= 0.

⇒ E
R∈C

[minuses(R)] = (q/p) · E
R∈C

[pluses(R)].

So substituting this in we get

E
R∈C

[α · pluses(R) + β · minuses(R)] = E
R∈C

[α · pluses(R) + (q/p)β · pluses(R)]

= (1/p) E
R∈C

[(pα + qβ) · pluses(R)],

completing the proof.

Proof of Theorem 7: Applying Cauchy-Schwarz directly to the analogue of Lemma 2, we have

n
∑

i=1
f̃(i) ≤

√

E
R∈C

[

f(R)2
]

·
√

E
R∈C

[( n
∑

i=1
Ri

)2]

= ‖f‖2 ·
√

E
R∈C

[ n
∑

i=1
R2

i

]

,

where we used the p-biased analogue of the second statement of Lemma 1 in the equality, just as
in the proof of Theorem 3. Let us now consider the quantity inside the square root. By definition,

E
R∈C

[ n
∑

i=1
R2

i

]

= E
R∈C

[

(q/p) · pluses(R) + (p/q) · minuses(R)
]

. (3)
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Now p(q/p) + q(p/q) = q + p = p · 1 + q · 1, so by Lemma 6,

E
R∈C

[

(q/p)·pluses(R)+(p/q)·minuses(R)
]

= E
R∈C

[pluses(R)+minuses(R)] = E
R∈C

[|fixed(R)|] =
n
∑

i=1
δ
(p)
i ,

completing the proof of the first inequality. As for the second inequality, note that the binary
entropy H(R) of the random variable R ∈ C is

H(R) = E
R∈C

[

log(1/ Pr[R])
]

= E
R∈C

[

log(1/p) · pluses(R) + log(1/q) · minuses(R)
]

= H(p) · E
R∈C

[ log(1/p)

H(p)
· pluses(R) +

log(1/q)

H(p)
· minuses(R)

]

.

But since p log(1/p)
H(p) + q log(1/q)

H(p) = 1 as well, applying Lemma 6 again yields

(3) = H(R)/H(p).

But H(R) ≤ log s as observed in the proof of Theorem 3, and the proof is complete.

B Proof of Theorem 8 and a counterexample

Proof of Theorem 8: Recall that we have

Dif(x) =
√

pq(f(x(i=1)) − f(x(i=−1))) =
∑

S: i∈S

f̃(S)φS\i(x)

and that Inf
(p)
i (f) = Ep[(Dif)2] = ‖Dif‖2

2, where throughout this section ‖ · ‖ denotes the norm
induced by the p-biased measure.

Since I(p)(f) =
∑

S |S|f̃(S)2, Markov’s inequality immediately gives that
∑

S: |S|>t f̃(S)2 < ε/2.

Let J ′ = [n] \ J . It now suffices to show that

∑

S: S∩J ′ 6=∅,|S|≤t

f̃(S)2 ≤ ε/2. (4)

Certainly the left side of (4) is at most

∑

i∈J ′

∑

S: i∈S,|S|≤t

f̃(S)2 =
∑

i∈J ′

‖Dif
≤t‖2

2 =
∑

i∈J ′

〈Dif
≤t, Dif〉, (5)

where we use the notation f≤t to denote the function f≤t(x) =
∑

|S|≤t f̃(S)φS . Now we have:

〈Dif
≤t, Di〉 ≤ ‖Dif

≤t‖4 ‖Dif‖4/3 (6)

≤ (1 + 1/
√

pq)t/2 ‖Dif
≤t‖2 ‖Dif‖4/3 (7)

≤ (1/pq)t Inf
(p)
i (f)1/2 E[|Dif |4/3]3/4. (8)

Here (6) is Hölder’s inequality, inequality (7) follows from a p-biased version of Bonami-Beckner
(here with the best bounds provided by [26]), and inequality (8) uses the generous bound (1 +

1/
√

pq)1/2 < (1/pq) and also ‖Dif
≤t‖2 ≤ ‖Dif‖2 = Inf

(p)
i (f)1/2.

14



We now observe that by virtue of the assumption that f ’s range is contained in γZ, we have
that |Dif(x)| is always either 0 or at least γ

√
pq. This implies that (8) is at most

(1/pq)t Inf
(p)
i (f)1/2 Ep[(γ

√
pq)−2/3 · |Dif |2]3/4 = (1/pq)t+1/4 γ−1/2 Inf

(p)
i (f)5/4

≤ (1/pq)t+1/4 γ−1/2 Inf
(p)
i (f) τ1/4, (9)

where we have used the definitions of Inf
(p)
i (f) and τ . Using the fact that

∑

i∈J ′ Inf
(p)
i (f) ≤ I(p)(f),

we can sum (9) and conclude that (5) is at most

(1/pq)t+1/4 γ−1/2 I(p)(f) τ1/4.

Thus to ensure (4) holds we only need

t(1/pq)t+1/4 γ−1/2 τ1/4 ≤ 1;

upper-bounding t(1/pq)t+1/4 by (1/pq)O(t), which holds for all t ≥ 0, we see that τ = γO(1)(pq)O(t)

suffices. Thus the choice of τ given in the definition of Theorem 8 suffices and the proof of this
theorem is complete.

We now justify the remark from Section 5.3 indicating that Friedgut’s theorem does not in
general hold for real-valued functions; in other words, the condition that f ’s range is contained in
γZ cannot be removed.

To see this, consider (in the uniform measure case) the function f : {−1, 1}n → [−1, 1] defined
by

f(x) =

{

sgn(
∑n

i=1 xi) if |∑n
i=1 xi| >

√
n

1√
n

∑n
i=1 xi if |∑n

i=1 xi| ≤
√

n.

It is easy to see that for each i = 1, . . . , n, Dif(x) is always either 0 or 1/
√

n, and is 1/
√

n for a
Θ(1) fraction of all x’s. Consequently we have Inf i(f) = Θ(1/n) and thus I(f) = Θ(1). In addition,
it’s clear that both E[f(x)] = 0 and that |f(x)| ≥ 1/2 for a Θ(1) fraction of all x’s; hence we have
∑

|S|>0 f̂(S)2 ≥ Ω(1). But now if we take ε to be any constant smaller than this Ω(1) then we get
a contradiction, since the choice of τ in Theorem 8 will be a constant and so J and hence S will
be empty (for all n sufficiently large).

C Technical details for learning

We begin with some basic learning details for the p-biased measure. First, as mentioned earlier,
we may assume without loss of generality that the learning algorithm “knows” p. The proof is
quite similar to the proof that a noise-tolerant learning algorithm can be assumed to know the
exact noise rate (see [19]). The basic idea is that we can run the learning algorithm repeatedly
using successively finer estimates (easily obtained from sampling) for the value of p. If the original
algorithm runs for T time steps, then if the guessed value for p is within ∆/T of the true value,
the statistical distance between the algorithm’s output when run with the guessed value versus the
true value will be at most ∆. It can be shown that at most a polynomial factor runtime overhead
is incurred in coming up with a sufficiently accurate guess; we give the details in the full version.

Next, we remark that low-degree algorithm of Linial, Mansour, and Nisan, Proposition 3, easily
carries over to the real-valued p-biased case with essentially the same proof:
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Proposition 7 There is an algorithm A with the following property: Let f : {−1, 1}n
(p) → [−1, 1]

and let S ⊆ 2[n] be a collection of subsets of [n] with the property that
∑

S:S /∈S f̃(S)2 ≤ ε. Then if
A is given p, S, access to a source EX(f, p) of p-biased random examples, and parameters δ, θ > 0,
it runs in poly(n, |S|, 1/θ) · log(1/δ) time and with probability 1 − δ outputs a real-valued function
g : {−1, 1}n → R of the form g(x) =

∑

S∈S cSφS(x) such that Ep[(f − g)2] ≤ ε + τ .

We now proceed to discuss the proof of Theorem 6. Let f : {−1, 1}n
(p) → [−1, 1] be the target

function. Given ε > 0, let fε denote the “rounded” version of f in which each of its values is rounded
to the nearest integer multiple of ε. It is clear that given access to EX(p, f) we can simulate access
to EX(p, fε). Our algorithm will use EX(p, fε) to learn fε in time poly(n, P (fε)

O(1/ε2)) · log(1/δ).
This is sufficient for learning f in the same time bound, because P (fε) ≤ P (f) and because if
Ep[(h − fε)

2] ≤ ε then

Ep[(h − f)2] = Ep[((h − fε) + (fε − f))2] ≤ 2Ep[(h − fε)
2] + 2Ep[(fε − f)2] ≤ 2ε + ε2/2 = O(ε).

Our goal is now essentially to use Proposition 7 given Theorem 9. As mentioned in Section 5.4,
unlike in the algorithm for Boolean-valued functions we cannot estimate the influences of fε directly

since the relationship Inf
(p)
i (fε) = f̃ε(i) does not hold in the real-valued case. We may, however,

use Fact 4 which says that f̃ε(i) — a quantity we can empirically estimate — is an upper bound

on Inf
(p)
i (fε).

We now describe the algorithm to learn fε using EX(p, fε). As in Section 4.3 we may assume
that the partition size P (fε) is known. The algorithm is as follows:

1. For i = 1, . . . , n empirically estimate f̃ε(i) = Ep[fε(x)φi(x)] to within an additive ±τ/4 (with

confidence 1− δ), where τ = (C ′)−t log(1/pq) and t is defined in Theorem 9. Let J ⊆ [n] be the
set of those i for which the obtained estimate is greater than τ/2.

2. Now run algorithm A from Proposition 7 with S = {S : S ⊆ J, |S| ≤ t} and θ = ε, outputting
its hypothesis g.

Let us first confirm the running time of this algorithm. In step (1), standard sampling bounds
ensure that poly(n, 1/τ) · log(1/δ) samples suffice. We may then conclude that |J | ≤ O(1/τ 2),
since

∑n
i=1 f̃ε(S)2 ≤ 1. It follows that |S| ≤ poly(1/τ t) = P (fε)

O(1/ε2), as necessary to bound
the running time. Finally, we still have

∑

S 6∈S f̃ε(S)2 ≤ ε because (with confidence 1 − δ) the J
the algorithm finds is a superset of the J from Theorem 9. Hence the algorithm correctly gives a
O(ε)-approximator hypothesis g with confidence 1−O(δ), and the proof of Theorem 6 is complete.

D Proof of Theorem 10

Let n = 4k. Let f1(a, b, c, d) be the “AND-OR” function on four Boolean variables f1(a, b, c, d) =
(a∧ b)∨ (c∧ d). An important property of f1 is that if each of its four arguments is independently
set to be 1 (true) with probability p, then Pr[f1 = 1] equals 2p2 − p4. For i = 2, 3, . . . , we define
the function fi on 4i variables to be fi = f1(f

1
i−1, f

2
i−1, f

3
i−1, f

4
i−1) where the superscripts indicate

distinct copies of fi−1 on disjoint sets of variables. Thus fk is a function on n variables computed
by a read-once Boolean formula that is a tree of ANDs and ORs at alternating levels.

We now define distributions D1, . . . ,Dk over monotone Boolean functions, where Di is a dis-
tribution over functions from {−1, 1}4i

to {−1, 1}. The distribution Di is defined in the following
way: a random draw from Di is obtained by independently substituting 1 for each of the 4i Boolean
arguments to fi with probability α, where α =

√
5 − 2 ≈ 0.236. (This construction and some of

the subsequent analysis is reminiscent of [30].) Note that for a random g drawn from D1 and a
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random x drawn uniformly from {−1, 1}4, we have that each of the four arguments to f1 is in-

dependently 1 with probability 1
2 + α

2 =
√

5−1
2 ; we denote this value by ρ. Consequently we have

Prg∈D1,x∈{−1,1}4 [g(x) = 1] = 2ρ2−ρ4, but this is easily seen to equal ρ. It follows from the recursive
definition of fi that for all i = 1, 2, . . . we have Pr

g∈Di,x∈{−1,1}4i [g(x) = 1] = ρ.

It is not difficult to show (see Theorem 2.4 of [16]) that CDNF (fk) ≤ 22k+1; as an immediate

consequence we have that CDNF (g) ≤ 22k+1 (and thus
√

log CDNF (g) = O(2k/2) = O(n1/4))
for every g that is in the support of Dk. But by Lemma 8 below we have that Eg∈Dk

[I(g)] =
Θ((6 − 2

√
5)k); clearly this implies that there is some g in the support of Dk for which I(g) is

Ω((6 − 2
√

5)k) = Ω(nlog4(6−2
√

5)). This proves Theorem 10.

Lemma 8 For i = 1, 2, . . . we have Eg∈Di
[I(g)] = (3 −

√
5)(6 − 2

√
5)i.

Proof: It is clear from symmetry that Eg∈Di
[I(g)] = 4i · Eg∈Di

[Inf1(g)]. We have

Eg∈Di
[Inf1(g)] = E

g∈Di,x∈{−1,1}4i [Pr[g(1, x2, . . . , x4i) 6= g(−1, x2, . . . , x4i)]

= Pr
g∈Di,x∈{−1,1}4i

[g(1, x2, . . . , x4i) 6= g(−1, x2, . . . , x4i)].

From the definition of Di, we have that with probability α =
√

5−2 the constant 1 is substituted for
the first argument of fi in g; if this occurs then clearly g(1, x2, . . . , x4i) = g(−1, x2, . . . , x4i) for all
x since g does not depend on its first argument. If this does not occur, then we have (for a random
g ∈ Di and a uniform x ∈ {−1, 1}4i

) that each of the other 4i−1 arguments to fi independently

takes value 1 with probability ρ =
√

5−1
2 .

Under the distribution on inputs to fi described in the previous paragraph, if i = 1 it is easy
to see that flipping the first argument of f1 flips the value of f1 if and only if the second argument
is 1 (probability ρ) and the AND of the third and fourth arguments is 0 (probability 1− ρ2). Thus
flipping the first argument of f1 flips the value of f1 with probability precisely ρ(1 − ρ2) which is
easily seen to equal 1 − ρ, using the fact that 2ρ2 − ρ4 = ρ. Similarly, if i = 2, then flipping the
first of the 16 arguments to f2 = f1(f

1
1 , f2

1 , f3
1 , f4

1 ) (again under the distribution of inputs to fi

described above) will flip the value of f2 if and only if the value of f1
1 flips (probability 1 − ρ as

shown above), f2
1 equals 1 (probability ρ), and f 3

1 ∧ f4
1 equals 0 (probability 1− ρ2). We thus have

that flipping the first argument of f2 flips the value of f2 with probability (1−ρ)ρ(1−ρ2) = (1−ρ)2.
An easy induction in this fashion shows that for all i, under the distribution of inputs described
above flipping the first argument of fi causes fi to flip with probability (1 − ρ)i.

We thus have that

Pr
g∈Di,x∈{−1,1}4i

[g(1, x2, . . . , x4i) 6= g(−1, x2, . . . , x4i)] = (1 − α)(1 − ρ)i = (3 −
√

5)

(

3 −
√

5

2

)i

,

which proves the lemma.

17


