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Abstract

We generalize the Kahn-Kalai-Linial (KKL) Theorem to random walks on Cayley and
Schreier graphs, making progress on an open problem of Hoory, Linial, and Wigderson. In
our generalization, the underlying group need not be abelian so long as the generating set is a
union of conjugacy classes. An example corollary is that for every f :

(
[n]
k

)
→ {0, 1} with E[f ]

and k/n bounded away from 0 and 1, there is a pair 1 ≤ i < j ≤ n such that Iij(f) ≥ Ω( log n
n ).

Here Iij(f) denotes the “influence” on f of swapping the ith and jth coordinates. Using this
corollary we obtain a “robust” version of the Kruskal-Katona Theorem: Given a constant-
density subset A of a middle slice of the Hamming n-cube, the density of ∂A is greater by at
least Ω( log n

n ), unless A is noticeably correlated with a single coordinate.
As an application of these results, we show that the set of functions {0, 1, x1, . . . , xn,Maj}

is a (1/2 − γ)-net for the set of all n-bit monotone boolean functions, where γ = Ω( log n√
n

).
This distance is optimal for polynomial-size nets and gives an optimal weak-learning algorithm
for monotone functions under the uniform distribution, solving a problem of Blum, Burch and
Langford.



1 Introduction

In this paper we:

• Generalize the celebrated Kahn-Kalai-Linial (KKL) Theorem [KKL88] to non-product-distribution
settings; specifically, to random walks on Cayley and Schreier graphs.

• Use this to give a “robust” version of the classical Krukal-Katona Theorem [Kru63, Kat68],
showing that a set’s shadow is noticeably larger than Kruskal-Katona promises, unless the
set has significant correlation with a single coordinate.

• Deduce that every monotone boolean function has correlation Ω( logn√
n

) with one of the func-
tions 0, 1, x1, x2, . . . , xn, or Majority. From this we derive an optimal weak-learning algorithm
for monotone functions under the uniform distribution (which is also highly efficient).

We proceed to discuss each of these topics (the KKL Theorem, the Kruskal-Katona Theorem,
approximating monotone functions) in depth.

1.1 The Kahn-Kalai-Linial Theorem

The paper of Kahn, Kalai, and Linial [KKL88] has been one of the most influential works ap-
plying Fourier analysis to theoretical computer science. The KKL Theorem, along with variants
from works such as [BKK+92, Tal94, Fri98], has proved enormously useful in a wide variety of
areas, from distributed computing [BOL90], to random k-SAT [Fri99] and random graphs [FK96],
communication complexity [Raz95], hardness of approximation [DS05, CKK+05, KR08], metric
embeddings [KR06, DKSV06], weak random sources [KZ06], and learning theory [OS08].

The usual statement of the Kahn-Kalai-Linial Theorem is:

KKL Theorem: For any f : {0, 1}n → {0, 1}, M[f ] ≥ Ω
(

logn
n

)
·Var[f ].

This statement uses the following definitions:1

Var[f ] = E[f(x)2]−E[f(x)]2 = Pr[f(x) = 0] ·Pr[f(x) = 1].

Ii[f ] = 1
2 E[(f(x)− f(x(i)))2] = 1

2 Pr[f(x) 6= f(x(i))], M[f ] = max
i∈[n]
{Ii[f ]}.

Here x(i) denotes the string x with the ith coordinate flipped. The quantity Ii[f ] is called the
influence of coordinate i ∈ [n] on f .2 One often focuses on “balanced” functions, meaning
Pr[f(x) = 1] = 1/2, or “roughly balanced” functions, meaning Ω(1) ≤ Pr[f(x) = 1] ≤ 1 − Ω(1).
In either case, Var[f ] ≥ Ω(1) and the KKL Theorem says that there exists at least one coordinate
with influence at least Ω( logn

n ).
The KKL Theorem is tight up to the constant, by the “Tribes” example of Ben-Or and

Linial [BOL90]. It improves over the elementary lower bound of 2
nVar[f ], which follows imme-

diately from the Poincaré Inequality for the discrete cube:

E [f ] ≥ 2
n

Var[f ], where E [f ] = avg
i∈[n]
{Ii[f ]} is the average influence. (1)

1Throughout this paper we use boldface to denote random variables, and these are assumed to have the uniform
distribution on their domain unless otherwise specified.

2The factor of 1/2 in its definition is often omitted; we take it for technical consistency with the later results in
the paper.
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Although the gain from Ω( 1
n) to Ω( logn

n ) might at first seem small, it is often the fact that the gained
factor log n goes to infinity that makes all the difference in applications. For example, log n → ∞
is the reason why a o(1) fraction of voters can control any two-party election [KKL88], why one
has sharp thresholds for graph properties [FK96], why the Sparsest-Cut semidefinite program has
a superconstant integrality gap [DKSV06], etc.

We will actually be interested in the following strengthening of the KKL Theorem, first stated
and proved by Talagrand [Tal94] though following easily from the proof method of KKL:

KKL Theorem 2: For any f : {0, 1}n → {0, 1}, E [f ] ≥ Ω(1) · log(1/M[f ])
n ·Var[f ].

This is a strengthening because we can of course replace the left-hand side byM[f ]. Generaliza-
tions of the KKL Theorem(s) are known to hold under the p-biased distribution on {0, 1}n [Tal94,
FK96] and under the uniform distribution on [0, 1]n [BKK+92]. However these generalizations seem
to depend heavily on having a product probability distribution; this is because all known proofs
(even recent alternate ones [Ros06, FS07]) are essentially Fourier-analytic, and Fourier analysis
seems to work best with product distributions.3

1.1.1 The KKL Theorem on Schreier graphs

In their survey on expander graphs [HLW06], Hoory, Linial, and Wigderson connected the KKL
Theorem to expansion in the Cayley graph of the group Zn2 with the standard set of generators
(ei)i∈[n]; this connection is the key to the metric embedding results in [KR06, DKSV06]. Hoory,
Linial, and Wigderson asked if this phenomenon could be found in Cayley graphs for other groups.

In this paper we prove such a result. To state it we need some more definitions. Let G be a
finite group acting transitively on a finite set X; we write xg for the action of g ∈ G on x ∈ X. Let
U denote a generating set for G which is symmetric: U = U−1. The Schreier graph Sch(G,X,U)
has vertex set X and an edge (x, y) whenever xu = y for some u ∈ U . A special case is when
X = G and xu = xu; in this case we recover the Cayley graph C(G,U). These are connected,
regular, undirected graphs. In fact, it is known [Gro77] that every regular graph of even degree is
a Schreier graph for some group action. Because of the regularity, it is natural to endow X with
the uniform distribution (which is not in general a product distribution). Then, for a function
f : X → {0, 1} we define Var[f ] as before, and we define

Iu[f ] = 1
2 E

x∼X
[(f(x)− f(xu))2] = 1

2 Pr
x∼X

[f(x) 6= f(xu)],

the influence of u ∈ U on f . We again define E [f ] as the average influence, 1
|U |
∑

u∈U Iu[f ]. Finally,
for the natural random walk on Sch(G,X,U) (where we move from x to xu for a random u ∈ U),
there is an associated log-Sobolev constant, denoted ρ (see [Gro75, DSC96]). It is defined as the
largest constant such that the following holds for all nonconstant f : X → R:

Log-Sobolev Inequality: E [f ] ≥ 1
2ρEnt[f2], where Ent[g] = E[g(x) log g(x)]−E[g(x)] log E[g(x)].

We can now state our generalization of the KKL Theorem 2:
3The one exception to this rule is the generalization by Graham and Grimmett [GG06] to distributions on {0, 1}n

which are “monotonic” (which is equivalent to satisfying the FKG lattice condition). Still, the Graham-Grimmett
proof is a reduction to the product-distribution case.
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Theorem 1.1. In the Schreier graph Sch(G,X,U), with log-Sobolev constant ρ, suppose that the
generating set U is a union of conjugacy classes. Then for any f : X → {0, 1},

E [f ] ≥ Ω(1) · log(1/M[f ]) · ρ ·Var[f ]; hence also ∃u ∈ U s.t. Iu[f ] ≥ Ω(1) · ρ log(1/ρ) ·Var[f ].

This recovers the KKL Theorem(s) by taking the Cayley graph on G = X = Zn2 with the
standard generating set (which is of course a union of conjugacy classes, since every group element
is its own conjugacy classes in an abelian group like Zn2 ). The log-Sobolev constant for the associated
random walk is known to be 2

n [Gro75].
The main application in this paper of Theorem 1.1 takes place in the nonabelian setting of the

Schreier graph Sch(Sn,
([n]
k

)
, U), where

([n]
k

)
denotes the set of n-bit strings of Hamming weight k,

Sn is the symmetric group acting on
([n]
k

)
in the natural way, and U is the set of all transpositions.4

Here we have
(
n
2

)
generators (ij), and we write Iij [f ] for the influence of switching the ith and jth

coordinates on f . Using the log-Sobolev constant for this graph determined by Lee and Yau [LY98],
we are able to conclude:

Corollary 1.2. For any f :
([n]
k

)
→ {0, 1}, with Ω(1) ≤ k/n ≤ 1− Ω(1),

E [f ] ≥ Ω(1) · log(1/M[f ])
n

·Var[f ]; hence also ∃(ij) s.t. Iij [f ] ≥ Ω
(

log n
n

)
·Var[f ].

We discuss the Schreier graph framework in greater detail in Section 2.1, and prove a more
detailed version of Theorem 1.1 and Corollary 1.2 in Section 2.2.

1.2 The Kruskal-Katona Theorem

The Kruskal-Katona Theorem [Kru63, Kat68] is a widely-used, classical result in combinatorics.
We state it in terms of subsets of slices of the boolean hypercube. Given a set of strings A ⊆

([n]
k

)
,

its (lower) shadow and upper shadow are

∂A = {x ∈
(

[n]
k − 1

)
: x ≺ y for some y ∈ A}, ∂uA = {x ∈

(
[n]
k + 1

)
: x � y for some y ∈ A},

where x ≺ y denotes that x ≤ y component-wise. The Kruskal-Katona Theorem gives an exact
lower bound on the size of |∂A| (respectively, |∂uA|) as a function of |A|; the minimizing A consists
of the first (respectively, last) |A| strings in colexicographic order. The precise formulas here are
cumbersome to deal with, so slightly weaker results are often stated. The most common one is due to
Lovász [Lov79], but we will state an even handier corollary due to Bollobás and Thomason [BT87].
For a set B ⊆

([n]
`

)
, we use the notation µ`(B) = |B|/

(
n
`

)
:

Kruskal-Katona Corollary: Let A ⊆
([n]
k

)
. Then5

µk+1(∂uA) ≥ µk(A)1−1/(n−k) ≥ µk(A) +
µk(A) ln(1/µk(A))

n− k
.

The parameter range of greatest interest to us is when both µk(A) and k/n are bounded
away from 0 and 1 by a constant. In this case, the Kruskal-Katona Corollary above implies that

4Note that the uniform distribution on
(
[n]
k

)
is not monotonic in the sense of Graham and Grimmett, so their

result does not apply. In fact the distribution is anti-monotonic.
5We can always make an analogous statement for lower shadows, in this case µk−1(∂A) ≥ µk(A)1−1/k, obtained

trivially by boolean duality. For the remainder of the paper we mainly discuss upper shadows.
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µk+1(∂uA) ≥ µk(A)+Ω(1/n). This amount of “density increase” cannot, in general, be improved.
(Since we know the original Kruskal-Katona Theorem is precisely sharp, this is to say that the
corollary does not lose much.) To see this, consider for example the dictator sets A = {x : xi = 1}
(at various slices). Clearly µk(A) = k/n and µk+1(∂uA) = (k + 1)/n, so the shadow density
increased by only 1/n. This is not the only such example; one gets upper shadow density increases
of only Ω(1/n) for any set A of the form {x : f(xI) = 1}, where I ⊆ [n] is of bounded cardinality
and f : {0, 1}|I| → {0, 1} is monotone. On the other hand, one may wonder if these are the only
such examples.

Our “robust” version of the Kruskal-Katona Theorem states that this is the case: given a
set A ⊆

([n]
k

)
in the parameter range of interest, if A is not noticeably correlated with a single

coordinate, then the shadow densities increase by the much larger amount Ω( logn
n ).

Theorem 1.3. For all ε > 0 there exists δ > 0 such that the following holds: If A ⊆
([n]
k

)
,

ε ≤ k/n, µk(A) ≤ 1− ε, then the following holds:

µk+1(∂uA) ≥ µk(A) + δ · log n
n

unless there exists i ∈ [n] with

Pr
x∼([n]

k )
[x ∈ A | xi = 1]− Pr

x∼([n]
k )

[x ∈ A | xi = 0] ≥ 1/nε.

We remark that a similar-in-spirit “stability” result for Kruskal-Katona was recently proved
via combinatorial means by Keevash [Kee08]. In the terminology of Tao [Tao07], Keevash’s is a
“99%-structured” result, whereas ours is a “1%-structured” result.

We prove Theorem 1.3 in Appendix A.

1.3 Approximating and learning monotone functions

We use our results to solve optimally the problem of weak-learning monotone functions under
the uniform distribution. The problem is an old one, introduced in the first paper on weak-
learning [KV89]. An algorithm is given access to uniformly distributed random examples (x, f(x))
from an unknown monotone function f : {0, 1}n → {0, 1}. The algorithm’s task is to construct
an approximation to f , called a hypothesis. The quality of a hypothesis h : {0, 1}n → {0, 1} is
measured by its accuracy with respect to the uniform distribution: Prx[f(x) = h(x)].

Since the class of all monotone functions is quite rich, one does not expect a polynomial-time
algorithm to be able to construct a highly accurate hypothesis. Indeed, the original algorithm of
Kearns and Valiant achieves accuracy 1/2 + Ω(1/n) (with high probability6); this is termed weak-
learning with advantage Ω(1/n) (the “advantage” is over random guessing). The Kearns-Valiant
algorithm is very simple: it draws O(n2 log n) examples and then chooses one of the hypotheses
{0, 1, x1, x2, . . . , xn}, whichever has the highest empirical accuracy on the sample. It is easy to show
that the true accuracy of the hypothesis xi for a monotone function f is exactly 1/2 + Ii[f ]. Thus
the basic inequality (1) implies that either 0 or 1 has accuracy Ω(1) or at least one xi has accuracy
at least Ω(1/n). A simple Chernoff bound implies that the empirical accuracies of all potential
hypotheses are close to the true accuracies, and this proves the correctness of the Kearns-Valiant
algorithm.

We introduce the terminology “net-based” for algorithms of the Kearns-Valiant type. This
means that they work by showing a information-theoretic result: a net for the class of all monotone
functions.

6At least 2/3, say, which can be boosted by standard means.
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Definition 1.4. Let C be a class of boolean functions, {0, 1}n → {0, 1}. An α-net for C is a
collection H of n-bit boolean functions such that for all f ∈ C there is an h ∈ H with Pr[f(x) 6=
h(x)] ≤ α.

As we’ve seen, the collection {0, 1, x1, . . . , xn} is a (1/2 − Ω( 1
n))-net for the class of monotone

functions. And given a polynomial-size (1/2−γ)-net for a class C, a Chernoff argument easily implies
a weak-learning algorithm for C under the uniform distribution using O(1/γ2) · log n examples and
polynomial time.7

Remark 1.5. The definition of a net for the class of monotone functions does not require that the
functions in the net themselves be monotone. However a simple shifting argument [Kle66] shows
that if one replaces each net function with a monotone shifted version, the net’s distance parameter
can only decrease. Thus it suffices to look for nets of monotone functions.

Bshouty and Tamon [BT96] later improved the Kearns-Valiant advantage to Ω( logn
n ), using the

KKL Theorem, but the main development came in the work of Blum, Burch, and Langford [BBL98].
They used the Kruskal-Katona Corollary to show that the tiny net {0, 1,Maj} is a (1/2−Ω( 1√

n
))-net

for the class of monotone functions, where Maj denotes the Majority function. They also showed
that any learning algorithm which sees f ’s value on only polynomially many strings can achieve
advantage at most O( logn√

n
). This is an information-theoretic result, and in particular it implies:

Theorem 1.6. (Blum-Burch-Langford) If H is a (1/2− γ)-net of polynomial size for the class of
monotone n-bit functions, then γ ≤ O( logn√

n
).

This shows that the net {0, 1,Maj} is close to optimal among polynomial-size nets, but leaves a
gap factor of log n. Blum, Burch, and Langford conjectured that efficiently weak-learning monotone
functions with advantage Ω( logn√

n
) is possible. Using a net approach to weak-learning monotone

functions, we can assume that each function in the net is monotone by shifting
A subsequent work of Amano and Maruoka [AM06] suggested directions for proving this; they

conjectured that {0, 1, x1, . . . , xn,Maj} is a (1/2 − Ω( logn√
n

))-net for monotone functions. Indeed,
Amano and Maruoka made the strictly stronger conjecture that for balanced monotone f , the
hypothesis Maj has accuracy 1/2 + Ω(E [f ] ·

√
n). This implies their net conjecture using the

KKL Theorem 2. In fact, unbeknownst to the authors, Benjamini, Kalai, and Schramm [BKS99,
Theorem 3.1] had shown that for balanced monotone f , the hypothesis Maj has accuracy

1
2

+ Ω

(
E [f ] ·

√
n√

log(1/(E [f ]
√
n))

)
. (2)

If one combines this with the KKL Theorem 2, one can show that {0, 1, x1, . . . , xn,Maj} is a (1/2−
Ω(
√

logn√
n

))-net for monotone functions. Unfortunately, in Appendix C we provide a counterexample
showing that the stronger conjecture of Amano and Maruoka is false.

Nevertheless, in this paper we use our robust Kruskal-Katona Theorem to show that the first
Amano-Maruoka conjecture is true, and hence so is the Blum-Burch-Langford conjecture. Indeed,
in Appendix B we show the following result:

Theorem 1.7. For all 0 < ε < 1/2 there exists 0 < δ < 1 such that the following holds: Let
f : {0, 1}n → {0, 1} be monotone. Then at least one of the below statements about accuracy with

7Assuming the functions in the net are easy to evaluate.
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respect to f must hold:

0 or 1 has accuracy ≥ 1− ε;
x1, x2, . . . , or xn has accuracy ≥ 1/2 + 1/nε;

Maj has accuracy ≥ 1/2 + δ · log n√
n
.

This of course gives a (1/2−Ω( logn√
n

))-net of size n+3 for monotone functions, a distance which
is optimal (up to the Ω(·) constant) for polynomial-size nets. In fact, this stronger result yields
an unusually efficient weak-learning algorithm. For any constant ε > 0, an algorithm can draw
O(n2ε log n) random examples to check whether 0, 1, x1, . . . , or xn has empirical accuracy at least
1/2+1/nε. If so, it outputs that hypothesis. If not, Theorem 1.7 implies that (with high probability,
using Chernoff bounds) Maj has accuracy 1/2 + δ · logn√

n
. The algorithm need not verify this; it

can simply immediately output Maj. Hence we get a nearly-linear time optimal weak-learner with
subpolynomial sample complexity:

Theorem 1.8. For any positive constant ε > 0, there is an algorithm for weak-learning the class of
n-bit monotone functions under the uniform distribution which achieves advantage Ω( logn√

n
) while

using O(nε) random examples and O(n1+ε) time.

Further, we give a (1/2−Ω( logn√
n

))-net of size O(n/ log n) for monotone functions, using slightly
more complicated functions.

We prove Theorem 1.7 in Appendix B.

2 KKL

In this section we set up and then prove our generalized KKL Theorem.

2.1 Preliminaries

Recall the setting described in Section 1.1.1, a random walk on the Schreier graph Sch(G,X,U),
where G is a group acting on X with symmetric generating set U . Examples to keep in mind
include the standard Cayley graphs of Zn2 and Znm, and the Cayley graph of Sn with transpositions.
Our main application is the setting where X =

([n]
k

)
, G = Sn, and U is the set of transpositions,

acting on strings in X in the natural way. We write L2(X) for the inner product space of all
functions f : X → R, with inner product 〈f, g〉 = Ex∼X [f(x)g(x)]. Here x ∼ X denotes that
x is drawn from the uniform distribution on X. We will consider some basic operators on this
space, associated with the random walk on Sch(G,X,U). Define the operators L (the normalized
Laplacian) and Lu (for u ∈ U) as follows:

Luf(x) = f(x)− f(xu), L =
1
|U |

∑
u∈U

Lu = id−K,

where K is the Markov operator or transition matrix for the random walk. Next, for t ∈ R≥0 we
define the continuous time Markov semigroup Ht,

Ht = e−tL = e−tetK =
∞∑
m=0

e−ttm

m!
Km.
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In other words, Htf(x) = Ey[f(y)], where y is generated from x by taking m steps in the random
walk, with m ∼ Poisson(t). The semigroup property is that HsHt = Hs+t.

It is easy to check that when x ∼ X and u ∈ U are chosen uniformly and independently, the
pairs (x,xu) and (xu,x) have the same distribution. From this one concludes that K is a self-
adjoint operator, and hence so are K and Ht. For a fixed u ∈ U , the Lu operator is not in general
self-adjoint (its adjoint is Lu−1). However, it does have the property 〈f, Luf〉 = 1

2〈Luf, Luf〉, which
follows from the fact that xu is uniformly distributed when x ∼ X is.

We next recall the basic functionals on L2(X) described in Section 1.1.1:

Definition 2.1. For u ∈ U we define the influence of u on f ∈ L2(X) to be

Iu[f ] = 1
2‖Luf‖

2
2 = 〈f, Luf〉 = 〈Luf, f〉. (3)

(The first equation here is the definition; the second two are an easy consequence of the fact
that xu is uniformly distributed when x ∈ X, u ∈ U are uniformly random.)

Definition 2.2. The average influence of f ∈ L2(X) is

E [f ] =
1
|U |

∑
u∈U
Iu[f ] = 〈f, Lf〉 = 〈Lf, f〉.

Next, we consider the eigenvalue/eigenfunction decomposition of the normalized Laplacian L.
It is well-known that L has nonnegative real eigenvalues denoted

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λ|X|−1.

(Positivity of λ1 follows because G acts transitively on X so the random walk is irreducible.) We
write (ψi)

|X|−1
i=0 for corresponding eigenfunctions forming an orthonormal basis of L2(X), with ψ0 ≡

1. Note that the ψi’s are also eigenfunctions for the operator Ht, with associated eigenvalues e−tλi .
For a given f ∈ L2(X) we write f i for its projection into the ith eigenspace, f i = 〈f, ψi〉ψi. We
have

E [f ] =
|X|−1∑
i=0

λi‖f i‖22 =
∑
i≥1

λi‖f i‖22, (4)

Var[f ] = E
x∼X

[f(x)2]− E
x∼X

[f(x)]2 =
∑
i≥1

‖f i‖22, (5)

the latter of these using ψ0 ≡ 1. From this we immediately deduce the Poincaré Inequality,
E [f ] ≥ λ1Var[f ]. The quantity λ1 is called the spectral gap of the random walk on Sch(G,X,U).
Related to this is the Log-Sobolev Inequality, discussed in Section 1.1.1. We will use the following
result of Diaconis and Saloff-Coste [DSC96]:

Theorem 2.3. ρ ≤ λ1 always.

A lower bound on ρ implies hypercontractivity for the operator Ht. The following is essentially
due to L. Gross [Gro75]; see also [DSC96, Theorem 3.5(ii)] (wherein α = ρ/2):

Theorem 2.4. If ρ is the log-Sobolev constant for the random walk, and 1 ≤ p ≤ q ≤ ∞ satisfy
q−1
p−1 ≤ exp(2ρt), then for all f ∈ L2(X), we have ‖Htf‖q ≤ ‖f‖p.

Here ‖g‖p denotes Ex∼X [|g(x)|p]1/p.
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Examples: For the Cayley graph on Zn2 , the spectral gap is λ1 = 2
n and the log-Sobolev constant

ρ is also 2
n [Gro75]. For the standard Cayley graph on Znm, m ≥ 3, the spectral gap is well known

to be λ1 = 1−cos(2π/m)
n ∼ 2π2

m2n
for large m. The log-Sobolev constant ρ is known to equal λ1 for

even m [CS03]; for odd m it is known [DSC96, CS03] that ρ ≥ 4π2/5
m2n

. For the Cayley graph on
Sn generated by transpositions, Diaconis and Shahshahani [DS81] have shown the spectral gap is
λ1 = 2

n−1 . The log-Sobolev constant is known [DSC96, LY98] to satisfy ρ = Θ( 1
n logn).

The main case of interest for our aplications is the Schreier graph on
([n]
k

)
generated by trans-

positions, 0 < k < n. Here the spectral gap is again λ1 = 2
n−1 , independent of k [DS87]. As for the

log-Sobolev constant, Lee and Yau [LY98] have shown that

ρ = Θ
(

1
n log(1/ν(k))

)
,

where we have introduced the notation

ν(k) = ν(n− k) = k(n− k)/
(
n

2

)
.

This quantity ν(k) is the probability the random walk takes a non-self-loop step; for the parameter
range of main interest to us, when k/n is bounded away from 0 and 1, we have ν(k) = Ω(1) and
hence ρ = Θ( 1

n).

2.2 Proof of our KKL Theorem on Schreier graphs

In this section we prove Theorem 1.1, our generalization of KKL to random walks on Schreier graphs.
A key hypothesis of that theorem is that the generating set U is a union of conjugacy classes. For
generating sets, this condition is equivalent to closure under conjugation. The condition holds
in all the example cases we described: Zn2 and Znm are abelian, so it is immediate there; for the
G = Sn examples it holds because the set of transpositions is a conjugacy class in G. The utility
of generating sets which are a union of conjugacy classes is the following:

Proposition 2.5. Suppose the generating set U for a Schreier graph is a union of conjugacy classes.
Then L and Lu commute for every u ∈ U , and so do Ht and Lu.

Proof. Regarding L and Lu, since subtracting from the identity operator does not affect commuta-
tivity, it suffices to show that the operators K and Au = id−Lu commute. Since Auf(x) = f(xu),
we have

KAuf(x) = E
v∈U

[Auf(xv)] = E
v∈U

[f(xvu)] = E
v∈U

[f(xuu
−1vu)].

It is immediate that v 7→ u−1vu is an injection on U , and since U is finite it is also a bijection.
Thus

E
v∈U

[f(xuu
−1vu)] = E

v∈U
[f(xuv)] = Kf(xu) = AuKf(x).

The commutativity of Ht and Lu now follows because Lu commutes with every power of L and
hence with Ht = exp(−tL).

We our now ready to prove our KKL generalization, which we restate here with explicit constants
(which we have not tried to optimize):
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Theorem 2.6. In the Schreier graph Sch(G,X,U), suppose that the generating set U is a union
of conjugacy classes. Let ρ denote the log-Sobolev constant for the standard random walk on the
graph. Then for any f : X → {0, 1},

E [f ] ≥ 1
4
· log3

(
1

2M[f ]

)
· ρ ·Var[f ]. (6)

Proof. Let us fix the following parameters:

t =
ln 3
2
· 1
ρ
, Λ =

2E [f ]
Var[f ]

(we clearly may assume ρ,Var[f ] 6= 0).
The proof will proceed by lower- and upper-bounding the quantity E [Htf ]. For the lower bound,

from equation (4) we have

E [Htf ] =
∑
i≥1

λi‖Htf
i‖22 =

∑
i≥1

λi exp(−2tλi)‖f i‖22 =
∑
i≥1

λi3−λi/ρ‖f i‖22,

Here the third equality used our choice of t, and the second equality used

‖Htf
i‖22 = 〈Htf

i, Htf
i〉 = 〈f i, HtHtf

i〉 = 〈f i, H2tf
i〉,

by the self-adjointness and the semigroup properties of Ht, along with the eigenvalue/eigenfunction
decomposition of H2t. We write w(λ) = λ3−λ/ρ, and drop the terms with λi ≥ Λ to conclude

E [Htf ] ≥
∑

i:λ1≤λi<Λ

w(λi)‖f i‖22 ≥ min
λ1≤λi<Λ

{w(λi)} ·
∑

i:λ1≤λi<Λ

‖f i‖22.

From equations (4), (5), and and our choice of Λ, we straightforwardly deduce∑
i:λ1≤λi<Λ

‖f i‖22 ≥
1
2
Var[f ]. (7)

As for the other factor, elementary calculus implies that w(λ) is decreasing for λ ≥ ρ/(ln 3). Since
λ1 ≥ ρ ≥ ρ/(ln 3) (using Theorem 2.3), we conclude

E [Htf ] ≥ 1
2
· w(Λ) ·Var[f ] = E [f ] · 3−Λ/ρ, (8)

using the definitions of w and Λ.

As for upper-bounding E [Htf ], by definition we have

E [Htf ] =
1

2|U |
∑
u∈U
‖LuHtf‖22. (9)

Since U is a union of conjugacy classes, Proposition 2.5 implies

‖LuHtf‖22 = ‖HtLuf‖22.

We now use the hypercontractivity Theorem 2.4, selecting q = 2, p = 1 + exp(−2ρt) = 4/3 (by our
choice of t). This gives

‖HtLuf‖22 ≤ ‖Luf‖24/3 = E[|Luf |4/3]3/2.
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Since f is {0, 1}-valued, so too is |Luf |. Thus |Luf |4/3 = |Luf |2 and so we have

E[|Luf |4/3]3/2 = (‖Luf‖22)3/2 = (2Iu[f ])3/2 ≤ 2Iu[f ] · (2M[f ])1/2.

Thus we have shown
‖LuHtf‖22 ≤ 2Iu[f ] · (2M[f ])1/2.

Substituting this into (9) yields

E [Htf ] ≤ 1
|U |

∑
u∈U
Iu[f ] · (2M[f ])1/2 = E [f ] · (2M[f ])1/2. (10)

Combining the lower and upper bounds (8) and (10) yields

3−Λ/ρ ≤ (2M[f ])1/2,

and taking logs gives us
Λ
ρ
≥ 1

2
log3

(
1

2M[f ]

)
,

which is (6) by definition of Λ.

2.3 Corollaries of our KKL Theorem

We now give some corollaries of Theorem 2.6. First, since M[f ] ≥ E [f ], we have

M[f ]
log(1/M[f ])

≥ Ω(ρVar[f ]),

and hence

M[f ] ≥ Ω(1) · log
(

1
ρVar[f ]

)
· ρVar[f ].

There is no point in saving the Var[f ] quantity inside the log, since the Log-Sobolev Inequality
already gives us

E [f ] ≥ Ω(ρ log(1/Var[f ])Var[f ])

for functions with range {0, 1}. Hence our corollary in the spirit of the original KKL Theorem is:

Corollary 2.7. In the setting of Theorem 2.6, there exists at least one generator u ∈ U with

Iu[f ] ≥ Ω(ρ log(1/ρ)) ·Var[f ].

We can now specialize our theorem and corollary to the cases discussed in the four examples.
As mentioned, these all have generating sets that are a union of conjugacy classes. In the case of
the Cayley graph on Zn2 , since ρ = 2

n we recover the classic KKL Theorem(s). In the case of the
Cayley graph on Znm, we get:

Theorem 2.8. If f : Znm → {0, 1} and we denote Ii[f ] = Prx∼Zn
m

[f(x) 6= f(x + ei)], M[f ] =
maxi Ii[f ], E [f ] = avgi Ii[f ], then

E [f ] ≥ Ω
(

log(1/M[f ])
m2n

)
·Var[f ], M[f ] ≥ Ω

(
log n+ logm

m2n

)
·Var[f ].
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In the case of the Cayley graph on Sn, since λ1 = 2
n−1 but ρ = Θ( 1

n logn), one can check that
unfortunately neither Theorem 2.6 nor Corollary 2.7 yields new information beyond the Poincaré
and Log-Sobolev Inequalities.

Our main motivation is the case of the Schreier graph on
([n]
k

)
under transpositions, a setting

where the uniform distribution is not a product distribution. Recalling ρ = Θ( 1
n log(1/ν(k))) in this

setting, we have:

Theorem 2.9. If f :
([n]
k

)
→ {0, 1}, then

E [f ] ≥ Ω(1) · log(1/M[f ])
n log(1/ν(k))

·Var[f ].

From this we also get Corollary 1.2 from Section 1.1.

3 Remaining results and future directions

For space considerations, the remaining discussions and proofs — how our generalized KKL Theo-
rem implies the robust Kruskal-Katona Theorem, and how this in turn implies our monotone net
(and hence optimal weak-learning) theorems — are given in the Appendix. These proofs use more
“elementary” combinatorial/probabilistic arguments.

For future work, probably the most interesting direction is to extend the KKL Theorem to even
more general settings. It would be especially appealing if one could weaken the the requirement
that the Schreier graph’s generating set be a union of conjugacy classes.
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A Kruskal-Katona

In this section we use our KKL generalization in the setting of functions on
([n]
k

)
to prove a robust

version of the Kruskal-Katona Theorem; specifically, we will be using Theorem 2.9.

A.1 Density increase and average influence

The connection between the KKL Theorem and influences on one hand, and Kruskal-Katona and
shadow densities on the other hand, is the following (recall the notation µ`(B) = |B|/

(
n
`

)
, ν(k) =

k(n− k)/
(
n
2

)
):

Proposition A.1. Let A ⊆
([n]
k

)
. Then

µk−1(∂A) ≥ µk(A) + E [1A]/ν(k),
µk+1(∂uA) ≥ µk(A) + E [1A]/ν(k).

Proof. The statements are equivalent by Boolean duality; we prove the second. Let x ∼
([n]
k

)
be

uniformly random. Let i ∈ [n] be a uniformly random index where xi = 0 and j ∈ [n] a uniformly
random index where xj = 1. Let y = x(ij) ∈

([n]
k

)
, and let z ∈

( [n]
k+1

)
be x with its ith coordinate

changed to 1. It’s clear that y is uniformly distributed on
([n]
k

)
and z is uniformly distributed on( [n]

k+1

)
. We also have x,y ≺ z with certainty, so if either x ∈ A or y ∈ A then z ∈ ∂uA. Hence

µk+1(∂uA) = Pr[z ∈ ∂uA] ≥ Pr[x ∈ A ∨ y ∈ A] = Pr[x ∈ A] + Pr[x 6∈ A ∧ y ∈ A].

We have Pr[x ∈ A] = µk(A) so it remains to show that Pr[C] = E [1A]/ν(k), where C is the event
“x 6∈ A ∧ y ∈ A”. The distribution on (x,y) is clearly the same as the distribution on (y,x), so

Pr[C] = Pr[x ∈ A ∧ y 6∈ A] = 1
2Pr[1A(x) 6= 1A(y)].

Consider now a slightly different experiment: We choose x′ ∈
([n]
k

)
uniformly, choose 1 ≤ i′ < j′ ≤ n

uniformly from among the
(
n
2

)
possibilities, and then form y′ = (x′)(i′j′). We have x′ 6= y′ iff

x′i′ 6= y′j′ which occurs with probability exactly k(n − k)/
(
n
2

)
= ν(k), and conditioned on this

occurring it’s easy to see that (x′,y′) has the same distribution as (x,y). Thus

1
2Pr[1A(x) 6= 1A(y)] = 1

2Pr[1A(x′) 6= 1A(y′) | x′ 6= y′] = 1
2(1/ν(k)) ·Pr[1A(x′) 6= 1A(y′)],

since the event 1A(x′) 6= 1A(y′) obviously implies x′ 6= y′. But

1
2Pr[1A(x′) 6= 1A(y′)] = E

i′,j′

[
1
2 Pr

x′
[1A(x′) 6= 1A((x′)(i′j′))]

]
= avg

i′,j′
Ii′j′ [1A] = E [1A],

completing the proof.

From this result, we see that results akin to the Kruskal-Katona Corollary follow from lower
bounds on the average influence of a set A. Indeed, the simplest such lower bound would use the
Poincaré Inequality. As stated in Section 2.1, Diaconis and Shahshahani [DS87] established that
the spectral gap λ1 for the transposition-based random walk on

([n]
k

)
is 2

n−1 , independent of k. Thus
the Poincaré Inequality for A ⊆

([n]
k

)
is:

E [1A] ≥ 2
n− 1

·Var[1A] =
2

n− 1
· µk(A)(1− µk(A)). (11)

Combining this with Proposition (A.1) yields:
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Theorem A.2. Let A ⊆
([n]
k

)
. Then

µk−1(∂A) ≥ µk(A) + µk(A)(1− µk(A))
n

k(n− k)
,

µk+1(∂uA) ≥ µk(A) + µk(A)(1− µk(A))
n

k(n− k)
.

This deduction seems to be new; we could not find it in the literature. It should be compared to
the Kruskal-Katona Corollary stated in Section 1.2. The two results are in general incomparable,
but are the same up to constants in the parameter range of interest to us, when k/n and µk(A) are
bounded away from 0 and 1.

Note that (11), Theorem A.2, Proposition A.1, and the Kruskal-Katona Theorem are all made
tight by “dictator sets”. As described in Section 1.2, dictator sets — as well as other sets depending
on a bounded number of coordinates — show that the density increase from µk(A) to µk+1(∂uA)
can be as low as 1

n . However our KKL generalization Theorem 2.9 implies that these “junta-type”
obstructions are the only thing keeping µk+1(∂uA) from exceeding µk(A) by Ω( logn

n ):

Theorem A.3. Let A ⊆
([n]
k

)
. Then

µk−1(∂A) ≥ µk(A) + ∆,
µk+1(∂uA) ≥ µk(A) + ∆,

where

∆ = Ω
(

1
ν(k) log(1/ν(k))

)
· log(1/M[1A])

n
· µk(A)(1− µk(A)).

The proof follows immediately from combining Theorem 2.9 with Proposition A.1. In the
parameter setting of interest to us, when k/n and µk(A) are bounded away from 0 and 1, we have

∆ = Ω
(

log(1/M[1A])
n

)
.

Hence we have the following corollary:

Corollary A.4. For all ε > 0 there exists δ > 0 such that the following holds: If A ⊆
([n]
k

)
,

ε ≤ k/n ≤ 1− ε, and ε ≤ µk(A) ≤ 1− ε, then the following holds:

µk−1(∂A) ≥ µk(A) + δ · log n
n

, (12)

µk+1(∂uA) ≥ µk(A) + δ · log n
n

, (13)

unless there exists 1 ≤ i < j ≤ n such that Iij [1A] ≥ 1/nε.

A.2 Our robust Kruskal-Katona Theorem

The conclusion of Corollary A.4 is not completely natural: the canonical sets whose upper-shadow
densities only change by Θ(1/n) are “dictator sets” such as Ai = {x : xi = 1}. For these sets the
corollary’s conclusion is certainly true: Iij [1Ai ] ≥ Ω(1) for any j. But there is no canonical choice
of j. We would prefer a conclusion saying that A must be noticeably “correlated” with a single
coordinate.
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Definition A.5. Given A ⊆
([n]
k

)
and i ∈ [n], we define the correlation of A with coordinate i to

be
corri[A] = Pr

x∼([n]
k )

[x ∈ A | xi = 1]− Pr
x∼([n]

k )
[x ∈ A | xi = 0].

We observe that it is not true that Iij [1A] being large implies either corri[A] or corrj [A] is large.
For example, if

A = {x : x1 ⊕ x2 ⊕ · · · ⊕ xn/2 = 1} ⊆
(

[n]
n/2

)
,

(here ⊕ denotes exclusive-or) then, e.g., I1n[A] ≈ 1/4 but corr1[A] and corrn[A] are negligible.
However, we can show that if Iij [1A] is large because one of (12), (13) fails, then in fact at least
one of corri[A] and corrj [A] is large:

Proposition A.6. Suppose A ⊆
([n]
k

)
, with

µk+1(∂uA)− µk(A) ≤ η. (14)

Suppose further that
Iij [1A] ≥ 2γ.

Then either corri[A] or corrj [A] is at least

γ

Pr[x1 = 0]
− η

Pr[x1 = 1]
=

n

n− k
· γ − n

k
· η.

In particular, if k/n is bounded away from 0 and γ ≥ Cη for a sufficiently large constant C,
then one of the correlations is at least Ω(γ). Observe also that the conclusion cannot be that both
corri[A] and corrj [A] must be large, by the example of dictator sets.

Proof. Assume without loss of generality that i = 1, j = 2. We write a uniformly random x ∼
([n]
k

)
as (x1,x2, z), where z ∈ {0, 1}n−2. The assumption I12[1A] ≥ 2γ is equivalent to Pr[C] ≥ 4γ,
where B is the event

B = “x1 6= x2 ∧ 1A(x1,x2, z) 6= 1A(x2,x1, z)”.

The event B can be partitioned into the following two mutually exclusive events:

“x1 6= x2 ∧ (0, 1, z) 6∈ A ∧ (1, 0, z) ∈ A” or “x1 6= x2 ∧ (0, 1, z) ∈ A ∧ (1, 0, z) 6∈ A”.

Hence one of these occurs with probability at least 2γ; without loss of generality, say it is the first,
in which case we will show the lower bound on corr1[A]. So we have

Pr[x1 6= x2 ∧ (0, 1, z) 6∈ A ∧ (1, 0, z) ∈ A] ≥ 2γ.

Whenever (1, 0, z) ∈ A, certainly (1, 1, z) ∈ ∂uA. Hence,

Pr[x1 6= x2 ∧ (0, 1, z) 6∈ A ∧ (1, 1, z) ∈ ∂uA] ≥ 2γ.

By symmetry, (x1,x2) = (0, 1), (x1,x2) = (1, 0) occur with equal probability conditioned on z, so

Pr[x1 = 0 ∧ x2 = 1 ∧ (0, 1, z) 6∈ A ∧ (1, 1, z) ∈ ∂uA] ≥ γ

⇒ Pr[x1 = 0 ∧ x 6∈ A ∧ (1,x2, . . . ,xn) ∈ ∂uA] ≥ γ.
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Thus we have established

Pr
x∼([n]

k )
[x 6∈ A ∧ (1,x2, . . . ,xn) ∈ ∂uA | x1 = 0] ≥ γ

Pr[x1 = 0]
. (15)

This begins to look like the claim that corr1[A] is lower-bounded. We will use condition (14) to
complete the proof. The key to what remains is studying four quantities:

µ0 := Pr
x∼([n]

k )
[x ∈ A | x1 = 0], µ1 := Pr

x∼([n]
k )

[x ∈ A | x1 = 1]

µ0
+ := Pr

y∼( [n]
k+1)

[y ∈ ∂uA | y1 = 0], µ1
+ := Pr

y∼( [n]
k+1)

[y ∈ ∂uA | y1 = 1].

We will take these parameters to be 0 if the event being conditioned on occurs with probability 0.
By definition, corr1[A] = µ1 − µ0 (and also corr1(∂uA) = µ1

+ − µ0
−). Next, observe that the

distribution (y | y1 = 0) can be gotten by choosing (x | x1 = 0) and then changing a randomly
chosen 0 from x2, . . . ,xn into a 1. Under this coupling, x ∈ A⇒ y ∈ ∂uA. Hence we may conclude

µ0 ≤ µ0
+, and similarly, µ1 ≤ µ1

+. (16)

It’s also not hard to show that µ0 ≤ µ1
+, but we will improve this using (15). Let x′ ∼

([n−1]
k

)
be

uniform. Since the event “(0,x′) ∈ A” implies the event “(1,x′) ∈ ∂uA”, we have

Pr[(1,x′) ∈ ∂uA]−Pr[(0,x′) ∈ A] = Pr
x′

[(0,x′) 6∈ A ∧ (1,x′) ∈ ∂uA].

But (0,x′) is distributed as (x | x1 = 0) and (1,x′) is distributed as (y | y1 = 1). Thus (15) implies
that the right-hand side of the above is at least γ/Pr[x1 = 0], and we conclude

µ1
+ − µ0 ≥ γ

Pr[x1 = 0]
. (17)

Finally, by hypothesis (14) we have

Pr[y1 = 1]µ1
+ + Pr[y1 = 0]µ0

+ −Pr[x1 = 1]µ1 −Pr[x1 = 0]µ0 ≤ η,

which implies (using (16), (17) in the second step below),

Pr[x1 = 1]µ1 ≥ Pr[y1 = 1]µ1
+ + Pr[y1 = 0]µ0

+ −Pr[x1 = 0]µ0 − η

≥ Pr[y1 = 1]
(
µ0 +

γ

Pr[x1 = 0]

)
+ Pr[y1 = 0]µ0 −Pr[x1 = 0]µ0 − η

= (Pr[y1 = 1] + Pr[y1 = 0]−Pr[x1 = 0])µ0 +
Pr[y1 = 1]
Pr[x1 = 0]

· γ − η

⇒ µ1 − µ0 ≥ Pr[y1 = 1]
Pr[x1 = 0]Pr[x1 = 1]

· γ − η

Pr[x1 = 1]

⇒ corr1[A] ≥ γ

Pr[x1 = 0]
− η

Pr[x1 = 1]
.

Combining Proposition A.6 with Theorem A.3 yields a natural robust Kruskal-Katona Theorem.
Or, if we use the simpler Corollary A.4, we get the robust Kruskal-Katona Theorem stated in
Section 1.2, namely Theorem 1.3.
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B Nets for monotone functions

In this section we use our robust Kruskal-Katona theorem to prove that {0, 1, x1, . . . , xn,Maj} is a
(1/2 − Ω( logn√

n
))-net for the class of monotone n-bit functions. Indeed, we will prove the stronger

statement Theorem 1.7. Recall that Theorem 1.7 also immediately implies our optimal weak-
learning algorithm for monotone functions under the uniform distribution, Theorem 1.8.

Starting in this section, we will make a notational switch which greatly simplifies various ex-
pressions: we will write −1 and 1 instead of 0 and 1. So henceforth

([n]
k

)
will denote strings x in

{−1, 1}n with exactly k 1’s (which we continue to denote by |x| = k), and boolean functions will
map {−1, 1}n → {−1, 1}. Note that with this notation,

Pr
x∼{−1,1}n

[f(x) = h(x)] =
1
2

+
1
2
· E

x∼{−1,1}n
[f(x)h(x)].

We define the correlation of f, h : {−1, 1}n → {−1, 1} to be Ex[f(x)h(x)]. This is also twice the
“advantage of hypothesis h for function f”. With this new notation, our goal Theorem 1.7 becomes
equivalent (up to constants) to:

Theorem B.1. For all 0 < ε < 1/2 there exists 0 < δ < 1 such that the following holds: Let
f : {−1, 1}n → {−1, 1} be monotone. Then at least one of the below statements about correlation
with f must hold:

a constant ±1 has correlation ≥ 1− ε; (18)

a dictator x1, x2, . . . , or xn has correlation ≥ 1
nε

; (19)

Majority has correlation ≥ δ · log n√
n
. (20)

As a small note, we need to decide how Maj is defined on strings x with |x| = n/2 when n is
even. In fact, since Prx[|x| = n/2] ≤ O(1/

√
n), for any fixed ε and hence δ, one can define Maj

arbitrarily on the middle layer and it will not change Theorem B.1 for sufficiently large n. For
convenience, then, we will define Maj(x) = 0 for |x| = n/2, n even; this is well-defined given our
notion of correlation.

Proof. The strategy will be to show that if (18) and (20) fail, then (19) must hold. We begin with
a straightforward calculation: for any 0 ≤ k < n/2, the correlation of Maj with f is

E
x

[f(x)Maj(x)] = E
x

[f(x) | |x| ≥ n− k] ·Pr[|x| ≥ n− k] (21)

− E
x

[f(x) | |x| ≤ k] ·Pr[|x| ≤ k] (22)

+ E
x

[f(x) | n/2 < |x| < n− k] ·Pr[n/2 < |x| < n− k] (23)

− E
x

[f(x) | k < |x| < n/2] ·Pr[k < |x| < n/2]. (24)

(Recall our convention that Maj(x) = 0 if |x| = n/2, and interpret (23), (24) as 0 if k is close enough
to n/2 that the event therein has probability 0.) By symmetry, the probabilities in (23), (24) are
identical. Furthermore, the expectation in (23) is at least that in (24), by monotonicity. Hence the
contribution from (23), (24) is nonnegative. As well, the probabilities in (21), (22) are identical.
Hence we conclude

E
x

[f(x)Maj(x)] ≥ Pr[|x| ≤ k] ·
(
E
x

[f(x) | |x| ≥ n− k]−E
x

[f(x) | |x| ≤ k]
)
. (25)

18



As a small point, this fact allows us to freely assume that n is sufficiently large as a function
of the constant ε; for otherwise, by taking δ small enough the theorem reduces to showing that
E[f ·Maj] > 0 assuming f is not constant, and this is implied by taking k = 0 in (25). It also shows
the (well-known) fact that E[f ·Maj] ≥ 0 for monotone f .

We proceed with some additional straightforward calculations. Let

m = dn/2− 1e, ,m′ = n−m = bn/2 + 1c,

indexing the two slices just outside n/2. If we take k = m in (25) we get

E
x

[f(x)Maj(x)] = Pr[|x| ≥ m′] · µ+ −Pr[|x| ≤ m] · µ−,

where
µ+ = E

x
[f(x) | |x| ≥ m′], µ− = E

x
[f(x) | |x| ≤ m].

But |x| ≥ m′ iff |x| > n/2, |x| ≤ m iff |x| < n/2. Since Pr[|x| = n/2] ≤ O(1/
√
n) we have

Pr[|x| > n/2] = Pr[|x| < n/2] = 1/2±O(1/
√
n). So

E
x

[f(x)Maj(x)] = 1
2(µ+ − µ−)±O(1/

√
n).

Similarly, and even simpler,
E[f ] = 1

2(µ+ + µ−)±O(1/
√
n).

We now come to the main part of the proof. Suppose we assume that (18), (20) fail (where we
will show how to choose δ = δ(ε) later). Then we derive

0 ≤ E
x

[f(x)Maj(x)] = 1
2(µ+ − µ−)±O(1/

√
n) ≤ log n√

n
,

i.e., µ− = µ+ ±O(1/
√
n), and

|12(µ+ + µ−)±O(1/
√
n)| ≤ 1− ε,

hence
|µ+|, |µ−| ≤ 1− ε/2

(where we’ve used ε/2 ≥ O(1/
√
n)). By monotonicity, µ+ ≥ µm′ and µ− ≤ µm, where

µm = E
x∼([n]

m)
[f(x)], µm′ = E

x∼([n]

m′)
[f(x)]. (26)

Thus we conclude
|µm′ |, |µm| ≤ 1− ε/2. (27)

We next derive an additional conclusion from (20) failing. Define b (“bottom”) and t (“top”)
by

b = bn/2−
√
n/2c, t = n− ` = dn/2 +

√
n/2c

(where we have 0 < b < t < n if n is sufficiently large), and define µb, µt analogously with (26).
Because (20) fails, we may assume

µt − µb ≤ 10δ · log n√
n
. (28)
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For otherwise, since Ex[f(x) | |x| ≥ t] ≥ µh and Ex[f(x) | |x| ≤ b] ≤ µb by monotonicity,
inequality (25) implies

E
x

[f(x)Maj(x)] ≥ Pr[|x| ≤ b] · 10δ · log n√
n
≥ δ · log n√

n
,

where we used Pr[|x| ≤ bn/2−
√
n/2c] ≥ .1 by the Central Limit Theorem (for sufficiently large n).

We also have µb ≤ µm < µm′ ≤ µt by monotonicity; combining this with (27) and (28) yields

|µt|, |µb| ≤ 1− ε/2 + 10δ · log n√
n
≤ 1− ε/4 (29)

(for n sufficiently large).

Finally, since t−b ≥
√
n, inequality (28) certainly implies that there exists k satisfying b ≤ k < t

and
µk+1 − µk ≤ 10δ · log n

n
. (30)

By monotonicity we have µb ≤ µk ≤ µt and hence from (29) we get |µk| ≤ 1 − ε/4. Since we
also have k/n = 1/2 ± O(1/

√
n), we now apply our robust Kruskal-Katona Theorem, specifically

Theorem 1.3, taking A = f−1(1) ∩
([n]
k

)
. (Throughout, recall that n may be assumed sufficiently

large.) By monotonicity, f is 1 on all strings in ∂uA. Thus, taking δ suitably small as a function
of ε, we deduce from (30) that there exists some i ∈ [n] with

Pr
x∼([n]

k )
[f(x) = 1 | xi = 1]− Pr

x∼([n]
k )

[f(x) = 1 | xi = −1] ≥ 12
nε
.

One can easily check that the quantity on the left here is at most

2 E
x∼([n]

k )
[f(x)xi] + 2

∣∣∣∣∣ Pr
x∼([n]

k )
[xi = 1]− Pr

x∼([n]
k )

[xi = −1]

∣∣∣∣∣ ;
hence we get

E
x∼([n]

k )
[f(x)xi] ≥

5
nε
, (31)

using |Pr
x∼([n]

k )[xi = 1]−Pr
x∼([n]

k )[xi = −1]| ≤ O(1/
√
n) ≤ 1/nε.

In fact, (31) together with (28) implies

E
x∼([n]

j )
[f(x)xi] ≥

4
nε

∀ b ≤ j ≤ t. (32)

We illustrate this for the case where j > k; the j < k case is similar (using the other inequality
in the lemma). When j > k, we use Lemma B.2 to yield

1
j
µj −

1
k
µk ≥

1
k

E
x∼([n]

k )
[f(x)xi]−

1
j

E
x∼([n]

k )
[f(x)xi].

As j/k = 1 +O(1/
√
n), we can deduce that

µj − µk ≥ E
x∼([n]

k )
[f(x)xi]− E

x∼([n]
k )

[f(x)xi] +O(1/
√
n).
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We know from monotonicity and (28) that µj−µk ≤ 10δ · logn√
n

. Because O(1/
√
n) and 10 ·δ logn√

n

are negligible compared to 1/nε, we get the result we want.
We now conclude:

E
x

[f(x)xi] = E
x

[f(x)xi | b ≤ |x| ≤ t] ·Pr[b ≤ |x| ≤ t] (33)

+ E
x

[f(x)xi | |x| < b or |x| > t] ·Pr[|x| < b or |x| > t]. (34)

The expectation in (33) is at least 4/nε, by (32). The probability therein is at least 1/2, by the
Central Limit Theorem (assuming n large enough). Hence (33) is at least 2/nε. On the other hand,
by Lemma B.3 below, (34) is at least −O(1/

√
n). Hence we have

E
x

[f(x)xi] ≥
2
nε
−O(1/

√
n) ≥ 1

nε
,

establishing (19) and completing the proof.

Below are the two lemmas we needed in the preceding proof.

Lemma B.2. Let f : {−1, 1}n → {−1, 1} be monotone and let i ∈ [n]. Write µk = E
x∼([n]

k )[f(x)]

and θk(i) = E
x∼([n]

k )[f(x)xi]. Then for any 0 < k ≤ ` < n,

µ`
`
− µk

k
≥ θk(i)

k
− θ`(i)

`
,

µ`
n− `

− µk
n− k

≥ θ`(i)
n− `

− θk(i)
n− k

.

Proof. The two statements imply each other, replacing f(x) with −f(−x); hence it suffices to prove
the first one. Write

µ−k = E
x∈([n]

k )
[f(x) | xi = −1],

and similarly define µ+
k , µ−` , µ+

` . We have

µk =
k

n
· µ+

k +
(

1− k

n

)
· µ−k ,

θk(i) =
k

n
· µ+

k −
(

1− k

n

)
· µ−k ,

and similarly for `. Thus the desired inequality holds iff

1
`

(µ` + θ`(i)) ≥
1
k

(µk + θk(i)) ⇔ 2
n
µ+
` ≥

2
n
µ+
k .

But this last inequality is true; it follows from the fact that restricting f by fixing the ith bit to 1
gives a monotone function.

Lemma B.3. Let f : {−1, 1}n → {−1, 1} be monotone and let i ∈ [n]. For integer n/2 ≤ k ≤
n/2 +

√
n,

E
x

[f(x)xi | |x| > k] ≥ −O(1/
√
n).

Similarly, for integer n/2−
√
n ≤ k ≤ n/2,

E
x

[f(x)xi | |x| < k] ≥ −O(1/
√
n).
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Proof. The two statements imply each other, replacing f(x) with −f(−x), so it suffices to prove
the first. We have

E[f(x)xi | |x| > k] = E[f(x) | |x| > k + 1,xi = 1] ·Pr[xi = 1, |x| > k + 1 | |x| > k]
+ E[f(x) | |x| = k + 1,x = 1] ·Pr[xi = 1, |x| = k + 1 | |x| > k]
− E[f(x) | |x| > k,xi = −1] ·Pr[xi = −1 | |x| > k].

The second quantity above is at most Pr[|x| = k + 1 | |x| > k] in absolute value, which is at most
O(1/

√
n), using the fact that k ≤ n/2 +

√
n. And in the first and third quantities, the probability

factors are 1/2±O(1/
√
n). Hence up to an additive ±O(1/

√
n), the whole expression is equal to

1
2

(E[f(x) | |x| > k + 1,xi = 1]−E[f(x) | |x| > k,xi = −1]) .

But we can prove this is nonnegative, completing the proof, by a coupling argument: Simply note
that we can draw (x | |x| > k + 1,xi = 1) by first drawing (x | |x| > k,xi = −1) and then
changing the ith coordinate from −1 to 1; and, note that this can only increase f ’s value, by
monotonicity.

Notice that this (1/2− Ω(log n/
√
n))-net for monotone functions contains n+ 3 functions. An

interesting question is how small such a net can be. We now give an explicit (1/2−Ω(log n/
√
n))-net

containing O(n/ log n) many functions.
Let t be an integer, and partition the variables into blocks {B1, B2, . . . , Bdn

t
e} where |Bi| ≤ t

for all i. Letting MajBi
be the majority function where only the bits in Bi are relevant, we prove

the following:

Theorem B.4. For all 0 < ε < 1/2 there exists 0 < δ < 1 such that the following holds: Let
f : {−1, 1}n → {−1, 1} be monotone. Partition the variables into blocks Bi, each of size at most t.
Then at least one of the below statements about correlation with f must hold:

a constant ±1 has correlation ≥ 1− ε; (35)

MajBi
has correlation ≥ 2−t+1 · 1

nε
; (36)

Majority has correlation ≥ δ · log n√
n
. (37)

Proof. We will directly use Theorem B.1. Suppose that the first and third case do not hold.
(The first and third cases of Theorem B.1 and the theorem to prove are exactly the same.) Then
Theorem B.1 says that some variable has 1/nε correlation with f . Without loss of generality,
assume this variable is x1, that x1 is in B1, and |B1| = t.

We first prove the following lemma:

Lemma B.5. Let f : {−1, 1}t → {−1, 1} be a monotone function, and let Maj be the majority
function on all t bits. Then

E
x

[Maj(x)f(x)] ≥ 2−t+1 E
x

[x1f(x)].

Proof. Because Maj and f are both monotone functions, the left hand side is nonnegative. If
Ex[Maj(x)f(x)] > 0, then clearly Ex[Maj(x)f(x)] ≥ 2−t+1, and because Ex[x1f(x)] ≤ 1 we are
done. Suppose Ex[Maj(x)f(x)] = 0. We have shown in our proof of Theorem B.1 (specifically,
using equation 25) that f must be constant. In this case, both sides of the inequality are 0,
completing the proof of the lemma.
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We partition the boolean cube into 2n−t subcubes for each setting of the bits not in B1. We
will partition a string x ∈ {−1, 1}n into (xB1 , xB1

) in the natural way. Then

E
x

[MajB1
(x)f(x)] = E

xB1

[ E
xB1

[MajB1
((xB1 , xB1

))f((xB1 , xB1
))|xB1

= xB1
]]

In the inner expectation, the bits not in B1 are fixed. Under this restriction, f is still a monotone
function, and MajB1

is the majority of the t unset bits. Thus we can apply the lemma to the inner
expectation, yielding:

E
xB1

[ E
xB1

[MajB1
((xB1 , xB1

))f((xB1 , xB1
))|xB1

= xB1
]] ≥ E

xB1

[2−t+1 E
xB1

[x1f((xB1 , xB1
))|xB1

= xB1
]]

= 2−t+1 E
xB1

[ E
xB1

[x1f((xB1 , xB1
))|xB1

= xB1
]]

= 2−t+1 E
x

[x1f(x)]

≥ 2−t+1/nε,

which is what we wanted to prove.

The following corollary comes from setting t = log(n
1
2−ε/(δ log n)) and setting the sizes of the

blocks as equal as possible:

Corollary B.6. For all 0 < ε < 1/2 there exists 0 < δ < 1 such that the following holds: Let
f : {−1, 1}n → {−1, 1} be monotone. Partition the variables into dnt e many blocks Bi, each of size

at most t = log(n
1
2−ε/(δ log n)). Then at least one of the below statements about correlation with f

must hold:

a constant ±1 has correlation ≥ 1− ε; (38)

MajBi
has correlation ≥ δ · log n√

n
; (39)

Majority has correlation ≥ δ · log n√
n
. (40)

The resulting net from this corollary is {−1, 1,Maj[n],MajB1
,MajB2

, . . . ,MajBdn/te
}; the size of

this net is dnt e+ 3 = O(n/ log n).

C A counterexample function

In this section we continue to describe boolean functions as maps {−1, 1}n → {−1, 1}. Additionally,
we change the notation for Hamming weight, defining:

for x ∈ {−1, 1}n, |x| =
n∑
i=1

xi ∈ [−n, n].

Recall that Amano and Maruoka [AM06] made the following conjecture, which if true would
immediately imply our theorem that {−1, 1, x1, . . . , xn,Maj} is (1/2 − Ω( logn√

n
))-net for monotone

functions, using the KKL Theorem 2.
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Conjecture C.1. Suppose f : {−1, 1} → {−1, 1} is a monotone function with Ex[f(x)] = 0. Then

E
x

[f(x)Maj(x)] ≥ Ω
(
E [f ] ·

√
n
)
.

In this section, we give a counterexample showing that this conjecture is, unfortunately, false.

Let 1
100

√
n log n < k < n3/5, where k and n are both odd integers, and write t = k/

√
n, so√

log n/100 < t < n1/10 is a real parameter. Our counterexample is based around the non-boolean
monotone function ft : {−1, 1}n → {−1, 0, 1} given by

ft(x) =


1 if |x| > k,
0 if −k ≤ |x| ≤ k,
−1 if |x| < −k.

In what follows, a(n, t) ∼ b(n, t) means a(n, t)/b(n, t)→ 1 as n→∞ (and hence t→∞). Also,
we write φ for the pdf of a standard Gaussian, φ(u) = 1√

2π
exp(−u2/2).

Proposition C.2. We have

E [ft] ∼ 2φ(t)/
√
n,

E
x

[ft(x)Maj(x)] ∼ 2φ(t)/t.

Proof. Clearly E[ft(x)Maj(x)] = 2Pr[|x| > k]. Further,

E [ft] =
1

2n

(
Pr
x

[|x| = k]
(
n

2
− k

2

)
+ Pr

x
[|x| = k + 2]

(
n

2
+
k + 2

2

))
+

1
2n

(
Pr
x

[|x| = −k]
(
n

2
− k

2

)
+ Pr

x
[|x| = −k − 2]

(
n

2
+
k + 2

2

))
∼ 1

2

(
Pr
x

[|x| = k] + Pr
x

[|x| = k + 2]
)
.

By well known error estimates for the Central Limit Theorem [Fel68, Chap. VII], which apply in
our situation because t < n1/10 = o(n1/6), we have

Pr[|x| = k] ∼ 2φ(t)/
√
n,

Pr[|x| > k] ∼ φ(t)/t,

and we also have Pr[|x| = k + 2] ∼ 2φ(t+ 2/
√
n)/
√
n ∼ 2φ(t)/

√
n. The result follows.

With this in hand, we now define our counterexample function f (we remind the reader that
we have not picked a value for t yet) via

f(x) =


1 if |x| > k,
x1 if −k ≤ |x| ≤ k,
−1 if |x| < −k.

The function f : {−1, 1}n → {−1, 1} is indeed a monotone function. It is also easily seen to be
balanced, E[f ] = 0. Next, we have E[f ·Maj] = E[ft ·Maj] + E[gt ·Maj], where

gt(x) =


0 if |x| > k,
x1 if −k ≤ |x| ≤ k,
0 if |x| < −k.
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Clearly 0 ≤ E[gt ·Maj] ≤ E[x1 ·Maj] < 1/
√
n. Thus using Proposition C.2 we get

2φ(t)
t

(1− o(1)) ≤ E
x

[f(x)Maj(x)] ≤ 2φ(t)
t

(1 + o(1)) +
1√
n
. (41)

Furthermore, it is not hard to calculate that E [f ] = (2 ± o(1))E [ft] + O(1/n). As a sketch of this
calculation, we state that roughly half of the strings counted 1 in E [ft] now count 0, and roughly
half now count 4, hence the (2± o(1)). Further, the O(1/n) term is the contribution to E [f ] from
the x1 portion of f .

Hence from Proposition C.2 that

4φ(t)√
n

(1− o(1))−O(1/n) ≤ E [f ] ≤ 4φ(t)√
n

(1 + o(1)) +O(1/n). (42)

We now get a counterexample to Amano and Muruoka’s conjecture by selecting k in such a way
that φ(t) ∼

√
logn√
n

. If we could freely choose t to be any real parameter then we could achieve

φ(t) =
√

logn√
n

exactly, taking t =
√

log n− log logn− log log
√

2π. Because t = k/
√
n and k is an

odd integer, we can not necessarily use this value of t. We can pick the closest value to t that is of
the required form, which differs by at most 2/

√
n. This still allows for φ(t) ∼

√
logn√
n

; since we also
get t ∼

√
log n, plugging into (41), (42) gives

E
x

[f(x)Maj(x)] ∼ 2√
n
, E [f ] ∼ 4

√
log n
n

,

contradicting the conjecture. Indeed, this parameter setting shows that the Benjamini-Kalai-
Schramm relationship (2) between E [f ] and E[f ·Maj] cannot be improved up to constants.

C.1 On the Russo-Margulis Lemma

Regarding our robust Kruskal-Katona theorem, we remark that in some sense Theorem 1.3 is the
“expected” result, given the KKL Theorem 2 and the Russo-Margulis Lemma [Mar74, Rus82]. The
Russo-Margulis Lemma implies that for monotone f : {−1, 1}n → {−1, 1},[

d

dp
E

x∼p{−1,1}n
[f(x)]

]
p=1/2

= 2n · E [f ],

where x ∼p {−1, 1}n denotes drawing x from the p-biased product distribution. Thus if f is
roughly balanced and has all of its influences at most 1/nε, then KKL implies that its p-biased
density has derivative at least Ω(log n) at p = 1/2. (The paper of Friedgut and Kalai [FK96] makes
this argument for general p.) Thus we might guess that in moving monotonically from, say,

( [n]
n/2

)
to( [n]

n/2+1

)
a monotone function’s density should increase by Ω( logn

n ). But of course, p-biased density
makes no sense in the context of the Kruskal-Katona Theorem where one doesn’t have a function
on all of {−1, 1}n, just a subset A of some slice

([n]
k

)
.

Further, the counterexample function f from this section shows that the Russo-Margulis Lemma
is not helpful for establishing our monotone net result. To see this, note that Russo-Margulis tells
us that [

d

dp
E

x∼p{−1,1}n
[f(x)]

]
p=1/2

= Θ(
√

log n).
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This might “suggest” that f ’s density on slices
([n]
k

)
for k very near n/2 should be increasing in

jumps of Ω(
√

logn
n ) per slice. However since f(x) = x1 in this regime, the actual density jumps are

only Ω( 1
n). Thus we see that Russo-Margulis is insufficiently sensitive to understand density changes

on adjacent slices; this is ultimately what necessitates our generalized KKL and Kruskal-Katona
Theorems, which are “local” to slices.

26


	Introduction
	The Kahn-Kalai-Linial Theorem
	The KKL Theorem on Schreier graphs

	The Kruskal-Katona Theorem
	Approximating and learning monotone functions

	KKL
	Preliminaries
	Proof of our KKL Theorem on Schreier graphs
	Corollaries of our KKL Theorem

	Remaining results and future directions
	Acknowledgments
	Kruskal-Katona
	Density increase and average influence
	Our robust Kruskal-Katona Theorem

	Nets for monotone functions
	A counterexample function
	On the Russo-Margulis Lemma


