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Abstract

In this paper we investigate the following question: If NP is slightly hard on average, is it
very hard on average? We show the answer is yes; if there is a function in NP which is infinitely
often balanced and (1 — 1/poly(n))-hard for circuits of polynomial size, then there is a function
in NP which is infinitely often (3 + n~'/2*¢)-hard for circuits of polynomial size. Our proof
technique is to generalize the Yao XOR Lemma, allowing us to characterize nearly tightly the
hardness of a composite function g(f(z1),..., f(z,)) in terms of: (i) the original hardness of
f, and (ii) the ezxpected bias of the function g when subjected to random restrictions. The
computational result we prove essentially matches an information-theoretic bound.

1 Introduction

Supposing that NP is hard for polynomial circuits, is it hard on average? That is, does it contain
functions for which every polynomial-sized circuit outputs the wrong answer on close to half of all
inputs? Let us make the following definition:

Definition 1 A boolean function f : {0,1}" — {0,1} is (1 — §)-hard for circuits of size s if no
circuit of size s can correctly compute f on a 1 — 9§ fraction of the inputs {0,1}".

Of course, we don’t know whether there is a function in NP which is even (1 — 27")-hard
for polynomial circuits, since this is precisely the NP vs. P/poly problem. However, under the
reasonable assumption that NP is at least slightly hard in the above sense, it is of interest to know
just how hard it really is. This problem has been extensively studied for EXP in the context of
derandomization, and very strong results are known — see [BFNW93, Imp95, IW97, STV01].

A crucial ingredient for some of these results is the Yao XOR Lemma. This is a kind of “direct
product theorem”, which describes what happens to the hardness of a function f when one takes
many independent copies of it and applies another function, g, to the results. In Yao’s case [Yao82],
g = PARITY and roughly speaking one gets that the resulting function f@ f®---@ f is exponentially
more hard than f.

While this is very useful for amplifying hardness within EXP, it doesn’t shed any light on the
hardness of NP. The reason is that f@® f&@---® f is not necessarily in NP, even when f is. In order
to ensure the composite function is in NP, we must use a g which is monotone (and also in NP).
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We are thus led to the question of whether there is a monotone function which amplifies hardness.

In this paper we investigate the direct product question in a general form:

Definition 2 Let f : {0,1}* — {0,1} and g : {0,1}* — {0,1} be boolean functions. Then we define
g® f to be the boolean function ({0,1}")*¥ — {0,1} given by (z1,... ,zx) = g(f(z1),... , f(zL)).

Question 1 Suppose f : {0,1}" — {0,1} is a balanced boolean function which is (1 — 6)-hard for
circuits of size s. Let g : {0,1}* — {0,1} be any function. What is the hardness of the composite
function g ® f?

By a balanced function we simply mean one which is 1 on exactly half of all inputs. We consider
only balanced functions f for technical reasons that will become clear later.

The tight answer we give to the above question is in terms of the expected bias of g, which we
now define. Let h : {0,1}" — {0,1} be a boolean function.

Definition 3 The bias of h is bias(h) = max{Pr[h = 0], Pr[h = 1]}.

(Here and throughout, we view functions’ domains as probability spaces with the uniform
measure.)

Definition 4 We denote by P§* the set of random restrictions p on n coordinates, in which each
coordinate is mapped independently to x with probability 6, 0 with probability (1 — §)/2, and 1 with
probability (1 — 8)/2. We write h, for the function given by applying restriction p to function h.

Our central definition:

Definition 5 The expected bias of h at § is:

ExpBiass(h) = E [bias(h),)].
pEPS

With this definition in place, we can now answer Question 1:

Answer 1 Roughly speaking, the hardness of gQ® f is ExpBiasys(g). To state our hardness theorem
exactly:

Theorem 1 For every r > 0, the function ¢ ® f is (ExpBias(Q_T)(s(g) + €)-hard for circuits of size
s = Q(ELloe/0) oy

In Section 2 we explain from an intuitive, information-theoretic perspective why Answer 1
should be the correct answer; then in Section 3 we transfer these ideas to the circuit setting and
give the computational proof of Theorem 1.

Note that a form of Yao’s XOR Lemma follows as a corollary; since ExpBiass(PARITY}) is
easily calculated to be 1 + (1 — §), we get (taking r = 1):

Corollary 1 (Yao) If f is a balanced boolean function which is (1 — 6)-hard for circuits of size s,
2
then f®f @@ f (k times) is (3 + 5(1 — 0)% + €)-hard for circuits of size Q(M s).



If we want to do hardness amplification within NP, we are led to look for monotone functions
g such that ExpBias,s(g) is much smaller than 1 — §. Qualitatively, we want a monotone function
which: (i) is nearly balanced, and (ii) remains close to balanced even when subjected to random
restrictions. For technical reasons, it turns out that functions for which each input variable has small
“influence” do well. Thus we are led to consider a classic pair of monotone functions introduced by
Ben-Or and Linial [BL90] which have this property.

The first of these is the “recursive majority of 3” function. This function does especially well
when § is very small, and can take (1 — 1/poly(n))-hardness to (1/2 + n~%)-hardness, for a certain
small @ > 0. The second function is the “tribes” function, and it gets very close to 1/2 when ¢
starts out fairly large. By first getting hardness down to 1/24 0(1) via recursive majority, and then
applying the tribes function, we get the main theorem:

Theorem 2 If there is a function in NP which is infinitely often balanced and (1—1/poly(n))-hard
for circuits of polynomial size, then there is a function in NP which is infinitely often (% +n Y 2re).
hard for circuits of polynomial size. (Here “infinitely often” simply means for infinitely many input
lengths n.)

The tribes function is nearly optimal given our techniques; getting hardness down to, say,
% + 1/n, would require a significant departure, if indeed this is even possible (see the discussion at
the end of Section 7).

Finally, let us remark that the assumption in Theorem 2 that the initial hard function is balanced
may be removed at the expense of a small loss in final hardness:

Theorem 3 If there is a function in NP which is infinitely often (1 — 1/poly(n))-hard for circuits
of polynomial size, then there is a function in NP which is infinitely often (% + n_1/3+6)—hard for
circuits of polynomial size.

1.1 Organization of the paper

In Section 2 we give an intuitive discussion explaining why Answer 1 is the correct hardness bound;
then in Section 3 we give the computational proof of Theorem 1. Section 4 introduces another
property of boolean functions called noise stability, which we relate to expected bias. In Section 5
we study the expected bias of the majority function and conclude that it is not a particularly good
hardness amplifier. Section 6 contains a estimation of the noise stability of the recursive majority
of 3 function which allows us to prove a theorem which reduces 1 —1/poly(n) hardness to 1/2+0(1)
hardness under the assumption that the initial hard function is balanced. Section 7 investigates
the tribes function and completes the proof of Theorem 2, reducing hardness to 1/2 + nol/2te At
the end of this section, we explain why we have essentially exhausted the limits of Theorem 1’s
applicability to monotone functions. Finally, Section 8, is devoted to proving Theorem 3.

Appendix A contains a technical proof omitted from the proof of Theorem 1 in Section 3.
Appendix B gives constructions showing that Theorem 1 is essentially tight.

1.2 Related work

An important earlier work on which we rely is the “hard-core set” paper of Impagliazzo [Imp95].
Impagliazzo’s paper shows that for any function f which is (1—4§)-hard, there is a (2—o(1))d-fraction
of inputs on which f is extremely hard — essentially unpredictable; whereas, off this hard-core set,
f may be very easy. With this result in hand, it’s possible to formalize the information-theoretic



reasoning behind hardness amplification. For example, Impagliazzo used his result to give a very
simple and intuitive proof of the Yao XOR Lemma. Similarly, we prove Theorem 1 by applying
Impagliazzo’s construction, and then formalizing the intuition outlined in Section 2.

As we will see, the expected bias of a function is closely related to another one of its intrinsic
properties, namely its sensitivity to noise in the input. Quantities related to these have previously
been studied in [BKS99] and [BJT99]. The former is an extensive work by Benjamini, Kalai, and
Schramm on the noise sensitivity and stability of boolean functions. It relates noise sensitivity to
Fourier coefficients, proving a formula similar to our Proposition 9. It also gives some mention to
the recursive majority of 3 function and tribes function which we treat in more detail in Section 6.

The second work mentioned is a learning theory paper by Bshouty, Jackson, and Tamon, which
has a similar spirit to the present paper. They define a quantity called “noisy distance”, which is
much like expected bias or noise stability, and they give lower bounds for learning under attribute
noise in terms of this quantity. They also prove a result much like our Proposition 7, and their
main theorem is proved via a hybrid argument with some of the same flavor as Theorem 1’s proof.

Subsequent to the present work, Elchanan Mossel and the author gave a fairly complete study
[MOO02] of the noise sensitivity of monotone functions.

Fourier analysis often greatly aids the study of structural properties of boolean functions, and
indeed spectral considerations lie hidden below much of the work in this paper, arising explicitly only
in the analysis of the noise stability of the tribes function. Relevant work on the Fourier analysis
of boolean functions — especially monotone ones — appears in [KKL88, BT96, Man98|. The two
monotone functions we use to amplify hardness were both introduced in [BL90], as examples of
functions in which individual variables have small influence.

The Yao XOR Lemma, and direct product lemmas in general, are studied in [GNW95] and
[Sha01] respectively. The constructions of [Sha0l] are used heavily in Appendix B. Other papers
which describe what boolean functions can or cannot do based on spectral properties include
[LMN93, GROO].

2 Intuition for Theorem 1

Roughly speaking, Yao’s XOR lemma says that if f is (1 — §)-hard, then f® f @ --- @ f (k times)
is (3 + 3(1 — 6)*)-hard. The intuition is that in order to calculate f(z1) @ --- @ f(zx), one must
correctly calculate each f(z;) — if any are missed, one might as well guess at the final answer.
Since f is (1 — §)-hard and z1,... ,z; are independent, we should only get advantage (1 — §)*,
hence hardness 1 + (1 — §)*.

To see the intuition behind Answer 1 we have to think more carefully about the issue of “know-
ing” whether or not f(z;) was calculated correctly.

Suppose that z1,... ,x are picked at random, and our task is to compute (¢ ® f)(x1,...xx) =
9(f(z1),..., f(zk)), where f is a balanced function which is (1 — §)-hard. We would like to ab-
stract away the hard function f and consider instead the problem of calculating g with imperfect
information. Let’s call y; = f(z;), 4 = 1...k the “true” inputs to g. Since f is balanced and the
x;’s are independent, it’s as if the true inputs were also chosen independently and uniformly from
{0,1}*. Let’s say that the hardness of f obscures our view of what the true inputs are, and we see
only “corrupted” inputs zi,... , 2k, which match the true inputs only with probability 1 — §. Our
goal is to guess g(y1,... ,yx) as best we can given that we see only z1,... , 2.

One way to model the hardness of f would simply be to say that z; = y; independently with
probability 1 — §. In this case, our best strategy would be a maximum likelihood one, involving
taking a weighted majority of the values of g, with the most weight being given to points near



(#1,...,2) in Hamming distance. However, it’s possible we might actually have more information
than this model allows — one could imagine that for certain recognizable inputs z; it is very easy
to calculate f(z;), and we can be sure our z; is correct. Indeed, it’s possible that for a large fraction
of the inputs, we not only know the answer, but we know we know. Taking this to its extreme, we
come to the most most helpful way in which the true inputs could be obscured:

For each ¢, with probability 1 — 2§, z; is the correct value of y;
and furthermore we know that this corrupted input is correct; with
probability 26, z; is set to a random bit and we know that this
corrupted input is completely uncorrelated to vy;.

Definition 6 We call the above situation the Hard-Core scenario (cf. [Imp95]).

Notice that in the Hard-Core scenario, each bit z; is still correct with probability 1 — §. To see
that this arrangement is more useful to us than the first one, simply note that we can simulate the
information we had in the first scenario by ignoring the extra knowledge about whether each z; is
correct or random.

The Hard-Core scenario in some sense gives us the most information — i.e., it models f as
being (1 — §)-hard in the easiest possible way. The optimal strategy for guessing ¢ in this scenario
is clear. We look at the restricted version of the function g gotten when the z;’s which are known to
be correct are plugged in. Since the remaining inputs are completely unknown, but also completely
random, we should guess according to the bias of the restricted function. I.e., if the function is
biased towards 0, guess 0; if it is biased towards 1, guess 1.

The probability that this strategy is correct is exactly the expected bias of g, over random
restrictions p with x-probability 2§ — i.e., ExpBiasys(g). This is essentially the hardness we prove
for g ® f in Theorem 1.

3 The hardness theorem

In this section we give the computational proof of Theorem 1, modeled after the intuitive discussion
of the previous section. Our main tool is the hard-core set theorem of Impagliazzo [Imp95]. Roughly
speaking, this theorem says that in the computational context of circuits, every (1—4)-hard function
conforms to the Hard-Core scenario described in Section 2. That is, on a 24-fraction of its inputs
the function is nearly impossible for small circuits, whereas on the remainder of its inputs it may
be very easy.

We record here as a lemma the exact statement of Impagliazzo’s theorem that we need:

Lemma 4 Let f be (1 — d)-hard for size s. Then for every constant r > 0, f has a “hard-core”
S C {0,1}™ of size at least (2 — r)d62"™ and at most 262™ with the following property: on S, f is
balanced and (1/2 + €)-hard for size Q(e2/log(1/6) s).

Proof: Combining results from [Imp95] and [KS99], there must exist a set S’ C {0,1}" of size at
least (2 —r)62" and at most (2 —7/2)d2" on which f is (1/2 + ¢/2)-hard for size Q(¢?/log(1/6) s).
We would like to add a small number of strings to S’ to make it balanced. Suppose without loss
of generality that f is biased towards 1 on S’. Since f is (1/2 4 €¢/2)-hard on ', it is 1 on at most
(1/2+¢€/2)|S’'| strings in S’. Since |S’| < (2—7/2)62" and we may assume without loss of generality
that € < r/4, the total number of 1’s f has in S’ is at most (1/2 + €/2)(2 — 2¢)62" < §2".



On the other hand, since f is (1 —d)-hard on {0,1}", f must take on the value 0 for at least §2"
strings in {0, 1}". It follows that there is a superset S’ C S C {0,1}" of S’ on which f is balanced.
This set has size at most 202".

It remains to show that f is (1/2+¢)-hard on S. We know that no circuit (of size 2(¢2/ log(1/6) s))
gets f right on S’ with probability more than 1/2 + €¢/2, and no circuit gets f right on S\ S’
with probability more than 1. We know that |S \ S’| = bias(f|s)|S’'| — (1 — bias(f|s/))|S'| =
(2bias(fls) — 1)|S"] < €|S'|. It follows that no circuit gets f right on S with probability more than:

[$"] IS\S _ oy SIS\ ST 1S\ S|
(12+e/Dg + 2 = 2+ ==+ B
_ 1/2+e/2+(1/2—e/2)|5‘>9f|
< 1/2+4+¢€¢/24+(1/2 —€¢/2)e
< 1/2 +¢

as needed. O

With Impagliazzo’s theorem formalizing the reason for which f is hard, there is only one more
ingredient we need to complete the proof along the lines outlined in Section 2. We need to show
that if all of a function’s inputs look completely random then it is impossible to guess its value
with probability better than its bias.

Lemma 5 Let B,, denote the n-dimensional Hamming cube, and suppose h : B, — {0,1} and
p: By — [0,1]. Further suppose that

27" Y pl@)+ ) (1-p() (*)

z€h=1(0) zeh~1(1)
is at least bias(h) + €. Then there exists an edge (z,y) in B, such that |p(z) — p(y)| > Q(e//n).

Proof: The idea here is that h is the function whose value on {0,1}" we are trying to guess, and
p(z) represents the probability with which we guess 0 when the input is . Our success probability
is given by (*), and the lemma says that if we are doing strictly better than bias(h) then we must
be doing at least some distinguishing between adjacent points in the cube; i.e., the points in the
cube cannot look completely indistinguishable to us.

Getting the lower bound Q(e//n) is a little tricky, so we defer the proof to Appendix A. For
now we just prove a lower bound of ¢/n. Note that using this weaker lower bound in the proof of
Theorem 1 makes no qualitative difference, and we could still prove Theorem 2 just as well.

Without loss of generality, suppose h is biased towards 0, and let b = bias(h) = Pr[h = 0] > 1/2.
By way of contradiction, assume |p(z) — p(y)| < €/n for all edges (z,y) € B,. Let M and m be the
maximum and minimum values of p on B,,. Since any of pair of points in the cube is at Hamming
distance at most n, it follows that M —m < e. Now (x) would be maximized if p(z) = M for all



z € h=(0) and p(x) = m for all x € h=1(1). Hence:

(¥*) < M+ (1-b)(1—-m)
= M+m—-1b+1—m

< @M -1)b+1-m+M—-M
< 2M-1)b+1—-M+e

= 1-M)—(2-2M)b+b+e
< b+e

since b > 1/2. This contradiction completes the proof. O

Now we prove the hardness theorem. We will actually prove a slightly stronger statement
than the one given in Section 1 — for techincal reasons we want the theorem to hold under the
assumption that the hard function f is only nearly balanced, not necessarily exactly balanced.

Theorem 1 Let f : {0,1}" — {0,1} be a function which is (1—0)-hard for size s. Let g : {0,1}% —

{0,1} be any function. Let € > 0 be any parameter, and assume that bias(f) < 1/2+ (1 —26)e/4k.
2

Then for every r >0, g ® f is (ExpBiass_,)5(g) + €)-hard for circuits of size s’ = Q(M s).

Proof: Let S be the hard-core given by Lemma 4, using parameters d, r, and ¢ = (c/8)e/Vk, where
c is the constant hidden in the Q(-) of Lemma 5. Then f is (1/2+¢')-hard on S for circuits of size s'.
Furthermore, we have bias(f|s) = 1/2, and because |S| < 262" and bias(f) < 1/2 + (1 — 2J)e/4k,
we get bias(f|sc) < 1/2 + e/4k.

Let n = |S]/2" > (2 — r)d, and let E = ExpBias,(g). It’s easy to see that ExpBiass(h) is a
nonincreasing function of ¢ for any h — simply note that in the guessing game of Section 2, the
more information the optimal strategy has the better. Hence E' < ExpBias;_,)5(9)-

Suppose by way of contradiction that C' is a circuit of size s’ computing g® f on an (ExpBia,s(Q_T) s(9)+
€) > E + ¢ fraction of the inputs in ({0,1}")*. For a given restriction p € Pnk’ let’s say that an input
(x1,...,zK) matches p when for all i we have z; € S = p(i) = x and z; € S¢ = p(i) = f(z;). Note
that the probability an input matches p is very nearly p’s natural probability under Pnk' In particu-
lar: the probability that z; € S is exactly 7, which is the correct x probability; the probability that
f(z;) =1 given that z; € S¢ is at most 1/2 + €/4k because bias(f|sc) < 1/2 + €/4k; and, a similar
statement holds for f(z;) = 0. Hence Pr[(z1,... ,z;) matches p] < (1/2 + ¢/4k)%/(1/2)k Pr[p] <
(14 (2/3)¢) Pr[p] for every p.

Let ¢, be the probability that C correctly computes (¢9® f)(z1,... ,zx) conditioned on the event
that (z1,...,x;) matches p. We have:

Pr[C correct] > E+e¢
= >, Pr[(z1,... ,7) matches plc, > 3 Prlplbias(g,) + €
= > p(1+(2/3)e) Pr[plc, > >, Pr[p]bias(g,) + e,

and it follows that there must exists a restriction p such that c, > bias(g,) + €/4.
By reordering the k length-n inputs to C' we may assume p is of the form (%, ... , %, bgr11,... ,bg)
N—_——
k! times
for some k' < k, b; € {0,1}. An averaging argument tells us there exist particular z}, 4101 Zg €
{0,1}"™ with f(z}) = b; such that C correctly computes g, ® f with probability at least ¢, when
the first k' inputs are drawn independently and uniformly from S, and the last k¥ — k' inputs are
hardwired to the x*’s.



Let C' be the size s circuit given by hardwiring in the z*’s. So C’ is a circuit taking k' strings
in {0,1}", and it correctly computes g, with probability at least ¢, when its inputs z1,... ,z) are
drawn independently and uniformly from S. From now on, whenever we speak of probabilities with
respect to C' we mean over uniformly random inputs drawn from S (not all of {0,1}").

For each (y1,... ,yr) € {0,1}¥' | let p(y) be the probability that C'(xz1,... ,zx) = 0 conditioned
on the event that y; = f(z;) for all 4 = 1...%". Since f is balanced on S, each of these events is
equally likely. It follows that the correctness probability of C' is exactly:

271 ST pw)+ Y. (1-p)

yegy ' (0) yegy (1)

Since this quantity is at least ¢, > bias(g,) + €/4, Lemma 5 tells us that there is an edge (z,2’) in
By such that [p(z) — p(2)| > c(e/4)/VE > (c/4)e/VE = 2€.

Reorder inputs again so that we may assume z = Ou, 2’ = 1lu for some string u € {0, 1}’“"1.

Again, an averaging argument tells us that there exist z3, ...z}, with (f(23),..., f(z}/)) = u such
that
Pr C'(z1,x5,...25) =0 — Pr C'(z1,x5,... 2% :O‘ > 2¢.
nefioilC E T T =0 = B[O ek a) =0

Now let C” be the size s’ circuit given by hardwiring in the new z*’s. Then:

Pr  [C"(z)=0] —

Pr  [C"(z) = O]‘ > 2¢,
z€(fls)1(0) ze(fls)1(1)

and so we have a circuit of size s’ which when given one random input from S can distinguish the
cases f(z1) =0 and f(z1) = 1 with advantage 2¢'. This contradicts the fact that f is (3 +€’)-hard
for size s'. O

In Appendix B we give unconditional constructions showing that this theorem is nearly tight.

4 Noise stability

We now know that the expected bias of g essentially characterizes the hardness of a composite
function g ® f. Unfortunately, ExpBiass(g) is often difficult to calculate, even for fairly simple
functions g. In this section we introduce another intrinsic property of boolean functions called noise
stability which turns out to be a very good estimator for expected bias and is in general easier to
calculate. Noise stability has been studied in a number of other works; e.g., [BKS99, BJT99, MO02].

Let’s begin with some notation. Because any binary function can be guessed with probability
at least 1/2, we often deal with probabilities in the range [1/2,1]. Sometimes it is more natural to
work with the amount these quantities are in excess of 1/2, scaled to the range [0, 1]. To that end,
we introduce the following notational quirk:

Definition 7 If Q is any quantity in the range [1/2,1], Q* will denote the quantity 2(Q — 1/2),
which is in the range [0, 1].

We give bias* a special name:

Definition 8 The advantage of a boolean function h is adv(h) = bias(h)*.



Let h be any boolean function on n bits. The advantage of h is related to the probability that
h agrees on two random values. The following fact is easy to prove:

Proposition 6 If z and y are selected independently and uniformly from {0,1}", the probability
that h(z) = h(y) is 5 + sadv(h)2.

Instead of picking z and y at random, we might first pick z at random and then make y a
random perturbation of z with noise 9.

Definition 9 If z € {0,1}", define Ns(x) to be a random variable in {0,1}" given by flipping each
bit of x independently with probability J.

Now we can define the noise stability of a boolean function h.
Definition 10 The noise stability of h at § is:
NoiseStabs(h) = Pr[h(z) = h(Ns(z))],
where the probability is taken over the choice of x and the noise.

We can see the connection between noise stability and expected bias by recalling the intuitive
discussion from Section 2. Suppose we are in the Hard-Core scenario, in which with probability 1—24
we know that z; is the correct answer f(z;), and with probability 20 we know that z; is a completely
random bit. Then NoiseStabs(g) is exactly the success probability of the suboptimal, naive strategy
of just guessing g(z1, ... , 2x) for the value of g(f(x1),..., f(xg)). Since the optimal strategy had a
success probability of ExpBiasys(g), we immediately conclude that NoiseStabs(h) < ExpBiasys(h)
for all functions h.

Perhaps surprisingly, the naive guessing strategy is not so bad. The following result shows that
if we look at the advantage over 1/2 of the naive strategy and the optimal strategy, the naive
strategy is worse by at most a square root.

Proposition 7 NoiseStabs(h)* < ExpBiasys(h)* < 1/NoiseStabg(h)*.

Proof: Given a p € PP, write stars(p) for the set of coordinates to which p assigns x. By linearity
of expectation, ExpBiasys(h)* = Ejcpp [adv(h,)]. On the other hand,

NoiseStabg(h) = z,fofse[h(x):h(Né(m))]
= pg%g [ho(y) = hp(2)]

Y,2€ {0’1}Stars(p)
= B[Pl (y) =y (2)]

1 1
= E, [5 + 5adv(hp)2] (by Proposition 6)

and so NoiseStabs(h)* = E,[adv(h,)?]. Since adv € [0, 1], we get the left inequality since adv? <
adv, and we get the right inequality by Cauchy-Schwarz. O

Proposition 7 is useful because it tells us that NoiseStabs(h) is a good estimator for ExpBiasys(h);
the two quantities are qualitatively similar in that if one is 1 — o(1) then so is the other, and sim-
ilarly for 1 — ©(1) and 1/2 4 o(1). It’s also satisfying to confirm that functions which are highly



noise-unstable make good hardness amplifiers — this is roughly the property of XOR to which one
appeals in intuition for the XOR Lemma.

We end this section with two tools which help in calculating noise stability. The first is a simple
but useful observation which follows immediately from the definitions:

Proposition 8 Ifh is a balanced boolean function, and g is any boolean function, then NoiseStabs(g®
h) = NOiseStabl—NoiseStabg(h) (9)-

The second tool is a formula for noise stability in terms of Fourier coefficients; similar formulas
appear in [BKS99, BJT99]. Let us set up the usual Fourier machinery. We begin with an important
notational convention: Whenever we discuss Fourier coefficients, instead of true being represented
by 1 and false by 0, we will use —1 and +1, respectively.

Let h: {+1,—1}" — {41, —1} be any boolean function. Then h has a unique representation as
a multilinear polynomial in z1, ... ,z, of total degree at most n. The coefficients of this polynomial
are the Fourier coefficients of h Let =, denote the monomial Hze g T;, where S C [n]. Then the

Fourier coefficient corresponding to this monomial is denoted %(S). Note that k() = E[h].
The formula for noise stability is as follows:

Proposition 9 Let h: {+1,-1}" — {+1,—1}. Then:
NoiseStabs(h)* = Y (1 — 26)/5/h(S)2.
SCln]

Proof: Let z € {+1,—1}" be chosen uniformly at random, and let y = Ns(z). Then:

NoiseStabs(h) = Pr[h(z) = h(y)]
E[L(a)=h(y)]
= E[l - (h(z) = h(y))?/4] (since h € {+1,-1})
— 1 LB - LB + L B)h)
= 5+ 5 E[h(z)h(y)] (since h* = 1);

hence NoiseStabs(h)* = E[h(z)h(y)]. But
E[h(z)h(y)] = E h(S)zs)(Y h(T)y,))
S T

= Zh(SE )E[z5yr]-

If S £ T, it is fairly easy to see that E[xsyT] =0: Let : € SAT; say i € T\ S. Now y; is
equally likely to be +1 or —1, and hence E[z,y,] = 3 Elzgy, |y = +1] + %E[:vSyT\yi =-1] =
%E[xSyT\{i}] - %E[:L.SyT\{i}] =0.

It remains to prove that E[z,ys] = (1 — 26)I5/. Since z, and y, are both either +1 or —1,
Elz,y,] = Prlz, = y,] — Przg # y,] = -1+ 2Pr[z, = y,]. This last probability is exactly the
probability that, if we flip |S| coins with probability J for heads, then we get an even number of
heads. A trivial induction shows that this is indeed % + 3(1 — 26)I5]; another way to see it is to
write £ = | S|, and note that the probability is:

(1-8)F+ (’;) (1—6)26% + (Z) (1—8)%* +

= (=948 1A= =) /2= 5+ (1 -2,

DO |

as claimed. O
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5 Majority

This section is devoted to one of the simplest monotone functions, the majority function. It turns
out that the majority function is not a very good hardness amplifier, but it is nevertheless interesting
to study its expected bias. Let MAJ, denote the majority function on n bits; for simplicity we
assume 7 to be odd.

Proposition 10 For any 6 € [0,1], ExpBias;(MAJ,) — 2 + oL arcsin(l — 26) as n = oo. In
particular:

ExpBias;(MAJ,,) — (% + % arcsin(1 — 26)) ‘ <O0(1/4/6(1 = d)n).
Proof: Suppose p € PJ’ is chosen at random. Then (MAJ,), is biased towards the majority value
of the non-star bits of p. Indeed, bias((MAJy),) is exactly equal to the probability that, if one
proceeds to set the starred bits of p at random, the majority is preserved. (This is ambiguous in
the case that the non-star bits of p split evenly; we shall see that we needn’t worry about this case.)

Let us model this random experiment as follows: Suppose we consider each bit position inde-
pendently and in sequence, 1, 2, ... , n. For each position 7, we first choose whether 7 will be a “star
position” (probability §) or a “non-star position” (probability 1 — d). Either way, we also select a
random bit associated to position ¢ (equally likely 0 or 1). We wish to calculate the probability
that the majority of all the bits agrees with the majority of the non-star bits.

Our experiment corresponds to a random walk on the lattice points of R? in a natural way: Let
star positions correspond to vertical steps and non-star positions correspond to horizontal steps;
further, let right and up steps correspond to choosing the bit 0 and left and down steps correspond
to choosing 1. Now we have an n-step random walk starting at the origin, where each step is:
(4+1,0) with probability (1 —4)/2, (—1,0) with probability (1 — d)/2, (0,41) with probability §/2,
or (0, —1) with probability §/2. Let (X,Y) denote the final position of the random walk. Then the
majority of all the bits agrees with the majority of the non-star bits if and only if: X +Y > 0 and
X >0;0r, X+Y <0and X <0. (Again, the boundary of this region falls into an ambiguous
case, but this will be unimportant.) Call this region R; R is shown shaded on the left of Figure 1.

Let us write X1,... ,X, € {—1,0,+1} for the z-components of the random walk’s n steps, and
similarly Y3,...,Y, for the y-components. We have X = X1 +---+ X,,, Y =Y +---+Y,, and we
wish to study the distribution of (X,Y"). Note that the mean of one step in the random walk (X;, Y;)

X2 XY 1-6 0

o v );( . 5).Bythe
multidimensional Central Limit Theorem, the distribution function of (X/y/n,Y/4/n) converges
to that of the 2-dimensional Gaussian with covariance ¥; namely, the distribution with density
function:

is (0,0) and the covariance matrix for one step is ¥ = E (

ps(z,y) = mexp (- (% + %—2> /2) :

Sazonov gave Berry-Esséen-type bounds for the rate of convergence in the multidimensional Cen-
tral Limit Theorem; in particular, [Saz81, p. 10 item 6] shows that for any convex set S in R?,
|Pr[(X//n,Y/y/n) € 8] — @x(S)| < O(1)(1/V3 +1/v/1=8)n""/2 = O(1//3(1 = 6)n), where By,
denotes the distribution function of the Gaussian distribution mentioned above. Since R is the
union of two convex sets, and (X/y/n,Y/y/n) € R iff (X,Y) € R by definition of R, the proof

11



Z
R
Figure 1: The regions R and R'.
will be complete once we show that ®x(R) = 3 + % arcsin(l — 24). (It is now apparent that the

definition of R’s boundary is irrelevant since it gets 0 weight under the continuous distribution ¢y.)

This calculation is easy. Make the change of variables u = z/v/1—46, v = y/ V6. Then ¢x
becomes the standard 2-dimensional normal distribution, ¢(u,v) = 5= exp(—(u? + v?)/2), and R
is transformed into R’ = {u > 0,v/1—du ++v6v > 0} U{u < 0,v/1—du ++vdv < 0}, pictured
on the right in Figure 1. Now ¢ is evidently radially symmetric, and R’ consists of exactly two
radial slices each of angle 7/2 + tan=! /(1 — §)/6. Therefore the weight of R’ under ® is precisely
(1/2m) - 2(m/2 4+ tan™! /(1 — 0)/6) = 1/2+ (1/m)tan™" /(1 — 6)/6 = 2 + o arcsin(1 — 26), by a
trigonometric identity. O

It is not surprising that arcsin should arise in this context; c.f. the arc sine laws of Feller [Fel68].

Roughly speaking, Theorem 1 now tells us that if f is balanced and (1 — d)-hard, then MAJ® f
has hardness about 3 + 5= arcsin(l — 2(26)). The graph of 3 + 5- arcsin(l —2(26)) and 1 —§
versus ¢ is shown in Figure 2.

We can see then that when § is small (i.e., f is “easy”), majority is a fair hardness amplifier; an
approximation shows that it amplifies 1 — § hardness to 1 — ©(+v/d) hardness. So long as § < 1/4,
majority increases hardness; but, when § > 1/4, it actually decreases hardness! (It is easy to show
that ExpBias; 5(MAJ,) = 3/4 for all odd n.) It’s clear then that the majority function will not
give us the good hardness amplification properties we desire.

6 Recursive majorities

It seems that recursive majorities might not be such a good idea — if one did the analysis simply
by applying Theorem 1 with Proposition 10 multiple times, the hardness would converge and get
“stuck” at 3/4. This would be giving too much away, however. Recall the intuitive discussion from
Section 2; it has to assume that the function f is (1 — J)-hard in the easiest possible way. But if
f is already the majority of hard functions, it’s in fact hard in a harder way. The key is to apply
all of the majorities at the same time, taking g to be recursive-majority right from the start and
applying Theorem 1 only once.

12
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Figure 2: 2 + % arcsin(l — 2(26)) and 1 — § as functions of 4.

Definition 11 For each £ > 1, REC-MAJ-3¢ : {0, 1}31 — {0, 1} is the function given by a depth-£
ternary tree of majority-of-3 gates, with the input bits at the leaves.

We do not know how to calculate the expected bias of REC-MAJ-3¢, but estimating its noise
stability is straightforward. We give a crude estimate which suffices for our purposes:

Proposition 11 For £ > log; ;(1/6), NoiseStabs(REC-MAJ-3¢)* < §~1-1(3¢)—15,

Proof: If we write NoiseInst; = 1 —NoiseStaby, then Proposition 8 tells us that Noiselnsts(g®h) =
NoiseInstyoisemnsts(n)(9) When h is balanced. MAJ3 is balanced, and an explicit calculation gives
NoiseInst;(MAJ3) = (3/2)t — (3/2)t? + t3. Defining p(t) = (3/2)t — (3/2)t2 + 3, we conclude that
NoiseStabs (REC-MAJ-3°) = 1 —p(p(---p(4) ---)), so NoiseStabs (REC-MAJ-3°)* = 1 —2p(1)(9).

v~

£ times

It remains to study the iteration of p. When ¢ is sufficiently small, p(t) ~ (3/2)t. Very crudely,
when ¢ < 1/4, p(t) > 1.18t. It follows that p{™)(t) > (1.18)™t, so long as this quantity is at most
1/4. Taking m = log; 15(1/46), we get p{™ (§) > (1/4)/1.18 > .21.

Now write t = 1/2 — 5. Then p(t) = 1/2 — (3/4)n — n*>. When 7 is very small, this is
approximately 1/2 — (3/4)n. Crudely again, when n < 1/2—.21 = .29, p(t) > 1/2 — .84n. It follows
that p(m)(.21) > 1/2 — (.84)™ (.29) for any positive m/, in particular for m’ = ¢ — m, which is
positive because £ > log; ;(1/d) > m.

Hence p(d(§) > 1/2 — .29 - (.84)™', and so it remains to check that .58 - (.84)™ < §=1-1(3¢)=15,

58. (.84)"‘1 = .58. (_84)5_10&.18(1/45)
< (_84)_1031.18(1/46)(_84)£
(45)log1_18(.84) (32)10g3(.84)

< 5—1.1(34)—.15,

13



as needed. O
This result gives us a monotone balanced function which is very sensitive to a small amount of
noise. Applying Proposition 7, we immediately get:

Proposition 12 For £ > log; ;(1/4), ExpBiasy;(REC-MAJ-3¢)* < §—-55(3¢) 075,

We can now prove a 1 — 1/poly(n) — 1/2 + o(1) hardness amplification for NP under the
assumption that the initial hard function in NP is balanced:

Theorem 13 If there is a family of functions (f,) in NP which is infinitely often balanced and
(1 —1/poly(n))-hard for polynomial circuits, then there is a family of functions (hy,) in NP which
is infinitely often balanced and (1/2 + m=7)-hard for polynomial circuits.

Proof: Suppose (fy) is infinitely often balanced and (1 — 1/n¢)-hard for polynomial circuits. For a
given n, let k = n®, where C is a large constant dependent on ¢ to be chosen later. Put £ = |logs k|
and view REC-MAJ-3% as a function on k bits by ignoring some inputs if necessary. Now define
hm = REC-MAJ-3¢ ® f,,, having input length m = kn = n¢+!. Note that the family (h,,) is in NP
since (f,,) is and since REC-MAJ-3¢ is monotone and in P. Also h,, is balanced whenever f, is. It
remains to check that h,, is indeed (1/2 + m~07)-hard for polynomial circuits whenever n is such
that f, is hard.

Apply Theorem 1 with r = 1, ¢ = 1/n%, and § = 1/n°. Then we conclude that h,, is
(ExpBias; (REC-MAJ-3%)+¢)-hard for polynomial circuits. By Proposition 12, ExpBias;(REC-MAJ-3¢) <
1/2 4 (1/2)(6/2)~%°(3¢) =07 assuming £ > log; ;(2/6) = log; ;(2n°); by taking C sufficiently large
(compared to ¢) we can ensure this is true. But (1/2)(6/2)%%(3¢) =07 < (2n¢)5%(nC/3)—07 1
n~C¢ < n=O7C if we take C large enough. And n=974C¢ < m =97 if we take C large enough, since
m = n®*tL. Thus hy, is (1/2 +m~07)-hard for polynomial circuits, and the proof is complete. O

A more careful estimation in Proposition 11 would allow us to get a function which was (1/2+n~%)-
hard for o approaching 4 logs(4/3) = 0.13. See [MO02] for a detailed analysis of the noise stability
of recursive majorities.

7 The tribes function

The previous theorem got us from 1 — 1/poly(n) hardness down to 1/2 + o(1) hardness. In this
section we improve on the o(1) term by moving to a different function, namely the “tribes” function
of Ben-Or and Linial. This is a simple monotone read-once DNF, whose definition is as follows:
For input length length k, the parameter b is set to a certain quantity a little less than log, k. Then
the k inputs are divided into k/b blocks of size b, and the function T}, is defined to be 1 if and only
if at least one of the blocks consists entirely of 1’s. L.e., Tp(z1,... ,2k) = (1 A+ Axp) V (Tpr1 A
"'/\552b)V"'V(ivlc—b-}-l/\"'/\fﬂk)-

As in the previous section our technique is to estimate the noise stability of Ty. The calculation
is more technical than before; we use the formula for noise stability in terms of Fourier coefficients
given by Proposition 9, along with Mansour’s calculations of the Fourier coeflicients of the tribes
function [Man98]. Note that the subsequent work [MO02] gives an elementary exact calculation
of the noise stability of the tribes function, demonstrating that the calculation to follow is nearly
tight.

Let us first rigorously define the tribes function. Note that the probability the tribes function
is true is exactly 1 — (1 —27%)¥/b. Since we want the tribes function to be as close to balanced as
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possible, we need to define k and b in such a way that (1 — 2_b)"/b ~ 1/2. In order to get this, we
will actually define k in terms of b, so that T} will only be defined on certain input lengths.
For every integer b, let k = kj; be the smallest integral multlple of b such that (1—27%)k/b < 1/2.

For analysis purposes, let &’ be the real number such that (1 —27%)%'/% = 1/2. Then b = log, k' —
logs Ink'+0(1); hence k' < k < k'+log, k', and so b = log,, k—log2 Ink+o(1) as well. The probablhty
that T}, is true on a random input is (1 — 27°)%/0 = (1/2)(1 — 270)*k—K)/b — (1/2)(1 — 27 )L +e(D) =

(1/2)(1 — O(log k/)).

Proposition 14 Let b and k be chosen as described, and let T}, be the associated tribes function.
Then:
NoiseStabs(T})* < [exp((1 — 6)®) — 1] + O(log? k/k?).

Proof: We want to upper-bound NoiseStabs(7T))* using Proposition 9, so we need to know the
Fourier coefficients of 7. We just showed that the probability T} is true on a random input is
(1/2)(1 — O(log k/k)); hence |T(0)| = O(logk/k). Mansour studied the other Fourier coefficients
of Ty, in [Man98]; he showed that:

TH(S1, ... Skp)| = 2(1— 2 0)R/(2b — 1)
< (2b-1)7Y
where S; C {Zp(i—1)41,--- »Zpi} and j is the number of 4’s such that S; # 0.

How many sets S = (S1,...,Sks) of cardinality d have exactly j nonempty parts S;? There are
(k/ b) choices for the nonempty parts, and at most ( ) ways to distribute the elements of S among
these parts. Hence there are at most (k/ b) (¢ d) such sets. Each set contributes (1 — 28)¢(20 —1)=%
to the sum NoiseStabs(Tk)* = > (1 — 25)|S‘Tk(S)2. The case k = 0 we did separately; it
contributes O(log? k/k?) to the sum. Hence.

k/b jb

NoiseStabs(T})* < O(log? k/k?) + ZZ (k/b) ( ) (1—20)420 —1)%
j=ld=j
k/b

O(log” k/k?) +E (k/ b) —1)7%(2 — 26)7

k/b

O(log? k/k?) + Z

k/b

= O(log’k/k*) + [b@b’“ﬁ]’ (1—6)/3!
j=1

VAN

(k/b)Y 1
gt [2(20 —2))

IA

(2 — 26)%

Since (1—-27%)%/b = 1/2—0(1), %log2(1—2_b) = —1—0(1). The Taylor approximation for log,(1—1)

lets us conclude that logy(1 —27%) > —27%/In2, so ;&% < (In2)(1 + o(1)) < 1. We conclude that

I)(Qbk——Q) < 1 asymptotically. Continuing our estimate, we get:

k/b
NoiseStabs(T;)* < O(log? k/k?) + Z(l —8)% /5!
j=1
< Ollog? k/k?) + [exp((1 - 8)") — 1],
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as claimed. O
When ¢ is nearly 1/2, the noise stability of T} is almost as small as 1/2 + 1/k:

Proposition 15 For any r > 0, NoiseStab, j5_.(Tx)* < k=13 for k sufficiently large.

Proof: By Proposition 14,

lexp((1/2 +7)°) — 1] + O(log? k/k?)

[exp((1/2)°(1 4 2r)®) — 1] + O(log? k/k?)

lexp((1 lkk(1+2 )82F) — 1]+ O(log” k/k?)
(@

NoiseStabl/Q,r (Tk)*

IA

nk

[exp(( —— kloe(1420) _ 1] 4 O(log? k/k?)

= [exp(k—1+2’"/ In(2 >+°<1)) — 1] + O(log” k/K?)

2k—1+2r/ln(2)+0(1) + O(log2 k/k2)
k—1+3r

IA A

for sufficiently large k, as 3 > 2/1In(2). O

As an immediate corollary of Proposition 15 and Proposition 7, we get:

Proposition 16 For every constant n > 0, there is a constant v > 0 such that ExpBias,_,.(T}) <
1/2 4+ kY240 for k sufficiently large.

We our now ready to prove our main theorem, a 1 — 1/poly(n) — 1/2 + n~1/?%€ hardness
amplification for NP under the assumption that the initial hard function family in NP is balanced.
In Section 8 we show how to get a result which is almost as strong without making the balance
assumption.

Theorem 2 If there is a family of functions (fy,) in NP which is infinitely often balanced and
(1 —1/poly(n))-hard for circuits of polynomial size, then there is a family of functions (hy,) in NP
which is infinitely often (% + n71/2+")—hard for circuits of polynomial size, for any small n > 0.

Proof: By Theorem 13, the hypothesis of the present theorem implies the existence of a family of
functions (f,) in NP which is infinitely often balanced and (1/2+o0(1))-hard for polynomial circuits.
We now proceed in a manner similar to that in the proof of Theorem 13.

Pick b such that the associated tribes input length k& = kp is roughly n®, where C is a large
constant to be chosen later. Let h,, = T} ® f, a function on m = kn = n¢*! bits. Since T}, is
monotone and in P, the family (h,,) is in NP. It remains to show that h,, is (1/2 +m~/?*")-hard
for polynomial circuits whenever f, is balanced and (1/2 + o(1))-hard.

Apply Theorem 1 with e = 1/k, § set to the given 1/2 — 0(1), and r a small positive constant
to be chosen later. Then we conclude that h, is (ExpBias;_,y(T)) + €)-hard for polynomial
circuits. By Proposition 16, ExpBias( _,y (1)) can be made smaller than 1/2 + k—1/24n/4 by taking
r sufficiently small. Since € = 1/k, the hardness of h,, is at most 1/2 + k~1/2%1/2 (for sufficiently

large k). But m = n¢t! = g't1/C. Hence if we take C to be any constant greater than 1/7 then
(kAT CY=1/24n > p(tn)(=1/2+n) — [=1/24n/247" > [=1/241 and the proof is complete. O

This result more or less exhausts the possibilities for monotone hardness amplification via

Theorem 1. The reason is that NoiseStab(g)* will never be smaller than polylog(n)/n when g is
monotone.
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To be exact, a celebrated theorem of Kahn, Kalai, and Linial [KKL88] shows that for any
monotone function g on k inputs, Z| /=1 3(8)? > Q(log? k/k). From Proposition 9, it immediately
follows that NoiseStabs(g)* > (1—-26)Q(log? k/k). If we start with a balanced function f on n inputs
which has hardness at least 1/2+ Q(log® n/n) and then apply Theorem 1 with g as an amplifier, we
end up with a function with input length nk and a hardness bound of 1/24+Q(log? n/n)Q(log? k/k) >
1/2 + Q(log?(nk) /nk).

Consequently, we cannot use these techniques to amplify hardness within NP below 1/2 +
Q(log? n/n). Further, from a constructive point of view, if we always use NoiseStabs as an estimator

for ExpBiasys we pay the additional penalty of Proposition 7 and we will never do better than
1/2 4+ Q(n=1/2).

8 Eliminating the balance hypothesis

Theorem 2 requires that the initial hard function in NP is balanced on infinitely many of the input
lengths for which it is hard. This assumption is not unrestrictive; the author is unaware of any
NP-complete language which is balanced on all input lengths. We can remove the assumption at
the expense of a slight loss in hardness in the final function:

Theorem 3 If there is a family of functions (fy) in NP which is infinitely often (1 — 1/poly(n))-
hard for circuits of polynomial size, then there is a family of functions (h.,) in NP which is infinitely
often (% + m_1/3+’7)—hard for circuits of polynomial size, for any small n > 0.

We devote the remainder of this section to proving Theorem 3. The proof only requires playing
some tricks with input lengths. First, a simple trick using padding:

Proposition 17 If there is a family of functions (fy) in NP which is infinitely often (1—1/poly(n))-
hard for circuits of polynomial size, then for every n > 0 there is a family of functions (g.,) in NP
which is infinitely often (1 — 1/m")-hard for circuits of polynomial size.

Proof: Suppose (f,) is infinitely often (1 — 1/n°)-hard for polynomial circuits. Pick K > ¢/n,
and define m = m(n) = n¥. On an input z of length m, define g,,(z) to be f applied to the
first n bits of z. Then (g,,) is surely in NP, and we claim that whenever n is an input length for
which f,, is (1 —1/n°)-hard for polynomial circuits, g, is (1 — 1/m7)-hard for polynomial size. The
proof is simple; suppose C were a circuit of size m? which correctly computed g, on a 1 — 1/m"
fraction of the inputs in {0,1}". By an averaging argument, there are settings for the last m — n
input bits to C such that C correctly computes g,, on a 1 —1/m" fraction of the remaining inputs,
{0,1}™. But now we have a circuit of size n¢ = poly(n) which computes f,, with probability at
least 1 — 1/n"% > 1 — 1/n¢, a contradiction. O

Next, let’s combine the tribes function and the recursive majority of 3 function to get a single
function which is highly noise unstable under a small amount of noise:

Proposition 18 For every r > 0 there is a monotone function family (Fy) in P defined for every
input length k such that NoiseStaby /- (Fg)* < E=1H107 for all sufficiently large k.

Proof: Let 7/ = 9r. On input length k, pick £ as large as possible so that 3¢ < k’"', and pick
k" to be the largest possible tribes function input length which is at most k="', Define F}, =
Ty ® REC-MAJ-3¢ to be on k bits by ignoring some input bits if necessary. Note that 3¢ = Q(k")
and k' = Q(k'~""), so we haven’t lost too much in the input length.
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By Proposition 11, NoiseStabl/kr(REC—MAJ—3Z)* < (B39 = Ok =18y = O(k—27) <
r/3 for k sufficiently large. Now invoking Proposition 8 and Proposition 15, we conclude that
NoiseStaby /5 (Fy)* < (E1=r")=1H3r/3 < 14107 55 claimed. O

We now outline the proof of Theorem 3. We begin with a (1 —1/n"7)-hard function f on n inputs
by using Proposition 17, and we wish to apply Theorem 1 using the function on k inputs defined in
Proposition 18. The trouble is that the initial function has an unknown bias. To circumvent this,
we map input instances of length n to various instance lengths around L = L(n), and use the new
input lengths as guesses for the bias of the initial hard function. This allows us to “know” the bias
of f to within about £1/L. At this point we can easily cook up a slightly altered version of f which
is still hard and is within about £1/L of being balanced. This lets us apply Theorem 1, as long
as €/k ~ 1/L. Since the expected bias we get from Proposition 18 is about 1/v/k, the largest ¢ we
would like to pick is 1/v/k, leading to 1/k%? ~ 1/L = 1/v/k ~ L~'/3. This is why the exponent of
1/3 arises in Theorem 3. We now give the rigorous proof:

Proof: (of Theorem 3) Let > 0 be given, and assume there is a family of functions (f,) in NP that
is infinitely often (1 —1/poly(n))-hard for circuits of polynomial size. By Proposition 17, there is a
family of functions in NP, which we will also denote by (f,,), that is infinitely often (1 —1/n")-hard
for polynomial circuits. We now begin to define h,,. Let C = C(n) be a large constant divisible by
3 to be chosen later. On input x of length m, express m = (n 4 1)¢*! 44 for n as large as possible
with 7 > 0. Assuming 0 < i < 8n%, we “guess” that the fraction of inputs on which f,, is 1 is about
i/8nC. (Note that i may be as large as (n +2)¢*! — (n + 1)+ > 8nC; when i > 8n®, define h,,
arbitrarily, say h,, = 0.) Specifically, define f/ : {0,1}"*! — {0,1} as follows: on input yb, where
lyl =, |b] = 1, put

fly) ifb=0,
fryp) =< 0 if b =1 and y is one of the lexicographically first (i/8n¢)2" strings in {0,1}",
1 else.

The point of this construction is that for every n, there is a particular ¢ and hence a particular m
for which f! becomes very close to balanced; specifically, bias(f!) < 1/2 4+ 1/8n°. Further, note
that f] is easily seen to be (1 — 2/n")-hard for polynomial circuits.

Now we continue the definition of h,,. Pick k& = n(2/3)C and let Fj be the function from
Proposition 18, with parameter r > 37/2C (with this choice, 2/n™ > 1/k" for sufficiently large n).
On input z of length m (where m = (n+1)“*1 4+ with 0 < i < 8n°), write = y1yo - - - Y2, where
lyil =n+1 and |z =m — k(n+ 1) > 0. Now define h,,(z) = Fi ® f),, where the input bits z are
ignored.

One easily checks that the family (hy,) is indeed in NP. We now show that (h,,) is infinitely
often (1/2 + m~1/3+00)n)hard for polynomial circuits, which is sufficient to complete the proof.

Suppose 7 is an input length for which f,, is hard. Then as noted there is an m for which f}
becomes close to balanced, bias(f.) < 1/2 4+ 1/8nC. For this m, we claim that h,, has the desired
hardness. This follows in a straightforward manner from Theorem 1, using Proposition 18 and
Proposition 7. To be exact, let § = 2/n", € = 1/n{1/3¢ and r = 1. Note that bias(f!) < 1/2 +
1/8n° < (1—26)e/4k. Theorem 1 tells us that h,, is (ExpBiass(Fy)+¢)-hard for polynomial circuits.
By Propositions 7 and 18, ExpBiasg(Fy,) < 1/2 + k~1/2+56n/2C) 11 /n(1/3)C = 1/2 4 n~(/3)C+5m 4.
n~(/3)C  As a function of the input length, m < (n + 2)¢t!, the quantity n~(1/3C+51 4 n—(1/3)C
can be made smaller than m~1/3+0(Mn by taking C = O(1/7). O
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A Proof of Lemma 5

Here we prove the strong version of Lemma 5. We slightly generalize by allowing p’s range to
be [—1,1] rather than [0,1]. Also, because it makes notation much more compact, we call h’s
two-element range {41, —1} rather than {0, 1}.

Lemma 5 Let B, denote the n-dimensional Hamming cube, and suppose h : B, — {+1,—1} and
p: By, — [—1,1]. Further suppose that |E[hp]| > |E[h]| + €. Then there ezists an edge (x,y) in By,

such that p(z) — p(y)| > Q(e/v/n).

Proof: Let § be the maximum of |p(x) — p(y)| over all edges (z,y) in B,. For a subset C C By, let
pp(C) denote the average value of p on C. Let m be the median value of p on B, and partition
B, into two sets AT and A~ of equal size, such that p(z) > m > p(y) forallz € AT andy € A™.

We are interested in the the number of points in B, at distance at most d from A*. When
|A*| = 42", an isoperimetric inequality on the cube (see, e.g., [Bez94]) tells us that for all d this
number is maximized when A™ is a ball of radius n/2. (Strictly speaking, n should be odd and the
radius should be [n/2]. Since we only care about asymptotics in n, we gloss over such niceties.) It
follows that the average distance from A™ (over all points) is maximized when A* is such a ball.

The average distance in B, to a ball of radius n/2 is O(y/n), and this fact is fairly standard. To
see it, suppose without loss of generality the ball is A = {z € B,, : MAJ(z) = 0}. Then the distance
from a point z to A is equal to 0 if M AJ(z) = 0, and is equal to (weight(z) —n/2) otherwise. The
result now follows from the fact that weight(x) is distributed approximately as a normal variable
N(n/2,n/4), and that E[|N(n/2,n/4) —n/2|] = O(y/n).

Hence the average distance to AT over all points in B, is O(y/n). Indeed, since half of all points
have distance 0 from AT, we can conclude that the average distance to A", over any set of size
32" is O(y/n) (gaining a factor of 2 in the O(-)).

But if the Hamming distance between two points z and y is at most d, then |p(z) — p(y)| < do.
Since the smallest possible value of p on AT is m, it follows that u,(C) > m — O(y/nd) for any set
|C| = L2m.

Ru?lning the same argument with A~ in place of A yields that p,(C) < m + O(y/nd) for any
set |C| = $2™. Writing 8 = O(y/nd), we conclude that 1,(C) € [m — 0, m+ 6] for all sets |C| = 32".
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Now let us turn our attention to h. Write Ht = h=1(+1), H~ = h~!(—1) and assume without
loss of generality that b = 27"|H"| > 1/2. We first upper-bound pu,(H*). Let M be the set of
%2" points in H* with largest p-value. Then p,(M) < m + 0. The remaining points in H* have
p-value at most m. Hence:

b—1/2
b

() <m0+ L2

b
= bup(H') <bm+6/2.

Now we lower-bound s, (H ™). Let N be the set of (b— 3)2" points outside of H~ with smallest
p-value. Then |NUH™| = 32", s0 up(NUH™) > m — 6. On the other hand, the points in N have
p-value at most m. Hence:

b—1/2  1—b

- s _
172 m + 1/2up(H ) > m—40
S (L= bp(HT) > (1-bym—0/2.
Subtracting the two inequalities, we get:
bup(HT) — (1 —=b)up,(H) < (2b—1)m+86
= E[hp] < E[Rm+0
= Ehp] < |E[R]|+96,

since m < 1, and we assumed E[h] > 0. Since we could replace p by —p throughout, we can in fact
conclude |E[hp]| < |E[h]| + 6. But |E[hp]| > |E[h]| + € by assumption. Hence 6 > ¢ which implies

§ > Q(e/y/n). O

B A corresponding easiness theorem

In this section we demonstrate that Theorem 1 is close to being tight by showing how to construct,
for any § and any g, a balanced function f which is (1 — d)-hard, yet such that ¢ ® f is roughly
ExpBiasy;s(g)-easy (i.e., there is a circuit which computes the function with this probability). The
constructions of the functions used in this section are essentially those of Shaltiel [Sha01].

Proposition 19 There is a universal constant -y > 1/8 such that there exists a balanced function
h:{0,1}™ — {0,1} which is (1/2 +277")-hard for size 27".

Proof: Folklore proof, by picking h to be a random function. O

Definition 12 For a given rational number &, define a canonical constant zs and a canonical
constant-sized circuit Zs on zs inputs such that Pr[Z; = 0] = 4.

Definition 13 Given a function f : {0,1}" — {0,1} and a rational constant &, define fs5 :
{0,135 by:
o= { {9700

b else

Proposition 20
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o If f is balanced, so is fs.
e If f is n-hard for size s, then f5 is (1 — 0 + dn)-hard for size s.
o f5is (1 —d)-easy for size O(1).

Definition 14 Ifg: {0,1}" — {0,1}, define SIZE(g) to be the size of the smallest circuit computing
g ezactly, and define R-B-SIZE(g) (standing for “restriction-bias-size”) to be the size of the smallest
circust which, on input a length-n restriction p, outputs the bit value towards which g, is biased.
(If g, is balanced, the circuit is allowed to output either 0 or 1.)

Of course, we can’t expect ¢ ® f to be easy to compute if g itself is hard to compute. So
intuitively, we think of SIZE(g) as being quite small. R-B-SIZE(g) may or may not be small. For
many simple functions though, such as parity, threshold functions, or tribes functions, it is small.
The easiness theorem we now prove, as a converse to Theorem 1, allows for a tradeoff, depending
on the comparitive values of SIZE(g) and R-B-SIZE(g).

Theorem 21 Let § be a rational constant. Let §' = 6/(1 —27"™) = § + O(27"™), where v is the
constant from Proposition 19. Then there is a balanced function f : {0,1}*tO0) — {0,1} which is
(1 — 6)-hard for circuits of size 2™, such that:

1. ¢ ® f is ExpBiasys(g)-easy for size R-B-SIZE(g) + O(k)
2. g ® f is NoiseStaby (g)-easy for size SIZE(g) + O(k)
3. g ® f is (ExpBiasys (g) — O(1/+/m))-easy for size mSIZE(g) + O(mk)

Proof: Take h to be the hard function from Proposition 19, and let f = hgy. Then by Proposi-
tion 20, f is balanced and (1 — §)-hard for size 27™. But it is also (1 — 2¢’)-easy for size O(1). We
are now essentially in the Hard-Core scenario described in Section 2; with probability (1 — 24") we
know the correct answer, and with probability 24’, we have no good idea.

Let’s call our inputs z1, ... , zx, where z; = (2}, a;,b;). Let A be the constant-sized circuit which
on input (7, a;,b;) € {0,1}"+2' 1 outputs b; if Zy (a;) # 0, or x if Zg (a;) = 0. Let B be the circuit
of size O(k) which applies a copy of A to each input z;. The output of B is a length-k restriction,
and we have the property that the output distribution of B is exactly that of PQI%,.

Now we apply the different guessing strategies suggested in Section 2, given the restriction p
output by B.

To get result 1, we use a circuit of size R-B-SIZE(g) to output the more likely value of g, over
a uniform choice of inputs.

To get result 2, our circuit picks a random bit for each coordinate on which p is x; then a
SIZE(g) circuit outputs the appropriate value of g. An averaging argument lets us trade off the
randomness for nonuniformity.

To get result 3, we try to guess the bit towards which g, is biased by trying many random
values. Specifically, we take m copies of the randomized circuit for result 2 (size mSIZE(g)), and
take their majority (size O(mk)). Again, the O(mk) random bits can be traded for nonuniformity.
Let a = adv(g,), and assume without loss of generality that g, is biased towards 0. The probability
that the majority of m random outputs of g is 1 is at most n = exp(—l‘i—z%), using the Chernoff
bound. Consequently, the probability the circuit is correct is at least (1 —n)(3 + 3a) +7(3 — 3a) =
+ + 3a — an = bias(g,) — an. It can be shown that anP(_fi_l%) < O(1/4/m) (simple calculus
shows that the quantity on the left is maximized for a = ©(1/4/m)). Averaging over p, we get the
claimed result. O
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