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Abstract

We give a pseudorandom generator that fools degree-d polynomial threshold functions over
n-dimensional Gaussian space with seed length poly(d) · log n. All previous generators had a
seed length with at least a 2d dependence on d.

The key new ingredient is a Local Hyperconcentration Theorem, which shows that every
degree-d Gaussian polynomial is hyperconcentrated almost everywhere at scale d−O(1).

∗A preliminary version of this paper [OST20] appeared in the proceedings of the 52nd Annual ACM Symposium
on Theory of Computing (STOC 2020).
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1 Introduction

This paper is about pseudorandom generators (PRGs) for polynomial threshold functions (PTFs)
over Gaussian space. Let us explain what this means. Let C be a class of functions from R

n to R.
A distribution G over Rn is an ε-PRG for C over Gaussian space if for every function f ∈ C ,∣∣∣∣ E

z∼G
[f(z)]− E

x∼N(0,1)n
[f(x)]

∣∣∣∣ ≤ ε,
where N(0, 1)n is the standard n-dimensional Gaussian distribution. We equivalently say that G
ε-fools C over Gaussian space. If a draw z ∼ G can be deterministically generated from a source
of s independent uniformly random bits, we say that the seed length of z is s. If furthermore the
generation can be performed by a computationally efficient algorithm, we say the PRG is explicit.

A degree-d polynomial threshold function (PTF) is a function f(x) = sign(p(x)) where p : Rn →
R is a real polynomial of total degree at most d. Now we can state the main theorem of this paper:

Theorem 1. For all n, d ∈ N and ε ∈ (0, 1), there is an explicit PRG with seed length poly(d/ε) ·
log n that ε-fools the class of all degree-d PTFs over n-dimensional Gaussian space.

The polynomial dependence on d here is a substantial improvement over previous PRGs, all of
which had at least 2O(d) dependence or worse. We view this as notable, as there are few prior works
concerning structural properties of n-dimensional Gaussian or Boolean PTFs that are nontrivial
for d� log n.

1.1 Prior work

There has been significant work on PRGs for PTFs. Their study was initiated by Meka and
Zuckerman [MZ10, MZ13], who gave a PRG with seed length1 (d/ε)O(d) · log n that fools degree-d
PTFs over the more general setting of Boolean space, {±1}n. PRGs over Boolean space can be
shown to also yield PRGs over Gaussian space, thanks to the fact that x1 + · · ·+ xm has a nearly
Gaussian distribution when x ∼ {±1}m is uniformly random (see the discussion in Section 3.1),
and the fact that degree-d PTFs are closed under taking linear combinations of inputs. Since the
work of [MZ10, MZ13], there have been several works that focus just on fooling PTFs over Gaussian
space, which we now discuss.

First, Kane [Kan11a] showed that limited independence (see Definition 11) suffices to fool

Gaussian PTFs. The amount of independence required was Od(ε
−2O(d)

), which translates into

Od(ε
−2O(d)

) · log n in seed length. Using a different generator (one that is not based only on
limited independence), Kane [Kan11b] then gave a PRG for Gaussian PTFs with seed length
2O(d) · poly(1/ε) · log n. Note that this seed length strictly improves upon that in [MZ13], albeit
only in the Gaussian setting.

Towards further improving the seed length dependence on ε, Kane [Kan12] gave a PRG with
seed length A(d, 1/c) · (1/ε)2+c · log n for any c > 0, where A(·, ·) is a variant of the Ackermann
function.2 This was improved to A(d, 1/c) · (1/ε)c · log n in [Kan14]; while the seed length now has
subpolynomial dependence on 1/ε, its dependence on d limits its applicability to PTFs of constant
(or very slightly superconstant) degree.

1They state O(1/ε)O(d) · logn just after [MZ13, Thm. 5.18], but they have appear to have dropped a factor of d
when citing their Thm. 5.2 at the end of Lem. 5.20’s proof. Correcting this leads to the seed length (d/ε)O(d) · logn.

2In fact, it seems that correcting a typo in [Kan11a, Proof of Prop. 12], where a “θ” factor should be “θ2”, already
leads to seed length 2Oc(d) · (1/ε)2+c · logn.
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For degree-2 PTFs, Kane gives a PRG with seed length O(log6(1/ε) log log(n/ε) log n) [Kan15];
Diakonikolas, Kane, and Nelson [DKN10] showed that Õ(1/ε9)-wise independence suffices to fool
degree-2 PTFs over both Boolean and Gaussian space. For degree-1 PTFs (i.e. halfspaces), the
current best PRG is due to Kothari and Meka [KM15], who achieve a near-optimal seed length of
O(log(1/ε) log log(1/ε) + log n).

Summarizing the prior state of the art, previous PRGs were either specific to d = 1, 2, or else
had seed length with at least an exponential dependence on d. Consequently, there were no PRGs
that could fool PTFs of degree d = log n, even just to constant accuracy ε. Theorem 1 therefore
represents the first PRG that is able to fool PTFs of degree d ≥ log n; our seed length remains
nontrivial for d as large as nΩ(1). Please see Table 1.

Reference Seed length Allowable / nontrivial range of d’s

[DKN10] Õ(1/ε9) · log n d ≤ 2

[MZ13, MZ10] (d/ε)O(d) · log n d ≤ O(log n/ log log n)

[Kan11a] Od
(
ε−2O(d)) · log n d ≤ slightly superconstant

[Kan11b] 2O(d) · poly(1/ε) · log n d ≤ O(log n)

[Kan12] A(d, 1
c ) · (1/ε)

2+c · log n for any c > 0 d ≤ slightly superconstant

[Kan14] A(d, 1
c ) · (1/ε)

c · log n for any c > 0 d ≤ slightly superconstant

[Kan15] O(log6(1/ε) log log(n/ε) log n) d ≤ 2

[KM15] O(log(1/ε) log log(1/ε) + log n) d = 1

This work poly(d/ε) · log n d ≤ nΩ(1)

Table 1: Our work and the prior results on fooling degree-d Gaussian PTFs. The last column
indicates the range of values of d’s for which the seed length of the corresponding PRG is
nontrivial (i.e. o(n)). The generators of [MZ13, DKN10] work for the more general setting of
Boolean space, and [DKN10, Kan11a]’s analyses show that limited independence suffices.

1.2 Motivations

Geometric content. We now give a geometric perspective on the problem of constructing PRGs
for Gaussian PTFs. Suppose one is given a set F ⊆ Rn and one wishes to approximately compute
its Gaussian volume, Prx∼N(0,1)n [x ∈ F ]. There is an obvious Monte Carlo approach: picking
O(1/ε2) Gaussian vectors x at random and outputting the fraction that fall into F will, with high
probability, give an ε-accurate estimate. Our question is to what extent randomness is necessary
for this problem.

The extent to which derandomization is possible depends on the “complexity” of the sets F we
allow. If F is only given via a black-box membership oracle then no derandomization is possible.
So we need to assume an “explicit description” of F is given, and in this paper we focus on the
case that F is the set of points satisfying a polynomial inequality of degree at most d (i.e., F is

2



Figure 1: On the left, a plot of the degree-5 polynomial p(x, y) = x2y3−2x3y2 +3xy4−x+2y2.
On the right, the threshold set F = {(x, y) ∈ R2 : p(x, y) ≥ 0}.

the set indicated by a degree-d PTF). Thus the d = 1 case allows halfspaces, the d = 2 case allows
ellipsoids and hyperboloids, etc. For illustrative purposes, Figure 1 shows an example with n = 2
and d = 5, although we generally think of n� d.

One natural approach to this volume-approximation problem is the following: First, define some
kind of explicit (nonrandom) finite “grid” of discrete points in Rn; second, show that the Gaussian
volume of any degree-d PTF set F is closely approximated by the fraction of grid points in F .
A naive gridding scheme would use at least an exponential-in-n number of grid points (even for
d = O(1)); the question is whether we can use a subexponential-in-n number of gridpoints, when
d � n. Our Theorem 1 provides such a solution; by enumerating all seeds (essentially, taking
the support of G), we get an explicit set of just npoly(d) “grid points” that gives a high-quality
volume approximation for any degree-d polynomial threshold set; this is nontrivial for d up to
some nΩ(1). Also note that this kind of “PRG solution” is stronger than just being an “volume-
approximation” algorithm of the type “given F , approximate vol(F )”; as it is PRG-based, it gives
one fixed, deterministic “grid” that simultaneously works to approximate the volume of all degree-d
polynomial threshold sets F .

Boolean complexity theory. As mentioned earlier, the problem of PRGs (or deterministic
volume approximation) for Gaussian polynomial threshold functions is a special case of the problem
of PRGs (or approximate-counting) for Boolean polynomial threshold functions. This, in turn, is
a very special case of the problem of derandomization for general Boolean circuits. Recall that the
BPP vs. P problem is roughly equivalent to asking whether there is a deterministic polynomial-time
algorithm that, given the explicit description of a subset F ⊆ {0, 1}n in the form of a poly(n)-gate
Boolean circuit C computing the indicator function of F , computes a 0.1-accurate approximation
to its “volume”, Prx∼{0,1}n [C(x) = 1]. Given how far we are from answering this question, the field
of pseudorandomness has focused on special classes of circuits, of restricted depth and gate-types;
the case of Boolean PTFs corresponds to depth-2 circuits C with a threshold gate on top and AND
gates of width at most d at the bottom.
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1.3 Our key new tool: the Local Hyperconcentration Theorem

For large d, the best prior PRG for degree-d Gaussian PTFs is Kane’s [Kan11b], which has seed
length 2O(d)/poly(ε) · log n. In this section we describe the most important new ingredient we
introduce to Kane’s framework, which lets us reduce the seed length’s dependence on d down
to poly(d). In the next section we will give an overview of the constructions of [MZ10, MZ13,
Kan11b], putting our new tool into context.

We call our main new tool the Local Hyperconcentration Theorem. To explain it, suppose
p : Rn → R is a degree-d polynomial. Since p has high degree, it might fluctuate quite wildly near
a given point x ∈ Rn, causing sign(p(x)) to rapidly switch between ±1 in small neighborhoods.
However, we might hope that for most points x, the value of p in a local neighborhood of x is
almost always within a 1± δ multiplicative factor of p(x), and hence is almost always of constant
sign.

The right definition of a “local neighborhood of x” is to choose a small scale parameter λ > 0,
and then to consider a Gaussian x̃, centered at

√
1− λx, with variance λ in each coordinate.3

Now if Var[p(x̃)] � E[p(x̃)]2, we may say that p is (multiplicatively) concentrated in this λ-
local neighborhood of x; and indeed, the second moment method (Chebyshev’s inequality) tells
us that p(x̃) almost always has the same sign (namely, the sign of E[p(x̃)]). The most important
ingredient in Kane’s work, [Kan11b, Cor. 10+Lem. 11], establishes this sort of result:

Theorem 2 (The key technical theorem of [Kan11b], simplified). Let p : Rn → R be a degree-d
polynomial. Provided λ ≤ 2−O(d), with high probability over x ∼ N(0, 1)n we have

Var[p(x̃)]� E[p(x̃)]2, where x̃ ∼
√

1− λx+ N(0, λ)n. (1)

We may say that Kane shows degree-d polynomials have local concentration at scale λ = 2−O(d),
almost everywhere. The value L = 1/λ = 2O(d) ends up becoming the dominant factor in Kane’s
PRG’s seed length. At a high level, this is because the PRG has the form z = w1 +w2 + · · ·+wL,
where the wi’s are independent random vectors with O(d)-wise-independent N(0, λ)n distributions.

By way of contrast, our new Local Hyperconcentration Theorem (stated in simplified form
below) shows local hyperconcentration at scale λ = d−O(1). For a high level sketch of the proof,
see Section 5.1.

Theorem 3 (Simplified Local Hyperconcentration Theorem, see Theorem 47 and Theorem 85). Let
p : Rn → R be a degree-d polynomial. Provided λ ≤ d−O(1), with high probability over x ∼ N(0, 1)n

we have
HyperVarR[p(x̃)]� E[p(x̃)]2, where x̃ ∼

√
1− λx+ N(0, λ)n, (2)

for any large constant R (indeed, for any R ≤ poly(d)).

Remark 4. The conference version of this paper [OST20] proved a quantitatively weaker version of
the Local Hyperconcentration Theorem, showing local hyperconcentration at scale λ = d−O(log d).
This led to a seed length of (d/ε)O(log d) · log n. Subsequently, Kane improved the Local Hypercon-
centration Theorem to show local hyperconcentration at scale λ = d−O(1), which yields the current
seed length of poly(d/ε) · log n. Kane’s proof is given in Appendix B and subsumes Section 5 of
this paper.

3The
√

1− λ factor is included so that when we look at a typical x chosen from N(0, 1)n, the resulting “random
point in the neighborhood” x̃ also has distribution N(0, 1)n.
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We will define “hypervariance” HyperVarR[·] later (see Definition 27); here we only note that
it is a stronger notion than variance, in the sense that HyperVarR[p] is always at least as large as
Var[p] for all R ≥ 1. Whenever the theorem’s conclusion holds for an outcome x of x, the value of
p in the λ-local neighborhood of x is “hyperconcentrated” (see Lemma 31), meaning that for any
large constant q,

E[|p(x̃)− µ|q]� |µ|q, where µ = E[p(x̃)].

The case q = 2 here is precisely the “concentration” conclusion in the theorem of [Kan11b]. Our
hyperconcentration is a stronger conclusion: e.g., taking q = 4 lets us use the “fourth moment
method”, and in fact we’ll eventually use q = 8.

To summarize, our theorem has two important improvements over [Kan11b]. First, it shows
concentration at a much larger scale, λ = d−O(1), rather than 2−O(d). This crucially gives us the
potential to get our seed’s dependence on d to be 1/λ = poly(d). This is far from automatic,
though, because there are several other places in the [Kan11b] construction that “lose” a factor
of 2O(d). In all but one of these cases4, it’s because in [Kan11b] the variance bound Inequality (1)
is bootstrapped using the hypercontractivity inequality in order to get control over p’s behavior in
various local neighborhoods. This hypercontractive inequality for degree-d polynomials inherently
loses 2O(d) factors (see Theorem 20). By contrast, since our theorem already establishes the stronger
hyperconcentration conclusion Inequality (2) (this is the second key improvement, bounding hyper-
variance rather than variance), we are able to provide argumentation that eliminates all of these
2O(d) factors.

1.4 Overview of the PRG framework we use

We use the same PRG for Gaussian PTFs as in the prior works of Meka–Zuckerman PRG [MZ10,
MZ13] and Kane [Kan11a], namely

z =
√
λz1 +

√
λz2 + · · ·+

√
λzL, (3)

where the key parameter λ is a small function of d and ε, where L = 1/λ, and where z1, . . . ,zL
are independent random vectors, each having an O(d)-wise independent n-dimensional Gaussian
distribution. This leads to a seed length of essentially O(d2L·log n) (see Theorem 10), and hence all
the effort goes into finding the largest λ = λ(d, ε) such that Equation (3) ε-fools degree-d Gaussian
PTFs.

Here we review the Meka–Zuckerman and Kane works; our own analysis is heavily based on
Kane’s framework.

Meka–Zuckerman. The work of Meka and Zuckerman [MZ10] gave PRGs for degree-d Gaussian
PTFs with seed length (d/ε)O(d) · log n. In fact, they also extended their results to Boolean PTFs,
but we do not review that extension here. At a high level, their construction followed a basic
two-part paradigm used both in the proof of Central Limit Theorems and in PRG construction:
mollification + local low-degree behavior. To explain this, recall that we are trying to design a
PRG G with ∣∣∣∣ E

z∼G
[f(z)]− E

x∼N(0,1)n
[f(x)]

∣∣∣∣ ≤ ε,
where f = sign(p), with p a degree-d polynomial. Suppose first that we did not have the dis-
continuous “sign” function, but rather we just wanted the above inequality for f = p. In that

4Namely, our “noise insensitivity extension lemma” Lemma 72, where we eliminate a factor of 2O(d) from the
analogous result of Kane [Kan11b, Cor. 16].
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case, it would suffice for the components of the random vector z ∼ G to be “d-wise independent,”
and in fact this would achieve ε = 0. Furthermore, there are standard techniques to produce an
appropriate “d-wise independent” G with seed length poly(d) · log n, which would be an excellent
bound for us.

Of course, when we return to the actual scenario of f = sign(p), the function f is not even a
polynomial, let alone a low-degree one. The mollification portion of Meka and Zuckerman’s work
is to replace the sign function with a smooth approximator Φ, which is equal to sign outside some
interval [−λ, λ]. Because the sign function is scale-invariant (sign(ty) = sign(y) for t > 0), we may
normalize p so that its variance Var[p(x)] is 1. Then one chooses the parameter λ = Θ(ε/d)d. The
smooth mollifier Φ will have derivatives of all orders, with T th derivative Φ(T ) bounded in magnitude
by O(1/λT ). The replacement of sign by Φ leads to a mollication error of O(ε), essentially due
to the well-known anticoncentration bound for degree-d Gaussian polynomials due to Carbery and
Wright [CW01]: Pr[|p(x)| ≤ (ε/d)d] ≤ O(ε). (Note also that thanks to a trick, this only needs to
hold for x, and not the pseudorandom z.) With the mollifier in place, Meka and Zuckerman can
try to bound ∣∣∣∣ E

z∼G
[Φ(p(z))]− E

x∼N(0,1)n
[Φ(f(x))]

∣∣∣∣ ≤ O(ε).

Now although Φ is not a polynomial, it is “locally a low-degree polynomial” (say, of degree 4),
thanks to Taylor’s theorem. The error in this statement scales like the 4th derivative bound
‖Φ(4)‖∞ ≤ poly(1/λ), times the “locality scale”. Thus as long as we substitute O(1)-wise indepen-
dent Gaussians for true Gaussians at a “scale” of λΘ(1), we will not incur more than O(ε) error.
This sort of argumentation allows Meka and Zuckerman to show that the PRG in Equation (3)
ε-fools degree-d PTFs with λ = Θ(ε/d)d, which leads to their seed length of (d/ε)O(d) · log n.

Kane. To repeat, our PRG analysis closely follows the structure of Kane’s, which we now describe.
Kane [Kan11b] shows that the PRG in Equation (3) succeeds with the improved (larger) value of
λ = 2−O(d) · poly(ε), leading to his seed length of 2O(d) · poly(1/ε) · log n. His “local concentration
theorem” (Theorem 2) plays a central role in this, but he still needs to develop a complex framework
(which we also employ) in order to complete the analysis.

Kane’s Theorem 2 allows him to begin a new strategy for designing G; rather than mollifying
the sign function and taking p(x) as a “black box” random variable, Kane instead mollifies the
polynomial p itself. Roughly speaking, Kane’s strategy begins by replacing p with p · Check1,
where Check1(x̃) is a smoothed indicator function for the event that Inequality (1) holds at x̃.
The “with high probability over x” in Kane’s Theorem 2 is in fact probability 1 − ε provided
λ ≤ 2−O(d) · poly(ε), and this implies that the replacement of p by p · Check1 only incurs error ε.
Now we may hope that the construction from Equation (3) will work; roughly, this requires that in
a λ-scale neighborhood of every point x, say x̃ =

√
1− λx+

√
λw, the function sign(p) ·Check1 is

essentially determined by low-degree moments of w. There are two cases. If x is well into the region
where Check1(x̃) is 0, then p · Check1 is essentially 0 and sign(p) · Check1 is essentially constant.
Otherwise, if x is near the region where Check1(x̃) is 1, then by definition Var[p(x̃)] is very small.
Thus p is not varying very much in a neighborhood of x, and Taylor’s theorem will tell us that
low-degree moments suffice to essentially determine p · Check1 in this neighborhood of x.

There are two catches here. First, the use of Taylor’s theorem out to, say, degree 4 forces one
to bound not just the expected squared deviation of p from |p(x)| in the λ-neighborhood of x̃;
it requires one to control, say, the 4th-power deviation. This is where Kane uses the standard
hypercontractivity-based fact that higher-power deviations can be controlled by the 2nd-power
deviation (i.e., Var[p(x̃)]) at the expense of 2O(d) losses. Kane is losing such factor anyway, since
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he takes λ = 2−O(d) · (1/ε). (This is one place where our analysis takes advantage of the local
hyperconcentration we prove in Theorem 3.)

The second catch is that Taylor’s theorem needs to be applied not just to p but to Check1 itself.
Now Check1 is concerned with the variance of p in a

√
λ-neighborhood of x. In order to control the

Taylor error here, one needs to control the variance of the variance! Kane handles this by further
mollifying p. He uses a generalization of Theorem 2 to show that at most points x, the variance of
the variance in the neighborhood of x is small. (We must prove a similar generalization of our Local
Hyperconcentration Theorem; see Theorem 49.) Thus p can be further mollified to p·Check1·Check2

at only small loss. Now we have three cases to consider when analyzing p · Check1 · Check2; if x
is well into the region where Check2 is 0, then the mollified function is essentially 0 on the λ-
neighborhood. Else, the variance of the variance of p in the neighborhood is suitably small. Next,
if x is well into the region where Check1 is 0, then the mollified function is again essentially 0 on
the neighborhood; otherwise, the variance of p in the neighborhood is suitably small. In this third
case, we are again in good shape to apply Taylor to p, and Check1. . . but to handle Taylor error
for Check2, we need to introduce another check that the variance of the variance of the variance
is small. Indeed, Kane’s final mollifier needs not only this “descending” sequence of checks (that
we will picture “vertically”), but for technical reasons needs additional “horizontally proliferating”
checks (which, to avoid further lengthening this description, we will not discuss here).

Luckily, all of these proliferating checks eventually “bottom out”. The vertically descending
checks bottom out because the “i-fold variance” is a polynomial of degree d − i, and hence the
(d + 1)-fold variance is constantly 0. The horizontally proliferating checks may eventually be
terminated due to the fact that a degree-d polynomial is determined by its values at d+ 1 points.
(Actually, one needs a quantitative version of this fact. Kane provides one involving another factor
of 2O(d); we eliminate this factor in Lemma 72.)

Ultimately, Kane’s mollifier multiplies p by poly(d) “Checki,j” functions: one needs a general-
ization of Theorem 2 and another theorem to show that the mollification is close to p at almost
all points; and, when using Taylor’s theorem at x, one needs a poly(d)-case analysis looking at the
“deepest” check (if any) that “fails.” If any check “fails,” then the mollified function is essentially 0;
otherwise, if they all pass, then in the λ-neighborhood of z, the variance of p, and the variance of
the variance, and the variance of the variance of the variance, etc., are all suitably small for use in
Taylor’s theorem.

2 The high-level structure of our proof

Throughout this paper p : Rn → R is a nonzero polynomial of degree at most d, and we are
interested in the degree-d polynomial threshold function f(x) = sign(p(x)). For a given 0 <
εPRG < 1, we determine a small value

λ :=
(εPRG

d

)O(1)
(4)

and we also let

L := 1/λ, kindep := Θ(d). (5)

Our main goal is:

Theorem 5 (Main result: sum of kindep-wise independent Gaussians fools degree-d PTFs). Let x ∼
N(0, 1)n be a standard n-dimensional Gaussian random vector, and let z1, . . . ,zL be independent
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kindep-wise independent n-dimensional Gaussian random vectors. Write

Z :=
√
λz1 +

√
λz2 + · · ·+

√
λzL.

Then
|E[sign(f(Z))]−E[sign(f(x))]| ≤ εPRG.

To prove Theorem 5, we will construct a certain function

Mollifierp : Rn → [0, 1],

which is a smoothed indicator function for a collection of events (related to local hyperconcentration
of p) that are expected to almost always occur. We then show the following:

Theorem 6 (Mollification error theorem, analogue of Lemma 17 of [Kan11b]).

Pr
x∼N(0,1)n

[Mollifierp(x) 6= 1] ≤ εPRG/4.

We then extend the mollifier to take into account the sign of p:

Definition 7. Define I+ : Rn → [0, 1] by

I+(x) = Mollifierp(x) · 1[sign(p(x)) = 1],

and define I− similarly as I−(x) = Mollifierp(x) · 1[sign(p(x)) = −1].

The main thing we prove about I± is the following:

Theorem 8 (One step of the Replacement Method, analogue of Lemma 19 of [Kan11b]). Fix
any x ∈ Rn, and assume the Rn-valued random vectors z, z′ are each kindep-wise independent
n-dimensional Gaussian vectors. Then we have∣∣∣E[I+

(√
1− λx+

√
λz
)]
−E

[
I+

(√
1− λx+

√
λz′
)]∣∣∣ ≤ εPRG

4L
.

The analogous statement for I− also holds.

From this, a “Replacement Method” argument easily yields the following:

Corollary 9. For Z as in Theorem 5 and x ∼ N(0, 1)n we have

|E[I+(Z))]−E[I+(x)]| ≤ εPRG/4,

and similarly for I−

Proof. We may view x ∼ N(0, 1)n as

x =
√
λx1 +

√
λx2 + · · ·+

√
λxL,

where x1, . . . ,xL ∼ N(0, 1)n are independent. For 0 ≤ t ≤ L, write

wt =
√
λx1 + · · ·+

√
λxt +

√
λzt+1 + · · ·+

√
λzL,
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so w0 = Z and wL = x. Thus by telescoping,

|E[I+(Z))]−E[I+(x)]| ≤
L∑
t=1

|E[I+(wt−1))]−E[I+(wt))]|. (6)

For a fixed 1 ≤ t ≤ L, if we write

v =
√

λ
1−λx1 + · · ·+

√
λ

1−λxt−1 +
√

λ
1−λzt+1 + · · ·+

√
λ

1−λzL,

then

|E[I+(wt−1))]−E[I+(wt))]| =
∣∣∣E[I+

(√
1− λ · v +

√
λzt

)]
−E

[
I+

(√
1− λ · v +

√
λxt

)]∣∣∣. (7)

Since zt and xt are each kindep-wise independent n-dimensional Gaussian vectors, Theorem 8 implies
that (7) ≤ εPRG/(4L). Putting this into Inequality (6) completes the proof.

With the above ingredients in place, Theorem 5 follows almost immediately:

Proof of Theorem 5. Since sign(p) ≤ 1− 2I− pointwise,

E[sign(p(Z))] ≤ E[1− 2I−(Z)] ≤ E[1− 2I−(x)] + εPRG/2 ≤ E[sign(p(x))] + εPRG,

where the second inequality is thanks to Corollary 9 and the third is thanks to Theorem 6. The
reverse direction, which lower bounds E[sign(p(Z))] by E[sign(p(x))]−εPRG using I+, is similar.

Theorem 5 shows that a scaled sum of kindep-wise independent Gaussians fools degree-d PTFs,
but such a random variable is not quite the desired PRG since perfectly generating even a single
Gaussian random variable formally requires infinitely many random bits. However, the following
construction of Kane tells us that for fooling degree-d Gaussian PTFs, it essentially suffices to find
the least L such that they are fooled by sums of L independent k-wise Gaussians; then, one gets
an explicit PRG with seed length O(kL · d log n).

Theorem 10 (Section 6 of [Kan11b]). Let n, d ∈ N, 0 < ε < 1. Suppose that for some k, L ∈ N,
degree-d Gaussian PTFs are (ε/2)-fooled by

√
λz1 + · · ·+

√
λzL, where λ = 1/L and z1, . . . ,zL are

k-wise independent n-dimensional Gaussians. Then there is an explicit PRG for ε-fooling degree-d
n-dimensional Gaussian PTFs with seed length

O(kL · d log(dLn/ε)),

which is simply O(kL · d log n) under the reasonable assumptions that d, 1/ε, L ≤ poly(n).

As [Kan11b] does not quite explicitly state Theorem 10, we outline a proof in Appendix A for
completeness. Theorem 1 follows immediately from Theorem 5 and Theorem 10.

The remaining tasks are to define Mollifierp and prove Theorems 6 and 8. We define Mollifierp
in Section 4 and prove Theorem 6 and Theorem 8 in Sections 4.4 and 7 respectively.

3 Probabilistic preliminaries

In this section we introduce notation and collect several probabilistic facts we will use. Throughout,
boldface is used to indicate random variables, N(0, 1) denotes the standard Gaussian (normal)
distribution, and N(0, 1)n is the associated n-dimensional product distribution.
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3.1 Bits, Gaussians, and k-wise independence

Although this work is mainly concerned with Gaussian random variables, many (but not all) of the
tools in it “generalize” to Boolean ±1 random variables. In order to illustrate this, we will provide
some definitions and notations in this section that work in both cases. However the Boolean results
are never strictly needed in this work, and the reader may prefer to ignore them and focus only on
the Gaussian case.

The fact that PTFs over Boolean space generalize PTFs over Gaussian space holds because, for
large M and x(1), . . . ,x(n) ∼ {±1}M uniform and independent,

y =

(
1√
M

M∑
i=1

x
(1)
i , . . . , 1√

M

M∑
i=1

x
(n)
i

)
(8)

is “close” to having an N(0, 1)n distribution, and because a degree-d polynomial p(y) is also a

degree-d polynomial in the x
(i)
j ’s. One sense of “closeness” here is that each yi may be coupled

with a true Gaussian zi ∼ N(0, 1) in such a way that |yi − zi| ≤ 1√
M

except with probability at

most O( 1√
M

).

Definition 11. Let D be a probability distribution on R. We say that a random vector z on Rn

has a k-wise independent D distribution if each zi has distribution D, and for all choices of k indices
1 ≤ i1, . . . , ik ≤ n, the random variables zi1 , . . . ,zik are independent. Examples include D being
the uniform distribution on {±1} (“k-wise independent bits”) and the main concern in this paper,
D being N(0, 1) (“k-wise independent Gaussians”).

Remark 12. The main way we use k-wise independence is to say that if x is n-wise independent,
z is k-wise independent, and p : Rn → R is a polynomial of degree at most k, then E[p(z)] =
E[p(x)].

3.2 Polynomial expansions

We recall standard facts and notation from analysis of Boolean functions and Hermite polynomials;
see, e.g., [O’D14] for a reference, and in particular [O’D14, Ch. 11.2] for Hermite analysis.

Every function g : {±1}n → R can be represented by a multilinear polynomial,

g(x) =
∑

α∈{0,1}n
ĝ(α)xα,

where each ĝ(α) ∈ R and we use the standard multi-index notation xα =
∏n
i=1 x

αi
i and |α| =∑

i αi. In “Gaussian space” the only functions we will ever analyze are polynomials; every degree-d
polynomial g : Rn → R can be written in Hermite polynomial decomposition as

g(x) =
∑
α∈Nn
|α|≤d

ĝ(α)hα(x),

where each ĝ(α) ∈ R, and the multivariate Hermite polynomial polynomial hα is given by hα(x) =
hα1(x1) · · ·hαn(xn), where hk = 1√

k!
Hk is a normalized version of the univariate degree-k “proba-

bilists’ Hermite polynomial” Hk. The multivariate Hermite polynomials hα are orthonormal under
N(0, 1)n. Also, in the notation of Equation (8),∑

α∈{0,1}n
|α|=k

(
1√
M
x(i)
)α M→∞−−−−→ hk(zi), z ∼ N(0, 1). (9)
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Let g denote either an n-variate Boolean or Gaussian polynomial. We use standard notation
E[g] for its mean (that is, E[g(x)] for x ∼ {±1}n in the former case, x ∼ N(0, 1)n in the latter),
‖g‖r = E[|g(x)|r]1/r for its r-norm (r ≥ 1), and Var[g] = E[g2] − E[g]2 for its variance. It holds
that

E[g] = ĝ(0), E[g2] =
∑
α

ĝ(α)2, hence Var[g] =
∑
α 6=0n

ĝ(α)2.

We write g<k =
∑
|α|<k ĝ(α)hα for k ∈ N, and similarly write g=k and g≥k. We also write

W<k[g] = E[(g<k)2] =
∑
|α|<k ĝ(α)2 for the “weight of g below level k”, and similarly write W=k[g]

and W≥k[g].

3.3 Noise and zooms

A basic fact about Gaussians is that if x,y ∼ N(0, 1)n are independent and 0 ≤ λ ≤ 1, then√
1− λx+

√
λy is also distributed as N(0, 1). In this work, λ typically denotes a “small” quantity;

for fixed x ∈ Rn we view
√

1− λx +
√
λy as a “λ-noisy” version of x, and we view changing a

polynomial g’s input from x ∼ N(0, 1)n to
√

1− λx+
√
λy as “zooming into g at x with scale λ”.

We make a precise definition:

Definition 13. For g an n-variate Gaussian polynomial, 0 ≤ λ ≤ 1, and x ∈ Rn, we define the
function gλ|x by

gλ|x(y) = g
(√

1− λx+
√
λy
)
.

The function gλ|x(y) is a polynomial in y of the same degree as g, and we (nonstandardly) refer to
it as the λ-zoom of g at x.

Remark 14. Referring again to Equation (8), one may verify that a λ-zoom of g at a random x
is the Gaussian analogue of a standard Boolean concept: a random restriction of a function
g : {±1}n → R at x ∈ {±1}n, meaning a subfunction obtained by proceeding through each
coordinate i, and either fixing the ith input to be xi with probability 1 − λ, or else leaving it
unfixed (“free”) with probability λ.

The fact that random restrictions of a Boolean function interact well with its polynomial expan-
sion is well known; e.g. [O’D14, Prop. 4.17] gives a formula for the expected square of any Fourier
coefficient of a Boolean function under a random restriction. Carefully taking the “Gaussian special
case” of this (using Equation (9)) yields the below analogue for random zooms. For completeness,
we give a self-contained proof of this analogue in Appendix A.

Proposition 15. For g : Rn → R a polynomial, 0 ≤ λ ≤ 1, and β ∈ Nn,

E
x∼N(0,1)n

[
ĝλ|x(β)2

]
=
∑
γ≥β

Pr[Bin(γ, λ) = β] ĝ(γ)2,

where Bin(γ, λ) denotes an n-dimensional random vector with independent components, the jth of
which is distributed as the binomial random variable Bin(γj , λ).

Summing the above proposition over all multi-indices β of a given weight |β| = m immediately
yields the following useful corollary:

Corollary 16. For g : Rn → R a polynomial, 0 ≤ λ ≤ 1, and m ∈ N,

E
x∼N(0,1)n

[
W=m[gλ|x]

]
=
∑
M

Pr[Bin(M,λ) = m] ·W=M [g].
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3.4 Noise operator and hypercontractivity

Considering the mean of the zoom of a polynomial leads to the “Gaussian noise” (or “Ornstein–
Uhlenbeck”) operator (see, e.g., [O’D14, Def. 11.12]):

Definition 17. Given 0 < ρ ≤ 1, the operator Uρ acts on Gaussian polynomials g : Rn → R via

(Uρg)(x) = E
y∼N(0,1)n

[
g
(
ρx+

√
1− ρ2y)

)]
= E
y∼N(0,1)n

[
g(1−ρ2)|x(y)

]
.

It is well known that Uρ acts diagonally in the Hermite polynomial basis (hα)α∈Nn :

Uρg =
∑
α∈NN

ρ|α|ĝ(α)hα. (10)

In particular, if g is a degree-d polynomial, so too is Uρg.
We may also write Uρ for the analogous Boolean noise operator (more usually denoted Tρ, see

[O’D14, Def. 2.46]), definable for g : {±1}n → R either through Equation (10), or by stipulating
that Uρg(x) is the mean of a random restriction of g at x with ρ-probability of fixing a coordinate.

Finally, somewhat unusually, we will need to extend the definition of Uρ to ρ > 1, which we
can do via the formula Equation (10); equivalently, by stipulating that Uρ−1 = U−1

ρ . For ρ > 1 this
operator no longer has a “probabilistic interpretation”, but it still maps degree-d polynomials to
degree-d polynomials.

Remark 18. We will several times use the “semi-group property”, Uρ1Uρ2 = Uρ1ρ2 , which is
immediate from Equation (10).

At one point in our analysis we will also need the notion of Gaussian noise stability :

Definition 19. For g : Rn → R and ρ > 0,

Stabρ[g] = E
y∼N(0,1)n

[g(y) ·Uρg(y)] =
∑
α

ρ|α|ĝ(α)2,

where the last equality is by Equation (10) and orthonormality of Hermite polynomials.

Hypercontractivity. A nontrivial and highly useful property of the Boolean/Gaussian noise
operator Uρ is hypercontractivity (see, e.g., [O’D14, Secs. 9.2, 11.1]):

Theorem 20 ((2, q)-hypercontractive inequality). Let g be a Gaussian or Boolean polynomial.
Then ‖U1/

√
q−1g‖q ≤ ‖g‖2 holds for any q > 2.

Hypercontractivity has the following consequences (see [O’D14, Thms. 9.22, 9.23]):

Theorem 21. Let g be a Gaussian or Boolean polynomial of degree at most k. Then ‖g‖2 ≤ ek‖g‖1.

Theorem 22. Let g be a Gaussian or Boolean polynomial of degree at most k. Then for any

t ≥
√

2e
k
,

Pr
x

[|g(x)| ≥ t‖g‖2] ≤ exp

(
− k

2e
t2/k

)
.

12



3.5 Hyperconcentration: our key tool

The ideas in this section, though technically standard, are part of the conceptual contribution of
this work.

Very often we will need to show that a random variable is tightly concentrated around its mean
in a multiplicative sense. Let us start with some notation.

Notation 23. We use the following notation to denote that two reals a, b > 0 are multiplicatively
close: For ν ≥ 0,

a ≈ν b ⇐⇒ e−ν ≤ a/b ≤ eν .

Note that this condition is indeed symmetric in a and b. We extend the notation to all a, b ∈ R by
stipulating that a ≈ν b if: ab > 0 and the above condition holds; or, a = b = 0.

Given a real random variable w with mean µ, a standard way to show that w ≈ µ with high
probability is to first establish stddev[w] ≤ η|µ| and then use Chebyshev’s inequality. When this
holds we informally say that w concentrates around its mean. In this work, a crucial concept will
be improving this concentration using higher norms.

Definition 24. Let q > 2 and η ≥ 0 be real numbers. We say a real random variable w with
mean µ is (q, η)-hyperconcentrated if

‖w − µ‖q = E[|w − µ|q]1/q ≤ η|µ|.

The utility of this definition is that it gives an improvement to the Chebyshev inequality:

Proposition 25. Suppose w with mean µ is (q, η)-hyperconcentrated. Then for any t > 0, except
with probability at most (η/t)q we have |w − µ| ≤ t|µ| (and in particular w ≈2t µ if t ≤ 1/2).

Proof. Apply Markov’s inequality to the random variable |w − µ|q.

We’ll also need the following simple consequence of hyperconcentration:

Lemma 26. Suppose z is an Rm-valued random vector with (q, η)-hyperconcentrated components,
and write µ = E[z]. Then for any multi-index α ∈ Nm with |α| ≤ q,

E[|z − µ|α] ≤ η|α||µ|α.

Proof. We have

E[|z − µ|α] = E

[
n∏
i=1

|zi − µi|αi
]
≤

n∏
i=1

E

[
|zi − µi|

αi· |α|αi

] αi
|α|
≤

n∏
i=1

(ηµi)
αi = η|α||µ|α,

where the first inequality is from Hölder’s inequality and the second is from Definition 24.

The random variables we’ll show hyperconcentration for will be Gaussian polynomials. We will
do this by bounding a quantity that we term their “hypervariance”, and that plays a central role
in our work:

Definition 27. Let g be a Gaussian or Boolean polynomial. Then for R > 1, we define the
R-hypervariance of g to be

HyperVarR[g] := Var[URg] =
∑
α 6=0

R2|α|ĝ(α)2.

(For R = 1, this reduces to the usual variance of g.)
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Lemma 28. Let g be a Gaussian or Boolean polynomial. Write µ = E[g] and assume HyperVarR[g] ≤
θµ2. Then the random variable g(x) is (1 +R2,

√
θ)-hyperconcentrated.

Proof. Writing g = g − µ, our hypothesis is that ‖URg‖22 ≤ θµ2. By hypercontractivity, we have
‖g‖1+R2 = ‖U1/RURg‖1+R2 ≤ ‖URg‖2. Thus ‖g‖1+R2 ≤

√
θ|µ|, as needed.

The hypothesis in Lemma 28, that g’s hypervariance is small compared to its squared-mean,
will be an important one for us. It is essentially the same as the hypothesis that g’s hypervariance
is small compared to its squared-2-norm (since squared-2-norm equals squared-mean plus variance,
and hypervariance is at least variance for all R > 1). It will be slightly more convenient in our
Local Hypervariance Theorem to work with the latter hypothesis, so we codify it here and establish
the analogue of Lemma 28.

Definition 29. Let g be a Gaussian or Boolean polynomial, and let R > 1. We say that g is
(R, ε)-attenuated if HyperVarR[g] ≤ ε‖g‖22.

Remark 30. Intuitively, a polynomial g is attenuated if for each i ≥ 1, the amount of Hermite
weight it has at level i is “very small” compared with the total Hermite weight (squared 2-norm)
of g. Crucially, the precise quantitative definition of “very small” in the preceding sentence depends
on the weight level i, and gets exponentially stronger (smaller) as i gets larger. An intuition which
may possibly be helpful is to think of an attenuated polynomial as a polynomial which is “morally
constant” over Gaussian space.

Returning to hyperconcentration, we have the following:

Lemma 31. Let g be a Gaussian or Boolean polynomial that is (R, θ)-attenuated, with R ≥
√

2
and θ ≤ 1. Then the random variable g(x) is (1 + 1

2R
2,
√
θ)-hyperconcentrated.

Proof. Using the notation µ and g again, and starting with the (R, θ)-attenuation assumption, we
have

∑
j≥1

R2j‖g=j‖22 ≤ θ

µ2 +
∑
j≥1

‖g=j‖22

 =⇒
∑
j≥1

(R2j−θ)‖g=j‖22 ≤ θµ2 =⇒
∑
j≥1

(
R√
2

)2j
‖g=j‖22 ≤ θµ2,

where the last step used R ≥
√

2 and θ ≤ 1. But this is equivalent to HyperVar R√
2

[g(x)] ≤ θµ2,

so the result follows from Lemma 28.

Combining this with Lemma 31 and Proposition 25 yields the following useful result, which
informally says that “attenuated polynomials are very likely to take values multiplicatively close
to their means”:

Proposition 32. Let g be a Gaussian or Boolean polynomial that is (R, θ)-attenuated, with R ≥
√

2
and θ ≤ 1. Write µ = E[g]. Then assuming 0 < γ ≤ 1, we have g(x) ≈γ µ except with probability

at most (2
√
θ/γ)

1
2
R2+1.

3.6 Special properties of Gaussian random variables

All of the results in this section so far have applied equally well to Gaussian or Boolean polynomials.
We now give the two results we will use that are specific just to Gaussian polynomials. The first is a
well known result of Carbery and Wright [CW01] on anticoncentration (see e.g. [Kan11b, Lem. 23],
[O’D14, Sec. 11.6]):
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Theorem 33 (Gaussian Carbery–Wright). There is a univeral constant C such that for any degree-
d polynomial g : Rn → R and any 0 ≤ δ ≤ 1,

Pr
x∼N(0,1)n

[
|g(x)| <

(
δ
C·d
)d · ‖g‖2] ≤ δ.

The second Gaussian-specific result we use is a key lemma from Kane’s work [Kan11b, Lemma 9].
This lemma was the essential ingredient he used to prove his “local concentration” result Theorem 2.
At first glance, it may look much stronger than Theorem 2, because it gives a nontrivial kind of
concentration result even for λ as large as 1/poly(d). However the concentration one gets in (almost
all) local neighborhoods is somewhat weak: one gets that gλ|x’s values are with high probability
near a specific value, but this is not enough to even conclude that stddev[gλ|x] is small compared
to that value. Kane uses hypercontractivity to bootstrap this to control over the variance when
he obtains Theorem 2, and this loses a 2O(d) factor. When we employ Lemma 34 below, we will
already be working with hyperconcentrated functions, which means we will not lose much when
similarly bootstrapping.

Lemma 34. ([Kan11b, Lemma 9] with parameters renamed.) Let g : Rn → R be a degree-d
polynomial and let 0 < β < 1. Then for x,y ∼ N(0, 1)n independent, except with probability β we
have

gλ|x(y) ≈ν g(x) for ν = O(d2/β) ·
√
λ

(provided λ is small enough that ν ≤ 1).

Kane’s proof of this lemma (seemingly) crucially relies on the rotational invariance of n-
dimensional Gaussians.

4 Defining Mollifierp

The definition of Mollifierp involves a collection S of “statistics” of the polynomial p. Each statistic
s ∈ S will be a certain nonnegative polynomial s : Rn → R≥0, defined in terms of p, of degree at
most 2d.

The definition also involves a collection MollifierChecks of “mollifier checks”. Each mollifier
check Check ∈MollifierChecks will consist of two ingredients:

Check = (Ineq, δ), where Ineq = (γ, su, sv) means “su ≥ γsv” (11)

for some statistics su, sv ∈ S and some nonnegative value γ, and where δ ≥ 0 is a “softness”
parameter. The intuitive meaning of Check applied at a point x ∈ Rn is that it is “softly”
checking that su(x) ≥ γsv(x), up to a multiplicative factor of roughly 1± δ. More precisely:

Definition 35. Let σ : R→ [0, 1] be a smooth function satisfying

σ(t) =

{
0 if t ≤ −1,

1 if t ≥ +1,

and which is such that for all j ≤ d, the magnitude of σ’s j-th derivative is everywhere bounded
by jO(j). (This is easily achieved by standard constructions such as taking σ to be a suit-
able polynomial of degree O(d) on the interval [−1, 1].) Also, given a mollifier check Check ∈
MollifierChecks as in (11), define

SoftCheckCheck : Rn → [0, 1]

15



by

SoftCheckCheck(x) = σ

(
δ−1 ln

(
su(x)

γsv(x)

))
, (12)

where we take 0/0 = +∞. We remark that

SoftCheckCheck(x) = 1 if su(x) ≥ exp(δ) · γsv(x),

SoftCheckCheck(x) = 0 if su(x) ≤ exp(−δ) · γsv(x).

The function Mollifierp is the product of all the mollifier checks:

Definition 36. Mollifierp(x) =
∏

Check∈MollifierChecks

SoftCheckCheck(x).

To complete the definition of Mollifierp we need to: (i) define the statistics in S; and, (ii) define
the collection MollifierChecks of mollifier checks. We do each of these in turn below.

4.1 The statistics in S

4.1.1 Noisy derivatives of amplified polynomials

Now we arrive at a novel definition in this work which plays a key role in our results. We will make
extensive use of the following notion, which can be thought of as a sort of “noisy derivative of the
R-amplified version of g at x in directions y and y′.” This is a variant of one of the key definitions
of [Kan11b] (the second definition in Section 3 of that paper) but with the crucial difference that
now we consider the “R-amplified” version of g in place of just g itself as was the case in the
corresponding definition in [Kan11b]:

Definition 37. Given two vectors y, y′ ∈ Rn, define the operator 4(R,λ)
y,y′ on polynomials g : Rn →

R via

(4(R,λ)
y,y′ g)(x) :=

URgλ|x(y)−URgλ|x(y′)
√

2
.

We remark that URgλ|x(y) is parenthesized as (UR(gλ|x))(y).

The following is easily verified:

Fact 38. If g : Rn → R is a polynomial of degree at most d, then for every y, y′ ∈ Rn, the function

4(R,λ)
y,y′ g is a polynomial of degree at most d− 1.

The following simple but crucial fact connects the derivative notion from Definition 37 to the
hypervariance notion from Definition 27:

Fact 39. For fixed x ∈ Rn and independent n-dimensional Gaussians y,y′ ∼ N(0, 1)n, we have
that

E
y,y′

[(
4(R,λ)
y,y′ g(x)

)2
]

= HyperVarR
[
gλ|x

]
.
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Proof. The left-hand side is equal to

1

2
E

(∑
α

R|α|ĝλ|x(α)
(
hα(y)− hα(y′)

))2


=
1

2
E

∑
α 6=0

R|α|ĝλ|x(α)
(
hα(y)− hα(y′)

)2 (since hα(y) ≡ 1 for α = 0)

=
1

2

∑
α,β 6=0

R|α|+|β|ĝλ|x(α)ĝλ|x(β) E
[
(hα(y)− hα(y′))(hβ(y)− hβ(y′))

]
=
∑
|α|>0

R2|α|ĝλ|x(α)2 = HyperVarR[gλ|x]

where the penultimate equality is by orthonormality of the Hermite polynomials and independence
of y,y′.

4.1.2 The statistics in S

Fix a parameter
R := Θ(T ) (13)

where T is a parameter we will set later. (See Equation (33); it will in fact be an absolute constant.)
We can now define the set of statistics, S. Each statistic is doubly indexed by a pair of natural
numbers; there are (d+ 1)(D + 1) many statistics, {si,j}i∈{0,...,d},j∈{0,...,D}, where

D := (2d+ 1)2. (14)

It is convenient for us to view the elements of S as being arranged in a grid where the (i, j)-th
statistic si,j is in row i and column j (we will often use terminology of this sort). We remark that our

statistic si,j will closely correspond to the functions called |p(`),m
θ (X)|22 in [Kan11b] (i = `, j = m),

except that as mentioned we use amplified noisy derivatives where Kane just had noisy derivatives.
All statistics are defined in terms of the underlying degree-d polynomial p. We first define the

0th column of statistics:

Definition 40 (0th column of statistics). For i ∈ {0, . . . , d}, we define

si,0(x) := E

[(
4(R,λ)
yi,y

′
i
4(R,λ)
yi−1,y

′
i−1
· · ·4(R,λ)

y1,y
′
1
p(x)

)2
]
,

where y1,y
′
1, . . . ,yi,y

′
i ∼ N(0, 1)n are independent.

Remark 41. By Fact 38, sd,0 is a constant function and sd+1,0 is identically zero; this is why we
consider si,0 only for i ≤ d.

For technical reasons, we will also need to use slight variants of the statistics si,0, which corre-
spond to taking an average over mildly noisy versions of the input:

Definition 42 (The remaining statistics). For i ∈ {0, . . . , d} and j ∈ {1, . . . , D} we define si,j by

si,j(x) := U√
1−λsi,j−1(x) = E

y∼N(0,1)n

[
(si,j−1)λ|x(y)

]
.
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Remark 43. Using the semigroup property, we have that

si,j(x) = U(1−λ)j/2si,0(x) = E
y∼N(0,1)n

[
(si,0)1−(1−λ)j |x(y)

]
.

This completes the formal definition of the statistics in S; however, it will be very useful for
us to view the statistics from a different perspective based on distributions of polynomials. We
introduce this perspective in the next subsection.

4.2 A distributional view on the statistics

For the sake of probabilistic technicalities, we will need to define a notion of a distribution of
polynomials being “nice”:

Definition 44. We say that a distribution (gυ)υ∼Υ of n-variable polynomials of degree at most d
is nice if

• Υ is the normal distribution N(0, 1)I for some natural number I, and

• for each υ in the support of Υ, the coefficients of pυ are polynomials of degree at most d in υ.

It will be convenient for us to view the statistics si,j as averages of squares of polynomials
drawn from various nice distributions. To do this, we inductively define a grid of nice distributions
of polynomials Fi,j as follows. The base distribution, F0,0 is just the probability distribution with
a single outcome, namely the polynomial p. (Note that this corresponds to a nice distribution with
I = 0.) Next, we inductively define the distributions Fi,0 as follows:

• To make a draw from Fi,0, where i > 0: First draw f ∼ Fi−1,0. Then draw y,y′ ∼
N(0, 1)n. Then output the polynomial 4(R,λ)

y,y′ f .

The following “operator notation” for zooms (local to this section and Section 8.3) will be conve-
nient: for a polynomial p and a vector y ∈ Rn, we define the notation

Nyp := p1−λ|y. (15)

With the distributions of polynomials Fi,0 defined as above, we inductively define the distribu-
tions Fi,j , where j > 0 as follows:

• To make a draw from Fi,j, where j > 0: First draw f ∼ Fi,j−1. Then draw y ∼ N(0, 1)n.
Then output the polynomial Nyf .

It is immediate from these definitions that each Fi,j is a nice distribution of polynomials of
degree at most d. It is also immediate, comparing the above definition against Definition 40 and
Definition 42, that for each i ∈ {0, . . . , d} and each j ∈ {0, . . . , D} we have that

si,j = E
f∼Fi,j

[f2]. (16)

Finally, it is straightforward to check from these definitions (using also Fact 39) that

si+1,0(x) = E
f∼Fi,0

[HyperVarR[fλ|x]], si,j+1(x) = E
f∼Fi,j

[‖fλ|x‖22]. (17)

These characterizations will be useful when we analyze the statistics later.
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4.3 Defining the mollifier checks

Intuition. In this subsection we define the collection MollifierChecks of mollifier checks.
Before formally defining these checks, we give some useful intuition concerning them. We will show
in Section 4.4 that except with very small failure probability over x ∼ N(0, 1)n, the statistics si,j(x)

satisfy the following properties, where λ̂, δhorz > 0 are suitable small parameters:

1. Local hyperconcentration: For each i ∈ {0, . . . , d− 1},

si+1,0(x) ≤ λ̂si,1(x). (18)

2. Insensitivity under noise: For each i ∈ {0, . . . , d}, j ∈ {0, . . . , D − 2},

si,j(x) ≈δhorz si,j+1(x). (19)

The parameter settings we require will turn out to be the following:

λ̂ satisfying poly(Td)T · λ̂T/2 = λεPRG, δhorz :=
1

KdD
, (20)

where K is a suitably large absolute constant and T > 2 is a constant that will be set later in
Equation (33) (for now, the most important thing to notice is that since T > 2, the exponent on λ̂
above is strictly greater than 1).

The mollifier checks are designed precisely to check that the above properties Inequalities (18)
and (19) actually hold at x, and thus Theorem 6 corresponds to the fact that these properties hold
with high probability for a random x ∼ N(0, 1)n.

With the above intuition in place, we proceed to define the mollifier checks that check for each
of the above types of properties (1) and (2). Please see below for a figure depicting the mollifier
checks and the grid of statistics.

Figure 2: The grid of statistics and the mollifier checks. Local hyperconcentration checks are
depicted in red and noise insensitivity checks are depicted in blue.
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4.3.1 Checking local hyperconcentration

For each i ∈ {0, . . . , d− 1}, MollifierChecks contains a check corresponding to Inequality (18).
The “inequality” portion of the check is

si+1,0 ≤ eλ̂si,1

and the “softness” parameter of the check is 1; so for this check Check in MollifierChecks, the
associated “soft check” is

SoftCheckCheck(x) = σ

(
ln

(
eλ̂si,1
si+1,0

))
. (21)

We refer to these d elements of MollifierChecks as “anticoncentration checks” or (recalling the
grid) as “diagonal checks.”

4.3.2 Checking insensitivity under noise

For each i ∈ {0, . . . , d}, j ∈ {0, D− 2}, MollifierChecks contains a pair of checks corresponding
to Inequality (19). The “inequality” portion of the first (respectively, second) check of the pair is

si,j(x) ≥ exp(2δhorz) · si,j+1(x) (respectively, si,j+1(x) ≥ exp(2δhorz) · si,j(x)),

and the “softness” parameter of each of these checks is δhorz. So for these two elements Check,Check′

of MollifierChecks the associated “soft checks” are

SoftCheckCheck(x) = σ

(
δ−1

horz ln

(
exp(2δhorz) · si,j(x)

si,j+1(x)

))
and (22)

SoftCheckCheck′(x) = σ

(
δ−1

horz ln

(
exp(2δhorz) · si,j+1

si,j

))
. (23)

We refer to these 2dD checks as “noise-insensitivity checks” or as “horizontal checks.”

This concludes the definition of MollifierChecks, so recalling Definition 36 the definition of
Mollifierp is now complete. We turn to proving Theorem 6.

4.4 Breaking down the mollification error for the proof of Theorem 6

Recalling the definition of MollifierChecks from Section 4.3, the approach to proving Theorem 6
is clear. We will show that each of the local hyperconcentration (diagonal) checks passes “with room
to spare” with high probability over x, and that likewise each of the noise-insensitivity (horizontal)
checks passes with room to spare with high probability over x. The two theorems stated below
give the desired bounds:

Theorem 45 (Local hyperconcentration, rough analogue of Corollary 10 of [Kan11b]). For each
i ∈ {0, . . . , d − 1}, except with probability at most εPRG/(8d) over x ∼ N(0, 1)n, Inequality (18)
holds, i.e.

si+1,0(x) ≤ λ̂si,1(x).

Theorem 46 (Noise-insensitivity, analogue of Lemma 11 of [Kan11b]). For each i ∈ {0, . . . , d}
and j ∈ {0, . . . , D − 1}, except with probability at most εPRG/(8(d + 1)D) over x ∼ N(0, 1)n,
Inequality (19) holds, i.e.

si,j(x) ≈δhorz si,j+1(x).
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Proof of Theorem 6 using Theorem 45 and Theorem 46. By a union bound over failure probabil-
ities, we have that with probability at least 1 − εPRG/4 Inequality (18) holds for all i and In-

equality (19) holds for all i, j. If Inequality (18) holds for a given i then ln
eλ̂si,1
si+1,0

≥ 1 and

the diagonal check Equation (21) evaluates to 1. If Inequality (19) holds for a given i, j then

δ−1
horz ln

(
exp(2δhorz)·si,j

si,j+1

)
≥ 1 and the horizontal check Equation (22) evaluates to 1, and similarly

δ−1
horz ln

(
(exp(2δhorz)·si,j+1

si,j

)
≥ 1 and the horizontal check Equation (23) evaluates to 1.

It remains to prove Theorems 45 and 46.

5 Local hyperconcentration: Proof of Theorem 45

In this section we present the key new ingredient underlying our main result, the Local Hypercon-
centration Theorem for degree-d polynomials. As alluded to in the Introduction, this result says
that with high probability over a Gaussian x ∼ N(0, 1)n, the λ-zoom of a degree-d polynomial p at x
(i.e. the polynomial pλ|x) is attenuated — intuitively, it is “very close to a constant polynomial”.
We refer to this result as a “local hyperconcentration theorem” since by Lemma 31 attenuation of
pλ|x implies that the random variable pλ|x(y) (for y ∼ N(0, 1)n) is hyperconcentrated; this property
will play a crucial role in our later technical arguments.

For technical reasons related to the definition of our statistics (essentially because each statistic
si,j(x) is an average of polynomials — recall Section 4.2), the actual statement we will need is one
that is about a distribution of polynomials rather than a single polynomial. However, for clarity
of exposition we first state the “one-polynomial” version of the original local hyperconcentration
theorem from [OST20] below:

Theorem 47 (Local hyperconcentration theorem for a single polynomial). Let g : Rn → R be a
polynomial of degree at most d. Fix parameters R ≥ 1,0 < ε ≤ 1, 0 < β < 1, and assume

λ ≤ ε

R2
·
(
β

d

)C log d

(where C is a certain universal constant). Then for x ∼ N(0, 1)n, except with probability at most β
we have that the randomly zoomed polynomial gλ|x is (R, ε)-attenuated; i.e.,

HyperVarR[gλ|x] ≤ ε · ‖gλ|x‖22.

Another way to phrase the conclusion is that for h = gλ|x, except with probability β we have
that h is such that

HyperVarR[h] ≤ (d/β)O(log d) ·R2λ · ‖h‖22.

Notice that the dependencies here on R and λ are “correct” in the sense that if one intuitively
thinks of λ as “infinitesimal”, we expect that h will have Θ(λ) weight at level 1, negligible weight
above level 1, and the definition of HyperVarR multiplies this Θ(λ) level-1 weight by R2. The
“error factor” in this result, (d/β)O(log d) with β ∼ εPRG, essentially becomes our final seed length
(divided by log n).

Because of the need to analyze the statistics introduced in Section 4.1.2, we will often need to
work with a distribution over polynomials rather than a single polynomial. We therefore intro-
duce the following generalization of Definition 50, which captures the notion of a distribution over
polynomials being attenuated on average:
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Definition 48 (Nice distribution of polynomials is attenuated on average). Let (gυ)υ∼Υ be a nice
(in the sense of Section 4.2) distribution of polynomials over Rn. For R ≥ 1 and 0 < ε ≤ 1, we say
that the distribution (gυ)υ∈Υ is (R, ε)-attenuated on average if

E
υ

[HyperVarR[gυ]] ≤ ε ·E
υ

[
‖gυ‖22

]
.

The actual main result we prove in this section is Theorem 49, which generalizes Theorem 47
to a nice distribution of polynomials and is the original local hyperconcentration theorem from
[OST20]:

Theorem 49 (Local hyperconcentration theorem for a nice distribution of polynomials). Let
(gυ)υ∼Υ be a nice (in the sense of Section 4.2) distribution of degree-d polynomials. Fix parameters
R ≥ 1, 0 < ε ≤ 1, 0 < β < 1, and assume

λ ≤ ε

R2
·
(
β

d

)C log d

(24)

(where C is a certain universal constant). Then for x ∼ N(0, 1)n, except with probability at most
β we have that the distribution ((gυ)λ|x)υ∈Υ is (R, ε)-attenuated on average; i.e.,

E
υ

[
HyperVarR[(gυ)λ|x]

]
≤ ε ·E

υ

[
‖(gυ)λ|x‖22

]
.

In Appendix B an improved version of Theorem 49, namely Theorem 85, is proved, which only
requires an upper bound on λ of εβ/(RdO(1)). Theorem 45 follows from Theorem 85 directly by
setting parameters as follows:

Proof of Theorem 45 using Theorem 85. We instantiate Theorem 85 with its nice distribution “(gυ)υ∼Υ”
being Fi,0, its “R” parameter being set to R defined in Equation (13), its “λ” parameter being λ,

its “ε” parameter being λ̂, and its “β” parameter being εPRG/(8d). Recalling Equation (16) and
Equation (17) we have

si,0(x) = E
υ

[gυ(x)2], si,1(x) = E
υ

[
‖(gυ)λ|x‖22

]
, and si+1,0(x) = E

υ

[
HyperVarR[(gυ)λ|x]

]
.

Recalling the settings of λ and λ̂ from Equation (4) and Equation (20), we see that the bound
required in Equation (24) indeed holds, and so we can apply Theorem 85, and its conclusion gives
precisely the desired conclusion of Theorem 45.

In the rest of this section we prove Theorem 49. We first explain the high-level structure of the
argument in Section 5.1 and then give the formal proof in the rest of the section.

5.1 A useful definition, and the high-level argument underlying Theorem 49

Before we can give the high level idea of the proof of Theorem 49 we need a refined notion of a
polynomial being attenuated:

Definition 50 (Attenuated polynomial, refined notion). Let g : Rn → R be a polynomial of degree
at most d. For k ≥ 0, R ≥ 1, and 0 < ε ≤ 1, we say that the polynomial g is (k,R, ε)-attenuated if∑

|β|>k

R2|β|ĝ(β)2 = HyperVarR[g>k] ≤ ε · ‖g‖22. (25)
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Similarly, if (gυ)υ∼Υ is a nice (in the sense of Section 4.2) distribution of polynomials over Rn, we
say that the distribution (gυ)υ∈Υ is (k,R, ε)-attenuated on average if

E
υ

[
HyperVarR[g>kυ ]

]
≤ ε ·E

υ

[
‖gυ‖22

]
.

Note that g being (0, R, ε)-attenuated is the same as g being (R, ε)-attenuated as defined earlier
(see Definition 29), and likewise for (gυ)υ∼Υ (see Definition 48).

With this refined notion of attenuation in hand we can explain the high level idea of our local
hyperconcentration theorem. For ease of exposition, below we sketch the underlying ideas in the
“one-polynomial” setting of Theorem 47 (the same ideas drive the proof of Theorem 49).

So, we are given a degree-d polynomial g and the goal is to argue that with high probability
over a random point x ∼ N(0, 1)n, the polynomial gλ|x is (R, ε)-attenuated, i.e. (0, R, ε)-attenuated.
A simple but crucial insight pointing the way is that random zooms compose: in more detail, if
0 < λ, λ′ < 1 are two noise rates and x,x′ are two independent N(0, 1)n random variables, then the
distribution of the composed random zoom (gλ|x)λ′|x′ is identical to the distribution of gλλ′|z where
z ∼ N(0, 1)n. With this in mind, it is natural to view a random zoom at the small noise rate λ as a
“strong” random zoom which is obtained by composing a sequence of log d many “weaker” random
zooms at larger noise rates.5 If we can prove that a “weak” random zoom with high probability
causes a (k,R, ε)-attenuated polynomial to become (k/2, R, ε)-attenuated, then since any degree-d
polynomial is trivially (d,R, ε)-attenuated, a simple union bound over log d many applications of
this “one-stage” result yields the desired random zoom lemma for g. This is precisely the high-level
structure of our argument; see Theorem 54 for a formal statement of the one-stage result in the
more general setting of a nice distribution of polynomials.

We proceed to give intuition for the proof of the one-stage result. In this setting we are
now given g which is a (k,R, ε)-attenuated polynomial; intuitively this means that the amount of
Hermite weight it has at levels k+ 1, k+ 2, . . . is very small compared to the total Hermite weight
of g at all levels 0, 1, . . . . We must argue that with high probability over x ∼ N(0, 1)n, after a
random zoom at x the polynomial q := gλ|x is (k/2, R, ε)-attenuated, i.e. the amount of Hermite
weight q has at levels k/2 + 1, k/2 + 2, . . . is very small relative to the total Hermite weight of
q at levels 0, 1, . . . . This is naturally done via a two part argument. The first part is to argue
two-norm retention: this amounts to showing that with high probability over x, the squared two-
norm of q does not become too small relative to the squared two-norm of p. The argument for
this is based on the Carbery–Wright anticoncentration bound (Theorem 33) and the tail bound
for Gaussian polynomials (Theorem 22); see Section 5.2 for a precise statement and proof of this
part. The second part is to argue attrition of the high-degree Hermite weight: this amounts to
showing that with high probability after a random zoom, the amount of Hermite weight at levels
k/2 + 1, k/2 + 2, . . . becomes very small relative to the squared two-norm of p. The argument for
this is based on Corollary 16 and Markov’s inequality; see Section 5.3 for a precise statement and
proof.

5.2 First part of the proof of the one-stage local hyperconcentration theorem:
Retention

The main result of this section is Lemma 52. Its proof uses the following proposition:

5The idea of decomposing a “strong”random zoom into multiple “weak” random zooms is due to Avi Wigderson.
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Proposition 51. Let (gυ)υ∼Υ be a nice distribution of polynomials of degree at most k. Then for
x ∼ N(0, 1)n, except with probability at most β′ we have

E
υ

[‖(gυ)λ|x‖22] ≥
(

β′

O(k)

)2k

E
υ

[‖gυ‖22].

Proof. Let r(x) := Eυ[‖(gυ)λ|x‖22]. We observe that r is a nonnegative degree-2k polynomial with
mean

E
x∼N(0,1)n

[r(x)] = E
υ

E
x∼N(0,1)n

[‖(gυ)λ|x‖22] = E
υ

E
x,x′∼N(0,1)n

[gυ(
√

1− λx+
√
λx′)]

= E
υ

E
g∼N(0,1)n

[gυ(g)2] = E
υ

[‖gυ‖22].

The claimed result now follows immediately from the Carbery–Wright anticoncentration bound
Theorem 33 applied to p = r, since ‖r‖2 ≥ ‖r‖1 = E[r] = Eυ[‖gυ‖22].

One way to think of the nice distribution of degree-k polynomials in Proposition 51 is that it is
“(k,+∞, 1)-attenuated on average.” Lemma 52 relaxes this requirement and shows that a similar
result holds for a nice distribution that is (k, S, 1)-attenuated on average for a modestly large S.

Lemma 52. Let (gυ)υ∼Υ be a nice distribution of polynomials that is (k, S, 1)-attenuated on average
for some k ∈ N+. Fix a parameter 0 < β′ < 1. Then for x ∼ N(0, 1)n, except with probability at
most β′ we have

E
υ

[
‖(gυ)λ|x‖22

]
≥
(

β′

O(k)

)2k

E
υ

[
‖gυ‖22

]
,

provided that (for a certain universal constant C)

S ≥ Ck log(3/β′)/β′.

Proof. We introduce the notation `υ := g≤kυ and hjυ := g=k+j
υ for j = 1, 2, 3, . . . , so gυ = `υ +∑

j≥1 h
j
υ. We may assume without loss of generality that Eυ

[
‖gυ‖22

]
= 1, or equivalently, Eυ

[
‖`υ‖22

]
+∑

j≥1 Eυ

[
‖hjυ‖22

]
= 1. Since (gυ)υ∼Υ is (k, S, 1)-attenuated on average, we have that

E
υ

[
‖gυ‖22

]
= 1 ≥ E

υ

[
HyperVarS [g>kυ ]

]
=
∑
i>k

S2i E
υ

[
‖g=i
υ ‖22

]
(26)

≥ S2k
∑
j≥1

E
υ

[
‖hjυ‖22

]
= S2k

(
1−E

υ

[
‖`υ‖22

])
.

We may deduce that
E
υ

[
‖`υ‖22

]
≥ 1− 1/S2k ≥ .99,

where the latter inequality holds assuming C is large enough. From Proposition 51, we conclude
that

except with probability at most β′/2 over x, E
υ

[
‖(`υ)λ|x‖22

]
≥
(
β′

C1k

)2k

, (27)

where C1 is a universal (large) constant. Our goal will be to establish the following: for all j ≥ 1,

except with probability at most (β′/3)/10j over x, E
υ

[
‖(hjυ)λ|x‖22

]
≤
(
β′

C1k

)2(k+j)

. (28)
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Before establishing Inequality (28), we show how it yields the conclusion of the lemma. Given
Inequalities (27) and (28), summing over j and taking a union bound, we get that except with
probability at most β′ over x,

√
E
υ

[
‖(`υ)λ|x‖22

]
−
∑
j≥1

√
E
υ

[
‖(hjυ)λ|x‖22

]
≥ 1

2

(
β′

C1k

)k
. (29)

The triangle inequality easily gives that for functions a(υ), b1(υ), b2(υ), . . . , we have that√√√√E
υ

[
(a(υ)−

∑
j
bj(υ))2

]
≥
√

E
υ

[a(υ)2]−
∑
j

√
E
υ

[b(υ)2].

Applying this (for each outcome of x) with a(υ) = ‖(`υ)λ|x‖2 and b(υ) = ‖(hjυ)λ|x‖2, by Equa-
tion (29) we get that√√√√E

υ

[
(‖(`υ)λ|x‖2 −

∑
j≥1
‖(hjυ)λ|x‖2)2

]
≥
√

E
υ

[
‖(`υ)λ|x‖22

]
−
∑
j≥1

√
E
υ

[
‖(hjυ)λ|x‖22

]
≥ 1

2

(
β′

C1k

)k
,

from which we get (using (‖f‖ − ‖g1‖ − ‖g2‖ − ‖g3‖ − · · · )2 ≤ ‖f + g1 + g2 + g3 + · · · ‖2) that

1

4

(
β′

C1k

)2k

≤ E
υ

[
(‖(`υ)λ|x‖2 −

∑
j≥1
‖(hjυ)λ|x‖2)2

]
≤ E
υ

[
‖(`υ)λ|x +

∑
j≥1

(hjυ)λ|x‖22

]
= E
υ

[
‖(gυ)λ|x‖22

]
,

which is the conclusion of the lemma since Eυ
[
‖gυ‖22

]
= 1.

Thus it remains to establish Inequality (28). To do this, write sj(x) = Eυ

[
‖(hjυ)λ|x‖22

]
for

brevity, and note that sj is a nonnegative polynomial of degree at most 2(k + j). Similar to the
proof of Proposition 51, we have that

‖sj‖1 = E
x

[sj(x)] = E
x

[
E
υ

[
‖(hjυ)λ|x‖22

]]
= E
υ

[
E
x

[‖(hjυ)λ|x‖22]
]

= E
υ

[
‖hjυ‖22

]
,

and by Equation (26) we have that Eυ

[
‖hjυ‖22

]
≤ 1/S2(k+j). Now using Theorem 21 we get that

‖sj‖2 ≤ (e/S)2(k+j) and therefore (using Theorem 22, with its “t” set to u2(k+j)) we get that

Pr
[
sj(x) ≥ (ue/S)2(k+j)

]
≤ exp(−(k + j)u2/e) = exp(−u2k/e) exp(−u2/e)j

for any choice of u ≥
√

2e. We will select u = β′S
C1ek

, so that the preceding inequality aligns with

Inequality (28); recalling the bound on R, this choice of u is indeed at least
√

2e provided C is taken
at least

√
2e3/2C1. Also taking C sufficiently large in our assumption on S, it is not hard to arrange

for the error probability above to be at most (β′/3)(.1)j . Thus Inequality (28) is established and
the proof of Lemma 52 is complete.

It is interesting to observe that both the results of this section, Proposition 51 and Lemma 52,
hold with no dependence on the value of 0 < λ < 1.
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5.3 Second part of the proof of the one-stage local hyperconcentration theorem:
Attrition

The attrition result we establish in this subsection, Lemma 53, is a fairly direct consequence of
Corollary 16. (Note that Lemma 53 does not require that the nice distribution (gυ)υ∼Υ be atten-
uated on average — it holds for any nice distribution of degree-d polynomials.)

Lemma 53. Let (gυ)υ∼Υ be a nice distribution of polynomials of degree at most d. Fix parameters
0 < β′ < 1, R′ ≥ 1, m ∈ N+, 0 < ε ≤ 1, let c > 0 be a sufficiently small constant, and assume

λ ≤ c4εβ′5

R′2m3d
. Then for x ∼ N(0, 1)n,

1

ε
·E
υ

[
HyperVarR′ [((gυ)λ|x)≥m]

]
≤
(
O(cβ′)

m

)4m

E
υ

[
‖gυ‖22

]
holds except with probability at most β′.

Proof. The expectation of the left-hand side is

E
x

[
E
υ

[
HyperVarR′ [((gυ)λ|x)≥m]

]]
= E
υ

∑
i≥m

R′
2i

E
x

[
W=i

[
(gυ)λ|x

]]
= E
υ

∑
i≥m

R′
2i
∑
j≤d

Pr[Bin(j, λ) = i]W=j [gυ]

 (Corollary 16)

=
∑
j≤d

E
υ

[
W=j [gυ]

]∑
i≥m

Pr[Bin(j, λ) = i]R′
2i

≤
∑
j≤d

E
υ

[
W=j [gυ]

]∑
i≥m

(
ej

i

)i
λiR′

2i

≤
∑
j≤d

E
υ

[
W=j [gυ]

](2ejR′2λ

m

)m
(if c small enough)

≤

(
2edR′2λ

m

)m
E
υ

[
‖gυ‖22

]
≤
(

2ec4εβ′5

m4

)m
E
υ

[
‖gυ‖22

]
(by the bound on λ)

≤ β′ε
(
O(cβ′)

m

)4m

E
υ

[
‖gυ‖22

]
.

The result now follows by Markov’s inequality.

5.4 Putting the pieces together: Proof of the local hyperconcentration theorem

Combining Lemma 52 and Lemma 53 (with the “k” and “m” parameters satisfying m = bk/2c, and
adjusting constants), we may deduce the following, which is our “one-stage local hyperconcentration
theorem:”

Theorem 54 (One-stage local hyperconcentration theorem). Let (gυ)υ∼Υ be a nice distribution of
polynomials of degree at most d, and assume the distribution is (k, S, 1)-attenuated on average for
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some 1 ≤ k ≤ d. Fix parameters R′ ≥ 1, 0 < β′ < 1, 0 < ε′ ≤ 1, and assume

S ≥ Ck log(3/β′)/β′, λ ≤ ε′β′5

CR′2k3d

for a suitably large universal constant C. Then except with probability at most β′ over x ∼ N(0, 1)n,
the distribution ((gυ)λ|x)υ∼Υ is (bk/2c, R′, ε′)-attenuated on average.

Note that a nice distribution of degree-d polynomials is (d, S, 1)-attenuated on average for any S.
We can take S = Cd log(3/β′)/β′ and perform a first application of Theorem 54 on (gυ)υ∼Υ with
its R′ parameter set to S and its ε′ parameter set to 1, and infer that except with failure probability
at most β′ the distribution ((gυ)λ|z)υ∼Υ is (bd/2c, S, 1)-attenuated on average. Repeating this a
total of dlog de times, with each repetition having its β′ parameter set to β/(dlog de + 1), its R′

parameter set to S = Cd log(3/β′)/β′ (for simplicity), and its ε′ parameter set to 1, we get that
except with probability β · (1 − 1

dlog de+1), the distribution ((gυ)λ′|z)υ∈Υ is (1, S, 1)-attenuated on

average, where λ′ = ( β′6

C2d6 log2(3/β′)
)dlog de. Finally, we perform one last application of Theorem 54

with its k parameter set to 1, its λ′ parameter set to λ, its ε′ parameter set to the “ε” of Theorem 49,
and its β′ parameter set to β/(dlog de+ 1) and its R′ parameter set to R. We get the conclusion of
Theorem 49 as stated at the beginning of this section, and the proof of the local hyperconcentration
theorem is complete.

6 Noise insensitivity of the statistics: Proof of Theorem 46

Remark 55. Before entering into the proof, we note that Theorem 46 is analogous to Lemma 11
of [Kan11b], which shows that for every i, j, for most x ∼ N(0, 1)n, the (i, j)-th statistic at x is
multiplicatively close to the (i, j + 1)-th statistic at x. [Kan11b]’s proof of Lemma 11 uses his
Lemma 34 (i.e., [Kan11b, Lem. 9]) together with hypercontractivity, but as we discussed earlier,
this incurs a 2O(d) factor.

Our arguments in this section also use Lemma 9 of [Kan11b], but they additionally use our Local
Hyperconcentration Theorem and our notions of attenuation and hyperconcentration (specifically
Proposition 32). These new ingredients let us avoid the 2O(d) factor which is incurred at this point
in the [Kan11b] argument.

We proceed with the proof of Theorem 46. We begin by recording a simple corollary of
Lemma 34:

Corollary 56. In the setting of Lemma 34, say that x ∈ Rn is “good” if

except with probability at most 0.1 over y ∼ N(0, 1)n we have gλ|x(y) ≈γ g(x).

Then x ∼ N(0, 1)n is good except with probability 10β.

Next, combining Theorem 85 with Proposition 32, we derive the following:

Proposition 57. Let g : Rn → R be a degree-d polynomial and let R ≥
√

2, θ ≤ 1, γ ≤ 1. Say
that x ∈ Rn is “well-behaved” if

except with probability (2
√
θ/γ)

1
2
R2+1 over y ∼ N(0, 1)n we have gλ|x(y) ≈γ E[gλ|x].

Then x ∼ N(0, 1)n is well-behaved except with probability β, provided λ ≤ cθ
R2 ·

(
β
d

)9/2
.
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Given some γ ≤ 1, let us take
θ = .01γ2, R =

√
2.

It follows that if x ∈ Rn is both good and well-behaved, then

Pr[gλ|x(y) 6≈ν g(x)] ≤ .1, Pr[gλ|x(y) 6≈γ E[gλ|x]] ≤ .04.

Since .1 + .04 < 1, the only way this can happens is that g(x) ≈ν+γ E[gλ|x]. Thus the above two
propositions imply that except with probability at most 10β+ β = 11β over x ∼ N(0, 1)n, we have

g(x) ≈ν+γ E[gλ|x],

provided λ ≤ γ2(β/d)O(1). Selecting γ = δhorz/2 and β = εPRG/(88(d+1)D), we conclude (recalling
that D = poly(d)) that

λ ≤ δ2
horz(εPRG/d)O(1) =⇒ Pr[g(x) ≈δhorz E[gλ|x]] ≤ εPRG/(8(d+ 1)D).

Applying this with g = si,j completes the proof of Theorem 46.

7 Proof of Theorem 8: one step of the Replacement Method

In this section we define a collection of “analysis checks,” which are inequalities among the statis-
tics, and explain the high-level structure of the proof of Theorem 8. The analysis checks play a
crucial role in the proof of Theorem 8: as we explain in Section 7.2, two very different arguments
(corresponding to Lemma 59 and Lemma 60) are used to establish the conclusion of Theorem 8 at
a given x ∈ Rn, depending on whether or not all of the analysis checks hold at that x.

7.1 Analysis checks

In this subsection we define our set of “analysis checks,” which we denote AnalysisChecks. They
are related to, but somewhat different from, the mollifier checks MollifierChecks that were used
to define the mollifier Mollifierp in Section 4.

One difference between the analysis checks and the mollifier checks is that since the mollifier
checks needed to be “actually encoded into the mollifier,” each one needed to consist of both an
inequality Ineq among the statistics and a “softness” parameter δ. In contrast, the analysis checks
only play a role in our analysis and do not need to be encoded in the mollifier, and for this reason
each analysis check consists only of an inequality Ineq among the statistics. Other than this, the
difference between the analysis checks and mollifier checks is that the analysis checks essentially
correspond to the mollifier checks “shifted right by one in the grid.”

Below we describe the analysis checks in more detail and highlight the difference between them
and the mollifier checks.

Definition 58. The set AnalysisChecks contains the following checks (inequalities among statis-
tics):

• The horizontal checks: for every 0 ≤ i ≤ d, for every 1 ≤ j ≤ D − 1, we check that

si,j(x) ≈δa si,j+1(x) (30)

(so 2(d+ 1)(D − 1) inequalities in total for the horizontal checks), where we set

δa :=
1

100dD
. (31)
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(Looking ahead, we note that this choice of δa is less than the upper bound on γ imposed by
the noise insensitivity extension lemma, Lemma 72, which is the main result of Section 9.)
Note also that while the mollifier checks defined in Section 4.3 check si,j(x) against si,j+1(x)
for j = 0, . . . , D− 2, here we are checking si,j(x) against si,j+1(x) for j = 1, . . . , D− 1. Thus
these checks correspond precisely to the mollifier’s noise-insensitivity checks, but “shifted to
the right by one.”

• The diagonal checks: for just the 1st column (note, not the 0th column), for all i =
0, . . . , d− 1, we check that

si+1,1(x) ≤ 100λ̂si,2(x) (32)

(so d diagonal checks in total). Note that while the strong anticoncentration checks defined
in Section 4.3 check si+1,0(x) against si,1(x), here we are checking si+1,1 against si,2(x).
So similar to the previous bullet, these checks correspond precisely to the mollifier’s strong
anticoncentration checks, but again “shifted to the right by one.”

Below we give an illustration of the analysis checks.

Figure 3: The analysis checks. Horizontal checks are depicted in green and diagonal checks are
depicted in yellow.

7.2 High-level structure of the proof of Theorem 8

Let us define the following small integer parameter,

T = 4, (33)

which will be the degree out to which we use Taylor’s theorem.
Theorem 8 will be an immediate consequence of the below two lemmas, since by Equation (20),

Equation (5) and Equation (4) we have that poly((Td)T ) · λ̂T/2 � εPRG/(8L):
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Lemma 59 (If analysis checks all pass, kindep-wise moments determine mollifier’s value). Suppose
that x ∈ Rn is such that all of the checks in AnalysisChecks hold at x, and that the random
vector z is a kindep-wise independent n-dimensional Gaussian. Then E

[
I+

(√
1− λ · x+

√
λ · z

)]
is determined up to an additive ±poly((Td)T ) · λ̂T/2.

Lemma 60 (If an analysis check fails, mollifier is close to zero). Suppose that x ∈ Rn is such that
some check in AnalysisChecks does not hold at x, and that the random vector z is a kindep-wise

independent n-dimensional Gaussian. Then E
[
I+

(√
1− λ · x+

√
λ · z

)]
∈ [0,poly((Td)T ) · λ̂T/2].

As we will see in the following sections, two very different arguments are used to prove Lemma 59
and Lemma 60. Lemma 59, which corresponds to the case in which x is such that all of the analysis
checks pass, is based on a Taylor’s theorem argument. In contrast, Lemma 60, which corresponds
to the case in which x is such that some analysis check fails, employs a delicate argument, which
takes advantage of the careful way that the analysis checks are structured vis-a-vis the mollifier
checks, to argue that in this case almost all outcomes of z result in I+

(√
1− λ · x+

√
λ · z

)
= 0.

Before we can enter into the proofs of Lemma 59 and Lemma 60, there are several intermediate
technical results which will be used in both proofs which we need to establish. We state and prove
these technical results in Section 8 and Section 9, and prove Lemma 60 and Lemma 59 in Section 10
and Section 11 respectively.

8 Bounding the hypervariance of a statistic by its “neighbors”

The main goal of this section is to prove the following technical result which will be needed for our
analysis. For every x ∈ Rn, it gives an upper bound on the hypervariance of the zoom-at-x of our
(i, j)-th statistic in terms of the values of some “nearby” statistics:

Theorem 61 (Bounding hypervariance of zooms (analogue of Proposition 12 of [Kan11b])). For
all i ∈ {0, . . . , d− 1} all j ∈ {0, . . . , D − 1}, and all x ∈ Rn, it holds that

HyperVar√R
13

[
(si,j)λ|x

]
≤ 8(si,j+1(x) + si+1,j(x)) · si+1,j(x)

≤ 16 max{si,j+1(x)si+1,j(x), si+1,j(x)2}.

We stress that Theorem 61 holds for every input x ∈ Rn. This is important because Theorem 61
will be used to prove Theorem 8, and in that setting we are dealing with an arbitrary x ∈ Rn.

Remark 62. Theorem 61 is analogous to Proposition 12 of [Kan11b], which upper bounds the
variance of the zoom-at-x of [Kan11b]’s (i, j)-th statistic in terms of the values of the (i+ 1, j)-th
and (i, j+ 1)-th statistics. However, there is a factor of 2d present in the bound of [Kan11b] (again
because of hypercontractivity) which as always is incompatible with our goal of achieving an overall
quasipolynomial rather than exponential dependence on d.

Before entering into the proof of Theorem 61, we record some corollaries and related results
which we will use in Sections 10 and 11. Fix any x ∈ Rn, let z denote a kindep-wise independent
n-dimensional Gaussian random vector, and let us write w to denote

√
1− λx+

√
λz. Let us also

introduce the notation

si,j = si,j(x), si,j = si,j(w) = (si,j)λ|x(z).

We first record the following:
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Fact 63. For all 0 ≤ i ≤ d and all 0 ≤ j ≤ D − 1, we have that

si,j+1 = E[si,j ] = |E[si,j ]|. (34)

Proof. We have

si,j+1 = E
y∼N(0,1)n

[(si,j)λ|x(y)] = E
y∼N(0,1)n

[(si,j)λ|x(z)] = E[si,j ] = |E[si,j ]|,

where the first equality is Definition 42, the second is because si,j is a polynomial of degree at most
2d and kindep ≥ 2d, and the last is by the non-negativity of si,j .

Next, as a corollary of Theorem 61 we have the following:

Corollary 64. For all 0 ≤ i ≤ d− 1 and all 0 ≤ j ≤ D − 1,

si,j is (2T, 4 max{
√
ζi,j , ζi,j})-hyperconcentrated, where ζi,j :=

si+1,j

si,j+1

(35)

(where we interpret 0/0 = 0).

Proof. We begin by noting that if si,j+1 = 0, then (recalling Remark 43 and Definition 40) it must
be the case that si,0 is the constant-0 polynomial and hence si+1,j is also zero; in this case si,j is the
identically-0 random variable, which is certainly (2T, 0)-hyperconcentrated. Hence we subsequently
assume that si,j+1 > 0.

By Theorem 61, we have that

HyperVar√R
13

[
(si,j)λ|x

]
≤ 16 max{si,j+1si+1,j , s

2
i+1,j}. (36)

We apply Lemma 28 to the function (si,j)λ|x, observing that the “µ” of Lemma 28 is Ey∼N(0,1)n [(si,j)λ|x(y)] =
si,j+1 and hence that Equation (36) lets us take the “θ” of Lemma 28 to be 16 max{ζi,j , ζ2

i,j}. Since
1 + R/13 ≥ 2T , Lemma 28 thus gives that (for y ∼ N(0, 1)n) the random variable (si,j)λ|x(y) is

(2T, 4 max{
√
ζi,j , ζi,j})-hyperconcentrated. Since (si,j)λ|x(y) is a polynomial of degree at most 2d

and 4dT = kindep, the 2T -th moments of (si,j)λ|x(y) and of si,j are identical (recall Remark 12).
Now by the definition of hyperconcentration of a random variable we get that Inequality (35) holds
as desired.

8.1 Proof of Theorem 61

Theorem 61 is proved using the following two results. We note that each of these results holds in
a fairly general setting: in Lemma 65 (qυ)υ∈Υ can be any nice distribution of polynomials, and in
fact both lemmas hold for polynomials over either Boolean space or Gaussian space (it will be clear
from the proofs that they go through essentially unchanged in the Boolean context).

Lemma 65. Let (qυ)υ∼Υ be a nice distribution over polynomials (as defined in Section 4.2) over
Gaussian space. Then for R0 := 1

13R
1/4, we have

HyperVarR0

[
E
υ

[
q2
υ

]]
≤ 8
(
E
υ

[
‖qυ‖22

]
+ E
υ

[
HyperVarR[qυ]

])
·E
υ

[
HyperVarR[qυ]

]
.

Lemma 66. 6 For all 0 ≤ i ≤ d and all 0 ≤ j ≤ D − 1, and all x ∈ Rn, we have

E
f∼Fi,j

[HyperVarR[fλ|x]] ≤ si+1,j(x).

6We note at this point that [Kan11b] appears to have a gap in the proof of its Proposition 12. Specifically, it
is not true that the second equality following “Notice that” in that proof holds true (roughly speaking, because
the derivative operator D and the noise operator N of [Kan11b] do not in general commute, as can be verified by
considering the polynomial p(x) = x1x2). The raison d’être of our Lemma 66 is to fill this gap.
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Proof of Theorem 61 using Lemma 65 and Lemma 66. We instantiate Lemma 65 by taking the
nice distribution (qυ)υ∼Υ to be (fλ|x)f∼Fi,j . With this choice HyperVarR0

[
Eυ
[
q2
υ

]]
corresponds

to HyperVarR0

[
(si,j)λ|x

]
(by Equation (16)), and Eυ

[
‖qυ‖22

]
corresponds to si,j+1(x) (by Equa-

tion (17)). The final quantity on the right-hand side of Lemma 65, Eυ
[
HyperVarR[qυ]

]
, corre-

sponds to Ef∼Fi,j [HyperVarR[fλ|x]], so from Lemma 65 we get that

HyperVarR0

[
(si,j)λ|x

]
≤ 8

(
si,j+1(x) + E

f∼Fi,j
[HyperVarR[fλ|x]]

)
· E
f∼Fi,j

[HyperVarR[fλ|x]]

≤ 8(si,j+1(x) + si+1,j(x)) · si+1,j(x) (Lemma 66)

and the proof of Theorem 61 is complete.

8.2 Proof of Lemma 65

Our main goal in this section is to prove the following:

Lemma 67. Let (qυ)υ∼Υ be a nice distribution over polynomials (as defined in Section 4.2) over
Gaussian space. Define the function

g = E
υ

[
q2
υ

]
.

Then if R0 >
31/8

13 , we have

HyperVarR0
[g] ≤ 8 E

υ

[
‖U√3qυ‖

2
2

]
·E
υ

[HyperVarR[qυ]]

where R = 3e4R4
0 ≤ 165R4

0.

Lemma 65 follows from Lemma 67 since 132 > 165, HyperVarS [p] is an increasing function of
S for all p, and

‖U√3qυ‖
2
2 =

∑
|α|≥0

3|α|q̂υ(α)2 (Equation (10) and Plancherel)

=
∑
|α|≥0

q̂υ(α)2 +
∑
|α|≥1

(3|α| − 1)q̂υ(α)2

= ‖qυ‖22 + HyperVarR[qυ] (Definition 27 and choice of R)

We will use the following lemma in the proof of Lemma 67:

Lemma 68. Given any polynomial q and any k ∈ N+, we have

W≥k[q2] ≤ 4 ·
∥∥∥U√3(q≥k/2)

∥∥∥2

2
·
∥∥∥U√3q

∥∥∥2

2
.

Proof. Let us write q = `+ h where ` = q<k/2 and h = q≥k/2. Since (`2)≥k = 0, we have that

(q2)≥k = (`2 + 2`h+ h2)≥k = (`2)≥k + (2`h)≥k + (h2)≥k = (h(2`+ h))≥k,

and thus

W≥k[q2] =
∥∥∥(q2)≥k

∥∥∥2

2
=
∥∥∥(h(2`+ h))≥k

∥∥∥2

2
≤ ‖h(2`+ h)‖22 = E[h2(2`+ h)2] ≤

∥∥h2
∥∥

2
·
∥∥(2`+ h)2

∥∥
2
,

32



where the latter inequality is by Cauchy–Schwarz. By (2, 4)-hypercontractivity (recalling Theo-
rem 20), we have that

‖h2‖2 ≤ ‖U√3h‖
2
2

and similarly
‖(2`+ h)2‖2 ≤ ‖U√3(2`+ h)‖22 = 4‖U√3`‖

2
2 + ‖U√3h‖

2
2,

where the last equality holds because ` and h are orthogonal. Thus we have shown that

W≥k[q2] ≤
∥∥∥U√3(q≥k/2)

∥∥∥2

2
·
(

4‖U√3`‖
2
2 + ‖U√3h‖

2
2

)
≤
∥∥∥U√3(q≥k/2)

∥∥∥2

2
·
(

4‖U√3`‖
2
2 + 4‖U√3h‖

2
2

)
= 4 ·

∥∥∥U√3(q≥k/2)
∥∥∥2

2
·
∥∥∥U√3q

∥∥∥2

2
.

Proof of Lemma 67. We have

HyperVarR0
[g] =

∑
k≥1

R0
2k ·
∥∥∥g=k

∥∥∥2

2
(Definition 27)

≤
∑
k≥1

(eR0)2k ·
∥∥∥g=k

∥∥∥2

1
(Theorem 21)

=
∑
k≥1

(eR0)2k · E
x∼N(0,1)n

[∣∣∣g=k(x)
∣∣∣]2
. (definition of one-norm)

Next we observe that∣∣∣g=k(x)
∣∣∣ =

∣∣∣∣(E
υ

[
q2
υ

])=k
(x)

∣∣∣∣ =
∣∣∣E
υ

[(
q2
υ

)=k]
(x)
∣∣∣ ≤ E

υ

[∣∣∣(q2
υ

)=k
(x)
∣∣∣],

where the second equality holds because the operator which maps p to p=k (i.e. projecting to the
k-th Wiener chaos) is a linear operator, and the inequality is the triangle inequality. Continuing
the above, we deduce that

HyperVarR0
[g] ≤

∑
k≥1

(eR0)2k ·E
x

[
E
υ

[∣∣∣(q2
υ

)=k
(x)
∣∣∣]]2

=
∑
k≥1

(eR0)2k ·E
υ

[∥∥∥(q2
υ

)=k∥∥∥
1

]2

=
∑
k≥1

(eR0)2k ·E
υ

[∥∥∥(q2
υ

)=k∥∥∥
2

]2
(monotonicity of norms)

≤
∑
k≥1

(eR0)2k ·E
υ

[√
W≥k[q2

υ]

]2

. (as
∥∥h=k

∥∥2

2
≤
∥∥h≥k∥∥2

2
for any h)
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Now we apply Lemma 68 to each qυ, which lets us continue as follows:

HyperVarR0
[g] ≤

∑
k≥1

(eR0)2k ·E
υ

[
2

√∥∥∥U√3(q
≥k/2
υ )

∥∥∥2

2
·
∥∥∥U√3qυ

∥∥∥2

2

]2

≤ 4
∑
k≥1

(eR0)2k ·E
υ

[∥∥∥U√3(q
≥k/2
υ )

∥∥∥2

2

]
·E
υ

[∥∥∥U√3qυ

∥∥∥2

2

]
(Cauchy–Schwarz)

= 4 E
υ

[∥∥∥U√3qυ

∥∥∥2

2

]
·E
υ

∑
k≥1

(eR0)2k ·
∥∥∥U√3(q

≥k/2
υ )

∥∥∥2

2


= 4 E

υ

[∥∥∥U√3qυ

∥∥∥2

2

]
·E
υ

∑
k≥1

(eR0)2k ·
∑
j≥k/2

3jW=j [qυ]


(definition of

∥∥∥U√3(q
≥k/2
υ )

∥∥∥2

2
)

≤ 8 E
υ

[∥∥∥U√3qυ

∥∥∥2

2

]
·E
υ

∑
j≥1

(3e4R0
4)j ·W=j [qυ]


= 8 E

υ

[∥∥∥U√3qυ

∥∥∥2

2

]
·E
υ

[
HyperVar3e4R0

4 [qυ]
]
,

completing the proof.

8.3 Proof of Lemma 66

We begin by re-expressing the right-hand side of Lemma 66:

si+1,j(x) = E
f∼Fi+1,j

[f(x)2] (Equation (16))

= E
f∼Fi+1,0

E
y1,...,yj

(Ny1 · · ·Nyjf)2 (definition of Fi+1,j)

= E
f∼Fi+1,0

[
E
z

[f (1−λ)j |z(x)2]
]

(semigroup property / Remark 43)

= E
f∼Fi,0

E
y,y′

[
E
z

[(
(4(R,λ)

y,y′ f)(1−λ)j |z(x)
)2
]]
, (37)

where the last equality is by the definition of Fi+1,0 in terms of Fi,0.
We similarly re-express the left-hand side of Lemma 66:

E
f∼Fi,j

[HyperVarR[fλ|x]] = E
f∼Fi,j

E
y,y′

[(
4(R,λ)
y,y′ f(x)

)2
]

(Fact 39)

= E
f∼Fi,0

E
y1,...,yj

E
y,y′

[(
(4(R,λ)

y,y′ Ny1 · · ·Nyjf)(x)
)2
]

(definition of Fi,j)

= E
f∼Fi,0

E
y,y′

E
z

[(
(4(R,λ)

y,y′ f (1−λ)j |z)(x)
)2
]
, (38)

where the last equality is by the semigroup property / Remark 43. Comparing Equation (37) and
Equation (38), Lemma 66 is an immediate consequence of Proposition 69, stated and proved below
(setting its ρ parameter to be (1 − λ)j), which states that the desired inequality holds “outcome
by outcome” for outcomes of f ∼ Fi,0.
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Proposition 69. For all R ≥ 1 (and in particular R = R), for every polynomial g : Rn → R, and
every 0 < ρ < 1, we have that

E
y,y′

E
z

[
(4(R,λ)

y,y′ gρ|z)(x)2
]
≤ E
y,y′

E
z

[
(4(R,λ)

y,y′ g)ρ|z(x)2
]
. (39)

Since the proof of Proposition 69 is somewhat involved we explain the high-level idea underlying
it before entering into the technical details. When R > 1 the quantities in Equation (39) are
somewhat difficult to work with since the Gaussian noise operator UR, which is involved in the

definition of the 4(R,λ)
y,y′ operator, does not admit a convenient probabilistic interpretation (recall

that for R > 1 the definition of UR is through Equation (10)). The proof of Proposition 69 takes

advantage of the fact that for 0 ≤ R′ ≤ 1, the quantity Ey,y′ Ez

[
(4(R′,λ)

y,y′ gρ|z)(x)2
]

corresponding to

the left-hand side of Equation (39) does have a natural probabilistic interpretation, and likewise for

the quantity Ey,y′ Ez

[
(4(R′,λ)

y,y′ g)ρ|z(x)2
]

corresponding to the right-hand side. These probabilistic

interpretations let us give tractable expressions for each of the two quantities, and as we will see,
it is evident from these expressions that the corresponding quantities correspond to polynomials in
R′ of degree at most 2d. These polynomials can then be analyzed to show that the left-hand side
is indeed at most the right-hand side for all R ≥ 1, as asserted by the proposition.

Proof of Proposition 69. We define the function pLHS(R′) to be

pLHS(R′) := E
y,y′

E
z

[
(4(R′,λ)

y,y′ gρ|z)(x)2
]

(40)

and the function pRHS(R′) to be

pRHS(R′) := E
y,y′

E
z

[
(4(R′,λ)

y,y′ g)ρ|z(x)2
]
. (41)

Let
h(u) := g(

√
ρR′
√

1− λx+
√

1− ρR′2(1− λ)u).

The following two claims provided the probabilistic interpretations alluded to earlier:

Claim 70. For all 0 ≤ R′ ≤ 1, we have that

pLHS(R′) = StabσLHS(R′)[h]− StabτLHS(R′)[h] =
∑
α

ĥ(α)2((σLHS(R′))|α| − (τLHS(R′))|α|), where

(42)

σLHS(R′) :=
1− ρ+R′2λρ

1− ρR′2(1− λ)
, τLHS(R′) :=

1− ρ
1− ρR′2(1− λ)

.

Claim 71. For all 0 ≤ R′ ≤ 1, we have that

pRHS(R′) = StabσRHS(R′)[h]− StabτRHS(R′)[h] =
∑
α

ĥ(α)2((σRHS(R′))|α| − (τRHS(R′))|α|), where

(43)

σRHS(R′) :=
(1− λ)(1− ρ)R′2 +R′2λ

1− ρR′2(1− λ)
, τRHS(R′) :=

(1− λ)(1− ρ)R′2

1− ρR′2(1− λ)
.
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Proof of Claim 70. For all 0 ≤ R′ ≤ 1, we have that

pLHS(R′) =
1

2
E

y,y′,z

[(
UR′gρ|z(

√
1− λx+

√
λy)−UR′gρ|z(

√
1− λx+

√
λy′)

)2
]

(44)

=
1

2
E

y,y′,z

[(
E
v

[
gρ|z

(
R′(
√

1− λx+
√
λy) +

√
1−R′2v

)]
−E
v′

[
gρ|z

(
R′(
√

1− λx+
√
λy′) +

√
1−R′2v′

)])2]
(45)

=
1

2
E

y,y′,z

[(
E
v

[
g(
√

1− ρz +
√
ρR′
√

1− λx+
√
ρR′
√
λy +

√
ρ
√

1−R′2v)
]

−E
v′

[
g(
√

1− ρz +
√
ρR′
√

1− λx+
√
ρR′
√
λy′ +

√
ρ
√

1−R′2v′)
])2]

, (46)

where Equation (44) is by definition of 4(R′,λ)
y,y′ , Equation (45) is by Definition 17 (the probabilistic

definition of UR′ , valid when 0 ≤ R′ ≤ 1), and Equation (46) is by definition of the zoom. Let us
define

h(u) := g(
√
ρR′
√

1− λx+
√

1− ρR′2(1− λ)u), (47)

so expanding the square, we may re-express Equation (46) as

1

2
E

y,z,v

[
h

(√
1− ρz +

√
ρR′2λy +

√
ρ
√

1−R′2v√
1− ρR′2(1− λ)

)
· h

(√
1− ρz +

√
ρR′2λy +

√
ρ
√

1−R′2v√
1− ρR′2(1− λ)

)]
(48)

− E
y,y′,z,v,v′

[
h

(√
1− ρz +

√
ρR′2λy +

√
ρ
√

1−R′2v√
1− ρR′2(1− λ)

)
· h

(√
1− ρz +

√
ρR′2λy′ +

√
ρ
√

1−R′2v′√
1− ρR′2(1− λ)

)]
(49)

+
1

2
E

y′,z,v′

[
h

(√
1− ρz +

√
ρR′2λy′ +

√
ρ
√

1−R′2v′√
1− ρR′2(1− λ)

)
· h

(√
1− ρz +

√
ρR′2λy′ +

√
ρ
√

1−R′2v′√
1− ρR′2(1− λ)

)]
,

(50)

where all the random variables above are distributed as N(0, 1)n. It is easy to see that (48) = (50),
and inspection reveals that both quantities are equal to 1

2StabσLHS [h]. Inspection also reveals that
(49) = StabτLHS [h], giving the first equality of Equation (42). The second equality of Equation (42)
follows from the Hermite formula for Stab given in Definition 19, and the proof of Claim 70 is
complete.

The proof of Claim 71 is very similar to the above proof so we omit it.
To complete the proof of Proposition 69, we must show that pLHS(R) ≤ pRHS(R) for all R ≥ 1.

By Claim 70 and Claim 71, this would follow immediately from showing that

(σLHS(R))|α| − (τLHS(R))|α| ≤ (σRHS(R))|α| − (τRHS(R))|α|.

Letting a plays the role of |α| and clearing the common denominator of 1 − ρR2(1 − λ) that is
present in all of σLHS, τLHS, σRHS, τRHS, it remains to show the following: for all natural numbers a
and all real R ≥ 1,

(R2λρ− ρ+ 1)a − (1− ρ)a ≤ (R2(1− λ)(1− ρ) +R2λ)a − (R2(1− λ)(1− ρ))a. (51)

Equation (51) is a consequence of the following stronger inequality (obtained by replacing the
quantity (R2(1− λ)(1− ρ))a in Equation (51) by the larger quantity (R2(1− ρ))a):

(R2λρ− ρ+ 1)a − (1− ρ)a ≤ (R2(1− λ)(1− ρ) +R2λ)a − (R2(1− ρ))a. (52)
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Equation (52) can be rewritten as

(R2λρ+ (1− ρ))a − (1− ρ)a ≤ (R2λρ+R2(1− ρ))a − (R2(1− ρ))a, (53)

which is of the form
(x+ y0)a − ya0 ≤ (x+ y1)a − ya1 (54)

where x = R2λρ ≥ 0, y1 = R2(1 − ρ), and y0 = (1 − ρ); recalling that R ≥ 1, we have y0 ≤ y1.
Expanding out both sides of Equation (54) using the binomial theorem, the right-hand side is at
least as large as the left-hand side term by term, and the proof of Proposition 69, and hence also
Lemma 66, is complete.

9 Noise insensitivity extension lemma

For technical reasons our analysis will require a technical result which we state and prove below.
Intuitively, this result says that if x ∈ Rn is an input to a degree-d polynomial r(·) at which poly(d)
many successive “noisifications” of r, at increasing but all small noise rates, are all multiplicatively
close to each other, then they are all multiplicatively close to the value r(x).

Recall that D = (2d + 1)2 and that λ =
(
εPRG
d

)O(1)
. The lemma is as follows (recall that the

notation “a ≈γ b” means that exp(−γ) ≤ a
b ≤ exp(γ)):

Lemma 72 (Noise insensitivity extension lemma (analogue of Corollary 16 of [Kan11b])). Let
r0 : Rn → R be a non-negative degree-(2d) polynomial. Let a+ b = 1 and suppose 0 ≤ b ≤ 1

Cd10
for

a suitable large absolute constant C. For 1 ≤ j ≤ D write rj(x) to denote Uaj/2r0.
Suppose x ∈ Rn is a point such that for all 1 ≤ j ≤ D − 1 we have rj(x) ≈γ rj+1(x), where

γ ≤ 1
12D(2d+1) . Then r0(x) ≈1 r1(x), i.e. e−1 ≤ r0(x)

r1(x) ≤ e.

We note that later when we apply this lemma it will be with the polynomial r0 instantiated
to be a zeroth-column statistic si,0, of degree 2d, and with a = 1 − λ, so we will have that

b = λ =
(
εPRG
d

)O(1)
satisfies b ≤ 1

Cd10
with room to spare. Recalling Remark 43, Lemma 72 implies

that if the statistics si,1(x), . . . , si,D(x) are all multiplicatively close to each other then si,0(x) is
also multiplicatively (fairly) close to this common value.

It is interesting to contast Lemma 72 with Corollary 16 of [Kan11b]. That corollary gives a
qualitatively similar result, also establishing constant-factor multiplicative closeness of r0(x) as its
conclusion, but is quantitatively very different in the assumptions it uses to reach that conclusion.
In Corollary 16 of [Kan11b] only O(d) many noisifications r1, . . . , rO(d) are considered, but they
are assumed to be much closer to each other, multiplicatively (1 ± exp(−d))-close (and it can be
shown that such a strong assumption is required if only O(d) many noisifications are considered).
In contrast, Lemma 72 assumes closeness now of poly(d) rather than O(d) many noisifications, but
the closeness that we need to assume is much weaker, only multiplicative (1 ± 1

poly(d))-closeness;

this is crucial for our overarching goal of “getting rid of all factors of 2d.”

Proof of Lemma 72. Recall from Equation (10) that for any fixed x and varying ρ, the quantity

Uρr0(x) =
∑
|α|≤d

ρ|α|r̂0(α)hα(x) := A(ρ)

is a polynomial in ρ of degree at most 2d. Let A∗ := A((1 − q)1/2) = r1(x). The hypothesis of
Lemma 72 tells us that for all j = 1, . . . , D, we have A((1− q)j/2) ≈γD A∗; defining the polynomial
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B(ρ) := A(ρ)
A∗
− 1, we get that

−γD ≤ e−γD − 1 ≤ B((1− q)j/2) ≤ eγD − 1 ≤ 2γD

for all j = 1, . . . , D. Next, let us define the degree-2d polynomial C(ρ) by

C((2/q)ρ) := B(1− ρ), so C((2/q)(1− (1− q)j/2)) = B((1− q)j/2) ∈ [−γD, 2γD]

for j = 1, . . . , D. For notational convenience, for j = 1, . . . , D we write “j′” to denote the value
(2/q)(1− (1− q)j/2), and we observe that

j

(
1− 1

d5

)
≤ j′ ≤ j, (55)

where the upper bound is immediate and the lower bound holds (with room to spare) since by
assumption we have q ≤ 1

Cd10
. So intuitively, we have that C(1′), . . . , C(D′) are all very close to zero

— between −γD and 2γD — and to prove the lemma it suffices to show that C(0) ∈ [−1/2, 1/2].
We do this using Lagrange interpolation. Recall that the Lagrange interpolation formula tells

us that for any degree-2d polynomial C and any 2d+ 1 points x1, . . . , xd+1, we have

C(x) =

2d+1∑
j=1

C(xj)`j(x), where `j(x) =
∏

m∈[1,d+1]\j

x− xm
xj − xm

. (56)

We apply this formula at x = 0 where we take the 2d + 1 values xi to be xi = (i2)′. Fix a
j ∈ [1, d] and let us consider `j(0); it is equal to

`j(0) =
(12)′ · (22)′ · · · ((j − 1)2)′ · ((j + 1)2)′ · · · ((2d+ 1)2)′

((12)′ − (j2)′) · ((22)′ − (j2)′) · · · (((j − 1)2)′ − (j2)′) · (((j + 1)2)′ − (j2)′) · · · (((2d+ 1)2)′ − (j2)′)

Note that in the preceding expression, every multiplicand in the numerator is of the form a′ for
some integer a ∈ [1, D] and every multiplicand in the denominator is of the form (a′−b′) for distinct
integers a, b ∈ [1, D]. It follows straightforwardly from this and from Equation (55) that `j(0) is
within a multiplicative

[
1− 1

d , 1 + 1
d

]
factor of the above expression “without the primes”, i.e. of

12 · 22 · · · (j − 1)2 · (j + 1)2 · · · (2d+ 1)2

(12 − j2) · (22 − j2) · · · ((j − 1)2 − j2) · ((j + 1)2 − j2) · · · ((2d+ 1)2 − j2)
. (57)

Now we require the following bound on the above fraction, which we prove after using it to
finish the proof of Lemma 72:

Claim 73. For all j ∈ {1, . . . , 2d+ 1} it holds that |(57)| ≤ 2.

It follows that for each j we have |`j(0)| ≤ 2(1 + 1
d) < 3, and hence by Equation (56) we have

that |C(0)| ≤ 6(d+ 1)γD < 1/2. This proves Lemma 72.
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Proof of Claim 73. We have that

|(57)| =

∣∣∣∣∣
2d+1∏
i=1

i2

i2 − j2

∣∣∣∣∣ =

=A︷ ︸︸ ︷(
j−1∏
i=1

i2

(j − i)(j + i)

)
·

=B︷ ︸︸ ︷ 2d+1∏
i=j+1

i2

(i− j)(i+ j)

, where by inspection

A =
1 · 2 · · · · · (j − 1)

(j + 1) · (j + 2) · · · · · (2j − 1)
, and

B ≤ B′ :=
∞∏

i=j+1

i2

(i− j)(i+ j)
=

(j + 1)(j + 2) · · · · · (2j)
1 · 2 · · · · · j

, so

|(57)| = A ·B ≤ A ·B′ = 2j

j
= 2.

10 Proof of Lemma 60: if some analysis check fails, then with
high probability some mollifier check fails

As per the assumptions of Lemma 60, in this section we completely fix an x = x ∈ Rn which
is such that some check in AnalysisChecks does not hold at x, and we let z denote a kindep-
wise independent n-dimensional Gaussian random vector. We recall the notation from the start of
Section 8,

w =
√

1− λx+
√
λz, si,j = si,j(x), si,j = si,j(w) = (si,j)λ|x(z),

and we remark that we will be making extensive use of Corollary 64 in the arguments that follow.
Recalling the statement of Lemma 60, we assume through the rest of Section 10 that x causes

some analysis check to fail, and our goal is to show that

0 ≤ E[I+(
√

1− λ · x+
√
λ · z)] ≤ poly(TdT ) · λ̂T/2.

Recalling that I+ is the product of functions bounded in [0, 1] (namely the indicator of sign(p) =
1 and all of the SoftCheckCheck functions as Check ranges over MollifierChecks), to prove
Lemma 60 it suffices to establish the following:

There exists some Check ∈MollifierChecks “su ≥ csv with softness δ”,

such that SoftCheckCheck(
√

1− λ · x+
√
λ · z) = 0 — equivalently, su < exp(−δ) · csv —

except with probability at most poly((Td)T ) · (λ̂)T/2 over z. (58)

To establish Inequality (58), we will consider the checks in AnalysisChecks in a careful order,
specifically, the order shown below. All subsequent references to the “first” analysis check that
fails, “earlier” or “later” analysis checks, etc. are with respect to this ordering.
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Figure 4: Ordering of analysis checks (indicated in red)

The argument has three cases depending on where is the first analysis check that fails for x (a
horizontal check in the bottom row; a horizontal check in a higher row; or a diagonal check). Before
entering into the case analysis, which involves detailed and careful arguments, we stress two high
level points. First, the overall qualitative structure of the following arguments follows [Kan11b] quite
closely (in particular page 13 of that paper). Second, to obtain our quantitative improvement over
[Kan11b] (essentially, getting a poly(dT ) = poly(d) factor in the failure probability of Inequality (58)
rather than the 2(O(d) factor that is present in [Kan11b]), crucially requires the technical tools that
we developed in Section 8 and Section 9.

10.1 The first failing analysis check is horizontal and is in the bottom row
(i = d).

Recall that the horizontal analysis checks in the bottom row are sd,j ≈δa sd,j+1 for all 1 ≤ j ≤ D−1.
But Definition 40 and Fact 38 imply that sd,0 is a constant function, and it follows from Definition 42
that sd,j is the same constant function for all j. Thus all numbers sd,j are equal to the same constant,
and hence the analysis checks in the bottom row cannot actually fail. So this case cannot occur.

10.2 The first failing analysis check is horizontal and in some row 0 ≤ i < d

Suppose that the first analysis check to fail is one of the two implicit in the statement

si∗,j∗ 6≈δa si∗,j∗+1, (59)

for some 0 ≤ i∗ ≤ d − 1 and 1 ≤ j∗ ≤ D − 1. We first note that (similar to the beginning of
the proof of Corollary 64) if one of the two quantities si∗,j∗ , si∗,j∗+1 is zero then si,0 must be the
constant-0 polynomial and hence the other quantity must be zero as well. But since Equation (59)
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holds, it cannot be the case that si∗,j∗ and si∗,j∗ are both zero. Hence in the rest of the proof we
assume that si∗,j∗ , si∗,j∗+1 > 0.

In this case we will analyze the random variables si∗,j∗−1 and si∗,j∗ . By Fact 63 we have that

E[si∗,j∗−1] = si∗,j∗ , E[si∗,j∗ ] = si∗,j∗+1, and let us write M := max{si∗,j∗ , si∗,j∗+1}. (60)

Since Equation (59) is the first analysis check to fail, it must be the case that all horizontal
analysis checks in the (i∗ + 1)-th row passed, i.e.

for all 1 ≤ j ≤ D − 1, we have si∗+1,j ≈δa si∗+1,j+1,

which immediately gives that

for all 1 ≤ j ≤ D, we have si∗+1,j ≈Dδa si∗+1,1.

Now we apply the noise insensitivity extension lemma, Lemma 72, to the degree-(2d) polynomial
si∗,0 in place of “r0”, with δa in place of “γ,” and with λ in place of “b.” Since δa is indeed less than

1
12D(2d+1) as required by that lemma, Lemma 72 gives us that we can extend the above closeness

(with slightly weaker parameters) even to the j = 0 case:

for all 0 ≤ j ≤ D, we have si∗+1,j ≈1 si∗+1,1. (61)

As another consequence of the fact that Equation (59) is the first analysis check to fail, we have
that the diagonal analysis check relating the (i∗ + 1)-th to the i∗-th row passed, i.e. we have that

si∗+1,1 ≤ 100λ̂si∗,2. (62)

Combining Equations (61) and (62), we conclude that

for all 0 ≤ j ≤ D, we have si∗+1,j ≤ 100eλ̂si∗,2. (63)

Now, recalling Corollary 64, we have that

si∗,j∗−1 is (T, 4 max{
√
ζi∗,j∗−1, ζi∗,j∗−1})-hyperconcentrated, where ζi∗,j∗−1 =

si∗+1,j∗−1

si∗,j∗
≤

100eλ̂si∗,2
si∗,j∗

,

si∗,j∗ is (T, 4 max{
√
ζi∗,j∗ , ζi∗,j∗})-hyperconcentrated, where ζi∗,j∗ =

si∗+1,j∗

si∗,j∗+1

≤
100eλ̂si∗,2
si∗,j∗+1

,

where both inequalities are by Equation (63). (Note that the above ratios are well-defined since
si∗,j∗ , si∗,j∗+1 > 0.)

To analyze the si∗,2 factor which appears in both numerators above, we consider two cases. If
j∗ = 1, then si∗,2 = si∗,j∗+1 ≤ M (recalling Equation (60)). Otherwise, by virtue of the fact that
all preceding analysis checks in the i∗-th row passed, we conclude that si∗,2 ≈Dδa si∗,j∗ and hence
si∗,2 ≤ eM (since Dδa ≤ e). Either way, we conclude that

ζi∗,j∗−1 ≤
100e2λ̂M

si∗,j∗
, ζi∗,j∗ ≤

100e2λ̂M

si∗,j∗+1

. (64)

For the rest of the analysis of this case, we will reason the exact same way about si∗,j∗−1 and
about si∗,j∗ . Let us write s to denote either si∗,j∗−1 or si∗,j∗ , and we similarly write just ζ for
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either ζi∗,j∗−1 or ζi∗,j∗ , and write µ = E[s] (note that recalling Equation (60), we have that µ is
either si∗,j∗ or si∗,j∗+1). Inequality (64) tells us that in either case we have

ζ ≤ 100e2λ̂(M/µ). (65)

Now we apply Proposition 25 to the random variable s (which was shown above to be (T, 4 max{
√
ζ, ζ})-

hyperconcentrated), taking its “t” parameter to be M/µ
dC

for a large absolute constant C, to deduce
that

|s− µ| ≤M/dC except with probability at most

(
4 max{

√
ζ, ζ} · dC

M/µ

)T
≤ poly(dT ) · λ̂T/2. (66)

(To justify the last inequality, we observe that if ζ ≥ 1 then max{
√
ζ, ζ}/(M/µ) = ζ/(M/µ) ≤

100e2λ̂ by Equation (65), which is at most O(
√
λ̂) since λ̂ ≤ 1. On the other hand, if ζ < 1 then

max{
√
ζ, ζ}/(M/µ) =

√
ζ/(M/µ), which is at most 10e

√
λ̂/
√
M/µ by Equation (65), which is in

turn at most 10e
√
λ̂ using M = max{si∗,j∗ , si∗,j∗+1} ≥ µ.)

Thus except with a poly(dT )·λ̂T/2 failure probability, each of si∗,j∗−1, si∗,j∗ is within an additive
±M/dC of its mean. Without loss of generality (the other case is entirely similar), let us assume
that si∗,j∗ has the larger mean, so µ = M = E[si∗,j∗ ] = si∗,j∗+1; given this, Equation (59) tells us
that

si∗,j∗ ≤ exp(−δa)si∗,j∗+1 = exp(−δa)M.

Now, even if si∗,j∗ = E[si∗,j∗−1] were as large as possible (by the above, this largest possible value

is exp(−δa)M), except with overall failure probability at most poly(dT ) · λ̂T/2, we have that both

si∗,j∗−1 ≤ si∗,j∗ +
M

dC
≤ exp(−δa)M +

M

dC

(by Equation (66) applied with its s being si∗,j∗−1 and its µ being si∗,j∗) and

si∗,j∗ ≥M −
M

dC

(by Equation (66) applied with its s being si∗,j∗ and its µ being M). Recalling the definitions
of δhorz and δa from Equation (20) and Equation (31), and that the C above is a large constant,
the two preceding inequalities imply that Inequality (58) holds for the (i∗, j∗ − 1) vs. (i∗, j∗) noise
insensitivity mollifier check (see Section 4.3.2), as desired.

10.3 The first failing analysis check is diagonal

Finally, the last case we must consider is that the first analysis check to fail is the diagonal check

si∗+1,1 6≤ 100λ̂si∗,2

for some 0 ≤ i∗ ≤ d− 1. In this case we analyze the random variables si∗+1,0 and si∗,1.
We first observe that by Equation (34) and the above inequality we can lower bound the

expectation of si∗+1,0 by

E[si∗+1,0] = si∗+1,1 > 100λ̂si∗,2 = 100λ̂E[si∗,1], (67)

which will be useful for us later. Next we give a high-probability lower bound on si∗+1,0:
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Claim 74. si∗+1,0 ≥ 1
2si∗+1,1 except with probability at most (80e)T · λ̂T/2.

Proof. The claim is immediate from Proposition 25, taking its “t” to be 1/2, once we establish the
following:

si∗+1,0 is (T, 40e
√
λ̂)-hyperconcentrated. (68)

To establish Inequality (68), first suppose that i∗+1 = d. In this case si∗+1,0 is a constant function,
so si∗+1,0 is a constant random variable, and Inequality (68) is clearly true. The other possibility
is that i∗ + 1 < d. In this case since i∗ < d− 1, there must have been at least one earlier diagonal
analysis check, and it succeeded, meaning that

si∗+2,1 ≤ 100λ̂si∗+1,2.

We further have that the horizontal analysis checks in rows i∗ + 1 and i∗ + 2 all succeeded, and
hence

si∗+1,2 ≈δa si∗+1,1, si∗+2,1 ≈1 si∗+2,0,

where the second inequality is by an application of Lemma 72 (which we may apply because
δa ≤ 1

12D(2d+1)) to the degree-2d polynomial si∗+2,0. Upper-bounding eδa by e for simplicity and
combining these relations, we deduce that

si∗+2,0 ≤ 100e2λ̂si∗+1,1.

Now Inequality (68) follows from Corollary 64 applied to si,j = si∗+1,0.

Next we establish a high-probability upper bound on si∗,1:

Claim 75. si∗,1 ≤ si∗+1,1/(20λ̂) except with probability at most 16T · λ̂T/2.

Proof. Applying Inequality (35) to si∗,1, we get that si∗,1 is (T, 4 max{
√
ζi∗,1, ζi∗,1})-hyperconcentrated,

and Inequality (67) tells us that ζi∗,1/λ̂ > 100. Applying Proposition 25 to si∗,1 with its “t” pa-

rameter set to ζi∗,1/(20λ̂)− 1 > ζi∗,1/(40λ̂), we get that except with failure probability at most

(η
t

)T
≤

(
4 max{

√
ζi∗,1, ζi∗,1}

ζi∗,1/(40λ̂)

)T
= (160λ̂max{ζ−1/2

i∗,1 , 1})T , (69)

we have

si∗,1 ≤ (t+ 1) E[si∗,1] = (ζi∗,1/(20λ̂)) ·E[si∗,1] = (ζi∗,1/(20λ̂)) · si∗,2 = si∗+1,1/(20λ̂),

where the second equality is by Fact 63 and the third is by the definition of ζi∗,1 (recalling In-

equality (35)). Using again ζi∗,1 > 100λ̂, the failure probability bound Equation (69) is at most

16T · λ̂T/2.

Putting Claim 74 and Claim 75 together, we conclude that

si∗+1,0 ≥ 10λ̂si∗,1 except with probability O(λ̂)T/2,

which establishes Inequality (58) for the i∗-th local hyperconcentration mollifier check (see Sec-
tion 4.3.1), as desired.
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11 Proof of Lemma 59: Using a Taylor-based argument if all anal-
ysis checks pass

As per the assumptions of Lemma 59, in this section we completely fix an x = x ∈ Rn such that all
of the analysis checks pass, and we let z denote a kindep-wise independent n-dimensional Gaussian
random vector. We recall the notation from the start of Section 8,

w =
√

1− λx+
√
λz, si,j = si,j(x), si,j = si,j(w) = (si,j)λ|x(z),

and we note that we will again be making use of Corollary 64 in the arguments that follow. We
further introduce the notation

µp := E[p(w)].

To prove Lemma 59 we must show that the expectation of the random variable

I+(w) = Mollifierp(w) · 1[sign(p(w))], (70)

is determined up to an additive±poly((Td)T )·λ̂T/2 just by virtue of z being kindep-wise independent.
To do this it is useful to observe that Mollifierp(w) depends only on the si,j random variables; more
precisely, we may rewrite Equation (70) as

I+(w) = ˜Mollifierp({si,j}0≤i≤d,0≤j≤D−1) · 1[sign(p(w))], (71)

where the function ˜Mollifierp : (R≥0)(d+1)×D → [0, 1] is defined in the obvious way,

˜Mollifierp({si,j}0≤i≤d,0≤j≤D−1) :=
∏

(Ineq=(c,su,sv),δ)∈MollifierChecks

σ

(
δ−1 ln

(
su
csv

))
. (72)

We begin to analyze Equation (71) by first analyzing the simpler random variable 1[sign(p(w))]
which is a part of I+(w):

Claim 76. Pr[sign(p(w))] 6= sign(µp)] ≤ O(λ̂)T/2.

Proof. Recalling that s0,0 = p2, by Definition 42 we have that

s0,1 = E
y∼N(0,1)n

[pλ|x(y)2],

and by Fact 39 and Definition 40 we have that

s1,0 = HyperVarR[pλ|x].

Furthermore, since by the assumption of Lemma 59 we have that all the analysis checks pass at x,
we may draw the following conclusions:

s1,1 ≤ 100λ̂s0,2, s0,1 ≈δa s0,2, s1,0 ≈1 s1,1,

where the first of these is by the i = 1 diagonal analysis check passing, the second is by the (i, j) =
(0, 1) horizontal analysis check passing, and the last of these follows from the noise insensitivity
extension lemma Lemma 72 and the passing of the horizontal analysis checks s1,j(x) ≈δa s1,j+1(x)
for all 1 ≤ j ≤ D − 1. Combining these bounds we deduce that

HyperVarR[pλ|x] = s1,0 ≤ 100eλ̂s0,2 = 100e2λ̂ E
y∼N(0,1)n

[pλ|x(y)2],
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or in other words pλ|x is (R, 100e2λ̂)-attenuated. Since T ≤ 1 + 1
2R

2, by Lemma 31 we may

conclude that for y ∼ N(0, 1)n, the random variable pλ|x(y) is (T, 10e
√
λ̂)-hyperconcentrated. Since

the definition of (T, 10e
√
λ̂)-hyperconcentration only uses T -th moments, and pλ|x has degree at

most d and Td ≤ kindep, recalling that z is kindep-wise independent we may conclude that the

random variable p(w) is also (T, 10e
√
λ̂)-hyperconcentrated. (Recall Remark 12.) Now applying

Proposition 25 with its “t” parameter set to 1/2, we get that

|p(w)− µp| ≤ (1/2)|µp|, except with probability at most O(λ̂)T/2,

which is easily seen to imply the claim if µp 6= 0. (If µp = 0, then the above condition translates
into p(w) = 0 with probability at least (say) 0.9, which can only be the case if p is identically 0, in
which case the claim holds trivially.)

Since ˜Mollifierp is bounded in [0, 1], as an immediate consequence of Claim 76 we have that

E[I+(w)] and E[ ˜Mollifierp({si,j}0≤i≤d,0≤j≤D−1)] can differ by at most an additive O(λ̂)T/2. Hence
the remaining task, to prove Lemma 59, is to show that

˜Mollifierp({si,j}0≤i≤d,0≤j≤D−1) is determined up to an additive ± poly((Td)T ) · λ̂T/2. (73)

In the rest of this section we do this as follows: first, in Section 11.1, we use the assumption
that all analysis checks pass at x to show that the statistics si,j are suitably hyperconcentrated.

Next, in Section 11.2 we show that the ˜Mollifierp function satisfies a certain technical “relaxedness”
condition (essentially a bound on the magnitude of its derivatives). Finally, in Section 11.3 we
use hyperconcentration of the si,j statistics and relaxedness of Mollifierp in an argument based on
Taylor’s theorem to establish Equation (73).

11.1 Establishing hyperconcentration of the si,j’s

The proof of the following lemma uses the assumption that all analysis checks pass at x:

Lemma 77. For 0 ≤ i ≤ d, 0 ≤ j ≤ D−1, the random variable si,j is (2T, 40e
√
λ̂)-hyperconcentrated.

Proof. Fix any 0 ≤ i ≤ d − 1. Since the diagonal analysis check between the i-th and (i + 1)-th
row passes at x, we have (recalling Equation (32)) that si+1,1 ≤ 100λ̂si,2. Similar to the beginning
of the proof of Corollary 64, if si,2 = 0 then si,j must be the constant-0 random variable and the
lemma holds. So we assume that si,2 > 0 and we have that

si+1,1

si,2
≤ 100λ̂. (74)

Further, since the horizontal analysis checks in rows i and i + 1 all passed at x, we can apply
Lemma 72 to si,0 and si+1,0 to get that

for all 0 ≤ j ≤ D, si,j ≈1 si,2, si+1,j ≈1 si+1,1. (75)

Combining Equation (74) and Equation (75), and recalling the notation ζi,j =
si+1,j

si,j+1
from Inequal-

ity (35), we may conclude that

for all 0 ≤ i ≤ d− 1, 0 ≤ j ≤ D − 1 we have that ζi,j ≤ 100e2λ̂.
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Putting this into Inequality (35), we get that

for 0 ≤ i ≤ d− 1, 0 ≤ j ≤ D − 1, si,j is (2T, 40e
√
λ̂)-hyperconcentrated.

This hyperconcentration trivially extends to sd,j because sd,j is a constant random variable, and
Lemma 77 is proved.

11.2 ˜Mollifierp is relaxed

For notational simplicity in the remainder of this section, rather than using the (i, j)-indexing for the
elements of s = ({si,j}0≤i≤d,0≤j≤D−1), we will use generic indices 1 ≤ u ≤ m := (d+1)D = poly(d),
so we write s as s = (s1, . . . , sm).

Definition 78. For a ∈ N, B ≥ 1, we say a function ψ : (R≥0)m → [0, 1] is (a,B)-relaxed if it is
smooth and satisfies

for all α ∈ Nn with 0 ≤ |α| ≤ a and all s ∈ (R≥0)m, |s|α · |∂αψ(s)| ≤ B.

Lemma 79 ( ˜Mollifierp is relaxed). The function ψ = ˜Mollifierp is (2T, poly((Td)T ))-relaxed.

Proof. Let us write B0 to denote the maximum of 1/δ where δ ranges over all of the “softness pa-

rameters” involved in the definition of ψ = ˜Mollifierp (recall Equation (72)). Recalling Section 4.3.1
and Section 4.3.2 we have that B0 = 1/δhorz = poly(d).

Say that a function φ(s) is “ψ-like” if it takes the form of the right-hand side of Equation (72),
except that some of the multiplicands may have derivatives σ′, σ′′, σ′′′, etc., in place of σ. We show
by induction on a = |α| that ∂αψ(s) consists of a sum of at most (m + 1)a terms, each being of

the form bφ(s)
sα , where φ(s) is ψ-like and b is a constant that is at most (aB0)a in magnitude. The

base case a = 0 is immediate. For the induction step, we consider differentiating a term bφ(s)
sα with

respect to some su. We view this term as a product of up to m + 1 factors involving su, namely
the multiplicands in φ(s) involving su, and also any power sju in the denominator. Now we use the
calculus product rule. Differentiating a multiplicand of the form σ(i)(±δ−1 ln(su/sv) + const.) with
respect to su gives a similar factor, but with a higher derivative σ(i+1) and picking up a factor of
±δ−1/su. Thus we indeed get another ψ-like term, with an extra factor of su in the denominator
and a constant factor increased in magnitude by at most B0 ≤ aB0, as is sufficient for the induction.
Similarly, differentiating the factor of 1/sju picks up a constant factor of j ≤ a ≤ aB0 in magnitude,
as well as an extra factor of su in the denominator. This completes the induction.

Next, we observe that in all the ψ-like terms that are present in ∂αψ(s), the maximum-order
derivative on σ that arises is at most a = |α|. Recalling Definition 35, for a > 0 all of these ψ-like
terms are uniformly bounded in magnitude on (R≥0)m by aO(a) (and when a = 0 we have that the
desired inequality holds since |s|0 · |ψ(s)| = |ψ(s)| ≤ 1). Given the induction and these observations,
it is clear that ψ is (2T,B)-relaxed, where B = (m+ 1)2T · (2TB0)2T ·O(2T )2T = poly((Td)T ).

Remark 80. Lemma 79 is analogous to Lemma 18 of [Kan11b], which similarly gives an upper
bound on the partial derivatives of the mollifier of [Kan11b]. The upper bound given in [Kan11b] is
exponential in d because of exp(d)-type factors which are involved in the definition of the mollifier
in that work.
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11.3 The core Taylor’s theorem argument

In this subsection we prove the following lemma:

Lemma 81. Let s = (s1, . . . , sm) be a vector of nonnegative random variables, each of which is
(2T, η)-hyperconcentrated. Let ψ : (R≥0)m → [0, 1] be (2T,C)-relaxed. Assume η ≤ 1

4m . Then up
to an additive error of C ·O(m)T · ηT , the expectation E[ψ(s)] is determined by the moments of s
of degree up to 2T .

Given Lemma 77 and Lemma 79, observing that for our mollfier ψ = Mollifierp we have m =

poly(d) and hence 40e
√
λ̂ � 1

4m , we can indeed combine these results with Lemma 81. Recalling
that the moments of s are determined by our assumptions and parameter settings (since each
statistic si,j has degree at most 2d, the random variable z is a kindep-wise independent Gaussian,
and 2d · 2T ≤ kindep), this establishes Equation (73) as desired.

Proof of Lemma 81. We write µ to denote E[s]. For a generic s ∈ (R≥0)m,Taylor’s theorem implies
that:

ψ(s) = P (s)+Err(s), where P (s) =
∑

0≤|α|<T

1
α!∂αψ(µ)·(s−µ)α, Err(s) =

∑
|α|=T

1
α!∂αψ(s∗)·(s−µ)α

for some s∗ on the open line segment from µ to s. As P is a polynomial in s of degree at most
T − 1, we have that E[P (s)] is exactly determined by the moments of s of degree up to T − 1. It
therefore suffices to bound

|E[Err(s)]| =
∣∣E[Err(s)] ·

(
1{s≈1µ} + 1{s 6≈1µ}

)∣∣ ≤ E
[
|Err(s)| · 1{s≈1µ}

]
+ E

[
|Err(s)| · 1{s 6≈1µ}

]
,

(76)
where s ≈1 µ means that si is within a multiplicative factor of e of µi (i.e., si ≈1 µi) for each
1 ≤ i ≤ m. Note that when this event occurs we also have s∗ ≈1 µ, and hence by the (2T,C)-relaxed
property of ψ, for all α such that |α| = T , we have

|µ|α · |∂αψ(s∗)| ≤ eTC. (77)

We proceed to analyze E
[
|Err(s)| · 1{s≈1µ}

]
as follows: we have

E
[
|Err(s)| · 1{s≈1µ}

]
≤
∑
|α|=T

|∂αψ(s∗)|E
[
|(s− µ)α| · 1{s≈1µ}

]
. (78)

Now, if an α with |α| = T has |µ|α = 0, this means that there is an index αi > 0 such that µi = 0.
Recalling the definition of hyperconcentration (Definition 24), it must be the case that si is zero
with probability 1 and hence any such α contributes zero to the right-hand side of Equation (78).
Thus we have that

E
[
|Err(s)| · 1{s≈1µ}

]
≤

∑
|α|≤T,|µ|α>0

|∂αψ(s∗)|E
[
|(s− µ)α| · 1{s≈1µ}

]
≤ eTC

∑
|α|≤T,|µ|α>0

|µ|−α E[|s− µ|α] (using Equation (77))

≤ eTC ·#{α : |α| = T} · ηT (Lemma 26)

≤ C(em)T · ηT . (79)
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For the second term in Inequality (76) we use Cauchy–Schwarz:

E
[
|Err(s)| · 1{s 6≈1µ}

]
≤
√

E
[
|Err(s)|2

]√
E
[
12
{s 6≈1µ}

]
=

√
E
[
|ψ(s)− P (s)|2

]√
Pr[s 6≈1 µ]

≤
(

1 +
√

E[P (s)2]
)
·
√
m · (2η)T , (80)

where in the last step we used |ψ(s)| ≤ 1 for the first factor, and Proposition 25 (plus a union
bound over the m coordinates of s) for the second factor. Our handling of E

[
P (s)2

]
will be similar

to Inequality (79): we have that

E
[
P (s)2

]
≤

∑
0≤|α|,|β|<T

|∂αψ(µ)| · |∂βψ(µ)| ·E
[
|s− µ|α+β

]
=

∑
0≤|α|,|β|<T :|µ|α+β>0

|∂αψ(µ)| · |∂βψ(µ)| ·E
[
|s− µ|α+β

]
≤

∑
0≤|α|,|β|<T :|µ|α+β>0

C2|µ|−α−β ·E
[
|s− µ|α+β

]
(ψ is (2T,C)-relaxed)

≤ C2
∑

0≤|α|,|β|<T

η|α+β| (Lemma 26)

≤ C2
T∑
k=0

(2mη)k ≤ 2C2, (81)

where the last inequality used the assumption η ≤ 1
4m and the equality uses reasoning similar to our

earlier analysis of |α| = T such that |µ|α = 0. Putting Inequalities (79) to (81) into Inequality (76)
yields

|E[Err(s)]| ≤ C(em)T · ηT + (1 +
√

2C) ·
√
m · (2η)T = C ·O(m)T · ηT ,

as claimed.
This concludes the proof of Lemma 81 and thus also of Lemma 59.
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A Omitted proofs

Proof of Proposition 15. Our goal will be to establish the following identity:

gλ|x(y) = g(
√

1− λx+
√
λy) =

∑
α,β∈Nn

ĝ(α+ β)
√

Pr[Bin(α+ β, λ) = β]hα(x)hβ(y). (82)
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From this we immediately deduce

ĝλ|x(β) =
∑
γ≥β

ĝ(γ)
√

Pr[Bin(γ, λ) = β]hγ−β(x).

Now Parseval’s identity (i.e., taking the expected square over x ∼ N(0, 1)n and using orthonormality
of the hγ−β’s) yields Proposition 15.

It remains to verify Equation (82). This identity is a direct consequence of the following
univariate special case:

hm(
√

1− λx+
√
λy) =

∑
i+j=m

√
Pr[Bin(m,λ) = j]hi(x)hj(y). (83)

To obtain Equation (82), one simply substitutes Equation (83) into the multivariate Hermite ex-
pansion g(z) =

∑
γ ĝ(γ)hγ(z).

Finally, Equation (83) is a variant of the standard identity [O’D14, Ex. 11.11] concerning
Hm(x+ y). To prove Equation (83), we recall ([O’D14, Eq. (11.8)]) the generating function defini-
tion of hm:

exp(tz − 1
2 t

2) =
∞∑
m=0

1√
m!
hm(z)tm.

Substitute z =
√

1− λx+
√
λy, and use −1

2 = −1−λ
2 −

λ
2 on the left-hand side. This yields

exp(t
√

1− λx− 1−λ
2 t2) exp(t

√
λy − λ

2 t
2) =

∞∑
m=0

1√
m!
hm(
√

1− λx+
√
λy)tm.

Now on the left we use the generating function twice again (with
√

1− λt and
√
λt replacing t),

yielding( ∞∑
i=0

1√
i!
hi(y)(

√
λt)i

) ∞∑
j=0

1√
j!
hj(x)(

√
1− λt)j

 =
∞∑
m=0

1√
m!
hm(
√
λy +

√
1− λx)tm.

Equation (83) now follows by considering the coefficient on tm on both sides.

Proof of Theorem 10. As mentioned, this result essentially appears in Section 6 of [Kan11b].
The following construction of k-wise independent tuples is well known [Jof74, ABI86]:

Theorem 82. For any k, n,M ∈ N, there is an efficient deterministic algorithm that takes in a
uniformly random bit-string of length O(kmax{M, log n}) and outputs a sequence (X1, . . . ,Xn) ∈
{0, 1, . . . , 2M−1}n that is k-wise independent with respect to the uniform distribution on {0, 1, . . . , 2M − 1}.

We could convert each M -bit Xi to a near-Gaussian using Equation (8); the result would be a
k-wise independent vector in with respect to an “O( 1√

M
)-near-Gaussian” distribution. However one

can convert M -bit strings to near-Gaussians with exponentially better accuracy, via the Box–Muller
transform; as Kane [Kan11b, Proof of Cor. 2] shows, one can deterministically and efficiently convert
Xi to a random variable yi whose distribution can be coupled to a true Gaussian zi ∼ N(0, 1)]
such that Pr[|yi − zi| ≤ δ] ≥ 1− δ for δ = Θ(2−M/2).

Given this, we may then use the following lemma explicitly proven by Kane [Kan11b], which is
a relatively straightforward consequence of the Carbery–Wright theorem (Theorem 33):
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Lemma 83. ([Kan11b, Lem. 21].) Let z be a k-wise independent n-dimensional Gaussian random
vector. Suppose that y is an n-dimensional random vector such that y and z may be coupled so
that Pr[|yi − zi| ≤ δ] ≥ 1 − δ. Finally, suppose one can show that for L = 1/λ and z(1), . . . ,z(L)

i.i.d. copies of z, the sum
√
λz(1) + · · ·+

√
λz(L) is ε/2-fooling for degree-d Gaussian PTFs. Then

for y(1), . . . ,y(L) being i.i.d. copies of y, the sum
√
λy(1) + · · · +

√
λy(L) is ε′-fooling for degree-d

Gaussian PTFs, where

ε′ = ε/2 +O(Lnδ) +O(d
√
Lnδ1/d log(1/δ)).

Theorem 10 now follows by takingM = O(d log(dLn/ε)) and thereby achieving δ = (dLn/ε)O(d).

B Appendix by Daniel Kane

Lemma 84. Let p be a degree-d polynomial with p(x) ≥ 0 for all x. Then for x ∼ N(0, 1)n and
ε > 0 we have that

Pr[p(x) < εE
x

[p(x)]] = O(dε1/d).

Proof. This follows from Carbery-Wright and the observation that ‖p‖2 ≥ Ex[p(x)].

Theorem 85 (Local Hyperconcentration Theorem, improved version). There exists a constant
c > 0 so that for any 1 > ε, β > 0 and R ≥ 1 sufficiently small if (gυ)υ∼Υ is a nice distribution
over degree-d polynomials in n variables then for

λ ≤ cεβ

Rd9/2

then for x ∼ N(0, 1)n with probability at least 1− β we have that

E
υ

[HyperVarR((gυ)λ|x)] ≤ ε2 E
υ

[‖(gυ)λ|x‖22].

Proof. The proof of this theorem will depend on basic facts about the sequence of derivatives of
(gυ)λ|x. Firstly, we establish some notation, we let Dyf(x) denote the directional derivative of f
at x in the y direction. We begin with the following Lemma relating the size of functions and their
derivatives:

Lemma 86. Let (gυ)υ∼Υ be a nice distribution over degree-d polynomials. Let x and y be inde-
pendent N(0, 1)n Gaussian random variables. Then for ε > 0 we have that

Prx,y[E
υ

[|gυ(x)|2] ≤ ε2 E
υ

[|Dy(gυ(x))|2]] = O(d2ε).

Proof. We begin with the case where gυ is actually a constant family (i.e. is just a single function).
This result then follows immediately from Lemma 9 of [D. Kane “The Correct Exponent for the
Gotsman-Linial Conjecture”].

From here we generalize to the case where gυ is a linear polynomial in υ. By the previous case,
we have that

Prx,y,υ[|gυ(x)|2 ≤ ε2|Dy(gυ(x))|2] = O(d2ε).

On the other hand since gυ(x) and Dy(gυ(x)) are linear functions of υ. Therefore, for any x and
y, with at least 50% probability over the choice of υ we have that Eυ[|gυ(x)|2] � |gυ(x)|2 and
|Dy(gυ(x))|2 � Eυ[|Dy(gυ(x))|2]. Therefore, whenever

E
υ

[|gυ(x)|2] ≤ ε2 E
υ

[|Dy(gυ(x))|2]
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there is at least a 50% probability over the choice of υ that

|gυ(x)|2 ≤ ε2C|Dy(gυ(x))|2

for some positive constant C. However, the latter happens with probability O(d2ε) and is at least
half of

Prx,y[E
υ

[|gυ(x)|2] ≤ ε2 E
υ

[|Dy(gυ(x))|2]].

Therefore, this latter probability is O(dε2).
Finally, we can handle the generic case. Let ha(υ) be an orthonormal basis for the polynomials

in υ. We can write gυ(x) as
∑

a ha(υ)pa(x) for some polynomials pa. Define

hµ(x) :=
∑
a

µapa(x)

where µ is a Gaussian random variable with as many components as there are terms in the above
decomposition of gυ. It is easy to see that for any x and y that

E
υ

[|gυ(x)|2] =
∑
a

p2
a(x) = E

µ
[|hµ(x)|2]

and
E
υ

[|Dygυ(x)|2] =
∑
a

(Dypa(x))2 = E
µ

[|Dyhµ(x)|2].

Since our Lemma holds for h, it must therefore also hold for g. This completes our proof.

Our theorem will rest upon the following notion of a random derivative sequence:

Definition 87. Given a nice distribution (gυ)υ∼Υ of degree-d polynomials, a random derivative
sequence for g is a sequence of the form

E
υ

[|gυ(x)|2],E
υ

[|Dy1gυ(x)|2],E
υ

[|Dy2Dy1gυ(x)|2], . . .E
υ

[|DydDyd−1
· · ·Dy1gυ(x)|2],

where x,y1,y2, . . . ,yd are independent Gaussian random variables.
We will often denote the kth term by

Dkx,yi(gυ) := E
υ

[|DykDyk−1
· · ·Dy1gυ(x)|2].

Corollary 88. Let (gυ)υ∼Υ be a nice distribution over degree-d polynomials. Then with probability
at least 1− ε over the choice of x,yi we have that:

Dk+1
x,yi

(gυ) = O(d6/ε2)Dkx,yi(gυ)

for all 0 ≤ k ≤ d.

Proof. It follows immediately from Lemma 86 that for each k

Dk+1
x,yi

(gυ) = O(d6/ε2)Dkx,yi(gυ)

with probability 1− ε/d. The full result follows from a union bound over k.

This says that a typical random derivative sequence does not increase too rapidly. However, we
show that there is a kind of converse for non-hyperconcentrated families:
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Proposition 89. Let (gυ)υ∼Υ be a nice distribution of degree-d polynomials so that for some
R, ε > 0 we have that

E
υ

[HyperVarR((gυ))] ≥ ε2 E
υ

[‖(gυ)‖22].

Then with at least 50% probability over a choice of random Gaussians x,yi we have that for some
0 ≤ k ≤ d that

Dk+1
x,yi

(gυ) > Ω(ε2/(d3R2))Dkx,yi(gυ).

In order to prove this, we will need to talk about the Hermite parts of g. Recall that for g a
polynomial, the notation g=k denotes the degree-k Hermite part of g.

We will make use of the following facts:

Fact 90. For any polynomial g and R > 0,

HyperVarR(g) =
∑
k

kR2k‖g=k‖22.

Fact 91. For any polynomial g and vector v:

(Dvg)=k = Dv(g
=k+1).

Fact 92. For any g with g = g=k and x a random Gaussian

E
x

[‖Dxg‖22] = k‖g‖22.

We will also need to know that with reasonable probability that some element of a random
derivative sequence is not too small.

Lemma 93. Let (gυ)υ∼Υ be a nice distribution of degree-d polynomials and let m ≥ d. Then with
probability at least 1 − d/m over a choice of random Gaussians x,yi there exists a 0 ≤ k ≤ d so
that

Dkx,yi(gυ) ≥ Ω(1/m)3k E
υ

[‖gυ‖22]/2.

Proof. We proceed by induction on d. If d = 0, then D0
x,yi

(gυ) = Eυ[‖gυ‖22] and we are done.
For the inductive step, we break into two cases. On the one hand, if

E
υ

[‖gυ‖22] ≥ 100mE
υ

[Varx(gυ(x))],

then we have that

E
x

[E
υ

[‖gυ‖221{|gυ(x)| < (2/3)‖gυ‖2}]]

= E
υ

[E
x

[‖gυ‖221{|gυ(x)| < (2/3)‖gυ‖2}]]

≤E
υ

[
9(‖gυ‖22)

(
Varx(gυ(x))

‖gυ‖22

)]
=9 E

υ
[‖gυ‖22]/2

≤(1/10m) E
υ

[‖gυ‖22].

However, if
D0
x,yi

(gυ) < E
υ

[‖gυ‖22]/2,
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it must be the case that

E
υ

[‖gυ‖221{|gυ(x)| < (2/3)‖gυ‖2}] ≥ (1/6) E
υ

[‖gυ‖22],

and by the Markov Inequality, this happens with probability at most 1/m.
On the other hand, if

E
υ

[‖gυ‖22] ≤ 100mE
υ

[Varx(gυ(x))],

then
E
y1

[E
υ

[‖Dy1gυ‖
2
2]] = E

υ
[Varx(gυ(x))].

Since Eυ[‖Dy1gυ‖22] is a non-negative quadratic function of y1, Lemma 84 implies that with prob-
ability at least 1− 1/m we have that

E
υ

[‖Dy1gυ‖
2
2] ≥ (1/m2) E

υ
[Varx(gυ(x))] ≥ Ω(1/m3) E

υ
[‖gυ‖22].

For such an outcome of y1, we can apply our inductive hypothesis to (Dy1gυ).

We are now prepared to prove Proposition 89.

Proof. Note that

E
υ

[HyperVarR(gυ)] =
d∑

k=1

kR2k E
υ

[‖g=k
υ ‖22].

Therefore, under our hypothesis, there must be a k so that

E
υ

[‖g=k
υ ‖22] ≥ (ε2/(4R2))k E

υ
[‖gυ‖22].

Notice that
E
υ

[‖DykDyk−1
· · ·Dy1g

=0
υ ‖22]

is a non-negative degree 2k polynomial in y1, . . . , yk with average value at least (ε2/(4R2))k Eυ[‖gυ‖22].
Therefore, Lemma 84 implies that with probability at least 5/6 we have that

‖DykDyk−1
· · ·Dy1g

=0
υ ‖22 ≥ Ω(ε2/(d2R2))k E

υ
[‖gυ‖22].

By Lemma 93 with probability at least 5/6 there is a k′ > k so that

Dk′x,yi(gυ) ≥ Ω(1/d)3(k′−k)‖DykDyk−1
· · ·Dy1g

=0
υ ‖22/2 ≥ Ω(ε2/(d3R2))k

′
E
υ

[‖gυ‖22].

Finally, with probability at least 5/6 we have that

D0
x,yi

(gυ) = O(1) E
υ

[‖gυ‖22].

Thus, if all three of these events hold (which happens with probability at least 1/2), there will be
some d ≥ k > 1 so that

Dkx,yi(gυ) ≥ Ω(ε2/(d3R2))kD0
x,yi

(gυ).

Therefore, there must also be a k so that

Dk+1
x,yi

(gυ) ≥ Ω(ε2/(d3R2))Dkx,yi(gυ).
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Our Theorem will now follow from the tension between Corollary 88 and Proposition 89 along
with the observation that

Dkx,yi((gυ)λ|x) = λ2kDkz,yi(gυ)

where z =
√

1− λx′ + λx. Note also that z is a standard Gaussian if x′ and x are. In particular,
Corollary 88 tells us that with probability 1− β/2 that

Dk+1
z,yi

(gυ) = O(d6/β2)Dkz,yi(gυ) (84)

for all 0 ≤ k ≤ d. On the other hand, if

E
υ

[HyperVarR((gυ)λ|x)] > ε2 E
υ

[‖(gυ)λ|x‖22]

then Proposition 89 implies that with at least 50% probability that there is a 0 ≤ k ≤ d so that

Dk+1
x,yi

((gυ)λ|x) > Ω(ε2/(d3R2))Dkx,yi((gυ)λ|x).

But this is equivalent to saying that

Dk+1
z,yi

(gυ) > Ω(λ−2ε2/(d3R2))Dkz,yi(gυ).

However, given our setting of λ this would contradict Equation (84). Therefore, the probability of
Equation (84) being violated is at most β/2, but is at least half the probability that

E
υ

[HyperVarR((gυ)λ|x)] > εE
υ

[‖(gυ)λ|x‖22].

Hence we conclude that the latter probability is at most β.
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