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Abstract

We present a quantum LDPC code family that has distance Ω(N3/5/polylog(N)) and
Θ̃(N3/5) logical qubits, where N is the code length. This is the first quantum LDPC code
construction which achieves distance greater than N1/2 polylog(N). The construction is based
on generalizing the homological product of codes to a fiber bundle.

1 Introduction

While there are many constructions of “good” classical LDPC codes with linear rate and dis-
tance [RU08], the construction of a quantum LDPC code1 on N qubits with distance greater N c

for some c > 1
2 has been a longstanding open problem. Even constructing a code with distance

Ω(N1/2 polylog(N)) is nontrivial, and many natural constructions such as the toric code [Kit03]
give only distance Θ(N1/2). The first code to beat N1/2 by a polylogarithm was based on the
cellulation of a carefully chosen manifold [FML02]. A later construction based on Bruhat–Tits
buildings improved the polylogarithm and gave an efficient decoder [EKZ20], but still had distance
only O(N1/2 polylog(N)), with later generalizations [KT20] allowing an arbitrarily large power in
the polylog. In this paper, we give a construction attaining distance Ω(N3/5/ polylog(N)), solv-
ing this problem. We present partial results toward efficient decoding, giving a polynomial-time
algorithm to decode bit flip errors and a conjectured efficient algorithm to decode phase errors.

One of the difficulties in constructing a good quantum code is that the X- and Z-stabilizer
generators must commute with each other. If one set of generators — say the X-generators — is
chosen randomly (trying to follow randomized constructions of classical codes), it is unlikely that
there will exists a set of low weight Z generators that commute with them. So, while these ran-
domized constructions are useful if one allows high-weight generators, it is necessary to incorporate
some structure into the code if one wishes to have low-weight generators. The approach in [EKZ20]
uses deep algebraic/number-theoretic structure. In this paper we follow a different approach, a
fiber bundle construction, that combines a simple fiber (the cycle graph) with a random base (a
classical LDPC code).

A precursor to this construction is the homological product of quantum codes [FH14, BH14].
This product takes two quantum codes and constructs a product code from them. This product

*Station Q. and Microsoft Quantum.
�Station Q. and Microsoft Quantum.
�Microsoft Quantum and Carnegie Mellon University Computer Science Department.
1Throughout, by “quantum code”, we mean a CSS stabilizer code. An LDPC (low-density parity check) should

have stabilizer generators of weight O(1), and each qubit should be in the support of at most O(1) stabilizer generators.
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was used [BH14] to construct quantum codes with linear distance and rate, and with generators of
weight O(N1/2), by taking the product of two random quantum codes with linear-weight generators.
This product has several other applications. The hypergraph product [TZ14, LTZ15] is a particular
form of the homological product when both codes are classical, giving quantum LDPC codes with
linear rate and distance Θ(N1/2). Another application is to distance balancing, taking a quantum
code which has different distances dX and dZ against X- and Z-errors, and increasing the number
of qubits to increase one of the distances: so long as

√
dXdZ � N1/2, this gives [Has17b, EKZ20]

a new quantum code with both dX , dZ � N1/2.
We would like to contrast quantum LDPC codes, which are a subclass of stabilizer codes,

with more general quantum subsystem codes [Pou05]. Both are defined by a set of Pauli “check”
operators (gauge operators), which are individually measured when one implements the codes. The
code distance in either setting is defined as the minimum of weights of operators that act nontrivially
on encoded qubits. The difference between stabilizer and subsystem codes is that the subsystem
code does not impose the condition that these check operators should commute with one another
and hence in general there is no interpretation of a subsystem code as a chain complex. It is natural
to ask our question in a relaxed setting of subsystem codes, and there is a construction under this
relaxation: there exists a “sparse” subsystem code family where all check operators have a constant
weight and where the code distance is Ω(N1−ε) with ε = O((logN)−1/2) [BFHS17]. This family
violates our requirement that all check operators must commute. Let alone the mathematical
difference, we believe there is an intrinsic merit to quantum LDPC stabilizer codes over sparse
subsystem codes. Indeed, implementing a quantum error correcting code, be it subsystem or
stabilizer, we have to infer the syndrome, the eigenvalues of stabilizers. For quantum LDPC codes,
a check operator is a stabilizer so the syndrome measurement of a stabilizer involves only a constant
number of data qubits. However, in a subsystem code, even if check operators have constant weight,
a stabilizer may be a product of a large number of check operators and it is not always clear if the
syndrome can be read off in a fault-tolerant manner.

1.1 Results, motivation, and outline

In this paper, we generalize the homological product to a twisted homological product based on
the idea of fiber bundles from topology, giving what we call fiber bundle codes. The main result
is the following theorem for codes with polylogarithmic weight stabilizers and with each qubit
participating in polylogarithmically many stabilizers2. Then, by applying weight reduction and
distance balancing techniques we obtain LDPC codes given in Corollary 1.2.

Theorem 1.1. There exists a family of quantum codes on N qubits with dX = Ω(N1/2/polylog(N))
and dZ = Ω(N3/4/ polylog(N)) where all stabilizer generators have weight at most polylog(N) and
all qubits participate in at most polylog(N) stabilizer generators. The code has Θ(N1/2) logical
qubits.

This code is not LDPC, but in Appendix A, we show how to weight reduce it to an LDPC code
at only a polylogarithmic cost in distance and number of physical qubits (the construction in the
Appendix may be of more general interest also, as we use a notion of homotopy equivalence between
chain complexes to relate different quantum codes). The presentation in the Appendix is self-
contained, and is based on weight reducing a certain classical code used in the bundle construction3.

2In this paper, for simplicity of presentation we do not optimize polylogarithms in the distance. There are some
simple ways in which the polylogarithm in our main theorem can be improved by changing some of our parameter
choices later, and we comment on them where appropriate.

3A previous version of the present paper appealed to the general weight reduction result of [Has17b] but G. Zémor
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The distances of this LDPC code are not balanced since dZ � dX , but as mentioned we
can apply the distance balancing technique [Has17b, EKZ20]. The distance balancing procedure
of [EKZ20] generalizes that of [Has17b] and improves the rate of the resulting code. This gives us
the following:

Corollary 1.2. There exists a family of quantum LDPC codes on N qubits having distance
d = Ω(N3/5/ polylog(N)) and with Ω(N3/5/ polylog(N)) logical qubits.

There is a long history [Kit03, FM01] of applying ideas from topology to quantum codes, since
a quantum code can naturally be interpreted as a chain complex and such a complex can be
derived from cellulations of a manifold. Then, operations which have a natural definition in terms
of manifolds can often be translated into useful operations on quantum codes. For example, the
product of two manifolds naturally leads to considering the homological product of quantum codes.

A fiber bundle is a generalization of the idea of taking a product of two manifolds; roughly, it
is something that locally looks like a product but has richer global structure. A simple example
of a fiber bundle is a Möbius strip: locally it “looks like” the product of a circle with an interval.
However, there is a global twist: going once around the circle reverses the interval. This makes the
Möbius band not homeomorphic to the product of a circle with an interval. More generally, we
consider a base (a circle, in the Möbius band) and a fiber, where the fiber admits automorphisms
(reversing the interval, in the Möbius band). Motion along the base can involve acting on the fiber
by some automorphism.

Another simple example is the case where both the base and the fiber are a circle, S1. Their
untwisted, usual product is a torus. One can impose a twist so that the fiber is reflected when going
around the base circle (for example, using angular coordinates φ for the fiber, one maps φ 7→ −φ);
this changes the topology to that of a Klein bottle.

Beyond the changes in topology, these twists can also have an interesting effect on the geometry.
Consider again the example where both the base and the fiber are circles. Rather than imposing
reflection, we can impose a rotation by some fixed angle φ0 ∈ R when going around the base circle.
This does not change the topology, so the result is still a torus; it is parameterized by angles θ ∈ R
for the base and φ ∈ R for the fiber, and we identify

(θ, φ) ≡ (θ, φ+ 2π) ≡ (θ + 2π, φ+ φ0).

For any value of φ0, this is still a torus, but the geometry is different. In the context of quantum
codes, one needs some cellulation of the manifold, so one may cellulate the fiber and base circles
in the obvious way (by cycle graphs CnB , CnF for some integers nB, nF > 0), where the twist φ0

of the fiber is an integer multiple of 2π/nF . In this case, the result is still a toric code but with
different geometry.

Interestingly, even in this very simple case, the change in geometry resulting from this twist can
improve the distance of the code! Taking no twist (φ0 = 0), the code has N = 2nBnF qubits and
a distance equal to min(nB, nF ), so that the distance is equal to

√
N/2 when nF = nB. We leave

it to the reader to work out the details, but by imposing an appropriate twist and changing nB
and nF , one may construct a code whose distance is

√
cN for some c > 1/2. While this does not

improve the scaling of the code with N , it is a quantitative improvement in distance. Generalizing
this construction to higher dimensions [Has17a], and assuming an unproven conjecture in geometry,
this could allow for the construction of LDPC codes with distance N1−ε for any ε > 0.

has pointed out an error in that paper. A corrected version of weight reduction for arbitrary quantum codes will
appear separately.
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In this paper, we consider a further such idea, combining these twists with the use of randomness.
We will take a very simple choice of fiber (a circle), but we will choose the base to be a random
LDPC code, considered as a chain complex. While the algebraic ideas will be familiar for those
with a topology background, we would like warn these readers that many of our choices of chain
complexes do not have a nice interpretation as cellulations of a manifold. For example, the base of
our bundle will be a “1”-complex

B1
∂−→ B0

with polylogarithmically many “0”-cells in the boundary of each “1”-cell, while usual cellulations
of a manifold (or any topological cell complex) would have by definition only two 0-cells in the
boundary of a 1-cell. Even more strangely, the base will have zeroth Betti number equal to zero,
b0 = 0, while of course usually the zeroth Betti number is the number of connected components
of the manifold. As explained in [BH14], it is possible to “reverse engineer” a manifold of high
dimension from the code constructed here, in which our “1”-complex will no longer represent the
1-dimensional skeleton of a high dimensional manifold. One can also reverse engineer a 3-complex
from the quantum LDPC code constructed here, and triangulate it with simplices to get a simplicial
3-complex.

The paper is outlined as follows. In Section 1.2, we review the connection between quantum
codes and cohomology. In Section 2 we define the fiber bundle code. In this section, we pick a
specific choice of fiber, and pick the base to be a classical code but we leave the construction of the
classical code for later. Much of this section defines bundles in general and computes (co)homology
of bundles, and then in Section 2.5, we define the fiber bundle code and sketch the main results
needed to prove Theorem 1.1. Then in Section 3 we give the randomized construction of the base
code and prove lower bounds on the weight of cohomology and homology representatives. The
homology representative bound depends on some complicated properties of an associated classical
code proven in Section 4; this section has the most detailed combinatorial calculations. In Section 5,
we present partial results toward an efficient decoding algorithm. Finally, Appendix B collects some
of the notation that we use.

1.2 Quantum codes, chain complexes, and (co)homology

In this work all quantum codes are CSS quantum codes on qubits. All vector spaces will be over
F2 and all homology and cohomology takes coefficients in F2.

Let us briefly review notions of homological algebra. A chain complex

· · ·
∂j+1−−−→ Aj

∂j−→ Aj−1
∂j−1−−−→ · · · ∂1−→ A0

∂0=0−−−→ 0

is a sequence of vector spaces A0,A1, . . ., each with some preferred basis, together with linear maps
∂j : Aj → Aj−1 called boundary operators between these vector spaces. The boundary maps obey
the condition ∂j∂j+1 = 0 whenever ∂j and ∂j+1 are defined. A k-complex is a chain complex with
Aj = 0 for all j > k but Ak 6= 0. We refer to basis elements of Aj as j-cells, and to vectors in Aj
as j-chains. So, a cell is a particular chain. The Hamming weight of a chain is the number of cells
in the chain with a nonzero coefficient; we write the Hamming weight using absolute value symbols
| . . . |. We sometimes identify a chain with the set of cells that have nonzero coefficient in the chain;
since the coefficient field is F2 this identification does not forget any data of a chain.

The homology of a chain complex A is a sequence of vector spaces

Hj(A) = ker ∂j/ im ∂j+1
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where j = 0, 1, . . .. The j-th Betti number is defined4 as

bj(A) = dimF2 Hj(A).

It is customary to assume ∂k+1 = 0 for a k-complex even if ∂k+1 is not explicitly mentioned. An
element of ker ∂j is called a j-cycle. The cohomology Hj(A) is the homology of its dual chain(

· · ·
∂∗j+1←−−− A∗j

∂∗j←− A∗j−1

∂∗j−1←−−− · · ·
∂∗1←− A∗0

0←− 0

)
∼=
(
· · ·

∂Tj+1←−−− Aj
∂Tj←− Aj−1

∂Tj−1←−−− · · ·
∂T1←− A0

0←− 0

)
where A∗j is the vector space of linear functionals on Aj . Many authors write the coboundary
maps ∂∗j as “δj−1,” but we will not. The indicated isomorphism is nothing but a collection of
isomorphisms A∗j ∼= Aj , which are established thanks to the preferred basis for each Aj . More
concretely, a linear functional c∗ ∈ A∗j that assigns 1 ∈ F2 for a cell c ∈ Aj but 0 ∈ F2 for
all other cells, is identified with the cell c itself under the isomorphism. Almost always in the
context of cohomology, an element of A∗j is called a “cochain”; however, in this paper we just
call it a chain since we always use the isomorphism A∗j ∼= Aj . That is, a chain will always be a
F2-linear combination of cells regardless of whether we use the chain for homology or cohomology.
The isomorphism A∗j ∼= Aj is fundamental to any combinatorics of cohomology: we will have to
count the weight of a cohomology representative, called a cocycle, via this identification of linear
functionals with their cell-support.

A chain complex defines a quantum code by picking some integer q > 0 and associating q-cells
of the complex with qubits, and associating (q − 1)- and (q + 1)-cells with X- and Z-stabilizer
generators of the code (respectively). The Z logical operators of the code are associated with qth
homology classes and the X logical operators are associated with qth cohomology classes. The
code has two distances, denoted dX and dZ , where dX is the weight of a lowest weight nontrivial
X logical operator (i.e., the lowest possible Hamming weight of a vector that represents nontrivial
qth cohomology) and dZ is the weight of a lowest weight nontrivial Z logical operator (i.e., the
lowest possible Hamming weight of a vector that represents nontrivial qth homology). Note that
the F2-dimensions of Hq(A) and Hq(A) are always the same as seen by counting vector space
dimensions and matrix ranks.

2 Fiber Bundle Codes

In this section we define the code. As remarked earlier, the code results from a chain complex, and
thus we focus on constructing chain complexes. We proceed from a general possible construction
to our specific instantiation. We begin with reviewing the product of two chain complexes in
Section 2.1, and recall the (untwisted) homological product in Section 2.2. We next explain in
Section 2.3 that general fiber bundles are obtained by twisting boundary maps. Deferring specific
choices of base and fiber complexes and twists, we study algebraic aspects of fiber bundle complexes
to establish homology and cohomology isomorphisms at dimension 1 in Section 2.4. We finally define
our code in Section 2.5 by specifying the fiber complex; the base complex will be a random classical
code with polylogarithmic weight parity checks, whose combinatorial properties will be studied in
the next sections. In Sections 3.2 and 3.4 we lower bound the weight of cohomology and homology
representatives for this choice, using probabilistic methods.

4 Usually, Betti numbers are defined as the rank of the free part of the homology with integer coefficients. Our
definition is different from this usual one when the integral homology has 2-torsions.

5



2.1 Products of chain complexes

Let us begin by recalling the definition of a homological product. Given a base complex B and a
fiber complex F ,5 we construct their product E , a bundle, as follows. We take tensor products of
component chain vector spaces, which inherit the boundary maps from the constituent complexes B
and F :

· · ·

��

· · ·oo

��

Bj ⊗Fk

I⊗∂k��

∂j⊗Ioo

B0 ⊗F1

I⊗∂1

��

B1 ⊗F1
∂1⊗Ioo

I⊗∂1

��

...oo

��

B0 ⊗F0 B1 ⊗F0
∂1⊗Ioo

...oo

(1)

Then, the chain space Er of the bundle is defined to be the direct sum

Er =
⊕
p+q=r

Ep,q where Ep,q = Bp ⊗Fq

along the diagonal line p+q = r in the diagram for each r ≥ 0. A preferred basis of the chain vector
space Er is also inherited from constituent cells; every r-cell of E is a pair (bp, f q) with p + q = r
where bp ∈ Bp is a p-cell of the base and f q ∈ Fq is a q-cell of the fiber. We will refer to such an
r-cell of the bundle as a (p, q)-cell. If B and F are b- and f-complexes, respectively, then E is a
(b + f)-complex.

2.2 Trivial bundles

We have only defined the chain spaces Er above, but not yet the boundary maps ∂E . There are
in fact many ways to define ∂E given the diagram in (1), and this diversity will be realized in
the discussion of twisted bundles below. Before we show such diversity, we recall the untwisted
boundary map. It suffices to specify how the boundary map acts on each direct summand Ep,q
of Er:

∂Er |(p,q) = I⊗ ∂Fq + ∂Bp ⊗ I, (2)

where ∂B and ∂F are the boundary maps of B and F , respectively. One may verify that ∂Er ∂
E
r+1 = 0

for all r; here we use that the vector spaces are over F2.6

This definition of homological product via eq. (2) to build a trivial bundle is standard in topol-
ogy, where the chain complexes are obtained from cell decompositions of two manifolds. The
product of the chain complexes corresponds to the cellulation of the product of two manifolds.
However, the algebraic construction of trivial bundles above does not have to come from topolog-
ical spaces. For example, it has been applied [BH14] to input chain complexes which represent
random quantum codes.

From now on we will usually drop superscripts and subscripts from boundary maps; the meaning
of ∂ will be obvious from the context.
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𝑣
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𝑣

(1) (2) (3) (4)

Figure 1: Fiber bundles over base 1-complexes. (1) depicts a trivial bundle built from two 1-
complexes, each representing a long line or a circle. Any bundle 1-cell that is a lift of a base 1-cell
is referred to as a horizontal 1-cell, indicated by h in the figure. Any bundle 1-cell that vanishes
upon projection onto the base is referred to as a vertical 1-cell, indicated by v in the figure. The
projection is defined in Definition 2.4. (2) depicts some twisting. Since a fiber is acted on by an
automorphism, the entire fiber over a base cell is shifted. Note that the shown twist can be removed
using gauge redundancy. To draw a nonremovable twisting, we must have had a cycle in the base.
(3) is the same as (2) but base 1-cells are positioned on the right-hand side and base 0-cells on the
left-hand side. (4) introduces a “1”-cell (red) of the base that has three boundary 0-cells.

7



2.3 Twisted bundles

We assume that the fiber admits some automorphism group G, which is a collection of permutation
actions on the set of q-cells for each q such that boundary operator commutes with this permu-
tation. Such an automorphism naturally extends by linearity to each chain vector space Fq. The
requirement of a fiber automorphism group then reads that for each q,

g∂f = ∂gf for all g ∈ G, f q ∈ Fq. (3)

Definition 2.1. Given a fiber automorphism group G obeying eq. (3), a connection ϕ of a bundle
is an arbitrary assignment of a automorphism group element, a twist, for each pair of a base cell
and one of its boundary cell:

{(b, a) : b, a are cells such that a ∈ ∂b} ϕ−−−−→ G. (4)

where we have identified ∂b with its support (the collection of cells with nonzero coefficients in ∂b).
We define a twisted boundary map ∂E by ϕ:7

∂E(0,q)(b
0 ⊗ f) = b0 ⊗ ∂f,

∂E(1,q)(b
1 ⊗ f) = b1 ⊗ ∂f +

∑
a0∈∂b1

a0 ⊗ ϕ(b1, a0)f. (5)

Proposition 2.2. If the base is a 1-complex, then the twisted boundary map satisfies ∂Er ∂
E
r+1 = 0

for all r ≥ 0.

Proof. It suffices to check the claim for basis elements. It is obvious that ∂Eq−1∂
E
q (b0 ⊗ f q) =

b0 ⊗ ∂Fq−1∂
F
q f

q = 0 for any q. If b = b1 is a base 1-cell and f is a fiber q-cell, by eq. (5) we see

∂Eq ∂
E
q+1(b1 ⊗ f q) = ∂Eq (b1 ⊗ ∂f q) + ∂Eq

∑
a0∈∂b1

a0 ⊗ ϕ(b1, a0)f q

=

b1 ⊗ ∂∂f q +
∑

a0∈∂b1
a0 ⊗ ϕ(b1, a0)∂f q

+
∑

a0∈∂b1
a0 ⊗ ∂ϕ(b1, a0)f q

= 0

where the second equality is because a0 is a 0-cell and the third is because of eq. (3).

The definition of twisted boundary map can be generalized to any higher-dimensional base
complex. This generalization, however, requires certain conditions so that ∂E∂E = 0 is fulfilled.
For example, if the base is a 2-complex, then we may need extra terms in the boundary map:

∂E(2,q)(b⊗ f) = b⊗ ∂f +
∑
e∈∂b

e⊗ ϕ(b, e)f +
∑

v∈∂e:e∈∂b
v ⊗ f+

v,e,b (6)

where f+
v,e,b is some (q + 1)-cell of the fiber. For such extra terms to exist, the twists and the fiber

complex should jointly obey certain conditions. We do not pursue in this generalization further,
and from now on the base will always be a 1-complex. With the restriction that the base is a
1-complex, we will find it convenient to distinguish bundle 1-cells as follows.

5 The untwisted, usual homological product does not distinguish between base and fiber.
6 With a general coefficient group, an extra sign is needed: ∂E(p,q) = (−1)pI⊗ ∂Fq + ∂Bp ⊗ I.
7 With a general coefficient group, the first term of eq. (5) has sign −1.
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Definition 2.3. Members of E1,0 are horizontal. Members of E0,1 are vertical.

Every bundle 1-chain is a sum of a horizontal chain and a vertical chain, and such a decomposition
is always unique. See Figure 1.

While the twists described in eq. (4) are completely arbitrary, not all choices of twists give
different “geometry” for the bundle. This is known as gauge redundancy. Here the geometry
refers to an equivalence class of bundles where the equivalence relation is given by an isomorphism
between chain complexes such that it commutes with the twisted bundle boundary maps and sends
cells to cells (preferred bases). For example, one can transform the fiber by an automorphism h
and change the twists as ϕ(b, a) 7→ hϕ(b, a)h−1. Even more flexibly, one can transform a fiber over
a particular base cell, and simultaneously change the twists that connect the base cell with others.

This gauge redundancy can be so rich that if, for example, the base is a cyclic graph (a circle),
the set of all twists can be simplified so that there is a non-identity assignment only for one pair
of a 1-cell and its boundary 0-cell. We will avoid this simplification by having a complicated base,
and this is part of reason that we will take a random code for the base.

2.4 Isomorphisms on (co)homology groups

Under conditions we use later, the first homology H1(E) and cohomology H1(E) of the bundle will
be isomorphic to H1(B) and H1(B) of the base, respectively. In particular, the first Betti numbers
agree: b1(E) = b1(B). The isomorphism will be induced by the bundle projection:

Definition 2.4. A linear map called the bundle projection Πr : Er → Br is defined as

br ⊗ f0 7→ br,

br−j ⊗ f j 7→ 0 if j > 0

for all r-cells br and (r − j)-cells br−j of the base, and 0-cells f0 and j-cells f j of the fiber.

Lemma 2.5. The bundle projection induces vector space isomorphisms Π∗ : H1(E) → H1(B) and
Π∗ : H1(B)→ H1(E) if all of the following are true:

(i) B is a 1-complex.

(ii) The boundary ∂f1 of any fiber 1-cell f1 has even weight.

(iii) Every fiber 0-chain of even weight is a boundary.

(iv) H0(B) = 0, i.e. the zeroth Betti number b0(B) vanishes.

(v) Every fiber automorphism acts trivially on H1(F).

The conditions (ii) and (iii) are redundant in a topological setting where a 1-cell is always a
line segment.

Proof. The proof consists of the propositions below.

Proposition 2.6. Assume (i) and (ii). Then the following diagram commutes:

E2
∂ //

0
��

E1
∂ //

Π
��

E0

Π
��

0 = B2 0
// B1

∂
// B0

(7)
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Proof. For the left square, we need to show that Π∂ : E2 → B1 is zero. For a base 1-cell b and fiber
1-cell f , we have Π∂(b⊗ f) = Πb⊗ ∂f = |∂f |b = 0 by (ii). For the right square, take any 1-chain
of the bundle, and decompose it as h1 + v1 where h1 ∈ E1,0 is horizontal and v1 ∈ E0,1 is vertical.
It is obvious that Π∂h1 = ∂Πh1. By (ii), we have Π∂v1 = 0, and clearly ∂Πv1 = 0.

Proposition 2.7. Assume (i) and (ii). Then the induced map Π∗ : H1(E)→ H1(B) is well-defined.

Proof. We have to show that (1) any closed 1-chain becomes closed, and (2) any 1-chain that is a
boundary becomes a boundary.

Decompose a bundle 1-chain as h1 + v1 as before. If h1 + v1 is closed, then ∂h1 = ∂v1. By (ii),
we see Π∂v1 = 0. Hence, ∂Πh1 = Π∂h1 = 0. This shows (1).

For (2), it suffices to examine boundary of (1, 1)-cells, by (i). We examine ∂(b1 ⊗ f1) = b1 ⊗
∂f1 +

∑
a0∈∂b1 a

0⊗ϕ(b1, a0)f1. Under Π, the sum vanishes by definition of Π and so does the first
term by (ii). Hence, the projection of a boundary is zero.

Proposition 2.8. Assume (i)—(iii). Then Π∗ : H1(E)→ H1(B) is onto.

Proof. Given a homology representative cycle b1 of the base, we choose an arbitrary fiber 0-cell f0 so
b1⊗f0 projects down to b1. Observe that ∂(b1⊗f0) =

∑
a0∈∂b1 a

0⊗ϕ(b1, a0)f0 =
∑

j a
0
j ⊗f ′j where

the a0
j are distinct 0-cells of the base and the f ′j are some fiber 0-chains. Since Π∂(b1⊗f0) = ∂b1 = 0,

we have
∑

a0∈∂b1 Π(a0 ⊗ ϕ(b1, a0)f0) =
∑

j |f ′j |a0
j = 0. This means that |f ′j | = 0 mod 2 for all j.

By (iii), we have f ′j = ∂s1
j for some fiber 1-chain s1

j . Now, b1⊗f0 +
∑

j a
0
j⊗s1

j is closed and projects

down to b1.

Proposition 2.9. Assume (i)—(v). Then Π∗ : H1(E)→ H1(B) is one-to-one.

Proof. Suppose Π∗(v
1+h1) = 0 where v1+h1 is a decomposition of a 1-cycle of E into vertical (E0,1)

and horizontal (E1,0) 1-chains. The projection eliminates vertical 1-cells by definition, and takes
the mod-2 sum of horizontal 1-cells. So, the vanishing projection means that over any base 1-cell,
there are an even number of horizontal 1-cells. That is, we can write the horizontal chain h1 as
h1 =

∑
j b

1
j ⊗ f0

j where b1j are distinct base 1-cells and each f0
j is an even-weight 0-chain of the

fiber. By (iii), f0
j = ∂s1

j for some 1-chain s1
j in the fiber, and thus ∂

∑
j b

1
j ⊗ s1

j = h1 + u1 for some

vertical 1-chain u1. Then, we have v1 +h1 = v1 +u1 +∂
∑

j b
1
j ⊗ s1

j . Since v1 +h1 is closed, v1 +u1

is also closed. Therefore, v1 + h1 is homologous to v1 + u1, a vertical 1-cycle.
But now we can show that any vertical 1-cycle of the form a0 ⊗ s1 with ∂s1 = 0 is a boundary:

The assumption (iv) gives a base 1-chain c1 such that a0 = ∂c1. Then, ∂(c1 ⊗ s1) =
∑

t0∈∂c1 t
0 ⊗

ϕ(c1, t0)s1. Since t0 ⊗ ϕ(c1, t0)s1 is homologous to t0 ⊗ s1 by (v), we see ∂(c1 ⊗ s1) is homologous
to (∂c1)⊗ s1 = a0 ⊗ s1.

This completes the proof of Lemma 2.5 for homology. The cohomology isomorphism is straight-
forward by abstract nonsense using the commutative diagram (7). The details are as follows.

If w1 is a 1-cocycle of the base, then (∂TΠ∗w1)(e2) = w1(Π∂e2) = w1(∂Πe2) = (∂Tw1)(Πe2) = 0
for any bundle 2-chain e2. If w1 = ∂Tw0 is a chain of the base, then (Π∗w1)(e1) = w1(Πe1) =
w0(∂Πe1) = w0(Π∂e1) = (∂TΠ∗w0)(e1), and so Π∗w1 is a coboundary. This shows that Π∗ is a
well-defined map from H1(B) to H1(E). We claim that Π∗ is one-to-one. This will finish the proof
of Lemma 2.5 because the vector space dimensions are the same for homology and cohomology. To
show the claim, suppose that Π∗w1 is a coboundary for a base 1-cohomology representative w1.
That is, Π∗w1 vanishes on any bundle 1-cycle. Now by the homology isomorphism, any bundle
1-homology cycle is a lift of a base 1-cycle. This means that w1 vanishes on all base 1-cycles. Since
the dual vector space of H1(B) can be identified with H1(B), we see w1 is a coboundary.
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Under the assumptions of Lemma 2.5, it will be instructive to have a more elementary descrip-
tion of the homology and cohomology representatives. A lift of a base homology representative c1

is illustrated in the proof above. To recap, a lift consists of horizontal 1-cells that project onto c1

together with vertical 1-cells that cap the boundary of these horizontal 1-cells through a 1-chain in
the fiber. Because of the twists, the boundary of the horizontal 1-cells can be “far apart” within
each fiber.

Regarding cohomology, since B is a 1-complex, there is no restriction on the 1-cocycles; every
1-chain is a 1-cocycle. That is, any 1-cell b of the base represents a 1-cohomology class. Its lift
functional Π∗b as a cohomology representative must evaluate to 1 ∈ F2 for every horizontal cell
over b, so the functional Π∗b can be identified with

∑
f0 b⊗ f0 where the sum is over all 0-cells f0

of the fiber. The cohomology representative gives an upper bound on dX when the quantum code’s
X logical operators are 1-cohomology. We summarize this as a proposition for later reference.

Proposition 2.10. Assume all conditions (i)—(v) of Lemma 2.5. If {[b1], [b2], . . .} is a basis
of H1(B) where bj are some base 1-cocycles, the following is a complete basis of representatives
for H1(E):

{b1 ⊗ F0, b2 ⊗ F0, . . .},

where F0 ∈ F0 denotes the sum of all fiber 0-cells. In particular, there exists a nontrivial represen-
tative of H1(E) of weight equal to the number of 0-cells in the fiber.

2.5 Circle bundle over classical codes

We choose the fiber to be a cycle graph, i.e., a circle. As a chain complex, the fiber is a 1-complex
with mF 0-cells and nF 1-cells where mF = nF > 1. This circle admits an automorphism group
that is the dihedral group of order 2nF ; however, we do not use the reflection symmetry, but only
the rotation symmetry. The circle fulfills all the conditions related to the fiber, namely (ii), (iii),
and (v) of Lemma 2.5; any automorphism of the circle leaves the fundamental homology cycle
invariant.

Definition 2.11. Our fiber bundle code is a quantum CSS code whose logical operators are asso-
ciated with homology and cohomology at dimension 1 of the twisted bundle complex E2 → E1 → E0

built from the circle fiber F1 → F0 and a base B1 → B0.

This definition leaves room for the base complex to be any classical code and for the twists to be
completely arbitrary members of ZnF .

We will pick nF = mF = `2 for some integer ` (and it will be convenient, though not strictly
necessary, to assume ` is odd, hence nF is odd). In fact, all twists will be multiples of ` so we only
use a subgroup of order nF/` = ` of the rotation group. Roughly speaking, this is done so that
if some weight needs to “move through the fiber” to join two cells that differ by a twist, we have
some lower bound on how far it needs to move.

We will use a random classical code for the base B. There will be nB bits (variables) in this
classical code, considered to be 1-cells of the base, and there will be mB parity checks in the code,
considered to be 0-cells in the base. We will represent this classical code by its Tanner graph, a
bipartite graph B with mB left-vertices and nB right-vertices. We will later choose mB = (3/4)nB,
and all vertices will have degree very close to ∆ = Θ(log2 nB). In this way the random classical
code will have minimum distance Ω(nB) and all of its parity checks will be linearly independent
(with high probability); the latter condition is equivalent to H0(B) = 0.

Thus the bundle E will have N = nB · mF + mB · nF 1-cells corresponding to qubits of the
resulting quantum code, and the total number of cells in the bundle will be (nB+mB) · (nF +mF ).

11



Given that H0(B) = 0, i.e., b0(B) = 0, it then follows by construction that b1(B) = (1/4)nB so
that the fiber bundle code has Θ(nB) logical qubits. We will prove that the resulting quantum
code has distances dX = Ω(mF/ log2 nB) (see Lemma 3.7) and dZ = Ω(nB ·mF 1/2/ log2 nB) (see
Lemma 3.11) provided nB ≥ mF . We then choose nB ∼ mF , giving N = Θ(nB

2) and giving
distances dX = Ω(N1/2/ log2N), dZ = Ω(N3/4/ log2N). Together, these facts prove Theorem 1.1.

Remark. It is possible to slightly improve the polylogs in Theorem 1.1 by adjusting our choices
for `, nF , nB by polylogarithmic factors. Specifically, a minor improvement arises from choosing
mF = nB/∆ and ` =

√
mF/∆, where recall ∆ = Θ(log2 nB). However, these polylog improvements

deteriorate again after passing through the weight reduction process leading to Corollary 1.2. Thus
we have chosen to make slightly non-optimal parameter choices so as to simplify the presentation.

3 The random base code, with twists

Throughout this section and the next section we write n = nB and m = mB, for brevity.

3.1 A random base code

The base code B is identified with its Tanner graph, having variable vertices [n] and check ver-
tices [m]. Our construction will require 1

2 < m/n < 1; for simplicity we fix

m = 3
4n, (8)

assuming that m is an integer. We will also fix a parameter ∆ = ∆(n) representing the average
degree of the check vertices. Eventually we will choose

∆ = Θ(log2 n),

but for now we only assume
β lnn ≤ ∆ ≤ no(1), (9)

where β is a large universal constant to be chosen later. We will choose a random base code B,8 with
the neighborhood ∂Ta of each check a ∈ [m] independently being a random density-∆

n subset of [n].
By this we mean that each variable i ∈ [n] is included into ∂Ta independently with probability ∆

n .
It is well known that such a randomly constructed code B will have various expansion-type

properties. We collect here some standard results along these lines.

Proposition 3.1. Except with probability at most O(1/n100), all check vertices in B have degree
between .99∆ and 1.01∆ and all variable vertices have degree between .74∆ and .76∆.

Proof. This can be achieved by a standard Chernoff + union bound argument, taking the constant β
in eq. (9) large enough and using m ≤ n.

Proposition 3.2. The bipartite graph B has the following property, except with probability at most
O(1/n100): For every S ⊆ [m] with |S| ≤ 1

105∆
m, the neighborhood of S in [n] has cardinality at

least .9∆|S|.
8In this section, boldface denotes random variables/objects.
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Proof. By Proposition 3.1, it suffices to prove this conditioned on the assumption that every check
vertex in B has degree between .99∆ and 1.01∆. Under this conditioning, the neighborhoods of each
check vertex remain independent and have a certain distribution on their cardinality; conditioned
on their cardinality, they are uniformly random subsets of [n]. By ignoring edges (which only hurts
us), we may therefore assume that the neighborhoods of the check vertices are independent random
subsets of [n] of cardinality d := d.99∆e. Thus we have reduced to the d-regular model of random
bipartite graphs, where the claim we want to prove is standard, relying on the inequality

.99∆ >
h2( 1

105∆
) + h2( .8∆

105∆
)

h2( 1
105∆

)− .8
105h2( 1

.8∆)
,

(here h2(·) is the binary entropy function), and on the assumption from eq. (9) that ∆ ≥ β lnn for
large constant β; see, e.g., [Chu79, Bas81].

Corollary 3.3. Assume B satisfies the conclusion of Propositions 3.1 and 3.2. Let S ⊆ [m] have
0 < |S| ≤ 1

105∆
m. Say a variable vertex j ∈ [n] is a counique neighbor of S if it neighbors exactly

one vertex in S. Then, the number of non-counique neighbors of S is at most .09∆|S| and there
exists some a• ∈ S for which more than .81∆ of its neighbors are counique neighbors. In particular,
a• has at least a .8 fraction of its neighbors (a strict majority) being counique.

Proof. Let every a ∈ S give a token to each of its neighbors in [n]. By Proposition 3.1, at least
.99∆|S| tokens are given out. Every vertex in the set C of counique neighbors gets one token, and
every vertex in the set C ′ of non-unique neighbors gets at least two. Thus .99∆|S| ≥ |C|+2|C ′|. But
|C|+ |C ′| ≥ .9∆|S|, by Proposition 3.2. Thus |C ′| ≤ .09∆|S|, and so |C| ≥ .81∆|S|. We conclude
that even on average, a vertex a ∈ S gives out at least .81∆ tokens to counique neighbors.

Proposition 3.4. Except with probability O(1/n100), the parity check matrix of B is of full rank.

Proof. Let va ∈ Fn2 be the indicator for the neighborhood of check vertex a ∈ [m]. We wish to
show for all ∅ 6= A ⊆ [m] that

∑
a∈A va 6= 0. So fix such an A of cardinality w 6= 0. For i ∈ [n], the

ith coordinate of
∑

a∈A va is distributed as Binomial(w, ∆
n ) modulo 2. The event that this is 0 has

probability
qw := 1

2 + 1
2(1− 2∆

n )w

and these events are independent across i ∈ [n]. For w ≤ n
∆ it holds that qw ≤ exp(−w∆

2n ), and
hence qnw (which is the probability of

∑
a∈A va = 0) is at most exp(−∆

2 )w ≤ 1/n101w, the last
inequality provided the constant β in eq. (9) is large enough. On the other hand, if w ≥ n

∆ then
we have qw ≤ 1

2 + 1
2 exp(−2∆w

n ) ≤ 1
2 + 1

2e
−2 ≤ 2−.8, and hence qnw ≤ 2−.8n. Taking a union bound

over all A, we conclude that the probability of B’s parity check matrix having a nontrivial linear
dependence is at most∑

1≤w≤ n
∆

(
m
w

)
/n101w +

∑
n
∆
≤w≤m

2−.8n ≤
(
(1 + 1/n101)m − 1

)
+ 2m2−.8n = O(1/n100),

where the last inequality used m = 3
4n.

Proposition 3.5. Except with probability O(1/n100), the code B has minimum distance at least .2n.

Proof. Indeed, the number .2 can be replaced with any δ such that h2(δ) ≤ 3
4 ; in other words, with

high probability B achieves the Gilbert–Varshamov bound. This is a standard property of random
LDPC codes with ∆ → ∞. Gallager showed it in a slightly different model of ∆-regular random
LDPC codes; the proof in our case is a standard exercise along the lines of Proposition 3.4 and
Lemma 4.6.
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3.2 Cohomology representative weight

We have not yet specified the twists, but we are already able to lower-bound the weight of a
cohomology representative. Recall Proposition 2.10 implies that the least weight cohomology rep-
resenative has its weight upper -bounded by mF . We start with a definition, and then give the lower
bound.

Definition 3.6. In brief, the shadow of a chain e ∈ E is the set of base cells on which e has support.
More precisely, given a bundle 1-chain e, write it as a sum h+ v of horizontal and vertical chains,
with h =

∑
b b⊗ f0

b and v =
∑

a a⊗ f1
a where a runs over base 0-cells and b over base 1-cells. Then

the shadow of the vertical part of e is the set {a : f1
a 6= 0}, and the shadow of the horizontal part

of e is the set {b : f0
b 6= 0}. Similarly given a bundle 0-chain e with e =

∑
a a ⊗ f0

a , its shadow
is {a : f0

a 6= 0}. We write |e|vsw for the vertical shadow weight of a bundle 1-chain e; i.e., the
cardinality of its shadow of the vertical part. For a 0-chain e, we simply write |e|sw for the shadow
weight.

Lemma 3.7. Assume the base code B satisfies the conclusions of Propositions 3.1 and 3.2. Then for
any choice of twists, the following holds: Let r be any nontrivial representative of H1(E) and write
it as a sum h+ v of horizontal and vertical chains. Then either |h| ≥ mF/2, or |v|vsw ≥ Ω(n/∆).
In particular, |r| = |h|+ |v| ≥ Ω(mF + n/∆), which is Ω(mF/∆) assuming n ≥ mF .

Proof. Let r be any nontrivial representative of H1(E). Using the basis of Proposition 2.10, we
may write r = x ⊗ F0 + ∂Tu where x is a nontrivial representative of H1(B) and where u is a
bundle 0-chain. This expression is not unique; if we toggle u 7→ u+ a⊗ F0 for any base 0-cell a and
simultaneously change x 7→ x+∂Ta, then the overall change in x⊗F0+∂Tu is (∂Ta)⊗F0+∂T(a⊗F0),
which vanishes regardless of twists because F0 is invariant under any fiber automorphism. Thus
we may assume that in the expansion u =

∑
a a⊗ fa (where each a is a base 0-cell and each fa is

a fiber 0-chain), each fa has Hamming weight at most mF/2. Having done this, the shadow of the
vertical part of r and the shadow of u coincide (as no fa equals F0). Writing S for this shadow, we
have

r = x⊗ F0 + ∂Tu = x⊗ F0 +
∑

a∈S,b∈∂Ta

b⊗ ϕ(b, a)−1fa︸ ︷︷ ︸
h

+
∑
a∈S

a⊗ ∂Tfa︸ ︷︷ ︸
v

(10)

where h ∈ E1,0 is horizontal and v ∈ E0,1 is vertical. Here ϕ(b, a) are some twists. If |S| ≥ 1
105∆

m
then we are done easily: for every a ∈ S we have 0 6= |fa| 6= mF and hence |∂Tfa| ≥ 2; thus
|r| ≥ |v| ≥ 2|S| ≥ Ω(mF/∆), as needed.

Thus it remains to handle the case that |S| ≤ 1
105∆

m. In this case we claim that in fact
|h| ≥ mF/2, which is more than sufficient to complete the proof. First, if S = ∅ then |r| = |h| =
|x|mF ≥ mF , using the fact that r is a nontrivial cohomology representative, and the claim is
established.

Otherwise, 0 < |S| ≤ 1
105∆

m, and since B satisfies the conclusion of Proposition 3.2, the number
of neighbors (base 1-cells) of S is at least .8∆|S|. As every a ∈ S has between .99∆ and 1.01∆
neighbors (Proposition 3.1), it follows that there must be some base 0-cell a• ∈ S such that more
than half of the 1-cells in the coboundary of a• are not in the coboundary of any other 0-cell of S.
(This relies on .8 > 1.01 · 3

4 and also |S| 6= 0.) Let C be this set of counique-neighbor base 1-cells:
C = ∂Ta• \

⋃
a∈S\{a•} ∂

Ta. We now consider whether or not C overlaps with x.
If C ∩ x contains a base 1-cell b, then the number of all horizontal cells of r over b is already at

least mF/2, because b⊗ ϕ(b, a)−1fa has at most mF/2 cells.
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Otherwise, if C ∩ x = ∅, then dropping a• from S would reduce |h|, since less than half of
the horizontal part of ∂Ta• was canceling in eq. (10) by the choice of a•. This dropping yields a
cohomologous representative r′ of H1(E) with a lighter horizontal part and where the shadow S
of the vertical part still satisfies |S| ≤ 1

105∆
m. Repeating this argument, we either come to a

representative whose horizontal weight is at least mF/2, or else we reduce to the case of S = ∅
where it was already shown that the horizontal part has weight at least mF . Either way, we have
established the claim that the original r had |h| ≥ mF/2.

3.3 Twists

We now choose the twists. It is worth making a mental shift at this point. The twist is defined by
an automorphism ϕ(b1, v) which is a function of a 1-cell b1 and some 0-cell v ∈ ∂b1. Mentally, up
to this point, we have tended to think of it as “for each 1-cell b1, for each v in ∂b1” there is a twist,
but now it is worth thinking instead “for each 0-cell v, for each b1 in ∂Tv” there is a twist. This of
course is no difference mathematically but is an easier mental picture. In the language of the base
code, it means that for each check of the base code, for each bit in the check, there is a twist.

All twists will be chosen to be integer multiples of `. Indeed, we will only have k = Θ(log n)
distinct choices of twists (where the precise k will be specified later). Informally, we will partition
the checks of the base code into k “types”; for each type, we will pick a single twist by some random
multiple of `, and for each bit in each check, we will either twist by that multiple or by 0, the choice
of which again being random.

Formally, let us make the following definition:

Definition 3.8. Given a base code B, we say it is partitioned if:

� its check vertices are partitioned into k sets T1, . . . , Tk of equal size m/k (assumed to be an
integer), one for each “type”;

� and, the neighborhood ∂Ta of each check a ∈ [m] is partitioned into two sets, Headsa and
Tailsa.

In our construction, in addition to assuming that the base code B has random density-∆
n checks

as in Section 3.1, we also assume:

� the partition into types is the trivial one, T1 = {1, . . . ,m/k}, T2 = {m/k+ 1, . . . , 2m/k}, etc.
(in fact this doesn’t matter since B is random in the first place);

� and, the neighborhood ∂Ta of each check a ∈ [m] is partitioned uniformly at random into
Headsa and Tailsa.

Finally, for each set Tτ we choose the twists ϕτ so that a certain graph defined later is
a good spectral expander. It will be shown that choosing the ϕτ uniformly at random from
`, 2`, . . . , (`− 1)` will give the desired spectral expansion with high probability (which can then
certified if desired).

Then, given this partitioning we define for any pair b1, a with a ∈ ∂b1, the twist ϕ(b1, a) to be
given as follows: check node a is in some set Tτ . If b1 is in Headsa then ϕ(b1, a) = 0. Else if b1 is in
Tailsa then ϕ(b1, a) = ϕτ .

15



3.4 Homology representative weight

We now prove bounds on the least weight representative of homology. We will reduce this problem
to proving certain properties of a classical code which we study in Section 4.

We use the assumption that the twists are multiples of `. Given a horizontal 1-cell b⊗f , we say
that f ∈ {0, 1, . . . ,m−1} is the fiber position of b⊗f . Let us first simplify homology representatives:

Lemma 3.9. For any 1-homology representative of weight w, there exists a homologous represen-
tative r of weight at most w such that the fiber position of any nonzero horizontal cell in the support
of r is 0 mod `.

Proof. To prove this, we use a method we call “sliding.” Consider a graph9 Horz whose nodes
correspond to the horizontal cells of a given homology representative s and with a link between
two horizontal cells if and only if their boundaries overlap. The fiber positions of a pair of linked
horizontal cells differ by 0 mod ` because the twists are multiples of `.

If Horz is connected, then we can translate s along the fibers, i.e., all fiber cells f0
j and f1

i of

s =
∑

j bj ⊗ f0
j +

∑
i ai ⊗ f1

i are replaced by shifted fiber cells f0
j + y and f1

i + y with a common
y = ±1 ∈ ZnF = ZmF . If we keep translating the representative until the fiber position of any
horizontal cell is 0 mod `, then we have the claim of the lemma.

If Horz has more than one connected cluster (a maximal connected subset of nodes), then we
“slide” any one cluster C of horizontal cells in two steps as follows. First, we translate all the
horizontal cells h in C by shifting their fiber components by ±1 as above. Second, we add vertical
cells on the fibers over base 0-cells where the boundary ∂

∑
h∈C h is supported, so that the overall

chain is still closed. We need one and only one vertical cell around each 0-cell of ∂
∑

h∈C h. This
sliding is clearly a modification of the original representative s by the boundary of a 2-chain (a
Z-stabilizer). Every added vertical cell in the second step contributes to ±1 to the weight of vertical
part of the homology representative. In fact, the total weight is a piecewise linear function of the
amount that the cluster is slid, with the slope of this function constant until the cluster becomes
connected to another cluster, at which point we modify the graph Horz by adding links.

Hence, we end up with a single cluster that contains all the horizontal cells of the slid homology
representative, and we finish by an overall translation as before.

An intuitive picture for this sliding is as follows: there are 1-chains in the fiber whose endpoints
are such as to cancel the boundary of h; we can think of these 1-chains as “strings” that are “pulling”
on h; we slide in the direction in which the strings pull most strongly (or pick a direction arbitrarily
if there is no preferred direction). Once the cluster becomes connected to another cluster, we slide
that combined cluster, and so on. Continue this until there is only a single connected cluster. All
the vertices of the cluster must the same fiber position mod `; finally, slide that cluster until the
claim is obeyed.

The sliding simplifies the problem of the weight of homology cycles as follows. Note that the
base code’s minimum distance is Θ(n) with high probability; see Proposition 3.5.

Lemma 3.10. Assume that the base code has distance Θ(n). The weight of a nontrivial homology
representative is lower bounded by the minimum of the following problem.

Consider a chain h =
∑

b b⊗ fb consisting of horizontal cells whose fiber positions are 0 mod `.
For any 0-cell a in the base, say that a has an error if ∂h is nonvanishing in the fiber over a. Then,
minimize |h| + `|∂h|sw, subject only to the requirement that there are Θ(n) different b such that
fb 6= 0.

9This graph Horz has nothing to do with any other graph in this paper.
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Proof. Write a nontrivial 1-homology cycle r as r = h+ v where h is the horizontal part and v the
vertical part. Let h =

∑
b b⊗ fb, where the sum is over base 1-cells b and fb is a fiber 0-chain. The

bundle projection Π(h) is a nontrivial element of H1(B) by Lemma 2.5. Since the base code has
distance Θ(n), then the set of b such that fb 6= 0 has cardinality Θ(n).

Slide as above. Then, the weight |v| of the vertical part of r = h + v is at least ` times the
number of base 0-cells that have an error; here we use that after sliding all the nonzero “strings”
in v must have length at least `.

This lemma implies a significant simplification of the problem: it suffices to consider just hor-
izontal chains. Theorem 4.9 proven below implies that any horizontal 1-chain h of a sufficiently
small weight |h| compared to n`/∆ will have at least Ω(|h|) errors. Hence for any nontrivial ho-
mology representative r = h+ v with the horizontal part h and the vertical part v we have either
|h| ≥ n`/∆ or |v| ≥ Ω(n`) where the latter case is because we must have |h| = Ω(n). Hence:

Lemma 3.11. Assume m = Θ(n). With high probability, the weight of any nontrivial representative
of H1(E) is Ω(n`/∆).

Theorem 4.9 is however phrased in terms of a classical code that we call a twist graph code.
This is the error correcting code whose bits are horizontal cells of E and whose checks are obtained
from 0-cells of E in the obvious way. However, we will find it useful to explicitly redefine this code
in terms of a graph that we call the twist graph in order to use expansion properties.

4 Coding Bounds for Twist Graph Code

We now define the twist graph code. This is simply a restatement of the checks on horizontal
1-chains in more graph theoretic terms. We are concerned with checks on horizontal 1-chains which
obey the condition of Lemma 3.10 that h =

∑
j j ⊗ fj with all (fj)i = 0 unless i = 0 mod `. So,

throughout this section, we will regard these 1-chains as bit strings of length n` rather than of
length n · nF .

4.1 Twist graph and assumptions on twists

We define the twist graph ~S as follows. This is a directed graph, possibly with multi-edges (but
without self-loops). We have vertices chosen from [`]. For each t ∈ [k], there is an edge from each
vertex i to i+ ϕt/` (mod `). Note: the twist ϕt is a multiple of ` so ϕt/` ∈ {1, 2, . . . , `− 1}.

While the twist graph is obtained as described in the above paragraph, we will in this section
only use the following more general assumptions on ~S:

Definition 4.1. It is assumed we have a directed graph ~S, with vertex set U of cardinality `, and
k “types” of directed edges. This graph may have multi-edges but no self-loops. We assume each
vertex in ~S has one in-edge of each type, and also one out-edge of each type.

Notation 4.2. We write S for the undirected version of ~S, which is a 2k-regular graph. Letting
1 = κ1 ≥ κ2 ≥ · · · ≥ κ` ≥ −1 denote the eigenvalues of the normalized adjacency matrix of S, we
write κS = max{κ2, |κ`|} for the second-largest in magnitude.

We will need expansion properties of this graph S. From [AR94], for any κ > 0, for k =
O(log(`)/κ2), with probability at least .999 we have κS ≤ ε. We will ultimately choose ε to be a
very small universal constant (see Assumption 4.8); thus k = O(log `) = O(logmF ).
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4.2 Twist graph code

Definition 4.3. Given ~S and a partitioned base code B, we define a new F2-linear code B(~S) as

follows: The block length of B(~S) is ` ·n, and we write a received word w ∈ FU×[n]
2 as w = (wu)u∈U ,

where wu ∈ Fn2 . The number of parity checks in B(~S) will be ` ·m, and they are defined as follows.
Given a type τ ∈ [k] and a pair (y, z) ∈ Fn2 × Fn2 , we introduce the notion of the type-τ checks on
(y, z), meaning all m/k parity checks of the form∑

i∈Tailsa

yi +
∑

j∈Headsa

zj = 0 (mod 2) for a ∈ Tτ . (11)

Now B(~S) consist of imposing, for each directed edge (u, v) in ~S of type τ , all type-τ checks on
(wu, wv).

Note that for a fixed a, each of Headsa and Tailsa is a random density- ∆
2n subset of [n], but these

two sets are not quite independent (since any j ∈ [n] is in at most one of them). We will use the
following fact:

Proposition 4.4. Let (y, z) ∈ Fn2 × Fn2 . For a randomly chosen and randomly partitioned check
imposed on (y, z), the probability it is violated is

1

2
− 1

2

(
1− ∆

n

)|y+z|(
1− 2∆

n

)|y∩z|
≥ 1

2
− 1

2
exp

(
−(|y|+ |z|)∆

n

)
.

Proof. Call the check a. We use the notation χJ(x) =
∏
j∈J(−1)xj and write I = Tailsa, I

′ = Headsa
for brevity. From eq. (11), the probability of violation is

E
[

1
2 −

1
2χI(y)χI′(z)

]
= 1

2 −
1
2

n∏
j=1

E[χIj (yj)χI′j
(zj)],

where we used independence of the pairs (Ij , I
′
j) across j ∈ [n]. By first considering whether or

not ∂Ta 3 j, and if so, whether j ∈ I or j ∈ I ′, we compute

E[χIj (yj)χI′j
(zj)] =


1 if yj = zj = 0,

1− ∆
n if yj + zj = 1,

1− 2∆
n if yj = zj = 1.

Thus our expression for the exact probability of violation follows. As for the inequality, it uses(
1− ∆

n

)|y+z|(
1− 2∆

n

)|y∩z|
≤ exp(−|y + z|∆/n) exp(−2|y ∩ z|∆/n)

and the fact that |y|+ |z| = |y + z|+ 2|y ∩ z|.

Below we establish a property of B(~S) that is minor variant of a standard property of random
LDPC codes, that words of small Hamming weight violate a proportionate number of parity checks.
We first need to upgrade the assumption eq. (9):

Assumption 4.5. We now make the stronger assumption

βk lnn ≤ ∆ = ∆(n) ≤ no(1),

where β is a large universal constant to be fixed later. As a remark, since k will eventually be
Θ(log n), the above constraint is the reason for our eventual choice of ∆ = Θ(log2 n).
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Lemma 4.6. For random B(~S) as described, except with probability at most O(1/n100) the following
holds: For any type τ ∈ [k] and any pair (y, z) ∈ Fn2 ×Fn2 with |y|, |z| ≤ 4

∆n, the number of violated
type-τ checks on (y, z) is at least .01∆

k (|y|+ |z|).

Proof. Fix any type τ and any pair (y, z) with |y|+|z| = t, where 0 < t ≤ 8
∆n. Using Proposition 4.4,

the probability that a given constraint a ∈ Tτ is violated is at least

1
2 −

1
2 exp(−∆t/n) ≥ 1

2 −
1
2(1− .1∆t/n) > .04∆t/n,

where the first inequality used t ≤ 8
∆n. Thus if we consider all m/k = (3/4)n/k randomly chosen

checks in Tτ , the expected number that are violated is at least µ := .03∆t/k. A Chernoff bound
therefore implies that

Pr[(y, z) violates fewer than 1
3µ = .01∆

k (|y|+ |z|) checks from Tτ ] ≤ exp(−2
9µ).

Taking a union bound over all τ ∈ [k] and all pairs (y, z) with |y| + |z| = t (of which there are at
most

(
2n
t

)
≤ (2en/t)t) yields a failure probability of at most

k(2en/t)t exp(−2
9µ) ≤ no(1) exp(ln(2en/t)− (.06/9)∆/k)t ≤ 1/n100t,

provided the constant β in Assumption 4.5 is large enough. Now taking a union bound over all t ≥ 1
completes the proof.

Now we come to a subtler property of the code B(~S): Even if a received word w = (wu)u∈U has
some wu that does not have low Hamming weight (it may even have Hamming weight n/2), still
there will be Ω(|wu|) violated checks among all the checks involving wu. It is crucial here is that
in eq. (8) we ensured 2m > n; in this way, when the 2m checks involving wu are chosen at random,
there is a chance for the union bound to overcome the 2n possibilities for wu. (More precisely,
when the m checks are chosen at random and then split into Heads/Tails pairs, the probability of
at least one violation in the pair is close to .75 as shown in ineq. (12) below, so the probability of
no violation in all pairs is roughly .25m = 2−2m.)

Lemma 4.7. For random B(~S) as described, except with probability at most 2−Ω(n) the following
holds: Let x ∈ Fn2 be any word with |x| ≥ 4

∆n. Let Υ ⊆ [k] have cardinality at least .98k. Assume
we have a sequence of pairs (x, yτ )τ∈Υ and (zτ , x)τ∈Υ in Fn2 × Fn2 , where |yτ |, |zτ | ≤ 2

∆n for all
τ ∈ Υ. Then, aggregating the type-τ checks on (x, yτ ) and (zτ , x) for all τ ∈ Υ, there are at
least .01n parity check violations (out of a total of 2|Υ|m/k).

Proof. There are at most 2n · 2k · (2h2(2/∆)n)2k ≤ 2(1+o(1))n choices for x, Υ, the yτ ’s, and the zτ ’s
(where the inequality used Assumption 4.5). Let us fix any such choices and consider the random
partitioned code B. For a given type τ ∈ Υ, we have m/k randomly chosen and randomly par-
titioned checks that get imposed on (x, yτ ) and also on (zτ , x). Consider one such check a ∈ Tτ .
Using the notation χJ and I, I ′ from Proposition 4.4, the probability that the two checks a imposes
on (x, yτ ) and (zτ , x) are both satisfied is

E[(1
2 + 1

2χI(x)χI′(yτ ))(1
2 + 1

2χI(zτ )χI′(x))]

= 1
4 + 1

4 E[χI(x)χI′(yτ )] + 1
4 E[χI(zτ )χI′(x))] + 1

4 E[χI(x+ zτ )χI′(x+ yτ )].

Using the reasoning from Lemma 4.6, we have

E[χI(x)χI′(yτ )] ≤ exp(−(|x|+ |yτ |)∆/n) ≤ exp(−4),
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where we used |x| ≥ 4
∆n. Similarly E[χI(zτ )χI′(x))] ≤ exp(−4), and also

E[χI(x+ zτ )χI′(x+ yτ )] ≤ exp(−(|x+ zτ |+ |x+ yτ |)∆/n) ≤ exp(−4),

where we used |x+ yτ |, |x+ zτ | ≥ 2
∆n. We may therefore conclude

Pr[at least one of a’s checks on (x, yτ ) and (zτ , x) is unsatisfied ] ≥ 1− (1
4 + 3

4 exp(−4)) ≥ .73.
(12)

As a consequence, when the (at least .98m) parity checks in (Tτ )τ∈Υ are chosen at random, the
number of violations among those imposed on the (x, yτ )’s and the (zτ , x)’s stochastically dominates
a Binomial(.98m, .73) random variable. A short calculation10 shows that such a binomial random
variable is smaller than .01 · 4

3m = .01n with probability at most O(2−1.2n). Thus the theorem

holds by a union bound, since 2(1+o(1))n ·O(2−1.2n) = 2−Ω(n).

4.3 Low-weight words violate many checks

Recall that κS is the second largest eigenvalue of the undirected graph S.

Assumption 4.8. We assume κS ≤ .00002.

We recall the following form of the Expander Mixing Lemma [AC88, Vad12, Lem. 4.15]:

Expander Mixing Lemma. If A1 and A2 are subsets of vertices in S, and (u,v) is a uniformly
random edge (with orientation), then

|Pr[u ∈ A1 and v ∈ A2]− α1α2| ≤ κS
√
α1(1− α1)α2(1− α2),

where αi denotes |Ai|/|U | for i = 1, 2.

Our goal for the remainder of this section is to prove the following:

Theorem 4.9. Suppose B satisfies the conclusions of Lemma 4.6 and Lemma 4.7. Then every

w ∈ FU×[n]
2 of relative Hamming weight at most ε := .0002/∆ (i.e., with |w| ≤ ε`n) violates at least

.004|w| parity checks in B(~S).

Proof. Let B and w be as given, and write w = (wu)u∈U for wu ∈ Fn2 . For a given u ∈ U , the
subword wu participates in 2m parity checks from B(~S); we will define Viol(u) to be the number
of these checks that are violated. By double-counting, we need to show that∑

u∈U
Viol(u) ≥ .008|w| = .008

∑
u∈U
|wu|. (13)

Let us say that u ∈ U is

light if |wu|/n ≤ 2/∆, heavy if |wu|/n ≥ 4/∆, medium if 2/∆ < |wu|/n < 4/∆.

We write L ⊆ U (respectively H, M) for the subset of light (respectively heavy, medium) vertices,
and we write θL = |L|/|U | (respectively θH , θM ) for their fractional size. By Markov’s inequality
we have

θH ≤ ε∆/4 ≤ .00005 and θL ≥ 1− ε∆/2 ≥ .9999. (14)

10 For a Binomial(t, p) random variable X, we know Pr[ 1
t
X < p− ε] < exp(−tD(p− ε‖p)) for 0 < ε < p, where

D(x‖y) = x ln(x/y) + (1− x) ln((1− x)/(1− y)).
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Say that u ∈ L ∪M is “bad” if Prv∼u[v ∈ H] ≥ .9, where v ∼ u denotes that v is a uniformly
random neighbor of u in S. By the Expander Mixing Lemma, if u ∼ L∪M is chosen uniformly at
random, and then v ∼ u is a randomly chosen neighbor, the probability of v ∈ H is at most

θH + κSθH(1− θH) ≤ 1.1θH

where we used Assumption 4.8 (with much room to spare). It thus follows from Markov’s inequality
that at most a 1.1θH

.9 ≤ 1.25θH fraction of u ∈ L ∪M are bad. Now for a good u ∈ L ∪M , which
has at least a .1-fraction of its neighbors also in L ∪M , the conclusion of Lemma 4.6 tells us that

Viol(u) ≥ .1 · 2k · .01∆
k |wu| = .002∆|wu|.

Thus ∑
u∈L∪M

Viol(u) ≥ .002∆
∑

u∈L∪M
|wu|︸ ︷︷ ︸

Main

− .01|H|n, (15)

where the justification for the subtracted term is that∑
bad u∈L∪M

.002∆|wu| ≤ 1.25θH |L ∪M | · .002∆(4/∆)n ≤ .01|H|n.

We now divide into two cases.

Case 1: |H| ≤ .001|M |. In this case, the subtracted term in ineq. (15) is at most .00001|M |n,
whereas

Main ≥ .002∆ · |M |(2/∆)n = .004|M |n.

Thus the subtracted term is at most a .00001
.004 ≤ .003 fraction of Main, and hence the right-hand

side of ineq. (15) is at least .997 ·Main. Furthermore,∑
u∈H
|wu| ≤ |H|n ≤ .001|M |n ≤ .25 · .004|M |n ≤ .25 ·Main.

Subtracting this from ineq. (15) we conclude that∑
u∈L∪M

Viol(u)−
∑
u∈H
|wu| ≥ (.997− .25) ·Main ≥ .001∆

∑
u∈L∪M

|wu|,

which certainly implies ineq. (13) (as we may assume ∆ ≥ 8).

Case 2: |H| > .001|M |. In this case, by the Expander Mixing Lemma, if u ∼ H is chosen
uniformly at random, and v is a random neighbor of u in S, the probability of v ∈ L is at least

θL − κS
√

(1− θH)θL(1− θL)/θH ≥ .9999− κS
√

(θM + θH)/θH ≥ .9999− κS
√

1001 ≥ .999,

where the first inequality used ineq. (14), then we used (θM+θH)/θH ≤ 1001 from Case 2, and finally
the last inequality used Assumption 4.8. Now say that vertex u ∈ H is “bad” if Prv∼u[v ∈ L] < .99.
A Markov argument now implies that at most a 1−.999

1−.99 = .1 fraction of u ∈ H are bad. As for the

at least .9|H| “good” u ∈ H, each has k out-neighbors and k in-neighbors in ~S; by the definition
of “goodness”, for at least a .98-fraction of the τ ∈ [k] we have that both the τth out-neighbor and
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the τth in-neighbor are in L. The conclusion of Lemma 4.7 then tells us that Viol(u) ≥ .01n for
each good u ∈ H. Thus ∑

u∈H
Viol(u) ≥ .9|H| · .01n = .009|H|n.

Adding this to .1 times ineq. (15) yields

.1
∑

u∈L∪M
Viol(u) +

∑
u∈H

Viol(u) ≥ .0002∆
∑

u∈L∪M
|wu|+ .008|H|n ≥ .008

∑
u∈U
|wu|

(as we may assume ∆ ≥ 40), and this implies ineq. (13) as needed.

5 Decoding

In these sections, we discuss decoding the code constructed for Theorem 1.1. The code of Corol-
lary 1.2 is obtained from this code by a weight-reduction operation followed by a distance-balancing
operation. We show in Appendix A that efficient decoders for the code constructed in Theorem 1.1
imply efficient decoders for the weight reduced code, up to polylogarithmic factors in the distance
to which we can decode. To decode the distance-balanced code, we can rely on the result of [EKZ20]
which gave a general means to decode a distance-balanced quantum code.

5.1 Decoding cohomology

In this section we consider the problem of decoding against X errors. Recall that we have asso-
ciated Z stabilizers with the 2-cells of E . So, the question of decoding against X errors means
reconstructing an error pattern e (up to stabilizers of the code) on 1-cells from its coboundary s on
2-cells, where s is referred to as the error syndrome, in coding theory terminology. To express this
in a language that is independent of our arbitrary choice to associate Z stabilizers with 2-cells, we
refer to this as decoding cohomology. We assume throughout that nF = mF = Θ(nB) = Θ(mB).
Our fiber bundle code has N = nB ·mF +mB · nF = Θ(nB

2) qubits.
We give a polynomial time decoder (more precisely, poly(N) time) and show, under the same

assumptions as in Lemma 3.7, that it decodes arbitrary errors up to a polylogarithmic fraction
of dX , meaning that if some error pattern e0 occurs, with

|e0| ≤
1

20

mB
105∆2

(16)

which is a sufficiently small polylogarithmic fraction of dX = Ω(mF/∆), then the algorithm decodes
correctly, computing e0 up to stabilizers. Without loss of generality, we may assume that e0 is a
minimal weight chain with the given coboundary. We also recall the “shadow” terminology from
Definition 3.6.

Constructing earb. Given some syndrome s = ∂Te0, the first stage of the algorithm is devoted
to constructing some arbitrary 1-chain earb satisfying

s = ∂Tearb and |earb|vsw ≤ |s|.

In aid of this, we first define a linear map K from p-chains of E to (p−1)-chains of B (for arbitrary p)
by specifying K(bp−1⊗f1) = bp−1 and K(bp⊗f0) = 0. This map is in a sense “dual” to the bundle
projection map Π, as K is nonvanishing on (p, 1)-cells while Π is nonvanishing on (p, 0)-cells. In
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words, K retains the base cells where the chain has an odd number of fiber 1-cells. Note that
K(s) = ∂TK(e0).

The main challenge in constructing earb will be constructing a base 0-chain eb such that

∂Teb = K(s) and |eb| ≤ |s|.

Having constructed this eb, we may fix any 1-cell f1 in F , and then ∂T(eb ⊗ f1) = s up to a
coboundary of some horizontal chain that can easily be constructed. Further, |earb|vsw = |eb|. So
it remains to construct eb.

Note that if we didn’t require any bound on |eb|, obtaining a solution to ∂Teb = K(s) would
be a simple matter of linear algebra: the affine subspace defined by ∂Teb = K(s) is nonempty
(since ∂TK(e0) = K(s)) and we would just have to find any solution. To efficiently get the
desired low-weight solution, we can run a Sipser–Spielman (belief propagation) type of decoding
algorithm (see [SS96, Thm. 10], [HLW06, Thm. 12.9]). The setup is slightly nonstandard, in that
the roles of the “code bits” and “check bits” are reversed: We think of the “code” as all solutions
of ∂Teb = K(s), with each base 0-cell j enforcing the “affine parity check”

∑
a∈∂j(eb)a = 0/1, the

right-hand side depending on whether j ∈ K(s). The algorithm begins with the “faulty” solution
eb = 0, which has Hamming distance at most |K(e0)| from a true solution, and repeatedly seeks to
toggle a 0-cell in eb so as to decrease the number of violated affine parity checks. Using the fact
(Proposition 3.2) that we have expansion factor exceeding 3

4∆ from the 0-cells to the 1-cells in the
base (in fact, using Corollary 3.3), the Sipser–Spielman argument directly shows that, so long as
|K(e0)|+ |K(s)| ≤ 1

105∆
mB, the algorithm will terminate after at most |K(s)| toggles, yielding an eb

with ∂Teb = K(s) and |eb| ≤ |K(s)| ≤ |s|. Since |K(e0)| ≤ |e0| and |K(s)| = |∂TK(e0)| ≤ 1.01∆|e0|,
we see the algorithm will succeed provided |e0| is bounded as in ineq. (16).

Amending earb. The second step of the algorithm is again a greedy decoder. We know by
Proposition 2.10 there exists a bundle 0-chain w and a base 1-chain x such that

e0 = earb + ∂Tw + x⊗ F0.

For arbitrary w, x, let the horizontal weight denote the Hamming weight of the horizontal part of
e = earb + ∂Tw + x ⊗ F0. We initialize w = 0. We greedily choose x to minimize the horizontal
weight; this is linear time, given w. We then search for a fixable base 0-cell a:

Definition 5.1. For an arbitrary bundle 1-chain e, a base 0-cell a is amended if all of the following
are true; otherwise, a base 0-cell a is fixable for e.

(i) e contains at most mF/2 horizontal cells over any base 1-cell b ∈ ∂Ta.

(ii) e contains at most half of all horizontal cells of ∂T(a⊗ f0) for any fiber 0-cell f0.

(iii) Let A = (∂Ta)⊗ F0. For any 1-cocycle z ⊆ A+ a⊗ F1, where a⊗ F1 consists of all vertical
cells over a, it holds that |e ∩A| ≤ .8|(e+ z) ∩A|+ .2|A|.

Remark that the vertical weight or the shadow weight of the vertical part of e has nothing to do
with this amendableness. The condition (iii) means that e has horizontal weight on A which is
fairly close to the minimum possible. Indeed, all three conditions are trivial if e has the minimum
weight in A upon adding cocycles “near a” (i.e., supported on A+a⊗F1). The constant .8 is chosen
because it is close to the approximation ratio achievable by the Goemans-Williamson algorithm.
We will elaborate on this shortly.
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Our algorithm will repeatedly find any fixable 0-cell a and amend it by changing w and x in
earb + ∂Tw + x ⊗ F0 until no further fixable 0-cells can be found. At this point, the algorithm
terminates and declares the final chain to be the decoding. Note that the algorithm terminates
after at most N fixes, since the horizontal weight always decreases.

Testing if a is fixable. We have to explain how to test whether a base 0-cell a is fixable.
A simple method is by bruteforce optimization. As remarked above, all we have to do is to
optimize the horizontal weight by adding various cocycles. This can be done in quasipolynomial
time 2O(∆) poly(mF ) as follows. There are 2O(∆) base 1-chains supported on ∂Ta. For each such
1-chain x, we consider e+∂T(a⊗y)+x⊗F0 with a fiber 0-chain y varying. Since we only care about
the horizontal weight, each bit (a fiber 0-cell) of y can be independently optimized by a “majority
vote” over the horizontal cells in its coboundary.

The bruteforce optimization above is more than necessary. In fact, our definition of fixable cells
is designed to adopt approximate optimization. Let us first consider the condition (iii). Suppose
a cocycle z = zopt supported on A + a ⊗ F1 minimizes |(e + z) ∩ A|. Then, the condition (iii) is
equivalent to demanding that

|A| − |A ∩ e| ≥ .8
(
|A| − |A ∩ (e+ zopt)|

)
.

Let us call |A| − |A ∩ e′| the local satisfaction of e′ for any bundle 1-chain e′. Let us think of a
base 1-chain x supported on ∂Ta as a collection of binary variables x1, . . . , xi, . . . , x|∂Ta|. Similarly,
a fiber 0-chain y is a collection of binary variables y1, . . . , yj , . . . , ymF . Then a horizontal cell
xi ⊗ ϕ(xi, a)−1yj ∈ ∂T(a ⊗ yj) in A can be given coordinates (i, j). This horizontal cell at (i, j)
over ∂Ta is unoccupied in e+ ∂T(a⊗ y) +x⊗F0 if and only if xi + yj = ei,j mod 2 where ei,j is the
occupancy of e on (i, j). Thus, the local satisfaction is the number of these satisfied equations. The
derandomized Goemans-Williamson algorithm [MR99] gives an approximately optimal solution x, y
such that the local satisfaction of e + ∂T(a ⊗ y) + x ⊗ F0 is higher than .878 times the optimum
local satisfaction.

Once the condition (iii) is met, we can alternatingly optimize x or y while withholding the
other. Each round of this optimization takes time poly(mF ,∆). This alternation terminates before
O(∆mF ) rounds because the local satisfaction must increase. The conditions (i) and (ii) are then
fulfilled. Overall, it takes poly(N) time to test if a is fixable using the described approximate
optimization.

Overview of the analysis. Let w(τ), x(τ) denote the states of w, x after τ steps of the algorithm.
Let

e(τ) = earb + ∂Tw(τ) + x(τ)⊗ F0.

The proof of correctness will take two parts. In the first part, we assume that at the end of the
algorithm the shadow weight of w(τ) is sufficiently small. Under this assumption, we show that
when the algorithm terminates it has correctly decoded; i.e., the final e(τ) is equal to e0 up to a
coboundary.11 In the second part we show that indeed the shadow weight of w(τ) indeed remains
sufficiently small throughout the algorithm, using the fact that |earb|vsw ≤ |s|.

We will find something unusual in the second part of the proof: the proof that the shadow
weight of w(τ) remains small does not just use the fact that the algorithm terminates after a
certain number of steps, but rather uses graph-theoretic expansion properties. Indeed, nothing we
show rules out the algorithm running for � nB steps.

11Note that even with a maximum likelihood decoder it would not be possible to decode e0 exactly in general since
there may be different error patterns of the same weight and with the same coboundary.
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First part of the analysis. Here we show correctness assuming |w(τ)|sw is small. Note that
this implies |e(τ)|vsw is also small.

Lemma 5.2. Suppose that the algorithm terminates after τ steps, and suppose that |e(τ)|vsw+|e0| ≤
1

105∆
mF . Then e(τ) is cohomologous to e0.

Proof. Say a 1-chain g in E is a background if ∂Tg = ∂Te(τ). As per the discussion in Lemma 3.7,
for any background g there is a unique decomposition

e(τ) = g + ∂Tw + x⊗ F0,

where the 0-chain w =
∑

a a ⊗ ya has |ya| < nF/2 for all a and where x is a 1-chain in B. We
call w the stabilizer associated to g, and we call x the logical. It will also be important for us to
keep track of the stabilizer shadow S of g (i.e., S is the shadow of w).

The proof will consider a sequence g0, g1, g2, . . . of backgrounds, with the initial background g0

being e0. We will establish the following properties:

1. The logical xt of each gt will be the same for all t.

2. The stabilizer shadow St decreases in size by 1 at each step, until it becomes empty.

3. The logical xt vanishes outside the coboundary of St, where ∂TSt =
⋃
a∈St

∂Ta.

4. The horizontal weight of gt on ∂TSt is smaller than mF/100.

Using only Items 1 to 3, we observe that when the sequence ends at some t, we have an empty St,
the logical xt must therefore be everywhere zero, and hence the logical x0 of e0 also vanishes. This
implies that e0 is cohomologous to e(τ), as claimed.

Let us handle the base case of g0, and then describe how g1, g2, . . . are inductively formed and
why Items 1 to 4 hold.

Base case. Regarding the base case g0 = e0, we need to establish Items 3 and 4. The latter is
immediate since the total horizontal weight of e0 is already small by the beginning assumption of
the decoder. As for Item 3, from e(τ) = e0+∂Tw0+x0⊗F0 we see that on every base 1-cell b outside
of ∂TS0, we have agreement between e(τ) and e0 up to the addition of b⊗ F0, this addition being
governed by whether b is in x0. But e0 has horizontal weight less than nF/2 on every base 1-cell,
including b. Thus x0 must vanish on b or else e(τ) would have horizontal weight more than nF/2
there, contradicting the condition (i) of amended cells (any cell in the neighborhood of b would be
trivially fixable). This establishes Item 3, and thus the base case.

The inductive construction. Suppose we have formed gt. If the stabilizer shadow St is empty,
we are done. Otherwise, we apply Corollary 3.3 to St, obtaining some a• ∈ St. (Note that
|S0| ≤ 1

105∆
mF by the hypotheses of the lemma, and so all subsequent stabilizer shadows also

satisfy this bound, by Item 2.) Writing wt =
∑

a a ⊗ ya, we form the next background by taking
gt+1 = gt + ∂T(a• ⊗ ya•) and wt+1 =

∑
a6=a• a⊗ ya; that is, we simply “shift” the a• ⊗ ya• part of

wt to the background. Now Items 1 and 2 clearly hold, and it remains to verify Items 3 and 4.
Write the neighborhood of a• in B as C ∪ D, where the cells C are counique neighbors of St

and the cells D are non-counique; Corollary 3.3 tells us that |D| ≤ 1
4 |C|.
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Inductively verifying Item 3. This is equivalent to showing that xt+1 = xt vanishes on C.
To do this, we begin by observing that when the decoding algorithm terminated with e(τ), the
cell a• was not fixable. Let us evaluate this fact in the context of the decomposition e(τ) =
gt + ∂Twt + xt ⊗ F0. Fixing cell a• amounts to arbitrarily altering ya• in this decomposition, and
then optimizing xt to achieve minimal horizontal weight.

A first observation is that while we always have |ya• | ≤ mF/2, we claim that unfixability of a•

implies that in fact |ya• | ≤ .4mF . Otherwise, ∂Twt puts horizontal weight between .4mF and .5mF
on each cell of C, and from Item 4 we know that gt modifies this by at most .01mF (collectively,
even). Thus even after optimizing xt, the contribution to e(τ)’s horizontal weight from C is at least
.39nF |C|. On the other hand, if ya• were fixed to 0, the contribution to e(τ)’s horizontal weight
from C ∪ D would be at most .5mF |D| ≤ .125mF |C| from D, and at most .01mF from C (the
possible contribution from gt, recalling Item 3), for a total of at most .135mF |C|. Then, we have
.8(.135mF |C|)+ .2mF (|C|+ |D|) ≤ .358mF |C| < .39mF |C|. This means a• was fixable by violating
the condition (iii) of the definition of amended cells, a contradiction. Thus we have established the
claim |ya• | ≤ .4nF .

But now we deduce that gt + ∂Twt has horizontal weight at most .41mF on every cell of C.
This indeed implies that xt vanishes on C, since e(τ) also has horizontal weight less than mF/2
on each cell of C (indeed, as mentioned earlier e(τ) has horizontal weight less than mF/2 on every
base 1-cell, else it would be trivially fixable).

Inductively verifying Item 4. Let Ht+1 denote the horizontal weight of gt+1 on ∂TSt+1, and
Ht the horizontal weight of gt on ∂TSt. We will in fact show Ht+1 ≤ Ht, which is sufficient to
inductively verify Item 4. We may write Ht+1 − Ht = NEW − LOSS, where LOSS equals the
horizontal weight of gt on C, and where NEW is the weight gain in D when gt is replaced by gt+1.
In turn, we can write LOSS as the sum of contributions LOSSu from each fiber vertex u, and
similarly write NEW as a sum of contributions NEWu. Our goal will be to show

NEWu ≤ LOSSu ∀u. (17)

For a fixed fiber vertex u, consider the bit value of the chain ya• on u, call it (ya•)u. Since
a• is not fixable for e(τ), this value must be locally optimal (in terms of minimizing horizontal
weight) given gt, xt, and given wt+1, i.e., given the ya for a 6= a•, by satisfying the condition (ii) of
the definition of amended cells. That is, this value (ya•)u equals the “majority vote” — across all
j ∈ C ∪D — of the bits zu,j := (gt+∂Twt+1 +xt⊗F0)ϕ(j,a•)−1u. Recall we already established that
xt vanishes on C and by construction C is not in the coboundary of the shadow of wt+1; thus for
j ∈ C we simply have zu,j = (gt)ϕ(j,a•)−1u. Hence we precisely have LOSSu = |{j ∈ C : zu,j = 1}|.

As for NEWu, it is zero if (ya•)u = 0, in which case Ineq. (17) certainly holds. Suppose instead
(ya•)u = 1. Then, since the majority vote of zu,j across j ∈ C ∪D is 1, we must have

|{j ∈ C : zu,j = 1}|+ |{j ∈ D : zu,j = 1}| ≥ (|C|+ |D|)/2
=⇒ LOSSu + |D| ≥ (|C|+ |D|)/2

=⇒ LOSSu ≥ (|C| − |D|)/2,

so, since |C| ≥ 3|D| we have LOSSu ≥ |D|. At the same time, trivially NEWu ≤ |D|, verifying
Ineq. (17).

Second part of the analysis. It remains to show that for any step τ of the decoding algorithm,
|w(τ)|sw is sufficiently small compared to nB/∆. Define Q to be the shadow of the horizontal part
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of earb, i.e., Q is the set of all base 1-cells over which there is some horizontal cell of earb. From the
construction of earb we have

|Q| ≤ |∂Teb| ≤ 1.01∆|eb| ≤ 1.01∆|∂Te0| ≤ 1.01∆(1.01∆ + 2)|e0| ≤ 2∆2|e0| ≤ 1
10

1
105mB (18)

Define P (τ) to be the set of all base 0-cells that were amended in the first τ steps of the algorithm.
We have that the shadow of w(τ) is contained in P (τ); we may not have equality as it is possible
that a cell could be amended multiple times. We are going to bound |P (τ)|. Note that P (0) = ∅.

Suppose a base 0-cell a is first included in P (τ) at step τ ′ ≤ τ , i.e., a ∈ P (τ ′) \ P (τ ′ − 1),
then since e(0), e(1), . . . , e(τ ′ − 1) have no support on base 1-cells outside Q∪ ∂TP (τ ′− 1), at least
half of ∂Ta must be in Q ∪ ∂TP (τ ′ − 1) for a to be fixable.12 Hence, every cell a ∈ P (τ) must
have at least half the cells in its coboundary either in Q or in the coboundary of some other cell
in P (τ). In other words, the number of counique neighbors of a ∈ P (τ) that are not in Q is at
most 1

2 |∂
Ta|. Therefore, the total number of counique neighbors of P (τ) that are not in Q is at

most 1
21.01∆|P (τ)| ≤ .6∆|P (τ)|.

On the other hand, if |P (τ)| ≤ 1
105∆

mB, the number of noncounique neighbors of P (τ) cannot
exceed .1∆|P (τ)| by Corollary 3.3. By counting counique and noncounique neighbors of P (τ) that
are not in Q, we have

|∂TP (τ)| ≤ |Q|+ |∂TP (τ) \Q| ≤ |Q|+ .1∆|P (τ)|+ .6∆|P (τ)|.

But Proposition 3.2 implies that so long as |P (τ)| ≤ 1
105∆

mB, we know the left-hand side |∂TP (τ)|
is at least .9∆|P (τ)|; we deduce that

|P (τ)| ≤ 1
105∆

mB =⇒ |P (τ)| ≤ 1
.2∆ |Q|.

Using |Q| ≤ 1
10

1
105mB from eq. (18), we see for all sufficiently large mB that

|P (τ)| ≤ 1
2
mB

105∆
=⇒ |P (τ + 1)| ≤ |P (τ)|+ 1 ≤ mB

105∆
=⇒ |P (τ + 1)| ≤ 1

.2∆ |Q| ≤
1
2
mB

105∆
.

We conclude that |P (τ)| is always bounded by 1
2

1
105∆

mB.

5.2 Decoding homology

We now give a proposed algorithm for decoding homology. We conjecture, but do not prove, that
this algorithm decodes errors of weight up to a polylogarithmic fraction of dZ .

The algorithm takes as input a 0-chain s0 in E which contains the syndrome. It initializes a
1-chain u in E to 0. It initializes some 0-chain s in E to s0. As the algorithm proceeds, it modifies
the chain u by a sequence of local updates explained below. After each update, the algorithm then
updates s so that s = s0 + ∂u. The algorithm attempts by these local updates to reduce |s|.

Define a fiber string of length at most r to be a vertical 1-chain of Hamming weight at most r
whose boundary consists of exactly 2 0-cells. The string can be thought of as stretching between
between these two 0-cells. Here we assume that r < ` < nF .

The algorithm has a counter r, initialized at r = 0. The algorithm loops over r = 0 to
r = `/polylog(nF ). For update r, the algorithm performs a greedy search, trying to reduce |s| by

12 In fact, if more than half of ∂Ta are outside the shadow S′ of the horizontal part of e(τ ′−1), then a is not fixable.
The reason is as follows. Any amendment is the change from e(τ ′ − 1) to e(τ ′ − 1) + ∂T(a ⊗ y′) + x′ ⊗ F0 for some
fiber 0-chain y′ and some base 1-chain x′ ⊆ ∂Ta, where we may assume that |y′| < 1

2
mF without loss of generality.

Then, x′ must vanish outside S′ to fulfill the amendedness condition (i). This implies that y′ must vanish everywhere
to fulfill the amendedness condition (ii). In turn, this implies that x′ must vanish on S′ because the amendedness
condition (i) has been and should be obeyed.
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either adding to u a fiber string of length at most r or by adding to u some horizontal cell plus
some sum of fiber strings of length at most r.

The algorithm performs this greedy search for the given r until it is not possible to reduce |s|
further, at which point it increments r and continues the loop if r < `/ polylog(nF ).

After the loop terminates, the algorithm then takes the given error chain s and bundle projects
it to the base, giving a 0-chain in B. It then attempts to find some 1-chain w in B such that ∂w is
equal to the given 0-chain in B and so that |w| is small compared to the distance of the base code.
(We conjecture that the base code is such that, if the weight of the bundle projected s is small
enough, then such a w can be found by a greedy search; this seems easier to prove than some other
properties we need also.)

Finally, given w, one may find some horizontal 1-chain x in E whose bundle projection is equal
to w, and with |x| = |w|; for example, one may simply take x = w ⊗ f0 for any fiber 0-cell f0.
Then, the chain u + x has the property that its boundary, after bundle projection, is equal to s0

after bundle projection, and so one can add some vertical 1-chain y to u + x to obtain a 1-chain
whose boundary is s0; The algorithm then outputs this 1-chain.

Let us sketch why we conjecture this works. Suppose the true error pattern was some 1-chain
e with ∂e = s0. It is possible that e might, for example, even be a sum of stabilizers, in which
case perhaps s0 = 0 even though e 6= 0. Without loss of generality, we may assume that e is
a minimal weight error pattern with ∂e = s0. After the loop terminates, we have that e + u is
given by some sum h + v of horizontal and vertical chains. We expect that |h| will still be small
compared to dZ and so |∂h| will be large, indeed proportional to |h| in some way depending on ∆.
We expect however that many of the 0-cells in h will be attached to fiber strings of length > r in
v, where “attached” means that one of the two cells in the boundary of that string is the given
0-cell in h. However, assuming the greedy algorithm does not increase the weight of v too much
compared to the weight of vertical cells in e, then for r = `/polylog(nB), the weight of h must
then be small compared to nB. So, at this point, the algorithm has (assuming these conjectures
are correct) computed e up to some 1-chain h+ v with |h| small. The algorithm then returns some
other horizontal chain x, with |x| small, and so computes e up to h+ v+x+ y, with h, x horizontal
and having small Hamming weight and v, y vertical, i.e., it computes e up to a closed 1-chain such
that the Hamming weight of this chain on horizontal cells is small compared to the distance of the
base code. However, any such closed 1-chain is homologically trivial.

5.3 Decoding cohomology against erasure errors in almost linear time

With erasure errors, we are given syndrome bits and a specific set D of qubits (erased qubits) on
which there are potential errors.13 The location of the true errors is unknown and it is the decoder’s
goal to determine the true errors up to stabilizers. Here we present an algorithm for this erasure
decoding problem where the actual errors are X, denoted as a bundle 1-chain x ∈ E1, under the
assumption that |D| is less than a polylogarithmic fraction of mF , which is smaller than dX by
Lemma 3.7.

If we find any chain x′ that reproduces the given syndrome, i.e., ∂Tx′ = ∂Tx, with the constraint
that x′ ⊆ D, then the combination x+ x′ of the actual errors and a correction is coclosed and has
weight less than dX , and hence is a coboundary. It is thus obvious that this erasure decoding
problem is solved in time |D|3 poly(∆) since x′ is a solution of an inhomogeneous system of linear
equations of |D| variables that participate in |D| poly(∆) equations. It is however not so obvious
whether such x′ can be found in linear time in |D|.

13 One may consider an equivalent setting in which the erased qubits are simply lost with no errors on other qubits;
in this case, one may initialize those qubits arbitrarily and then measure stabilizers.
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Lemma 5.3. Assume the supposition of Lemma 3.7. If |D| < mF/(105∆2), then in time |D| poly(∆, log |D|)
we can find a chain x′ such that x′ + x represents the zero cohomology class.

Proof. The algorithm is based on belief propagation that deforms D to decrease |D| down to zero.
Let us define two sets C ⊂ D and P ⊂ E0,0 × E0,1. Roughly speaking, C consists of cells on which
we know errors with certainty, and P is the set of cells of D that we can “peel off” to produce more
cells that will qualify for C. We will consider the time complexity later.

Removing obvious errors. C consists of all cells e ∈ D such that some 2-cell touches no other
cells of D but e. The error on e is thus determined. By removing C from D and recording the
determined errors and iterating these, we can sometimes eliminate all of D. For example, if D(0)
at time step 0 is a collection of consecutive horizontal cells over a single base 1-cell, occupying an
interval in the fiber, then C(0) would be just two end cells and the shrunk D(1) = D(0)− C(0) will
have two end cells in C(1). This continues until D(t) becomes empty. If this iteration does not
eliminate all of D, then we are left with D(t1) 6= ∅ where every 2-cell on the coboundary of some
cell of D(t1) meets at least two 1-cells of D(t1). Let D(tj) be any configuration such that C(tj) = ∅.

Representing an error on one cell by others using stabilizers. We use X-stabilizers (asso-
ciated with bundle 0-cells) to rescue the situation. An X-stabilizer is ∂Tu for some bundle 0-cell u,
and ∂Tu contains exactly two vertical cells, “between” which there are (1± .01)∆ horizontal cells.
Suppose that (i) D(tj) contains at least one of the the vertical cells, say v, of ∂Tu, and that (ii)
D(tj) contains more than half of the horizontal cells of ∂Tu which would belong to C(tj) if v ∈ ∂Tu
were absent from D(tj). Given D(tj), we collect all pairs (u, v) satisfying (i),(ii) to form P(j). For
some (u, v) ∈ P(j), we set D(tj + 1

2) = (D(tj)− v)∪ (∂Tu− v). We will show that P(j) is nonempty
shortly using Proposition 3.2, but let us see first why this is a rescue.

It is important to note that any error (no error or X) on v can be expressed by errors on ∂Tu−v
up to X-stabilizers (coboundaries of 0-cells). So, for any correction on D(tj) there is an equivalent
correction on D(tj+

1
2). Seeking a correction on D(tj+

1
2), rather than on D(tj), potentially increases

overall weight of the correction, but the increment is not big as we show: D(tj + 1
2) lacks v, so the

condition (ii) for P(j) implies that C(tj + 1
2) has more than half of the horizontal cells of ∂Tu, i.e.,

|C(tj + 1
2)| > 1

2(|∂Tu| − 2). Since D(tj) contains more than half of the horizontal cells of ∂Tu and
also v, we see |D(tj + 1

2)| < |D(tj)|+ 1
2(|∂Tu| − 2). Therefore, removing C(tj + 1

2) from D(tj + 1
2),

we obtain D(tj + 1) whose cardinality is strictly less than |D(tj)|.
Hence, if we employ P(j) whenever C(tj) = ∅, we can always decrease |D(t)| until D(t) becomes

empty. The final correction x′ has weight bounded by |D|(1+0.6∆) because each transition D(tj)→
D(tj + 1

2) can enlarge the support of x′ by the number of added cells which is less than 1 + 1
21.01∆.

It follows that x+x′ has weight less than |D|∆ which is less than dX , implying that x+x′ represents
the zero cohomology class.

P(j) 6= ∅ whenever D(tj) 6= ∅ but C(tj) = ∅. Consider the shadow of the vertical cells of D(tj)
onto the base. Here by shadow we mean as before the set of all base 0-cells above which there
is at least one vertical cell in D(tj). Since the cardinality of the shadow is less than m/(105∆)
(which follows by induction in j with the assumption that ∆|D(0)| < m/(105∆)), Proposition 3.2
implies that there is a base 0-cell a such that more than half of its coboundary 1-cells are counique
neighbors. Let us go to the fibers over a and its counique neighbors b1, . . . , bq. Any vertical cell
v = a ⊗ f1 ∈ D(tj) above a must share every 2-cell b ⊗ f1 in its coboundary with some other
1-cells of D(tj). If b here is a counique neighbor of a, then the 2-cell b⊗ f1 cannot be shared with
any other vertical cell of D(tj), so it must be shared with a horizontal cell of D(tj). Conversely,
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if any horizontal cell over a counique neighbor b of a shares a 2-cell with a vertical cell in their
coboundary, it must do with a vertical cell over a. Hence, within D(tj) all the vertical cells over a
and all the horizontal cells over the counique neighbors of a, together form a graph P whose every
node is linked to some other node by sharing a 2-cell.

Consider the spine of P; the spine is the union of the images of all nodes of P under the map
a⊗ f1 7→ a⊗ f1 and b⊗ ϕ(b, a)−1f0 7→ a⊗ f0 for any counique neighbor b ∈ ∂Ta. The spine has
(far) less than nF elements, and hence divided into consecutive clusters. Any cluster cannot have
a 0-cell (that comes from a horizontal cell of P) at either end; if it did, there would be a horizontal
cell that is exposed to a bundle 2-cell that only sees this horizontal cell. Let v = a ⊗ f1 be the
1-cell (that comes from a vertical cell of P) at the bottom end of a cluster. Any horizontal cell
linked to v in P must be b ⊗ f0

top for some counique neighbor b ∈ ∂Ta where f0
top is the top end

of f1 (∂f1 = f0
top + f0

bottom) because v is at the bottom of a cluster in the spine. Therefore, D(tj)
contains the horizontal cells bi ⊗ ϕ(bi, a)−1f0

top but not bi ⊗ ϕ(bi, a)−1f0
bottom for all i = 1, . . . , q. If

we deleted v from D(tj), then all bi ⊗ ϕ(bi, a)−1f0
top would belong to C(tj). Now, a bundle 0-cell

u = a ⊗ f0 has coboundary that contains v = a ⊗ f1 and all bi ⊗ ϕ(bi, a)−1f0
top for i = 1, . . . , q.

Since q is more than half the degree of a, we see that (u, v) ∈ P(j).

Time complexity. One should not compute C and P every time D is updated. Instead, they
should be initially computed once by going over all cells of D and small neighborhoods, and every
time a cell is removed or added to D, the sets C and P should be updated accordingly. For each
cell of D it takes time O(∆) to determine its membership to C and P. When removing a cell of
C from D, there are O(∆2) cells to examine, so it takes time Õ(∆3) to remove a cell and update
the sets. In the transition D(t)→ D(t+ 1

2), we alter O(∆) cells so it takes Õ(∆4) to complete this
transition. The total number of removals is bounded by |D(0)|∆, yielding overall time complexity
Õ(|D(0)|∆5).
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[RU08] Tom Richardson and Rüdiger Urbanke. Modern Coding Theory. Cambridge University
Press, 2008. 1

31

https://ncatlab.org/nlab/show/chain+homotopy


[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Trans. Inform. Theory,
42(6, part 1):1710–1722, 1996. 5.1

[TZ14] Jean-Pierre Tillich and Gilles Zémor. Quantum LDPC codes with positive rate and
minimum distance proportional to the square root of the blocklength. IEEE Trans.
Inform. Theory, 60(2):1193–1202, 2014. 1

[Vad12] Salil P. Vadhan. Pseudorandomness. Now, 2012. 4.3

32



A Weight Reduction and Chain Homotopy

In this appendix, we show how to weight-reduce the classical base code, and then construct the
fiber bundle code as a bundle over that. We will spend a fair amount of time developing some
generalities. One of the main messages is that a way to think of two codes as being “equivalent”
is the notion of homotopy equivalence of chain complexes. This is an old notion in homological
algebra; we will combine it with an additional requirement of some “Lipschitz bounds” on certain
maps. Without these Lipschitz bounds, the notion of equivalence would be somewhat vacuous for
quantum codes as any two codes with the same number of logical qubits (and, if any, the same
number of redundant X- and Z-stabilizer generators) would be equivalent. These Lipschitz bounds
will enable us to give a sharper notion of equivalence, relating the distance of the codes, and proving
that efficient decoding for one code implies efficient decoding for an equivalent code up to some
fraction of the distance.

Then, having given these generalities, we will show first a homotopy equivalence of two different
classical base codes, which is then used to show a homotopy equivalence of the fiber bundle code
to a weight-reduced code.

A.1 Review on Chain maps and homotopies

For two chain complexes A,B, a chain map f from A to B is a linear map from Aj to Bj for each
j, such that

∂Bf = f∂A.

Given two chain maps f, g from A to B, a chain homotopy is a linear map h from Aj to Bj+1 for
each j such that

f − g = h∂A + ∂Bh.

In this case, the maps f, g are said to be homotopic.
These definitions of chain map and chain homotopy are both standard definitions, long estab-

lished in the literature. Intuitively, one may think of a chain map between chain complexes as being
an analogue of a continuous function between topological spaces.

Note that any chain map f induces a map on homology, f∗ : Hj(A) → Hj(B), since it maps
cycles to cycles. For the same reason, the transpose of f , written fT, induces a map on cohomology
f∗ : Hj(B) → Hj(A). Of course, these maps need be neither injective nor surjective; for example
the map f that maps every chain to the zero chain is a chain map. Our interest later will be in
particular chains maps where the induced map is both injective and surjective.

The following lemma is standard:

Lemma A.1. Any two homotopic chain maps induce the same maps on homology and on coho-
mology.

Proof. We have f − g = h∂A + ∂Bh, and h∂A vanishes on cycles and ∂Bh is a boundary. For
cohomology, take the dual (transpose) of everything: we have fT − gT = ∂TAh

T + hT∂TB , and hT∂TB
vanishes on cocycles while ∂TAh

T is a coboundary.

Remark: the transpose of a chain map commutes with the coboundary operator; such a map is
commonly called a cochain map.

To motivate this definition of a chain map, one might have instead considered the following
alternative definition inspired by the concept of a homotopy between two functions (this is also
standard; see for example [NCL]). Let I be a chain complex which is a cellulation of the interval
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[0, 1]; for example, we may choose I to have one 1-cell labelled e and two 0-cells, labelled v0 and
v1, such that ∂e = v1 − v0. Then, one might define a homotopy m to be a chain map from I ⊗ A
to B, such that for any A-chain u we have m(v0 ⊗ u) = f(u) and m(v1 ⊗ u) = g(u).

However, let us see that this new definition is the same as the old. Since m is a chain map,

∂(m(e⊗ u)) = m((v1 − v0)⊗ u)−m(e⊗ (∂u)).

Define h(w) = −m(e⊗ w), so the above equation becomes −∂h(u) = g(u)− f(u) + h(∂u). So, we
have recovered a chain homotopy h from m.

Similarly, suppose we have a chain homotopy h such that f − g = h∂A + ∂Bh. Define a linear
map m from I ⊗ A to B as follows. Let m(v0 ⊗ u) = f(u) and m(v1 ⊗ u) = g(u) as before and
define

m(e⊗ u) = −h(u).

Then one may verify that m is a chain map. So, the two definitions are indeed equivalent.

Given two chain complexes A,B, a homotopy equivalence is a pair of chain maps A
f
(( B

g
ii

such that A f−→ B g−→ A is homotopic to the identity map on A and B g−→ A f−→ B is homotopy to the
identity map on B.

The following is again well known:

Lemma A.2. A homotopy equivalence induces isomorphisms on homology and cohomology.

Proof. If f : A → B and g : B → A give a homotopy equivalence, f∗ ◦ g∗ is the identity on the
homology of B by lemma A.1, and g∗ ◦f∗ is the identity on the homology of A; that is, (f∗)

−1 = g∗.
The same is true for f∗ and g∗.

A.2 Distance and Decoding

We now consider the effect of these chain maps on the weight of a chain. Given a chain u, write
|u| to denote the weight of the chain. In all examples in this paper, the weight will denote the
Hamming weight (number of nonzero coefficients of the chain in the given basis), but the next
definition and lemma work for any choice of weight function.

We say that a chain map f : A → B is Lipschitz with Liptschitz constants Kj = Kj(f) if
|f(u)| ≤ Kj |u| for any j-chain u. Let dj(A) denote the minimum weight achieved by a representative
of nontrivial homology class of Hj(A) and let dj(A) denote the minimum weight achieved by a
representative of nontrivial cohomology class of Hj(A).

Lemma A.3. Let A
f
(( B

g
ii be a homotopy equivalence with f, gT Lipschitz. Then

dj(A) ≥ Kj(f)−1dj(B), and dj(A) ≥ Kj(g
T)−1dj(B).

Proof. If u is a nontrivial representative of Hj(A), then f(u) is a nontrivial representative of Hj(B)
and so dj(B) ≤ |f(u)| ≤ Kj |u|. The second inequality is similar.

We will use this lemma later to lower-bound the distance of the weight-reduced code that we
construct. Our bounds will almost certainly not be tight: all we will use is a certain Lipschitz
constant in a map. We will remark further on this later.
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Given a decoder for a code defined by B, we can decode errors on a code defined by A if the
chain complexes A and B are homotopically equivalent as we now explain. As we always discuss
quantum CSS codes where j-cells are qubits, (j + 1)-cells are Z-stabilizers, and (j − 1)-cells are
X-stabilizers, the following discussion will be completely symmetric for homology and cohomology,
so we only explain homology decoding, i.e., correcting Z errors from observed violations of X-
stabilizers. For the code defined by A, a Z error pattern is some unknown j-chain eA, and the
syndrome is sA = ∂eA. Similarly, eB stands for Z errors on the code defined by B and sB = ∂eB is
the syndrome.

Then:

Lemma A.4. Suppose g ◦ f is homotopic to the identity on A by h : Aj−1 → Aj. Assume
there is some decoding algorithm O for the code associated with B such that, given a syndrome
sB = ∂eB as input, it computes some ẽB such that sB = ∂ẽB, where eB and ẽB are homologous
whenever |eB| ≤W (O), for some bound W (O). Then, given some sA = ∂eA as input, the following
algorithm computes a chain ẽA such that sA = ∂ẽA, where eA and ẽA are homologous whenever
|eA| ≤ Kj(f)−1 ·W (O):

(1) Call O with f(sA) as syndrome. The result will be some error pattern ẽB such that f(sA) =
∂ẽB.

(2) Return
ẽA = g(ẽB)− h(sA).

Proof. We have

f(sA) = ∂ẽB

=⇒ g(f(sA)) = g(∂ẽB)

=⇒ g(f(sA)) = ∂g(ẽB) (by definition of chain map)

=⇒ sA + h∂sA + ∂hsA = ∂g(ẽB) (by definition of homotopy equivalence)

=⇒ sA = ∂g(ẽB)− ∂hsA (since ∂sA = 0)

=⇒ sA = ∂ẽA.

Let us verify that ẽA is homologous to eA, assuming that |eA| ≤ K−1
j (f) ·W (O). We have

sA = ∂eA so f(sA) = ∂f(eA). By assumption on the decoding algorithm for the code associated
with B, the chain ẽB is homologous to f(eA), in which case g(ẽB) is homologous to g(f(eA)). We
have g(f(eA)) = eA+h∂eA+∂heA, so g(f(eA)) is homologous to eA+h∂eA = eA+hsA. So, g(ẽB)
is homologous to eA + hsA implying that ẽA is homologous to eA.

A.3 Cell Combining and Collapsing and Weight-Reducing the Classical Codes

We now define a procedure of “cell combining” and a related “cell collapsing.” Cell combining
can be intuitively understood as combining two cells into a single one, such as combining a pair of
edges into one edge. This procedure establishes a homotopy equivalence of two chain complexes.
This will be useful in the next subsections as the original code (either the classical code or the
fiber bundle code) can be derived from a weight-reduced code by the procedure. Cell collapsing is
a “dual” of this procedure, explained below.
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Figure 2: Illustration of cell combining. The image shows a sequence of three steps. We begin with
two “1-cells”, shown at the top left. One cell (which corresponds to e1 in the definition) is colored
white, while the other cell (which corresponds to e2) is colored red. The straight lines represent
“0-cells” in the boundary of these “1-cells.” The straight line between the two cells corresponds to
v. We show pictorially a sequence as v is deformed, until eventually e2 shrinks to nothing and the
line which corresponds to v has been mapped to the other four “0-cells” in the boundary of e2.

A.3.1 Cell combining

An illustration of cell combining that may be useful is shown in Figure 2.

Definition A.5. (Cell combining) Let A be some chain complex with only 0- and 1-cells. Let v be
some 0-cell in A with only two 1-cells in its coboundary, written e1, e2. (With signed coefficients,
we take a convention that ∂e1 = v + · · · whereas ∂e2 = −v + · · · .) We say that the following cell
complex B is given by combining cells e1, e2 in complex A.

The set of 1-cells of B is the set of 1-cells of A other than e1, e2 and with an extra cell e. The
set of 0-cells of B is given by the set of 0-cells of A other than v. The boundary operator ∂B is
given by by ∂B = f ◦ ∂A ◦ g, where the maps f, g are as follows.

Let f : A → B be such that e1 7→ e, e2 7→ 0, and f maps all other 1-cells in A to the
corresponding 1-cell in B. Further, f maps all 0-cells in A except v to the corresponding 0-cell in
B, while it maps v to the chain which in A would be written v + ∂Ae2. Let g : B → A be such
that e 7→ e1− e2, and g maps all other 1-cells to the corresponding 1-cell in A and all 0-cells to the
corresponding 0-cell in A.

Lemma A.6. The maps f, g of Definition A.5 are chain maps, giving a homotopy equivalence of
the complexes A,B in the definition.

Proof. The composition f ◦ g : B → B is the identity, so tautologically is homotopic to the identity.
Note that g ◦ f maps v to v+ ∂e2, maps e1 to e1 + e2, maps e2 to 0, and acts as the identity on

all other cells of A. Thus, g ◦ ∂B = gf∂Ag is equal to ∂Ag possibly except for e, but at e we also
have (gf∂Ag)(e) = ∂(e1 + e2) = (∂Ag)(e). Hence, g is a chain map.

Let I denote the identity map on A. Then gf − I is equal to 0 on all cells, except it maps v
to ∂e2, maps e1 to e2, and maps e2 to −e2. Define h : A → B to map v to e2 and to vanish on all
other 0-cells; h vanishes on 1-cells. Then indeed gf − I = h∂A + ∂Ah so gf is homotopic to the
identity.

To verify that f is a chain map, we need to verify ∂Bf = f∂A; that is, we need f∂Agf = f∂A.
So it suffices to verify that f∂A(∂Ah+ h∂A) = 0. Since ∂2 = 0, we need f∂Ah∂A = 0. However, e2

is the only cell in the range of h and f∂Ae2 = 0.

36



A.3.2 Cell collapsing

Cell collapsing is the dual: given some chain complex A with a 1-cell e having two 0-cells v1, v2 in
its boundary, we can collapse e, mapping it to 0 by a chain map and mapping v1, v2 to the same
image. Rather than give this dual map explicitly, simply note that given some chain complex with
boundary operator ∂ obeying the conditions of Lemma A.6, if we interchange 1-cells and 0-cells,
and use boundary operator ∂T, then we have such a 1-cell e. Then, since Lemma A.6 constructs
maps f, g which commute with ∂, the maps gT, fT commute with ∂T.

A.4 Weight reducing

We can now explain how to weight-reduce the classical code. Consider an arbitrary classical code,

ker(A1
∂−→ A0), with bits associated with 1-cells and checks associated with 0-cells of some chain

complex. Assume that each 1-cell has at most d1 0-cells in its boundary and each 0-cell has at most
d0 1-cells in its coboundary. The procedure to reduce d1 can be understood intuitively as making
several copies of each bit, adding checks that enforce that copies of the bit are the same, and having
different copies participate in different checks; the procedure to reduce d0 can be understood as the
dual.

Define a weight-reduced classical code as follows. For each bit b of the original code, the weight-
reduced code will have |∂b| bits, labeled by a pair (b, c) where c ∈ ∂b. Similarly, for each check c
of the original code, and the weight-reduced code will have |∂Tc| checks, labeled by a pair (c, b)
where b ∈ ∂Tc. We add also |∂b| − 1 additional checks for each bit b, labeled by a pair [b, j] for
j ∈ {1, . . . , |∂b| − 1}. Similarly we add |∂Tc| − 1 additional bits for each check c, labeled by a pair
[c, k] for k ∈ {1, . . . , |∂Tc| − 1}.

We will call the bits [c, k] and checks [b, j] the “auxiliary” bits and checks. As mentioned, these
auxiliary bits and checks are in addition to the bits (b, c) with c ∈ ∂b and the checks (c′, b′) with
b′ ∈ ∂Tc′. Thus if the original code has N1 bits and N0 checks, and has E nonzero elements in the
boundary map ∂ (i.e., edges in the bipartite Tanner graph), the weight-reduced code has O(N0 +E)
checks and O(N1 + E) bits.

We now specify the boundary operator ∂wr of the weight-reduced code. We continue to use
∂ without subscript wr to mean the boundary operator of the original code. For each bit b of
the original code, let us order ∂b once and for all to write ∂b = c1 + · · · + c|∂b|. We let the

auxiliary check [b, j] have coboundary (b, cj) + (b, cj+1) for each j. Similarly, ordering ∂Tc to write
∂Tc = b1 + · · · + b|∂Tc|, we let the auxiliary bits [c, k] have boundary (c, bk) + (c, bk+1) for each k.
Finally, we put (c, b) ∈ ∂wr(b, c) where c ∈ ∂b. All coefficients of ∂wr other than those specified in
this paragraph vanish. In this weight-reduced code, every bit, either (b, c) or [c, k], participates in
2 or 3 checks and every check, either (c, b) or [b, j], depends on 2 or 3 bits.

We make the following claim:

Lemma A.7. The weight-reduced code A is homotopy equivalent to the original classical code B

by A
f
(( B

g
ii . The maps f, g, fT, gT have Lipschitz constants which are all O(max(d1, d2)).

Proof. We repeatedly apply cell combining to remove all the auxiliary checks and then cell collapsing
to remove all the auxiliary bits. This gives a homotopy equivalence.

To get Lipschitz constants, consider this in two steps: first removing auxiliary checks then
removing auxiliary bits. After removing all auxiliary checks, the image (under the map g from the
original code to the weight-reduced code) of any bit b is the sum of bits (b, c) with c ∈ ∂b and
there are at most d1 such bits. The image under g of any check c is the corresponding check in the
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weight-reduced code. So, the Lipschitz constant on 1-cells is O(d1) and on 0-cells is O(1). Then
after cell collapsing, the Lipschitz constant on all cells is O(max(d0, d1)).

The calculation of Lipschitz constants for f is similar: after the first step, the image of any
auxiliary check [b, j] is contained in the boundary of b and so has Lipschitz constant O(d1).

A.5 Weight-reducing the fiber bundle code

We now explain how to weight-reduce the fiber bundle code. The fiber bundle code was defined
by a classical base code as well as a choice of twists. We will define a weight-reduced fiber bundle
code to be the code given by a bundle over the weight-reduced base code, with a certain choice of
twists.

The choice of twists is the obvious one: originally, there was a twist ϕ(b, c) between a bit b and
a check c if c ∈ ∂b. In the weight-reduced base code, there is a Tanner graph edge between a bit
(b, c) and a check (c, b). We put a possibly nonzero twist ϕwr((b, c), (c, b)) = ϕ(b, c), and zero twists
elsewhere. In particular, there is zero twist on any element of the boundary operator involving an
auxiliary bit or check.

Lemma A.8. The weight-reduced fiber bundle code is homotopy equivalent to the fiber bundle code
defined previously. The pair of homotopy equivalence maps and their duals have Lipschitz constants
which are all O(max(d1, d2)).

Proof. In the untwisted case, the result would follow from Lemma A.7. This follows from a general
result: suppose A,B, C are some chain complexes and f, g give a homotopy equivalence of A,B.
Then the pair of f ⊗ I and g ⊗ I is a homotopy equivalence between A⊗ C and B ⊗ C.

From this equivalence in the untwisted case, the equivalence in the twisted case follows using the
gauge redundancy. Recall that gauge redundancy is a chain isomorphism between two bundles over
the same base; it is a special instance of homotopy equivalence of Lipschitz constant 1. Concretely,
for any base 1-cell b, one can choose an arbitrary fiber automorphism ϕb ∈ ZmF and change
the twists as ϕ(b, a) → ϕ(b, a) + ϕb for all a ∈ ∂b. Likewise, one can choose an arbitrary fiber
automorphism ϕa ∈ ZmF for any base 0-cell a, and modify the twists as ϕ(b, a)→ ϕ(b, a) + ϕa for
all b ∈ ∂Ta. These modifications, referred to as gauge transformations, are simply redefinitions of
the coordinate system in the fiber. Clearly, all twists around any given base 1- or 0-cell can be
made zero by some gauge transformation.

Each step of cell combining (or collapsing) in the equivalence for the classical code involves only
a single bit (or check) of the original code. For any such bit (or any check), we can use the gauge
redundancy so that all twists involving that bit (or that check) are equal to zero. Then, given
homotopy equivalences f, g for the combining (or collapsing step), we use equivalence f ⊗ I, g ⊗ I
for the fiber bundle code. Since f, g, h act as the identity except for cells associated with the given
bits or checks of the original code, it suffices to check homotopy equivalence only on those, for
which the result follows from the untwisted case. Thus, the homotopy equivalence is established as
claimed.

This homotopy equivalence is a composition of O(N) “local” homotopy equivalences, but the
Lipschitz constant is much smaller than the product of those local Lipschitz constants. In fact,
along the sequence of local homotopy equivalences, the image of one cell is merged with other cells
or split into several cells only once. Hence, the Lipschitz constant of the composition is at most
the maximum of those of local homotopy equivalences.

Given these results, it follows that the distance of the fiber bundle code over the weight-reduced
classical code is within a polylogarithmic factor of the distance of the fiber bundle code over the
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original classical code. This distance bound is probably not optimal: it does not use the fact that,
for example, a chain on the weight-reduced bundle code representing an element of homology must
be closed, but only uses the fact that its image under the map is closed. Similarly to how we did
not optimize logarithms earlier, we do not worry about this here.

B Notation

Here we present a brief list of some notation used in the paper. The notation is not in alphabetical
order but rather is in a rough order of when the concepts are introduced.

B: the base of the bundle

F : the fiber of the bundle

E : the fiber bundle. Qubits of a quantum code are associated with 1-cells of this bundle while
checks of the code are associated with 0- and 2-cells.

nB: the number of 1-cells in the base.

mB: the number of 0-cells in the base.

nF = mF : the number of 0-cells in the fiber which is the same as the number of 1-cells in the fiber.

B: a bipartite graph defining the base. The right vertices represent bits (variables) of a code
which correspond to 1-cells of the base, and the left vertices represent checks of a code which
correspond to 0-ells of the base.

F : a cycle graph.

[n]: shorthand notation for the set of integers {1, 2, . . . , n}.

`: an integer chosen so that nF = mF = `2. All twists are integer multiples of `.

105: a large universal constant related to bounding expansion in the base graph; see Proposi-
tion 3.2.

U : the set of used twists: U = [mF/`] = [`].

n,m: shorthand notation used sometimes for nB,mB.

∆: the average check-degree of the base code. Ultimately, ∆ is chosen to be Θ(log2 n).

k: the number of distinct twists. Ultimately, k is chosen to be Θ(log n).
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