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We consider process tomography for unitary quantum channels. Given access to an
unknown unitary channel acting on a d-dimensional qudit, we aim to output a classical
description of a unitary that is ε-close to the unknown unitary in diamond norm. We
design an algorithm achieving error ε using O(d2/ε) applications of the unknown channel
and only one qudit. This improves over prior results, which use O(d3/ε2) [via standard
process tomography] or O(d2.5/ε) [Yang, Renner, and Chiribella, PRL 2020] applications.
To show this result, we introduce a simple technique to “bootstrap” an algorithm that
can produce constant-error estimates to one that can produce ε-error estimates with
the Heisenberg scaling. Finally, we prove a complementary lower bound showing that
estimation requires Ω(d2/ε) applications, even with access to the inverse or controlled
versions of the unknown unitary. This shows that our algorithm has both optimal query
complexity and optimal space complexity.
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1. Introduction

Quantum mechanics models the time evolution of a closed system as a unitary operator on the
vector space of states. From the perspective of an experimentalist, this model serves as a mechanism
for producing statistical predictions. This operational point of view prompts a fundamental question:
when and how one can interact with a system with some unknown dynamics to learn its corresponding
unitary operator? This question generally goes under the name of process tomography, and has been
studied extensively in a variety of settings depending on chosen figures of merit; see our discussion
in Section 1.3 below. The figures of merit may be one or more of the following: the accuracy of an
estimate (measured with some metric on the space of quantum channels), the number of times one
has to run the unknown dynamics, the complexity of initial states and that of measurements, the
size of coherent Hilbert space required, and the complexity of classical processing.

In this paper, we design an algorithm with the following properties. Let ‖·‖� denote the diamond
norm, the completely bounded norm on the space of linear operators acting on density matrices.
Let U(d) denote the set of all d× d unitary matrices. If X ∈ U(d) is any unitary operator, we denote
by U(X) the associated unitary channel

U(X) : ρ 7→ XρX†. (1)

Theorem 1.1 (Upper bound). There is a quantum algorithm A that, given black-box access to an
unknown d-dimensional unitary channel Z ∈ U(d) and any ε > 0, outputs a classical description of
a unitary. This output is probabilistic and can be viewed as a U(d)-valued random variable Ẑ. The
algorithm satisfies the following properties:

1. (Query complexity) A queries the black box O(d2/ε) times.

2. (Space complexity) A only uses one qudit of dimension d. Specifically, it only prepares states
of the form V2(ZV1)pV0 |0〉, where the positive integer p and unitaries V0, V1, V2 ∈ U(d) are
adaptively chosen, and measures them in the computational basis.

3. (Gate complexity) If the d-dimensional qudit is embedded in n = dlog2 de qubits, then A uses
poly(d, 1/ε) one- and two-qubit quantum gates in total beyond the queries to the black box,
and the classical time complexity is poly(d, 1/ε).

4. (Closeness of output unitary) The unitary output by A is ε-close to the unknown Z in
diamond norm with high probability. Specifically, E[ ‖U(Ẑ)− U(Z)‖2� ] ≤ ε2, which implies
Pr[ ‖U(Ẑ)− U(Z)‖� ≤ 3ε ] ≥ 2

3 .
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5. (Closeness of output channel) We can also view the output of A as a channel. Let M denote
the mixed unitary channel induced by running A on Z and then applying its output Ẑ. Then
‖M− U(Z)‖� ≤ ε2.

Complementary to these performance guarantees, we also show the following lower bound, which
also holds against algorithms that can use Z† and controlled versions of Z and Z†.

Theorem 1.2 (Lower bound). Let A be an algorithm that, for an unknown d-dimensional unitary
Z ∈ U(d) accessible through black box oracles that implement Z, Z†, cZ = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ Z,
and cZ† = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ Z†, can output a classical description of a unitary channel U(Ẑ)
such that ‖U(Ẑ)− U(Z)‖� < ε < 1

8 with probability ≥ 2
3 . Then A must use Ω(d2

ε ) oracle queries.

Due to subtle differences in assumptions and objectives, we give comparison to the prior art after
we properly define mathematical notions. In brief: standard process tomography for general chan-
nels [Leu00] uses one qudit but requires a 1/ε2 error dependence, which we improve quadratically.1
Most prior work takes the accuracy measure to be either the one in Item 5 of Theorem 1.1, referred
to in this work as the problem of Approximate Storage-And-Retrieval, or the closeness of the output
unitary in entanglement infidelity. Prior work of Yang, Renner, and Chiribella [YRC20] gives an
algorithm that applies the unknown Z in parallel to achieve the current best guarantees for these
problems. In particular, it recovers Theorem 1.1.5 with the same query complexity. However, these
problems are easier than that of unitary estimation to diamond-norm distance: norm conversion
gives an algorithm for diamond-norm distance with O(d2.5/ε) applications. We improve on this by
a factor of O(

√
d), and improve the number of qudits used from O(d2.5/ε) to 1.

Notation. Throughout the paper, all logs have base e =
∑
k≥0

1
k! ≈ 2.718, and exp(x) = ex =∑∞

j=0
xj

j! for any x ∈ R. The dimension of a qudit is denoted by d ≥ 1, which we sometimes take
to be n qubits, so that d = 2n. For matrices, ‖·‖op is the largest singular value (also known as the
operator norm or spectral norm), ‖·‖1 is the trace norm (also known as the Schatten 1-norm), and
‖·‖F is the Frobenius norm. For a vector v ∈ Cd, diag(v) ∈ Cd×d denotes the matrix with v on the
diagonal. We use I to denote the identity element of U(d).

1.1. Preliminaries: Distances for unitary (and other) channels

We are mainly interested in distance measures between unitary channels. However, for comparison
with prior work we need to consider distances between general channels. For more information on
the distances discussed herein, the reader may consult, e.g., [GLN05, YF17]. We defer proofs to
Appendix A.

A standard way to measure distances between channels E1, E2 operating on a register “A” is to
choose a distance d(·, ·) on mixed quantum states and then consider

sup
B

max
ρAB
{d((E1 ⊗ IB)(ρAB), (E2 ⊗ IB)(ρAB))}, (2)

where B is an ancilla register and ρAB is a mixed state on both registers. When d is trace distance,
this leads to the diamond norm:

Definition 1.3. When the state metric in Equation (2) is trace distance, d(ρ1, ρ2) = 1
2‖ρ1 − ρ2‖1,

we obtain the diamond-norm distance, denoted dist�(E1, E2) = 1
2‖E1 − E2‖�.

1We were not able to locate a O(d2/ε2)-query process tomography algorithm for diamond-norm distance in the
literature; we prove this result in Section 2.
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The diamond-norm distance is a natural choice for measuring worst-case error. It has direct
operational meaning: if a channel sitting in a quantum circuit is replaced by another channel that
is ε-different in diamond-norm, then the output distribution of the algorithm is at most ε-different
from the original in total variation distance. Between unitary channels, the diamond-norm distance
is equivalent (up to constants) to other familiar metrics on unitary matrices. We will switch between
these metrics throughout the paper depending on which is convenient. One such metric is operator
norm distance up to phase, which we use in Section 2.

Definition 1.4. For unitaries U, V ∈ U(d) we define

distphaseop(U, V ) = min
φ∈U(1)

‖φU − V ‖op. (3)

We must take distance up to phase because a unitary channel only specifies a corresponding unitary
up to global phase; for example, U and −U perform identical operations on quantum states. Another
equivalent metric is the intrinsic metric on the projective Lie group PU(d) = U(d)/U(1), which we
use in Section 3.1.

Definition 1.5. We consider the length of a path on the Lie group U(d) with respect to the operator
norm on the tangent space u(d). For unitaries U, V ∈ U(d), we define dist(U, V ) to be the length of
a shortest smooth path γ : [0, 1]→ U(d) between them (γ(0) = U, γ(1) = V ). As an equation,

dist(U, V ) = inf
paths γ

len(γ), where len(γ) =
∫ 1

0
‖γ′(t)γ(t)−1‖opdt =

∫ 1

0
‖γ′(t)‖opdt. (4)

We further define the corresponding metric on the projective group PU(d) via this metric.

dist(U,U(1)V ) = inf
φ∈U(1)

dist(U, φV ) (5)

An alternative way to define dist(U, V ) is that it is the unitarily invariant metric satisfying
dist(I, diag(eiφ1 , . . . , eiφd)) = maxk∈[d]|φk| for φ1, . . . , φd ∈ [−π, π).2 That is, dist(U, V ) is the
largest angle an eigenvalue of U †V forms with 1.

Proposition 1.6 (Equivalence of diamond norm, operator norm, intrinsic Lie metrics). For unitaries
U, V ∈ U(d), the metrics ‖U(U)− U(V )‖�, distphaseop(U, V ), and dist(U,U(1)V ) are equivalent up
to constants. Specifically, the following inequalities hold.

distphaseop(U, V ) ≤ dist(U,U(1)V ) ≤ π
2 distphaseop(U, V ) (6)

1
2‖U(U)− U(V )‖� ≤ distphaseop(U, V ) ≤ ‖U(U)− U(V )‖� (7)

Other work on unitary estimation and “Storage-and-Retrieval” problem, defined below, considers
an accuracy measure that is not equivalent: the entanglement (in)fidelity. This is the accuracy
measure that naturally arises when one estimates a channel by performing state tomography on its
Choi state. Another way to recover this norm is to consider the channel norm induced by Bures
distance (square-root of infidelity), i.e. taking d to be Bures distance in Equation (2), but rather
than maximizing over all ρAB one simply fixes ρAB to be the maximally entangled state.3

2Taking this definition as a starting point, one may find it involved to prove triangle inequality, which is trivial under
the definition by the minimization over paths. We will later see that these two definitions coincide.

3When E1 is unitary, the entanglement infidelity is the same as the so-called average gate infidelity up to the small
constant factor of d/(d + 1) [HHH99]. Without this restriction of fixing ρAB , the resulting distance is an alternative
distance studied in [YF17]. It is termed the minimum gate fidelity when E1 is unitary.
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Definition 1.7. The entanglement infidelity between d-dimensional channels E1, E2 is defined to be

F (E1, E2) = 1− F (J(E1), J(E2)), (8)

where F is squared quantum state fidelity F (ρ, σ) = (‖√ρ
√
σ‖1)2 and J(E) is the Choi state (EA ⊗

IB)(1
d
∑
i,j |ii〉 〈jj|) of E .

The notation F (·, ·) is not standard. In case E1 = U(U) and E2 = U(V ) for U, V ∈ U(d), we have a
simpler formula

F (U(U),U(V )) = 1−
∣∣∣1d Tr(U †V )

∣∣∣2. (9)

Remark 1.8. F (·, ·) is not a metric on PU(d) = U(d)/(U(1)I), but it is related to one:√
1−

√
1− F (U(U),U(V )) = 1√

2d min
φ∈U(1)

‖U − φV ‖F (10)

is a metric (which is roughly
√
F/2 for small F ). The Frobenius norm on the right-hand side can

be thought of as the two-norm distance between the Choi states of U and V , treated as pure state
vectors, not density matrices, minimized over global, unphysical phase factors.

An elementary argument shows that estimating a unitary channel to entanglement infidelity ε
only implies estimating it to

√
dε error in diamond-norm distance. The factor of

√
d reflects that

entanglement infidelity is an average-case accuracy measure, whereas diamond norm is a worst-case
accuracy measure. For example, the entanglement infidelity between the multiply controlled NOT
gate CkX (e.g., the usual CNOT if k = 1 or Toffoli if k = 2) and the identity is O(2−k) for large k,
but the diamond-norm distance between the two is 1.
Proposition 1.9. For all d and any unitaries U, V ∈ U(d),

4F (U(U),U(V )) ≤ ‖U(U)− U(V )‖2� ≤ 2d · F (U(U),U(V )). (11)

The left-hand side is sharp for d even and the right-hand side is sharp for all d ≥ 2:

sup
U /∈U(1)V

F (U(U),U(V ))
‖U(U)− U(V )‖2�

= 1
4 if d is even, and sup

U /∈U(1)V

‖U(U)− U(V )‖2�
F (U(U),U(V ))

= 2d. (12)

1.2. Unitary estimation and related problems

We are interested in the following task:
Definition 1.10. The estimation task for unitary channels is the following: One is given black-box
access to a unitary channel by Z ∈ U(d). After applying the unitary channel some Q times, the
algorithm should output a classical description4 of a unitary Ẑ ∈ U(d). The algorithm may be
probabilistic and hence Ẑ should be thought of as a random variable. The goal is to achieve

E[error(U(Z),U(Ẑ))] < ε. (13)
4Throughout this paper, for ease of exposition we will be treating these descriptions as if they have infinite precision.

To formalize our results when numbers can only be specified up to a machine precision εmach, one could discretize
the space of unit vectors and unitary matrices with O(εmach)-nets. Then, a classical description of a unitary matrix
or a unit vector is a list of numbers defining a matrix or vector that need not exactly satisfy the desired constraints,
but is εmach-close to an element of the net. When we need to implement a unitary from its classical description, we
implement this element. This incurs an error of poly(d, 1/ε)εmach throughout the argument, which can be made
to be O(ε) by incurring O(log(d/ε)) overhead in classical time complexity, beyond the factors of O(log(1/εmach))
from incorporating finite precision arithmetic (which we ignore in our discussions of time complexity). This issue
only affects constant factors in our proofs in a very minor way, and we trust the diligent reader to take note of the
required changes.
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Here, error(·, ·) is some accuracy measure between unitary channels.

Note here we are only using the error measure between two unitary channels.

Remark 1.11. More generally, one can introduce another parameter η and have the goal be that
error(U(Z),U(Ẑ)) ≤ ε except with probability at most η. As long as error(·, ·) is a metric, this
can be achieved with O(Q log(1/η)) applications of Z as follows: First, Markov’s inequality implies
that Pr[error(U(Z),U(Ẑ)) > 3ε] ≤ 1/3. Then, one can reduce to a general η > 0 at the expense of
an O(log(1/η)) factor using the “median trick”; see Proposition 2.4.

In order to more carefully quantify the resources needed to solve the unitary estimation task,
we generally consider hybrid classical/quantum algorithms. These mix classical computation and
measurement-outcome-processing with quantum state preparation, applications of Z and other
quantum operations, and measurements. Besides the query complexity Q, there are some additional
resources one wishes to minimize, one of which is the following.

Definition 1.12. In the task of estimating Z ∈ U(d), assume that d = 2n for some number of
qubits n. The space overhead of an estimation algorithm is the total number of qubits beyond the
minimum, n, used in the course of the algorithm.

There are several tasks closely related to unitary estimation in the literature, going under
the names of “universal programming”, “unitary cloning”, “reference frame transmission”, and
“unitary learning”. For comparison with previous work, it suffices for us to discuss the problem
commonly known as “learning” a unitary channel. However, since “learning” and “estimation” are
often regarded as synonymous in casual speech, we will follow [SBZ19] and use the terminology
“Storage-And-Retrieval”, to avoid confusion.

Definition 1.13. The SAR task for unitary channels (Storage-And-Retrieval) involves developing
two quantum algorithms [BCD+10]. The “storage” algorithm S is given black-box access to a unitary
Z ∈ U(d); after applying the unitary some Q times, S should output a possibly mixed quantum
state ψ. The “retrieval” algorithm R takes as input ψ and implements a possibly nonunitary qudit
channel C, which may be random with some distribution. The goal is to achieve the following:

Pr
C

[error(U(Z),C) > ε] ≤ η. (14)

Note that here error(·, ·) is measuring the error between a unitary channel and a possibly nonunitary
channel. The storage complexity of the algorithm is the number of qubits used for ψ.

Remark 1.14. The case of minimizing η while insisting on ε = 0 is known as Probabilistic SAR
and is studied in, e.g., [SBZ19]. In this case, the channel C is necessarily unitary. The output of the
storage algorithm in [SBZ19] is always pure. On the other hand, for comparison to prior work, we
focus on the case of η = 0, which may be termed Approximate SAR. This latter problem is the one
commonly known as “learning” a unitary.

We can perform this task with a unitary estimation algorithm by simply taking the estimate’s
classical description and then synthesizing and applying it. We provide some notation formalizing
this.

Definition 1.15. If U is a U(d)-valued classical random variable, we denote by M(U) the mixed-
unitary channel associated to U

M(U) =
∑
X

Pr[U = X] U(X). (15)
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Note that if U is a unitary-valued random variable, the notation U(U) stands for a unitary-
channel-valued random variable; that is, U(U) is not the same thing as M(U). We will now
compare unitary estimation and SAR. An instructive example to keep in mind is the case where
an algorithm A takes a black box for the identity channel Z = I and outputs the matrix Ẑ,
which is [ 1

eiε ] or [ 1
e−iε ] with probability 1

2 . One can verify that E[‖U(Z)− U(Ẑ)‖�] = Θ(ε) and
‖U(Z) −M(Ẑ)‖� = Θ(ε2), so by the following remark, on this input Z = I with diamond-norm
distance as the error measure, A performs unitary estimation to error Θ(ε) and Approximate SAR
to error Θ(ε2).

Remark 1.16. A unitary estimation algorithm A may be turned into an SAR algorithm with
the same ε and η parameters: the storage algorithm S is A, with ψ being the mixed state of
orthogonal quantum states each of which is classical and encodes an output Ẑ of A; and the retrieval
algorithm R simply synthesizes and applies C = U(Ẑ) from its classical description. Here, the
channel C is unitary.

More subtly, we can also turn A into an Approximate SAR algorithm as follows. We let the
storage algorithm the same as before, but let the retrieval algorithm implement a mixed unitary
C =M(Ẑ) with probability one. This reduction is identical to the previous one, with the difference
being that we treat the randomness of Ẑ as part of the channel being applied. The accuracy of this
Approximate SAR is given by

error(U(Z),M(Ẑ)). (16)

This error measure is different in general from the error measure in the unitary estimation algorithm’s
promise, E

Ẑ
error(U(Z),U(Ẑ)) ≤ ε.

If error is diamond-norm distance, then error(U(Z),M(Ẑ)) ≤ E
Ẑ

error(U(Z),U(Ẑ)) ≤ ε by the
convexity of the norm, so in this setting Approximate SAR reduces to unitary estimation. However,
error(U(Z),M(Ẑ)) can in fact be made much smaller, to O(ε2); see Proposition 1.18. We can think
about Approximate SAR as, roughly, the version of unitary estimation where we only need to be
right “in expectation”. In particular, though the output of the unitary estimation algorithm U(Ẑ)
is explicitly given, the output of the converted Approximate SAR algorithm M(Ẑ) is not, so we
might not know what it is.

Remark 1.17. (Continued from Remark 1.16) If error = F , the entanglement infidelity, the
accuracy of a unitary estimation algorithm is equal to that of its converted Approximate SAR
algorithm. (Note that F is not a metric.) To see this, recall that the squared quantum state fidelity
between a pure state ψ and a mixed state ρ is linear in ρ: ‖

√
ψ
√
ρ‖21 = 〈ψ| ρ |ψ〉. Then, with a

maximally entangled state Φ = |Φ〉 〈Φ|, we have

F (U(Z),M(Ẑ)) = 〈Φ|Z†E
Ẑ

ẐΦẐ†Z |Φ〉 = E
Ẑ

〈Φ|Z†ẐΦẐ†Z |Φ〉 = E
Ẑ

F (U(Z),U(Ẑ)) (17)

where we omitted subsystem indices and identity tensor factors. Hence, F (U(Z),M(Ẑ)) =
EF (U(Z),U(Ẑ)).

One can use this fact about entanglement infidelity to show that the variance of a unitary
estimation algorithm bounds the error of its converted Approximate SAR algorithm. In some sense,
this gives a quadratically better version of Remark 1.16, since ε-error unitary estimation can give
ε2-error Approximate SAR.

7



Proposition 1.18 ([YRC20, Lemma 2]). If a unitary estimation algorithm A with an output
distribution ϕ(Ẑ|Z)dẐ is unitarily covariant, i.e., ϕ(AẐB|AZB) = ϕ(Ẑ|Z) for all A,B ∈ U(d),
then

F (U(Z),M(Ẑ)) = ‖U(Z)−M(Ẑ)‖�. (18)

Therefore, by Remark 1.17 and Proposition 1.9,

‖U(Z)−M(Ẑ)‖� = F (U(Z),M(Ẑ)) = E
Ẑ

F (U(Z),U(Ẑ)) ≤ 1
4 E
Ẑ

[‖U(Z)− U(Ẑ)‖2�]. (19)

1.3. Prior work

As far as we are aware, ours is the first work to study unitary estimation with the more stringent
diamond-norm distance as its accuracy measure. We survey the existing literature on related topics,
and then compare it to our result.

Standard process tomography. Standard quantum process tomography [NC12, Chapter 8.4.2]
solves the task of general-channel estimation problem by preparing a basis of quantum states, passing
them through the channel, and performing state tomography on the results. One has to take care to
analyze how the error bounds for state tomography affect the error bounds for channel estimation;
see, e.g., [LSS+20] estimation of minimum gate fidelity for bounds of the form Q ≤ poly(d)/ε2

for general-channel estimation with respect to minimum fidelity. For the special case of unitary
channels one can get improved bounds, as one only needs to work with O(d) pure-state estimation
tasks. Naively analyzing this strategy yields an Q ≤ O(d3/ε2) sample upper bound, as an ε error
for each state estimate can compound to a O(

√
dε) error in diamond-norm distance for the resulting

channel. But as we show in Section 2, with care this method can be used to obtain Q ≤ O(d2/ε2)
query complexity for unitary estimation with respect to diamond-norm distance. An advantage of
this method is that it uses zero space overhead.

Another well-known approach to quantum process tomography is the ancilla-assisted method
dating back to Leung [Leu00]. Here one prepares the maximally entangled state in d2 dimensions,
passes the first half through the channel, and uses state tomography. Again, if the channel is unitary
one can use pure state tomography, and with this approach it is not hard to deduce that Q ≤ O(d2/δ)
queries suffices to obtain unitary estimation with respect to entanglement infidelity δ. Besides
using O(log d) space overhead, this approach also only gives an Q ≤ O(d3/ε2) query complexity
bound for diamond-norm distance ε, via the relations Propositions 1.6 and 1.9. However, like with
standard process tomography, with a tighter analysis, one may be able to give an Q ≤ O(d2/ε2)
query complexity bound.

Unitary estimation. The specific task of unitary estimation was perhaps first studied by Aćın,
Jané, and Vidal [AJV01], where representation theory was used to determine an optimal algorithmic
strategy with respect to entanglement infidelity under the assumption that the unknown Z is
applied in parallel to one half of a bipartite system. Asymptotic analysis of the error was not given,
however. Later, Peres and Scudo [PS02] gave an alternate method establishing that Q ≤ O(1/

√
δ)

queries suffice to obtain entanglement infidelity δ in the case d = 2. Then Bagan, Baig, and Muñoz-
Tapia [BBMT04a] established the same scaling for the method from [AJV01]; and, they [BBMT04b]
and Chiribella, D’Ariano, Perinotti, and Sacchi [CDPS04] did the same for a similar method that
didn’t require entangled measurements on both parts of the bipartite system. See also independent
work of Hayashi [Hay06]. Chiribella, D’Ariano, and Sacchi [CDS05] again showed a more general
optimality result for entanglement infidelity, implying that Q ≥ Ω(1/

√
δ) is a lower bound for this
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accuracy measure when d = 2; however, the asymptotic dependence for d > 2 was not established.
Later, Kahn [Kah07] showed that the optimal scaling for general d is of the form Q = Θ(f(d)/

√
δ)

for some function f(d), but was unable to asymptotically analyze it.
Finally, in 2020, Yang, Renner, and Chiribella [YRC20] were able to analyze the optimal unitary

estimation algorithm for entanglement infidelity and showed that it achieves error δ with Q ≤
O(d2/

√
δ) queries. Moreover, they showed Proposition 1.18, and since their algorithm is unitarily

covariant, this implies an Approximate SAR algorithm with Q ≤ O(d2/
√
ε) with respect to

diamond-norm error ε. We remark that this optimal unitary estimation algorithm from [YRC20]
applies the unknown unitary Z in parallel and hence has space overhead on the order of the query
complexity Θ(d2 log(d)/

√
ε).

Comparison to [YRC20]. Our main result recovers the unitary estimation (with respect to
entanglement infidelity) and Approximate SAR (with respect to diamond-norm distance) results of
Yang, Renner, and Chiribella [YRC20]. First, by norm conversion Proposition 1.9, our algorithm
with Q ≤ O(d2/ε) achieves the guarantee E[ F (U(Ẑ),U(Z)) ] ≤ E[ ‖U(Ẑ)− U(Z)‖2� ] ≤ ε2, giving
the unitary estimation guarantee. Second, since any algorithm can be made unitarily covariant,
using the same reduction of Proposition 1.18, we achieve an Approximate SAR algorithm with
Q ≤ O(d2/

√
ε) with respect to diamond-norm error ε.

Neither of these results from [YRC20] imply our result of unitary estimation to diamond norm
error. Through norm conversion Proposition 1.9, a O(d2/

√
δ)-query unitary estimation algorithm

with respect to entanglement infidelity δ implies a O(d2.5/ε)-query algorithm with respect to
diamond-norm distance ε. This conversion is tight, even if the unitary estimation algorithm is
unitarily covariant. Also, as discussed in Remark 1.16, the output of an approximate SAR algorithm
is correct in expectation, but any individual output need not be close in diamond norm.

Finally, our algorithms have space overhead of zero, improving over [YRC20] and making our
algorithm significantly closer to practical. Note that the main figure of merit in [YRC20], program
cost, denotes the size of the output of the storage algorithm, and is different from the space referred
to here, which is the space complexity of the storage algorithm (Definition 1.13).

Comparison to [vACGN23]. Van Apeldoorn, Cornelissen, Gilyén, and Nannicini shows that,
given a unitary Z ∈ U(d) implementing an unknown state Z |0〉 = |z〉 ∈ Cd, one can compute an
estimate |ẑ〉 which is ε-close in Euclidean norm with ≥ 1− δ probability [vACGN23, Theorem 23].
Their algorithm uses O(d

ε log d
δ ) applications of the controlled black box unitary cZ and its inverse

cZ†, along with O(d log d
ε ) qubits. This implies an algorithm for unitary estimation, by using

this state tomography algorithm for standard process tomography (see Propositions 2.2 and 2.3)
which uses O(d2

ε log d
δ ) applications of cZ and cZ† and Θ(d log d

ε ) space overhead. This algorithm is
based on quantum singular value transformation, so the use of cZ and cZ† and the nonzero space
overhead appear to be inherent limitations of their approach. Similarly, other standard primitives in
quantum algorithms like amplitude estimation, which we might ordinarily reach for when aiming for
a quadratic improvement in error, have similar limitations in terms of requiring stronger access to Z
or space overhead. Our algorithm is more direct and so does not lose anything in query complexity
or space complexity, and only uses queries to Z, and not cZ or cZ†. The gate complexity of both
algorithms is similar.

Comparison of techniques to prior work. Existing algorithms for estimating a parametrized
class of gates with Heisenberg scaling, like metrology with a GHZ state [JWD+08] and robust
phase estimation [KLY15], proceed by applying the black box many times in parallel or in series
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(respectively). Our algorithm uses the same principles (see the warmup in Fig. 1), but as discussed
in the next section, naive generalizations of these approaches cannot work. We introduce a novel
“shift to identity” step to avoid areas in the space of unitary channels where applying the black box
in series fails; this adaptivity allows us to extend robust phase estimation, which can estimate a
parameter on the complex unit circle, to work for elements in a much trickier space.

The process tomography protocol most similar to the algorithm presented in our work is that
of gate set tomography [NGR+21], which can achieve Heisenberg scaling, Θ(1/ε), in regimes of
practical interest by interleaving long sequences of gates. This is qualitatively similar to what our
algorithm does, though we are not aware of work giving theoretical bounds on such protocols.

Prior work on lower bounds. Lower bounds on channel estimation and discrimination are just
as well-studied as upper bounds. Some prior work has tried to characterize the optimal strategy for
various problems, such as showing they are sequential or parallel [DFY07, BMQ22]. As mentioned
previously, though these results describe optimal strategies for these problems, it is unclear if they
imply lower bounds better than Ω(d2 + 1

ε ). Up to log factors, this lower bound is an immediate
consequence of parameter counting (e.g. [NC12, Chapter 8.4.2], [BKD14], which one can make
rigorous with a Holevo bound [CvDNT99]) and the optimality of Heisenberg scaling. However, these
two arguments do not combine naturally to get the Ω(d2/ε) bound we would expect.

To our knowledge, we give the first jointly optimal lower bound, in the sense that for any
decaying function d 7→ ε = ϕ(d) our lower bound Ω(d2/ϕ(d)) matches the query complexity of our
algorithm up to a universal constant. Our lower bound combines prior work on unitary channel
discrimination [BMQ22] with a reduction technique from quantum query complexity [CGM+09,
BCC+17]. Though quantum query complexity focuses on diagonal unitaries, we observe that roughly
the same technique can be applied to this general unitary estimation setting with some modification.

1.4. Techniques

An algorithm with suboptimal ε scaling. A standard idea in process tomography is to
estimate Z by doing state tomography on Z|0〉, Z|1〉, and so on, and then somehow collate these
estimates into a full estimate of Z. Since each state tomography requires O(d/ε2) samples, this
whole procedure can be done with O(d2/ε2) applications of Z (Theorem 2.1). There are two minor
issues to address when formalizing this. First, an ε error in each state tomography could cascade
to a ε

√
d error in the final estimate of Z. We address this by ensuring that the state tomography

algorithm produces Haar-random error, so that with high probability the errors do not compound.
Second, we can only estimate each column up to a phase, so we need to additionally deduce the
relative phases between columns. We address this by showing that learning the columns up to phase
of both Z and ZF , F being the discrete Fourier transform, suffices to deduce these relative phases
(Proposition 2.3).

Achieving the optimal Heisenberg scaling. We wish to improve the O(1/ε2) dependence of
process tomography to O(1/ε). Our strategy will be to use process tomography as a subroutine, but
boost the error some other way. Specifically, we give a bootstrapping procedure (Algorithm 1) that
estimates a unitary to ε error by making calls to a “base” algorithm that can only output unitary
estimates to error 1

200 , paying an 1/ε factor of overhead in the query complexity (Theorem 3.3).
Using the O(d2/ε2

0) unitary estimation algorithm with ε0 = 1
200 , as the base, this gives the desired

O(d2/ε) query complexity.
A good first try is to get constant-error estimates for Z2j for j going from 1 to dlog2(1/ε)e, with

the hope that the estimate of Z2j will refine the estimate of Z to 2−j error. Taking powers of an
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Figure 1.: The warmup example: we wish to learn Z =
( 1

φ

)
, where we do not know the phase φ

on the complex unit circle. Our strategy is to get constant-error estimates to Z2k , which
correspond to phases ψk that specify a constant-sized interval around φ2k for each k.
Although each interval only pins down the corresponding power of φ to constant error,
each ψk can be thought of as specifying the kth “bit” of information of φ. So, when taken
together, these error intervals can be collated to get an estimate of φ to error O(ε) for
the cost of computing constant-error estimates of powers of Z up to Z1/ε.

unknown gate with exponentially increasing degree is an existing method in quantum metrology for
achieving the Heisenberg limit. In particular, we can view this as a non-coherent version of phase
estimation [KLY15], where the application of Z2j to an eigenvector of Z extracts the jth bit of its
corresponding eigenvalue. This argument can be shown to work in simple cases, such as when Z is a
rotation in two dimensions (Fig. 1), but if all the eigenvalues of Z are ±1, then any power is either I
or Z so it is impossible to gain any better information about the eigenvectors of Z from its powers.

Nonetheless, we find that if the powers of Z are always close to the identity for all sufficiently high
exponents (and hence no eigenvalue is close to −1), then this idea works out. Specifically, we show
in Lemma 3.1 that if unitaries U and V are α-close in diamond-norm distance, then U1/p and V 1/p

are 50α/p-close, provided that U and V are 0.01-close to the identity. We can use this lemma to
bootstrap a constant-error estimate to an ε-error one, provided we always apply the base algorithm
to matrix powers that are close to the identity. Thus, we always bring the unknown unitary close
to the identity: instead of running the base unitary estimation algorithm on Z2j , we run it on
(ZV †j )2j , where Vj is our best estimate to Z so far in the algorithm. This recenters the unitary at
the identity so that we can power it up even further. We note here that, upon formulating the right
technical lemma to use (Lemma 3.1), the analysis of the resulting algorithm (Algorithm 1) becomes
surprisingly simple.

Lower bound. To achieve our lower bound of Ω(d2/ε), we consider a hard instance of the unitary
estimation problem, in which one is asked to identify one of exp(Ω(d2)) candidate unitary channels
that are ε-apart from one another and are all O(ε)-close to the identity in the diamond norm.
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Specifically, we choose the ensemble to be εth-power of a net of reflections.
Simple arguments give a lower bound of Ω(d2 + 1

ε ), with d2 being a generic lower bound for
identifying one of exp(Ω(d2)) candidate unitary channels [BMQ22] and 1

ε being the number of
applications of a channel necessary to discriminate two channels that are ε-close in diamond-norm
distance. To improve this, we wish to argue that, since a unitary Z taken from the hard instance
applies an εth power of a reflection, the task of distinguishing Z is a factor of 1/ε harder than
the task of distinguishing the net of reflections. Intuitively, this holds because Z is essentially the
identity for all but an ε fraction of the time it is applied.

This heuristic picture can be made precise by showing a reduction from “fractional-query”
algorithms to “discrete-query” algorithms [CGM+09, BCC+17]. This reduction converts a circuit
that calls Z, the εth power of a reflection, into one that calls that reflection conditioned on some
ancilla. So, hardness of a problem using queries to the reflection lifts to hardness of the problem
using queries to Z. Translating to our setting, directly applying this reduction shows that a Ω(d2) to
distinguishing a net of reflections translates to a Ω(d2

ε
log log(1/ε)

log(1/ε) ) lower bound for the hard instance.
This reduction is tight, though, so removing the log log(1/ε)

log(1/ε) term requires additional insight.
We consider again the reduction of [CGM+09, BCC+17] converting a fractional-query circuit to

a discrete-query circuit. This reduction adds one ancilla qubit per oracle call to Z and the joint
state of all the ancillas is a superposition of some bitstrings. The average weight of the bitstring
is an effective number of the oracle calls to the reflection, which is smaller than the naive query
complexity for Z by a factor of ε� 1. Without much change in the output distribution of the overall
algorithm, one can modify the algorithm to monitor the weight of the ancilla bitstring and actually
reduce the number of oracle calls by the factor of ε. This reduction however comes at a price: the
modified algorithm now requires postselection whose success probability is exponentially small in the
query number. Addressing this small success probability is where one picks up the sub-logarithmic
term. However, for this particular lower bound we need not address it: an exponentially small
success probability is still hard to achieve for unitary discrimination. Bavaresco, Murao, and
Quintino [BMQ22] gives a useful relation between the query complexity of a unitary discrimination
problem and success probability, and we observe that small success probability is still meaningful as
long as the algorithm is appreciably better than merely guessing the answer. This gives the optimal
Ω(d2/ε) lower bound.

1.5. Discussion

Improving gate complexity. We give an algorithm for unitary channel estimation that is query-
efficient and space-efficient. However, we still need to run quantum circuits with poly(d, 1/ε) depth,
in addition to the oracle calls. If this could be improved to poly(log(d), 1/ε), it would make this
algorithm significantly more practical. However, the depth is bottlenecked by the “shifting to
identity” step, which requires a unitary synthesis and so is high depth. As discussed in Section 1.4,
this step appears to be necessary to avoid the hard case of unitaries with −1 eigenvalues.

A simpler question is whether the O(d2/ε2) algorithm can be made gate-efficient. In view of this
goal, we give a gate-efficient version of pure state tomography with optimal sample complexity in
Appendix C; prior gate-efficient algorithms lose log factors in the sample complexity. This should be
able to give a O(d2/ε2) query complexity algorithm with the desired gate complexity and optimal
space complexity, though we do not prove this.

Estimating the eigenvalues of a unitary channel. We show in Appendix B that shifting to
the identity is not necessary when we merely want to learn the eigenvalues of the unitary without
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the eigenvectors. In this Appendix, we describe how to use a (gate-efficient) control-free version of
phase estimation to achieve this result (though notably, the estimates we achieve do not distinguish
between eigenvalues of different multiplicity). This algorithm appears to be folklore. If one can
reduce unitary estimation to poly(d) instances of eigenvalue estimation, then this result would give
gate-efficient unitary channel tomography with query complexity poly(d)/ε.

Generalizing beyond unitary channels. Finally, we note that our results do not extend to
general channels. For example, the channel that destroys the input and outputs the outcome of a
biased coin requires Ω(1/ε2) queries to estimate. However, we leave open the question of analyzing
this algorithm’s tolerance to noise, and the related question of whether o(1/ε2) process tomography
is possible for “close-to-unitary” channels.

2. Base tomography using O(d2/ε2) applications

In this section we show a base tomography algorithm that has a quadratic dependence on the
desired precision. We will use the “operator norm up to phase” distance for this section, defined in
Definition 1.4, which is equivalent to diamond norm up to constants.

Theorem 2.1. There is a tomography algorithm that, given access to an unknown unitary Z ∈ U(d),
as well as parameters ε, η > 0, applies Z at most O(d2/ε2)·log(1/η) times and outputs an estimate V
satisfying distphaseop(Z,V ) ≤ ε except with probability at most η. The algorithm uses only a d-
dimensional Hilbert space (in particular, only n qubits when d = 2n).

In fact, by standard methods (explicitly shown in Proposition 2.4 below) it suffices to prove this
theorem for a fixed confidence value less than 1

2 , say η = 1
3 .

Our algorithm will essentially learn the unknown Z column by column, using the below pure
state tomography result, Proposition 2.2. This result was essentially previously known, but we will
take care of a few minor details in Section 2.1.

Proposition 2.2. There is a pure state tomography algorithm with the following behavior. Given
access to copies of a pure state |z〉 ∈ Cd, it sequentially and nonadaptively makes von Neumann
measurements on O(d/ε0) copies of |z〉 (using only d-dimensional Hilbert space). Then, after
classically collating and processing the measurement outcomes, it outputs (a classical description of)
an estimate pure state

|u〉 = φ
√

1− ε |z〉+
√
ε |w〉 (20)

such that: (i) φ is a complex phase; (ii) the infidelity ε is at most ε0 except with probability at
most exp(−5d) ≤ 1

100d ; (iii) the vector |w〉 is distributed Haar-randomly5 among all states orthogonal
to |z〉.

This column-by-column technique has the minor downside that each column estimate can be off
by a different complex phase φ. However, there are a few simple ways to work around this flaw; in
particular, the following result (proven in Section 2.1 below) gives a completely black-box method:

Proposition 2.3. Let L be a tomography algorithm as in Theorem 2.1, except with the following
weaker guarantee about V :

∃ a diagonal unitary Φ such that ‖ZΦ− V ‖op ≤ ε ≤ 1
8 . (21)

5Perfect Haar-randomness is only possible by making idealized assumptions about the algorithm’s hardware; such
technical issues of algorithmic complexity are deferred to Footnote 4.
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Then there is a tomography algorithm (using L twice) that achieves Theorem 2.1, with 25ε and 2η
in place of ε and η, and O(d3) additional classical time complexity.

Putting all of the above together, we can establish our base tomography result:

Proof of Theorem 2.1. From the preceding discussion, it suffices to obtain a unitary tomography
routine achieving Equation (21) with failure probability at most η = 1

6 . We apply the pure state
tomography routine from Proposition 2.2, with ε0 = Ω(ε2) to be chosen later, on each of |z1〉 , . . . , |zd〉,
where |zj〉 = Z|j〉. This indeed uses Z at most O(d2/ε2) times, within a Hilbert space of dimension
only d, and produces estimates |u1〉 , . . . , |ud〉. Let U ∈ Cd×d denote the (possibly nonunitary)
matrix with the |uj〉’s as columns; we will show that

∃ diagonal unitary Φ such that ‖ZΦ−U‖op ≤ ε/2, (22)

except with probability at most 1
50 . Then if we output any unitary V satisfying ‖U − V ‖op ≤ ε/2

(for example, V = XY †, where U = XΣY † is a singular value decomposition), then V will satisfy
Equation (21), as desired.

To establish Equation (22), write

|uj〉 = φj
√

1− εj |zj〉+√εj |wj〉 (23)

for j ∈ [d] as in Equation (20). Then with Φ = diag(φ1, . . . ,φd) and W the matrix with |wj〉’s as
columns, we have

U − ZΦ = ZΦD +WE, where D := diag
((√

1− εj − 1
)
j

)
, E := diag(

√
ε). (24)

We have
‖D‖op ≤ ‖E‖op = max{√εj} ≤

√
ε0 (25)

except with probability at most 1
100 , by a union bound. We will also shortly show:

Claim: ‖W ‖op ≤ C except with probability at most 2
100 . (26)

(Here C is a universal constant.) Combining the above, we conclude

‖U − ZΦ‖op ≤ 1 · 1 ·
√
ε0 + C ·

√
ε0 (27)

except with probability at most 1
100 + 2

100 <
1
6 , and this norm bound is at most ε/2 (as needed for

Equation (22)) provided we take the constant in ε0 = Ω(ε2) small enough.
It remains to prove the claim from Equation (26). Recall that W has independent unit columns
|wj〉, with |wj〉 Haar-random orthogonal to |zj〉. Introduce i.i.d. real random variables δ1, . . . , δd,
where δj is distributed as |〈1|x〉|2 for |x〉 a Haar-random unit vector in Cd. If we further introduce
i.i.d. uniformly random complex phases ψ1, . . . ,ψd, then the unit vectors

|yj〉 :=
√
δjψj |zj〉+

√
1− δj |wj〉 (28)

are in fact Haar-random and independent. Letting Y denote the matrix with the |yj〉’s as columns,
it is a standard fact in random matrix theory6 that, for some universal constant K, we have

‖Y ‖op ≤ K except with probability at most 1
100 . (29)

6For example, if Y ’s columns were independent Haar-random unit vectors in Rd (as opposed to Cd) then [Ver18,
Theorems 3.4.6, 4.6.1] would directly yield that ‖Y ‖op ≤ K except with probability at most 2 exp(−cK2d), for
some constant c > 0. The generalization to the complex case is very minor.
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We can now rewrite Equation (28) as

Y = Z∆0 +W∆1, where ∆0 := diag
((√

δjψj
)
j

)
, ∆1 := diag

((√
1− δj

)
j

)
. (30)

from which we can conclude

‖W ‖op ≤ (‖Y ‖op + ‖Z∆0‖op) · ‖∆−1
1 ‖op ≤ (K + 1) · (1−maxj{δj})−1/2 (31)

except with probability at most 1
100 . Thus to complete the proof of the claim in Equation (26), it

suffices to show

maxj{δj} ≤ 1− 1/K ′ except with probability at most 1
100 (32)

for some constant K ′. Note that for each constant value of d, the random variable δj has a continuous
probability density on [0, 1]; from this observation, it’s easy to deduce that it suffices to prove
Equation (32) under the assumption d ≥ d0 for some constant d0. But this is easy: δ2

j has mean 1/d
and is sub-exponentially distributed with parameter Θ(1/d) [Ver18, Proposition 2.7.1, Lemma 2.7.6,
Theorem 3.4.6]; hence Pr[δ2

j ≥ 1/2] ≤ exp(−Ω(d)) and—with a union bound—this is more than
sufficient for Equation (32), once d is sufficiently large.

2.1. Ancillary results for base tomography

We begin by giving a proof of the pure state tomography result we needed:

Proof of Proposition 2.2. This result was essentially proven in [CL14, KRT17]. To be precise, we
will refer to the analysis from [GKKT20, Theorem 2]. The result therein is exactly what we need,
except for the following distinctions:

• Rather than making von Neumann measurements, [GKKT20] refer to performing the “uniform
POVM” on each copy of |z〉; this is the continuous POVM with elements labeled by unit
vectors |v〉 ∈ Cd, in which the |v〉-element has density d · |v〉〈v| with respect to Haar measure
on |v〉. However, this is mathematically equivalent to first using classical randomness to choose
a Haar-random V ∼ U(d), and then projectively measuring in the basis of V ’s columns.

• The classical post-processing algorithms in [KRT17, GKKT20] do not necessarily output a
pure (rank-one) hypothesis; they output a possibly mixed state ρ, counting it as a success
(in the case of [GKKT20]) when ‖|z〉〈z| − ρ‖1 ≤

√
ε0. This also means they do not explicitly

confirm condition (iii) in Proposition 2.2, concerning the Haar-randomness of |w〉.

But inspection of the actual algorithm in [GKKT20] shows that this second issue is easily fixed.
The algorithm first forms L = (d + 1)avg{|vj〉〈vj |} − I, where the |vj〉’s are the measurement
outcomes. With O(d/ε0) measurements, this matrix is shown to satisfy ‖|z〉〈z| −L‖op ≤ 1

4ε0 except
with probability at most exp(−5d). The authors of [GKKT20] then “round” L to a quantum
state ρ by first diagonalizing it as W diag(λ)W † for W ∈ U(d) and λ ∈ Cd, and then taking
ρ = W diag(λ′)W †, where λ′ is the nearest probability vector to λ. With this adjustment, they
show that ‖|u〉〈u| − ρ‖1 ≤

√
ε0 as needed.

Note that this last inequality implies that the closest rank-1 matrix M to ρ must satisfy
‖M − ρ‖1 ≤

√
ε0. On the other hand, it is well known that M is simply given by W diag(λ′′)W †,

where λ′′ is formed from λ′ by zeroing out all entries except the largest. It follows that the zeroed-out
entries sum to at most √ε0, and hence Tr(M) ≥ 1−√ε0. If we now form M̃ = M

Tr(M) , then M̃ is a
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rank-1 state with ‖M̃−M‖1 ≤ O(√ε0) and hence ‖M̃−ρ‖1 ≤ O(√ε0) and ‖|u〉〈u|−M̃‖1 ≤ O(√ε0).
Thus we may express M̃ = |û〉〈û| and output |û〉 (after slightly adjusting the constant on ε0).

It only remains to observe that the process of forming L,ρ,M ,M̃ , |û〉 is completely symmetric
with respect to the subspace orthogonal to |u〉, and hence the “error vector” |w〉 is indeed distributed
Haar-randomly.

Next, we give the algorithm for Proposition 2.3, which fixes the column phases for our unitary
tomography algorithm:

Proof of Proposition 2.3. Let F ∈ U(d) denote the discrete Fourier transform, so 〈a|F |b〉 =
(1/
√

d) exp(−2πiab/d). (The only property we use about F is that each entry has the same
magnitude; if d = 2n, one may use the Hadamard transform H⊗n instead.) Given Z, our algorithm
applies L once to Z and once to ZF †; call the results V ,G ∈ U(d), respectively. Except with
probability at most 2η, we get that there exist diagonal unitaries ΦV and ΦG such that

‖ZΦV − V ‖op, ‖ZF †ΦG −G‖op ≤ ε. (33)

Given this, we conclude that G†V is close to F , up to phases on rows and columns.

‖G†V −Φ†GFΦV ‖op ≤ ‖(G− ZF †ΦG)†V ‖op + ‖(ZF †ΦG)†(V − ZΦV )‖op

= ‖G− ZF †ΦG‖op + ‖V − ZΦV ‖op ≤ 2ε (34)

We can then deduce ΦV by computing G†V in O(d3) time, and then essentially reading off the
relative column phases. First, notice that by pigeonhole principle applied to Eq. (34),

for every b ∈ [d],
∣∣∣〈a|G†V |b〉 − 〈a|Φ†GFΦV |b〉

∣∣∣ ≤ 4ε/
√

d for at least a 3
4 fraction of a ∈ [d]. (35)

Let C(a, b) denote the inequality in Eq. (35). Since 〈a|Φ†GFΦV |b〉 = φ
(a)
G φ

(b)
V 〈a|F |b〉 has magnitude

1√
d , we can define P ∈ Cd×d to be 〈a|P |b〉 = 〈a|G†V |b〉 / 〈a|F |b〉, and it follows that

C(a, b) =⇒ |〈a|P |b〉 − φ(a)
G φ

(b)
V | ≤ 4ε. (36)

C(a, 1) and C(a, b) =⇒
∣∣∣ 〈a|P |b〉〈a|P |1〉 −

φ
(b)
V

φ
(1)
V

∣∣∣ ≤ 2 · 4ε
1− 4ε ≤ 16ε (37)

By Eq. (35), C(a, 1) and C(a, b) hold for at least half of a’s. Let ψb denote the coordinate-wise
(real and imaginary) median of {〈a|P |b〉 / 〈a|P |1〉}a∈[d]. Then by Eq. (37),

∣∣∣ψb − φ(b)
V /φ

(1)
V

∣∣∣ ≤ √Re(ψb − φ
(b)
V /φ

(1)
V )2 + Im(ψb − φ

(b)
V /φ

(1)
V )2 ≤

√
(16ε)2 + (16ε)2 ≤ 24ε (38)

Let Ψ be the matrix with ψb on the diagonal. Then ‖φ(1)
V Ψ−ΦV ‖op ≤ 24ε. Combining this with

‖ZΦV − V ‖op ≤ ε from Equation (33) easily yields

distphaseop(Z,VΨ†) ≤ ‖φ(1)
V Z−VΨ†‖op ≤ ‖φ(1)

V Z−ZΦV Ψ†‖op+‖ZΦV Ψ†−VΨ†‖op ≤ 25ε, (39)

and so our algorithm may output VΨ†.

Finally, we give the (completely standard) trick for boosting confidence:
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Proposition 2.4. Let L be a learning algorithm for objects in a metric space with efficiently
computable distance distance(·, ·). Assume that on input Z, the algorithm L outputs V satisfying
distance(Z,V ) ≤ ε except with probability at most .49. Then there is an algorithm L′ that takes
an additional input η > 0, uses L at most O(log(1/η)) times, and guarantees distance(Z,V ) ≤ 3ε
except with probability at most η.

Proof. For T = O(log(1/η)) times, run L independently, obtaining V1, . . . ,VT . By a standard
Chernoff bound, except with probability at most η, there are at least .505T “good” estimates,
where we say Vj is “good” if dist(Z,Vj) ≤ ε. By the triangle inequality, every good estimate is also
“central”, where we say estimate Vj0 is “central” if it has the following property: dist(Vj0 ,Vk) ≤ 2ε
for at least .505T estimates Vk. Let L now select and output any central estimate Vj∗ ; the method of
brute-force checking central-ness has time complexity O(T 2) times the cost of computing a distance,
which is O(d3) for d× d matrices. Since .505T + .505T > T , the Pigeonhole Principle implies that at
least one of the estimates Vk for which dist(Vj∗ ,Vk) ≤ 2ε is also good. Thus the triangle inequality
implies dist(Vj∗ , Z) ≤ 3ε, as desired.

3. Bootstrap of precision to O(d2/ε) applications

3.1. Key lemma: Geometry of unitary groups

The purpose of this subsection is to recall some well-known metric notions on unitary groups and
projective unitary groups; see [Sza97] and [KSV02, §8.3.3]. Only Lemma 3.1 will be used in later
sections. Readers who are familiar with the intrinsic metric induced by operator norm may quickly
proceed to the next subsection.

Consider the operator norm on the Lie algebra u(d) of all d-by-d antihermitian matrices. By de-
manding left- and right-invariance we obtain a metric on a Lie group U(d), as defined in Definition 1.5.
Recalling this definition, the length of a smooth path γ : [0, 1]→ U(d) is given by∫ 1

0
‖γ′(t)γ(t)−1‖opdt =

∫ 1

0
‖γ′(t)‖opdt (40)

where γ′(t)γ(t)−1 ∈ u(d). The distance between two points of U(d) is the infimum of the lengths of
all smooth paths connecting the two:

dist(U, V ) = inf
paths γ

∫ 1

0
‖γ′(t)‖opdt. (41)

This definition makes it obvious that dist is a metric, obeying the triangle inequality. Though dist
is equivalent to the “extrinsic” metric ‖·‖op, we will use the intrinsic metric in this section because
it leads us to think in terms of the Lie algebra.

For any U ∈ U(d) and any real number r > 0, we define an open metric ball of radius r centered
at U by

B(r)U = {V ∈ U(d) | dist(U, V ) < r} = {WU ∈ U(d) | dist(W, I) < r} (42)

As the notation suggests, due to the right invariance of the metric, the ball B(r)U is a shift of B(r)I.
We will write B(r) for B(r)I.

Every unitary quantum channel is defined by a unitary, but specifies the unitary only up to a
global phase factor. This motivates us to consider projective unitary groups U(d)/U(1) where U(1)
is the center of U(d) consisting of phase factors. The dimension of a matrix in the center U(1) is
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implicit. The metric dist induces a metric on the projective unitary group for which we use the
same notation. In analogy with B, we write

PB(r) = {V ∈ U(d) | dist(U(1)I, V ) < r}. (43)

Strictly speaking, this is not a metric ball of the projective unitary group since PB(r) is a subset
of U(d), but this will hardly cause any confusion below.

We consider the fractional power of a unitary in a small neighborhood of I for any real r > 0.
The small neighborhood is actually B(π) and we define

(eX)r = erX ∈ U(d) (44)

for any X ∈ u(d) with ‖X‖op < π, which we remark is a strict inequality. This is a proper
definition because the exponential map is injective in the corresponding neighborhood of 0 ∈ u(d);
see Lemma 3.2 below. We will use the following lemma in our accuracy boosting algorithm in the
next subsection.
Lemma 3.1. For any U, V ∈ PB( 1

3π ) and p ≥ 1,

dist(U1/p, V 1/pU(1)) ≤ π2

2p dist(U, V U(1)). (45)

The proof of this lemma will use the following.
Lemma 3.2 (Following Eq. 5, Lemma 3, and Lemma 4 of [Sza97]). For any U ∈ U(d), there
is X ∈ u(d) with ‖X‖op ≤ π such that U = eX . If eX = eY with ‖X‖op, ‖Y ‖op < π, then X = Y .
Further, the following hold:

(a) For any X ∈ u(d) such that ‖X‖op ≤ π, dist(I, eX) = ‖X‖op.

(b) For any U, V ∈ U(d), ‖U − V ‖op ≤ dist(U, V ) ≤ π
2 ‖U − V ‖op.

(c) For any X,Y ∈ u(d), ‖eX − eY ‖op ≤ ‖X − Y ‖op.

(d) For any X,Y ∈ u(d) such that ‖X‖op, ‖Y ‖op ≤ 1
π , ‖X − Y ‖op ≤ π‖eX − eY ‖op.

We did not optimize the constant π in Item 3.2(d).

Proof of Lemma 3.1. We first prove the non-projective version of the statement: consider U, V ∈
B(1/π) and p ≥ 1. Write U = eX and V = eY with ‖X‖op, ‖Y ‖op < 1/π. Then

dist(U1/p, V 1/p) ≤ ‖U1/p − V 1/p‖op = ‖eX/p − eY/p‖op ≤ ‖1
pX −

1
pY ‖op

= 1
p‖X − Y ‖op ≤ π

p ‖e
X − eY ‖op ≤

π2

2p dist(U, V ). (46)

The inequalities follow from Item 3.2(b), Item 3.2(c), Item 3.2(d), and Item 3.2(b), respectively.
Now, to prove the lemma, without loss of generality let U, V be their representatives in B( 1

3π ),
and let eiθ be the global phase minimizing dist(U, V U(1)). Then

|θ| = dist(I, eiθI) ≤ dist(I, UV †) + dist(UV †, eiθI) (47)
≤ dist(U, V ) + dist(U, V U(1)) ≤ 2 dist(I, UV †) ≤ 4

3π ,

So, Ue−iθ/2, V eiθ/2 ∈ B(1/π), so we can use Eq. (46).

dist(U1/p, V 1/pU(1)) ≤ dist(U1/p, V 1/peiθ/p) = dist((Ue−iθ/2)1/p, (V eiθ/2)1/p) (48)

≤ π2

2p dist(Ue−iθ/2, V eiθ/2) = π2

2p dist(U, V U(1))
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Proof of Lemma 3.2. The eigenvalues of a unitary are on the complex unit circle, each of which can
be specified uniquely by an angle in [−π, π). So, the exponential map u(d) 3 X 7→ eX ∈ U(d) is
injective on the domain where ‖X‖op < π. This proves the first two statements.

Item 3.2(a): Let θj ∈ [−π, π) be the eigenvalues of −iX. Without loss of generality, suppose
` = |θ1| ≥ |θj | for all j. Then the path γ taking t 7→ exp(it diag(θ1, . . . , θd)) goes from I to eX and
has length `. This shows that dist(I, eX) ≤ `.

To show that dist(I, eX) ≥ `, consider a smooth path γ : [0, 1] → U(d) joining I and eX . The
first column of a unitary matrix is a d-complex-dimensional unit vector, which corresponds to a
point in the standard unit sphere S2d−1 ⊂ Cd. So, the first column of the matrix γ(t), denoted
[γ(t)]1, defines a smooth curve ξ : [0, 1]→ S2d−1. Since ‖A‖op = supv:‖v‖2=1‖Av‖2 ≥ ‖A1‖2 for any
matrix A, we conclude that the length of γ is at least the length of the path ξ under the standard
Euclidean metric: ∫ 1

0
‖γ′(t)‖opdt ≥

∫ 1

0
‖[γ′(t)]1‖2dt =

∫ 1

0
‖ξ′(t)‖2dt. (49)

The path ξ connects the two points (1, 0, . . . , 0), (eiθ1 , 0, . . . , 0) ∈ S2d−1. It is well known that the
length of ξ is at least the (smaller) angle between 1 and eiθ1 in the complex plane, which is `.7

Item 3.2(b): By unitary invariance of the two metrics, it suffices to prove the statement for V = I.
For θ ∈ (−π, π], we observe that |1−eiθ|2 = 2−2 cos θ = 4 sin2 θ

2 , implying that |1−eiθ| = |2 sin( θ2)| ≤
|θ| ≤ |π sin( θ2)| = π

2 |1− e
iθ|. It follows by Item 3.2(a) that ‖I− U‖op ≤ dist(I, U) ≤ π

2 ‖I− U‖op.
Item 3.2(c):

‖e−Y eX − I‖op =
∥∥∥∫ 1

0
dt ∂te−tY etX

∥∥∥
op
≤
∫ 1

0
dt ‖e−tY (−Y +X)etX‖op = ‖X − Y ‖op. (50)

Item 3.2(d): Note that for any X,Y ∈ u(d), we have

‖eXeY − eX+Y ‖op ≤
1
2‖[X,Y ]‖op. (51)

This is a well-known inequality; see e.g. Eq. (143) in arXiv version of [CST+21]. To prove it, notice
that ‖eXY e−X − Y ‖op = ‖

∫ 1
0 ds ∂s[esXY e−sX ]‖op ≤

∫ 1
0 ds ‖esX(XY − Y X)e−sX‖op = ‖[X,Y ]‖op,

so therefore,

‖eXeY − eX+Y ‖op = ‖e−(X+Y )eXeY − I‖op =
∥∥∥∫ 1

0
dt ∂te−t(X+Y )etXetY

∥∥∥
op

(52)

≤
∫ 1

0
dt
∥∥∥e−t(X+Y )(−(X + Y ) +X + etXY e−tX)etXetY

∥∥∥
op

=
∫ 1

0
dt
∥∥∥−Y + etXY e−tX

∥∥∥
op
≤
∫ 1

0
dt ‖[tX, Y ]‖op = ‖[X,Y ]‖op

∫ 1

0
tdt.

7Since the standard sphere is a closed Riemannian manifold, one can appeal to the Hopf–Rinow theorem to
obtain a geodesic realizing the distance between any pair of points, and characterize geodesics g by the geodesic
equation ∇ġ ġ = 0, to conclude that a path of minimum length between any pair of points must be on a great circle.
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Then,

‖X − Y ‖op = dist(I, eX−Y ) by Item 3.2(a)

≤ π

2 ‖I− e
X−Y ‖op ≤

π

2
(
‖I− e−Y eX‖op + ‖e−Y eX − eX−Y ‖op

)
by Item 3.2(b)

≤ π

2

(
‖I− e−Y eX‖op + 1

2‖XY − Y X‖op

)
by Eq. (51)

= π

2

(
‖eY − eX‖op + 1

2‖XY − Y Y + Y Y − Y X‖op

)
(53)

≤ π

2
(
‖eY − eX‖op + ‖Y ‖op‖X − Y ‖op

)
≤ π

2

(
‖eY − eX‖op + 1

π
‖X − Y ‖op

)
by assumption.

Rearranging, we complete the proof.

3.2. Bootstrap algorithm

Using Lemma 3.1, we can show that we can bootstrap a base tomography algorithm that achieves
constant error to an algorithm that gets ε−1 log(1/η) query complexity. Following Section 3.1,
for this section we use the distance metric between two unitaries U, V ∈ U(d) of dist(U, V U(1))
(Definition 1.5). By Proposition 1.6, this is equivalent to diamond-norm distance up to universal
constants.

Theorem 3.3. Suppose we have an oracle capable of applying an unknown unitary channel Z ∈ U(d).
Further suppose we have an algorithm A that, given such an oracle, can output a unitary U such
that dist(Z,UU(1)) ≤ ε0 ≤ 1

600 with probability > 0.51. Then, given error parameters ε, η ∈ (0, 1),
Algorithm 1 outputs a unitary U such that

(a) dist(Z,UU(1)) ≤ ε with probability ≥ 1− η;

(b) and E[dist(Z,UU(1))2] ≤ (1 + 32η)ε2.

Algorithm 1 has the further property that, if A uses Q queries to Z, then Algorithm 1 requires only
O(Qε log 1

η ) queries to Z.

By plugging in the base tomography algorithm from Theorem 2.1 into this bootstrap algorithm,
we obtain our main result Theorem 1.1. We restate the theorem now.

Theorem 1.1 (Upper bound). There is a quantum algorithm A that, given black-box access to an
unknown d-dimensional unitary channel Z ∈ U(d) and any ε > 0, outputs a classical description of
a unitary. This output is probabilistic and can be viewed as a U(d)-valued random variable Ẑ. The
algorithm satisfies the following properties:

1. (Query complexity) A queries the black box O(d2/ε) times.

2. (Space complexity) A only uses one qudit of dimension d. Specifically, it only prepares states
of the form V2(ZV1)pV0 |0〉, where the positive integer p and unitaries V0, V1, V2 ∈ U(d) are
adaptively chosen, and measures them in the computational basis.

3. (Gate complexity) If the d-dimensional qudit is embedded in n = dlog2 de qubits, then A uses
poly(d, 1/ε) one- and two-qubit quantum gates in total beyond the queries to the black box,
and the classical time complexity is poly(d, 1/ε).
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4. (Closeness of output unitary) The unitary output by A is ε-close to the unknown Z in
diamond norm with high probability. Specifically, E[ ‖U(Ẑ)− U(Z)‖2� ] ≤ ε2, which implies
Pr[ ‖U(Ẑ)− U(Z)‖� ≤ 3ε ] ≥ 2

3 .

5. (Closeness of output channel) We can also view the output of A as a channel. Let M denote
the mixed unitary channel induced by running A on Z and then applying its output Ẑ. Then
‖M− U(Z)‖� ≤ ε2.

Proof of Theorem 1.1. It is clear that our bootstrap algorithm needs as many quantum registers as
the base tomography algorithm does. The base tomography algorithm combines O(d) pure state
tomography outcomes, each of which uses projective measurements in computational basis on a
pure state of form A(ZV †)pB |0〉 where A,B, V are unitaries known at the moment of the state
tomography. See Theorem 2.1.

The query complexity and the accuracy guarantees follow from Theorem 3.3, with Theorem 2.1
as the base algorithm.

The number of one- and two-qubit gates used in the overall algorithm beyond the oracle calls, is
determined by the complexity of implementing interspersing unitaries A,B, V in the preparation
of states A(ZV †)pB |0〉. Those unitaries are on a d-dimensional qudit, so it can be compiled
to accuracy α in operator norm by poly(d, log(1/α)) elementary gates [KSV02]. We only need
α = 1/ poly(d/ε). The algorithm prepares poly(d/ε) states of form A(ZV †)pB |0〉 in total.

The classical time complexity is bounded by those of matrix multiplications, matrix diago-
nalizations, and finding diagonal phase factors in Proposition 2.3. All of these take poly(d/ε)
time.

The bound on ‖M − U(Z)‖� follows from Theorem 3.3, which shows that Algorithm 1 gives
EX‖X‖2op ≤ O(ε2), and Proposition 1.18. Rescaling ε if necessary, we complete the proof.

Algorithm 1: Final algorithm for unitary tomography
Input : Oracle able to black-box apply an unknown unitary Z;

Error parameters ε, η ∈ (0, 1);
Process tomography algorithm A : (Z, η) 7→ U ∈ U(d) such that

dist(U(1)U , Z) < 1
200 with probability ≥ 1− η,

using O(Q log 1
η ) queries to Z

Output : A unitary U
1 Let T ← dlog2(1/ε)e;
2 Let V0 ← I;
3 for j from 0 to T do
4 Let pj ← 2j ; // This exponential could have any base > 1.
5 Let ηj ← η8j−T−1 ; // Failure probability becomes worse each iteration.

6 Let Uj be the output of A((ZV †j )pj , ηj);
7 Vj+1 ← U

1/pj
j Vj ;

8 end
9 Return U ← VT+1;

The bootstrap algorithm (Algorithm 1) is essentially four lines long: we begin with V0 = I as an
initial estimate for Z, and with every iteration, we refine this estimate. In iteration j, we take the
current estimate Vj , and consider the “residual” ZV †j : the residual is close to the identity when Vj
is close to Z. We run A to get an estimate Uj of (ZV †j )pj . Though this estimate Uj is only good to
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constant error, by Lemma 3.1, its pjth root will be (1/pj)-close to ZV †j . So, we can use this root
to form the next estimate Vj+1 = U

1/pj
j Vj , which is (1/pj)-close to Z. After log2(1/ε) iterations,

this estimate is good enough to output. We have just given nearly a full proof of the first part of
Theorem 3.3. We swept two details under the rug: first, we need that (ZV †j )pj is close enough to
the identity to satisfy the conditions for Lemma 3.1, which follows from induction; and we need to
account for failure. We deal with these details below.

Proof of Theorem 3.3. Using the trick in Proposition 2.4, we assume that our oracle A can boost
its success probability to ≥ 1− γ with only O(log 1

γ ) overhead to output a unitary that’s correct up
to c = 1

200 error.
We analyze the output of Algorithm 1 for arbitrary T > 0, first assuming that Line 6 is successful

for all j. Let

δj = dist(Z,VjU(1)) = dist(ZV †j ,U(1)I) (54)

be the error after iteration j − 1 of the while-loop. We will prove δk < 2−k−4. For iteration 0, we
have p0 = 1 so by our assumption on A,

δ1 = dist(Z,V1U(1)) < c <
1
32 . (55)

We proceed by induction in k. First, notice that the input and output of the call to A on the kth
iteration are in PB( 1

3π ):

dist((ZV †k )pk , IU(1)) ≤
pk−1∑
i=0

dist((ZV †k )i+1, (ZV †k )iU(1)) = pkδk <
1
16 by inductive hypothesis

dist(Uk, IU(1)) ≤ dist(Uk, (ZV †k )pkU(1)) + dist((ZV †k )pk , IU(1)) < c+ 1
16 <

1
3π (56)

So, we can apply Lemma 3.1 to conclude that

δk+1 = dist(Z,Vk+1U(1)) = dist(ZV †k ,U
1/pk
k U(1)) (57)

≤ π2

2pk
dist((ZV †k )pk ,UkU(1)) < π2

2pk
c ≤ π2

4002−k < 2−k−5

Therefore, the final accuracy guarantee is

dist(Z,VT+1U(1)) < 2−T−5 < ε. (58)

The query complexity is sum of those at Line 6 for all j: For any given j, this call queries the
oracle for (ZV †j )pj for O(Q log 1

ηj
) times, which can be performed using O(Qpj log 1

ηj
) queries to Z.

Summing over all the iterations, we get the desired total query complexity,

O
( T∑
j=0

Qpj log 1
ηj

)
= O

(
Q

T∑
j=0

2j
(
(T − j + 1) + log 1

η

))
= O

(
Q2T log 1

η

)
= O

(Q
ε

log 1
η

)
. (59)

Notice that ηj is chosen so the query complexity does not incur the log log(1/ε) factor that comes
from a naive union bound. The failure probability of Line 6 for each j is ηj , so the probability that
any of them fail is bounded by η, proving Item 3.3(a):

T∑
j=0

ηj ≤ η
T∑
j=0

8−(T−j)−1 = η
T∑
j=0

8−j−1 ≤ η. (60)
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Now, we prove Item 3.3(b). Item 3.3(a) only implies a bound of E[dist(Z,UU(1))] ≤ ε2 + π
2 η,

since when the algorithm fails, the output unitary could be as bad as possible, π/2 away from Z.
We prove now that Algorithm 1 fails gracefully: namely, if the algorithm first fails in iteration f ,
then the output only has error O(2−f . Let f be the least index of the iteration where the base
tomography algorithm fails, so that Pr[f = 0] < η0, and Pr[f = j | f > j− 1] < ηj for j = 1, 2, 3, . . ..
If the algorithm never fails, we take f = T + 1. The argument we described above still applies up to
index f , so that

δf = dist(Z,Vf+1U(1)) < 2−f−4. (61)

We can further conclude that the output of the algorithm will be about as good of an estimate to Z
as Vf+1, since the size of the adjustment in each iteration decays exponentially regardless of failure.8

δT+1 = dist(Z,VT+1U(1)) (62)
≤ dist(Z,Vf+1U(1)) + dist(Vf+1,VT+1U(1))

= dist(Z,Vf+1U(1)) + dist(I,U1/pT
T U

1/pT−1
T−1 · · ·U1/pf+1

f+1 U(1))

≤ dist(Z,Vf+1U(1)) +
T∑

k=f+1
dist(I,U1/pk

k U(1))

≤ 2−f−4 +
T∑

k=f+1

π

2k

≤ 22−f

This suffices to give a bound on the quality of the output VT+1 in expectation.

E[dist(Z,VT+1U(1))2] =
T+1∑
k=0

Pr[f = k] E[δ2
T+1 | f = k] (63)

≤ (2−T−5)2 +
T∑
k=0

ηk(22−k)2

≤ (2−T−5)2 + η
T∑
k=0

2−3(T−k)+4−2k ≤ (2−T−5)2 + η25−2T

≤ (1 + 32η)ε2

Remark 3.4. Our bootstrap crucially depends on the continuous group structure of the (projective)
unitary group since we take fractional roots of a result from base tomography and the the fractional
root needs to in the set of candidate outputs. It is not important whether the set of candidate
outputs is a unitary group or a projective unitary group. Conversely, our bootstrap works for any
closed Lie subgroup of the (projective) unitary group (e.g., an orthogonal group O(d) ⊂ U(d)) and
an obvious analog of Theorem 3.3 is proved verbatim. Note that if a subgroup is not closed, then

8In the following computation, we use that dist(I,U1/pk
k U(1)) ≤ π2−k, which holds because the eigenvalues of U1/pk

are in (−π/pk, π/pk) for all U ∈ U(d) with eigenvalues in (−π, π). However, there is a technical issue: Line 7
cannot be performed if Uk has −1 = eiπ as an eigenvalue, since in this case, the 1/pj-th root of this arbitrary
output is not defined. One can and should ignore such nongeneric behavior, but strictly speaking our algorithm is
not defined for such cases. Formally, one should address this by changing the choice of discretization (Footnote 4)
to ensure that the algorithm never outputs an estimate with −1 as an eigenvalue. This can be done since it only
excludes a measure-zero set.

23



the intrinsic metric dist and the extrinsic one ‖·‖op are not equivalent and our bootstrap will not
work. Also note that some care would be needed in the base tomography; the Fourier or Hadamard
transform in the proof of Proposition 2.3 might not belong to the Lie subgroup in consideration.

4. Lower bounds

The goal of this section is to prove Theorem 1.2. The first subsection will prove a Ω(d2) lower bound
using existing results on unitary discrimination [BMQ22], which we lift to a Ω(d2/ε) lower bound in
the following section through a variant of an argument proving the equivalence of the fractional and
discrete query models [CGM+09, BCC+17].

4.1. Bound for constant ε

As a warm up, we first prove a query complexity lower bound for constant ε. We begin by
constructing a hard instance of the estimation problem, which is a discrete set of unitaries in which
each pair of unitaries is at least distance 1/4 apart. For this instance, the task of estimating each
unitary to error < 1/8 is equivalent to the task of simply identifying the unknown unitary.

Proposition 4.1. There exists a set N = {Wj ∈ U(d) : j = 1, . . . , N} with N ≥ exp(d2/64) of
Hermitian unitaries (i.e., the eigenvalues are ±1) such that ‖U(Wj)−U(Wk)‖� ≥ 1/4 for any j 6= k.

The constants 64 and 1/4 are not sharp. A construction of some packing net of unitaries goes
back at least to [Sza83]. Here we construct a special net of unitaries that share the same real
eigenspectrum.

Proof. Considering 2-by-2 Pauli matrices embedded into a higher dimensional unitary group, we see
that the claim is true for d ≤ 8. Let d = 2r + 2 > 8 if d is even, or d = 2r + 1 > 8 if d is odd.

We first show the existence of a set of far apart unitaries in operator norm. Lemma 8 of [HHJ+17]
shows that there are ≥ exp(r2/8) density matrices of rank r in dimension 2r where exactly half the
eigenvalues are 1/r and the other half are zero, and any two different density matrices in this set
are at least 1/4-apart in trace distance. We may write this set as {(I2r + Vj)/(2r) : j = 1, . . . , N}
with N ≥ exp(r2/8) where Vj ∈ U(2r) is a Hermitian unitary of trace zero. If j 6= k, we have

1
4 ≤

1
2

∥∥∥∥I2r + Vj
2r − I2r + Vk

2r

∥∥∥∥
1

= 1
4r‖Vj − Vk‖1 ≤

1
2‖Vj − Vk‖op. (64)

Therefore, the set S = {Vj ∈ U(2r) : j = 1, . . . , N} consists of Hermitian unitaries that are far
apart in operator norm. We now need to define unitaries that are far apart in the norm used in the
statement of the proposition.

Now, embed S into U(d) as Vj 7→ Wj = Vj ⊕ Ib ∈ U(d), where b = 1 or 2. We claim that
{Wj : j = 1, . . . , N} is a desired set. Consider Wj and Wk for j 6= k. Then, for all φ ∈ U(1),

‖φWj −Wk‖op = ‖φI− (V †j Vk)⊕ Ib‖op = max(‖φIb − Ib‖op, ‖φI− V †j Vk‖op)

≥ max(|φ− 1|, ‖I− V †j Vk‖op − ‖φI− I‖op) ≥ 1
2‖I− V

†
j Vk‖op = 1

2‖Vj − Vk‖op ≥ 1
4 . (65)

Minimizing over all φ and using Eq. (7), we get that ‖U(Wj)−U(Wk)‖� ≥ distphaseop(Wj ,Wk) ≥ 1
4 .

Finally, N ≥ exp(r2/8) ≥ exp(d2/64) for d > 8.

The following result upper bounds the average success probability of any unitary identification
algorithm that makes at most Q uses of the unknown unitary:
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Proposition 4.2 (Theorem 5 of [BMQ22]). Let U, . . . , UN ∈ U(d) by any unitary channels. For
any unitary estimation algorithm A that queries an input unitary channel Q times and outputs an
index x̂ given Ux with probability Pr[x̂|x] where x, x̂ ∈ [N ], it holds that

1
N

N∑
x=1

Pr[x̂ = x|x] ≤ 1
N

(
Q+ d2 − 1

Q

)
. (66)

Ref. [BMQ22] contains a proof that relies on results from several references therein. For the
readers’ convenience, we present an overview of the proof in Appendix D.

From this, it straightforwardly follows that if we use the set N we just constructed, if Q is much
smaller than d2, then we cannot solve the identification problem with high probability. But we can
also prove something stronger:

Lemma 4.3. If 1
N

(Q+d2−1
Q

)
≥ exp(−cQ) where Q ≥ 1, d ≥ 100/c′ ≥ 1 and N ≥ exp(c′d2) for some

constants c, c′ > 0, then Q ≥ c′′d2 for some constant c′′ that depends only on c, c′.

In combination with Proposition 4.2, this immediately implies a Ω(d2) query lower bound for
any unitary estimation algorithm that estimates to small constant distance with constant success
probability, since one can use it to distinguish between the exp(Ω(d2)) unitaries in the net from
Proposition 4.1 with constant success probability. We do not use the full power of this lemma to
draw this conclusion, but we will need it in its full form in the next subsection.

Proof. Suppose for a contradiction 1 ≤ Q ≤ δd2 for some δ ∈ (0, 1). It is easy to show from Stirling’s
approximation that

( x
sx

)
≤ xexH(s) for all x ≥ 1 where H(s) = −s ln(s) − (1 − s) ln(1 − s) is the

binary entropy function. Then, ec′d2−cQ ≤
(Q+d2−1

Q

)
≤ eH( δ

1+δ )(1+δ)d2
(1 + δ)d2. Taking logs and

dividing by d2, we get
c′ − 2(ln d) + 1

d2 ≤ cδ + (1 + δ)H( δ

1 + δ
). (67)

For d ≥ 100/c′, the left-hand side is at least c′/2. This completes the proof.

4.2. Bound for general ε

We’re now ready to prove the stronger ε-dependent lower bound. Our high-level strategy is as
follows. First, we construct a special set of unitaries that are pairwise ε apart using our constructed
set N . This constructed set brings all the unitaries in N closer to the identity (and hence each other)
by raising each unitary to a small power α, which will be of the order of ε. Then assuming there is
an A that uses Q queries to solve the unitary estimation problem on this set, there exists another
quantum algorithm for identifying unitaries from the set N with O(εQ) query complexity, but there
is a catch: The query complexity stated is in the fractional query model, a model introduced by
Cleve, Gottesman, Mosca, Somma, and Yonge-Mallo [CGM+09]. (In this model, it is cheaper to
query a small power of a unitary compared to querying the unitary itself.) But we want to show
our lower bound in the standard model assumed in Theorem 1.2. So we use a modified proof of
the equivalence of the fractional and discrete query models from Berry, Childs, Cleve, Kothari,
and Somma [BCC+17] to give an algorithm using O(εQ) queries in the usual sense, except with
failure probability ≥ exp(−50εQ) instead of 2

3 . This extremely low success probability is not a
problem, since Proposition 4.2 and Lemma 4.3 yield strong lower bounds even with small success
probability. Thus any such algorithm, which used O(εQ) queries, must use Ω(d2) queries, which
gives Q = Ω(d2/ε) as desired.
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We start by defining some notation for the fractional power of a reflection. Following convention
from [BCC+17], this is the power in the negative angle direction: with this definition, (−1)α = e−iπα.

Definition 4.4. For a reflection R ∈ U(d) (i.e., R2 = I) and α ∈ [−1, 1], we define

Rα := 1
2(I +R) + e−iπα 1

2(I−R) = e−iπα/2
(
I cos πα2 + iR sin πα2

)
. (68)

We can now state our main conversion lemma, which takes an algorithm that queries a fractional
power of Z and converts it to an algorithm that only queries Z and makes fewer queries, at the cost
of having low success probability.

Lemma 4.5. Let C ∈ U(D) be implemented by a quantum circuit that uses Q queries to Z or Z†,
with Z = Rα for R ∈ U(d) a reflection and α ∈ (0, 1].

Then there is a circuit CR ∈ U(2QD) with Q ancilla qubits, which uses 50 + 100αQ queries to cR
and such that, for all |ψ〉 ∈ CD,

CR |0〉⊗Q |ψ〉 = ν |0〉⊗Q |õut〉+ |Φ⊥〉 , (69)

where |õut〉 is normalized, ν ∈ C is a scalar, (〈0|⊗Q ⊗ I) |Φ⊥〉 = 0 and

|ν| ≥ 0.99 exp(−απQ2 ) and ‖|õut〉 − C |ψ〉‖2 < exp(−99απQ− 20). (70)

A similar conversion was also stated in [BCC+17, Lemma 3.8], but their lemma converts the
circuit C that uses Q oracle calls to Z and Z† to a circuit that uses O(αQ log(αQ/ξ)

log log(αQ/ξ)) oracle calls
to cR and incurs `2-norm error ξ in the output state. Here, αQ is the fractional query complexity
of the circuit, since in that model each application of Z and Z† incurs α cost. So their lemma is
similar to ours, but incomparable: It can achieve much smaller error, but the query complexity has
a log factor which would weaken our lower bound if used directly.

To eliminate this log factor, we will modify their argument and approximate the complete circuit
instead of each individual segment. This gives a circuit with O(αQ) calls to cR, but with the
significantly worse success probability of 0.9 exp(−παQ). This exponentially decaying success
probability is generally undesirable, but will turn out not to affect the lower bound argument, which
merely needs that the success probability of the algorithm is not significantly better than guessing,
which succeeds with probability 1

N ≤ exp(−d2/64).

Proof. We closely follow the fractional query to discrete query reduction in [BCC+17]. We begin by
writing a circuit to implement Z or Z† from an application of cR. Consider the following circuit.

|0〉 P±α • P±α

|ψ〉 R

P±α :=
[ √

γ ±i
√

1− γ√
1− γ ∓i√γ

]
γ := cos απ2

cos απ2 +sin απ
2
> 0 (71)
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Let us calculate the evolution of the state vector along this circuit:

|0〉 |ψ〉 (72)
7→ (√γ |0〉+

√
1− γ |1〉) |ψ〉

7→ √γ |0〉 |ψ〉+
√

1− γ |1〉R |ψ〉
7→ √γ(√γ |0〉+

√
1− γ |1〉) |ψ〉 ± i

√
1− γ(

√
1− γ |0〉 − √γ |1〉)R |ψ〉

= |0〉 (γ |ψ〉 ± i(1− γ)R |ψ〉) +
√
γ(1− γ) |1〉 (|ψ〉 ∓ iR |ψ〉)

= |0〉
cos(1

2απ) |ψ〉 ± i sin(1
2απ)R |ψ〉

cos(1
2απ) + sin(1

2απ)
+
√
γ(1− γ) |1〉 (|ψ〉 ∓ iR |ψ〉)

= eiπα/2

cos(1
2απ) + sin(1

2απ)
|0〉Rα |ψ〉+

√
γ(1− γ) |1〉 (|ψ〉 ∓ iR |ψ〉)

Using the circuit Eq. (71) with either P+
α or P−α , we can apply Rα = Z or R−α = Z†, respectively,

with one use of cR and postselection of the ancilla on |0〉. This reproves [BCC+17, Lemma 3.3] in
the slightly more general setting where we may implement Z† and the reflection R is arbitrary, not
necessarily diagonal.

|0〉 P±α • · · · P±α

... . . . ...

|0〉 P±α · · · • P±α

U0 R U1

· · ·

Um−1 R Um|ψ〉 ... . . .

· · ·

Figure 2.: The augmented version Ĉ of the circuit C, which alternates between unitaries Ui and an
application of Z or Z†, to perform Q queries in total. Each application of Z or Z† is
replaced with the gadget in Eq. (71), making for Q additional ancilla qubits. The dotted
box indicates the state prepared in the ancilla, denoted |anc〉 in Eq. (75). Figure taken
from [BCC+17, Figure 2] with slight modifications.

Let Ĉ denote the circuit C augmented so that every instance of Z and Z† is replaced with the
circuit in Eq. (71) (where we suppose α > 0) as shown in Fig. 2. By composing Eq. (72), we get that

Ĉ |0〉⊗Q |ψ〉 =
( eiπα/2

cos(1
2απ) + sin(1

2απ)

)Q
︸ ︷︷ ︸

ν

|0〉⊗Q C |ψ〉+ |Φ⊥〉 , (73)

where (〈0|⊗Q ⊗ I) |Φ⊥〉 = 0, and the amplitude ν on the desired state satisfies

|ν| = (cos(1
2απ) + sin(1

2απ))−Q = (1 + sin(απ))−
Q
2 ≥ exp(− sin(απ)Q2 ) ≥ exp(−απQ2 ). (74)

Now it seems like we have made no progress, since the augmented algorithm Ĉ naively uses Q queries
to cR, which is the same number of queries used by the original algorithm. We would like to reduce
this query complexity to 100αQ. If α > 1

2 , the CR = Ĉ is what we want. So, assume 0 < α ≤ 1
2 .
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The observation that lets us drastically reduce the query complexity of this algorithm is that the
initial state of the ancilla has very low weight on Q-bit strings with a large number of 1’s. In other
words, it is mostly supported on low Hamming weight strings. Observe that the state is

|anc〉 =
Q⊗
t=1

P±α |0〉 =
Q⊗
t=1

(√γ |0〉+
√

1− γ |1〉), where γ =
cos(1

2απ)
cos(1

2απ) + sin(1
2απ)

. (75)

Here, we think of α as being small, making 1− γ = Θ(α). Indeed,
1
4απ ≤ 1− γ ≤ 1

2απ for α ∈ [0, 1
2 ]. (76)

If |anc〉 were replaced by an approximate state |ãnc〉 that is a superposition over only the bit strings
of Hamming weight ≤ K, if K is large enough (roughly O(αQ)), then the approximate state will be
very close to the original state, and hence will not affect the output too much.

Then notice what the resulting circuit looks like: It has Q cR gates, but the control register never
holds a string of Hamming weight larger than K. In other words, in no branch of the superposition
do we ever apply R more than K times, although the circuit formally has Q copies of cR. So
morally, this circuit should only require K queries to R, not Q queries.

The argument for this is given more explicitly in [BCC+17, Page 28], but briefly, a bit string in
the superposition can be thought of as encoding a partition of the circuit, dictating how long the
circuit should be run before a query from A is responded with R instead of I; in this way, one can
run the circuit with K oracle queries, by conditioning the intermediate unitaries on the ancilla bit
string.

Let |anc≤K〉 denote the subnormalized state of |anc〉 obtained by discarding all computational
basis components of Hamming weight > K. We consider a cutoff K = k(1− γ)Q, where (1− γ)Q is
the “mean” bitstring weight, and k is a parameter to be chosen. Then

|anc〉 − |anc≤K〉 =
∑

b∈{0,1}Q
|b|>K

√
γQ−|b|

√
1− γ|b| |b〉 , and (77)

‖|anc〉 − |anc≤K〉‖2 =
( ∑
b∈{0,1}Q
|b|>K

γQ−|b|(1− γ)|b|
) 1

2
< exp

(
− k2(1− γ)Q

2(2 + k)
)
, (78)

where we used a Chernoff bound since the error can be written as the probability that a binomial
random variable takes a large value. With this, we can compute the `2 error incurred by replacing
|anc〉 with a normalized state |anc≤K〉 /‖|anc≤K〉‖2.∥∥∥|anc〉 − |anc≤K〉

‖|anc≤K〉‖2

∥∥∥
2
≤
∥∥∥|anc〉 − |anc≤K〉

∥∥∥
2

+
∥∥∥|anc≤K〉 −

|anc≤K〉
‖|anc≤K〉‖2

∥∥∥
2

(79)

= ‖|anc〉 − |anc≤K〉‖2 + 1− ‖|anc≤K〉‖2

≤ 2‖|anc〉 − |anc≤K〉‖2 < 2 exp
(
− k2(1− γ)Q

2(2 + k)
)

We take K = d40 + 40(1− γ)Qe, so k ≥ 40 + 40
(1−γ)Q , and

2 exp
(
−k

2(1− γ)Q
2(2 + k)

)
≤ exp

(
ln(2)− k(1− γ)Q

4
)

(80)

≤ exp
(
ln(2)− 202(1− γ)Q+ 100

4
)
≤ exp

(
−100απQ− 24

)
by Eq. (76)

28



So, let Ĉ≤K denote the circuit of Ĉ, modified so that upon being given |0〉⊗Q, the circuit prepares
the truncated |anc≤K〉 /‖|anc≤K〉‖2 instead of |anc〉. This will be our final choice of circuit CR, so
our goal now is to establish the claimed properties of the resulting circuit

Ĉ≤K |0〉⊗Q |ψ〉 = ν≤K |0〉⊗Q |õut〉+ |Φ⊥〉 , (81)

where |Φ⊥〉 is some state satisfying (〈0|⊗Q ⊗ I) |Φ⊥〉 = 0.
There is some phase ambiguity in definitions, since |õut〉 could have any phase as long as ν≤K

compensates for it so that the product of the phases is correct. So we will choose ν≤K to have the
same phase as ν, so that |ν≤K − ν| = ||ν≤K | − |ν||. If the ancilla state changes by ξ in `2 distance,
since the rest of the circuit is unitary, this changes the output state of Ĉ by ξ error. Using this, we
can conclude

||ν| − |ν≤K || = |‖(〈0|⊗Q ⊗ I)Ĉ |0〉⊗Q |ψ〉‖2 − ‖(〈0|⊗Q ⊗ I)Ĉ≤K |0〉⊗Q |ψ〉‖2| (82)
≤ ‖(〈0|⊗Q ⊗ I)(Ĉ − Ĉ≤K) |0〉⊗Q |ψ〉‖2
≤ ‖(Ĉ − Ĉ≤K) |0〉⊗Q |ψ〉‖2 ≤ exp(−100απQ− 24).

A consequence of this is that |ν≤K | ≥ exp(−απQ2 )− 0.01 exp(−100απQ) ≥ 0.99 exp(−απQ2 ). Simi-
larly, we can show

‖C |ψ〉 − |õut〉‖2 ≤
1
ν

(‖ν C |ψ〉 − ν≤k |õut〉‖2 + |ν≤k − ν|‖|õut〉‖2 (83)

= 1
ν

(‖(〈0|⊗Q ⊗ I)(Ĉ − Ĉ≤K) |0〉⊗Q |ψ〉‖2 + ||ν≤k| − |ν||‖|õut〉‖2 (84)

≤ 2
ν

(‖(〈0|⊗Q ⊗ I)(Ĉ − Ĉ≤K) |0〉⊗Q |ψ〉‖2 ≤
2
ν

exp(−100απQ− 24) by Eq. (82)

≤ 2 exp(απQ2 ) exp(−100απQ− 24) < exp(−99απQ− 20). by Eq. (73)

This gives the desired properties. The number of queries made is K = d40(1 + (1 − γ)Q)e ≤
50 + 100αQ.

We are now ready to prove the final lower bound, which we restate for the reader’s convenience:

Theorem 1.2 (Lower bound). Let A be an algorithm that, for an unknown d-dimensional unitary
Z ∈ U(d) accessible through black box oracles that implement Z, Z†, cZ = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ Z,
and cZ† = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ Z†, can output a classical description of a unitary channel U(Ẑ)
such that ‖U(Ẑ)− U(Z)‖� < ε < 1

8 with probability ≥ 2
3 . Then A must use Ω(d2

ε ) oracle queries.

Proof. Consider a quantum circuit A with the assumed properties and that uses Q queries to the
oracle, where Q is a function of d and ε. Consider the net of reflections N ⊂ U(d) as described
in Proposition 4.1. We let Z = Rα. If we run a process tomography algorithm A with the
properties assumed in the statement on Z, then A is promised to output an estimate U such that
dist(U(1)U , Z) < ε with probability≥ 2/3 usingQ queries of cZ and cZ†. Since (cR)α = c(Rα) = cZ,
these cZ and cZ† queries can be thought of as fractional queries to cR. We first show that the
assumed output guarantee, run on an element R ∈ N of the net, suffices to determine which element
R is, upon choosing α = Θ(ε); then, we show how to perform this algorithm, only using queries to
ccR, the doubly controlled R.

For the first step, suppose we have access to an unknown R ∈ N , and wish to identify which
element it is. We can do this by applying A to Z = Rα for 1

α = b 1
8εc (where we assume that ε < 1

8
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so that 1
α ≥ 1). On a successful run, which occurs with probability ≥ 2

3 , the output U satisfies
‖U(U) − U(Z)‖� < ε. In this case, we can identify which element in the net it is by computing
U1/α, and picking the element of the net it is closest to. The correctness guarantee implies that
U1/α and R are close in diamond norm:

‖U(U1/α)− U(R)‖� = ‖U(U1/α)− U(Z1/α)‖�

=
∥∥∥∥∥

1/α∑
p=1

(U(UpZ1/α−p)− U(Up−1Z1/α−p+1))
∥∥∥∥∥
�

≤ 1
α
‖U(U)− U(Z)‖� <

ε

α
≤ 1

8 , (85)

where above we used the triangle inequality and unitary invariance of the diamond norm. By the
property of the net N , only one element is ever within 1

8 of any particular U1/α, so the closest net
element to it must be the correct element R.

Now, we show that A can still be run given appropriate access to R only. Applying Lemma 4.5 on
A with Q queries to cZ, cZ†, we get a circuit AR that uses 50 + 100αQ queries to ccR. Further, if
we run AR, the ancilla qubits will be measured in |0〉⊗Q with probability ≥ 0.9 exp(−απQ), and the
resulting pure state will have `2-norm error exp(−99απQ− 20) from the true output of A. We will
perform AR, measure all of the ancilla in the computational basis, and if it is |0〉⊗Q (postselection),
we output the output of AR (which we assume to be the measurement of the rest of the qubits in
the computational basis); otherwise, we declare failure. Since A produces a correct estimate with
probability ≥ 2

3 , and since closeness (in `2 norm) of states |a〉 , |b〉 implies closeness (in total variation
distance) between the probability distributions resulting from measuring in the computational basis,
distTV(a, b) ≤ 4‖|a〉 − |b〉‖2 [BV97, Lemma 3.6], we have

Pr[AR succeeds] (86)
= Pr[AR postselection succeeds] Pr[AR succeeds | postselection succeeds]
≥ 0.9e−απQ

(
Pr[A succeeds]− distTV(output of postselectedAR, output ofA)

)
≥ 0.9e−απQ

(
Pr[A succeeds]− 4

∥∥|output state of postselected AR〉 − |output state of A〉
∥∥

2
)

≥ 0.9e−απQ(2
3 − 4e−99απQ−20)

≥ 1
2e
−απQ.

To summarize, we have an algorithm that, with 50 + 100αQ queries to ccR, can output a classical
description U of Z = Rα such that ‖U(U)− U(Z)‖� < ε with probability ≥ 1

2 exp(−απQ).
If we are promised that R ∈ N with N the net from Proposition 4.1, then choosing α = b 1

8εc
−1, the

output of this algorithm can distinguish an element R in the net with probability ≥ 1
2 exp(−απQ).

It can also distinguish elements of the net ccN = {ccR | R ∈ N} ⊂ U(4d), since identifying
R is equivalent to identifying ccR. By Proposition 4.2 and Lemma 4.3, any algorithm that can
distinguish between all the elements in ccN with probability ≥ exp(δ2 − δ1Q), where δ1 ≥ 0, δ2 ∈ R
are constants, must use Q = Ω(d2) queries. From this we can conclude the bound:

Ω(d2) ≤ Q = 50 + 100αQ = 50 + 100b 1
8εc
−1Q =⇒ Q = Ω(d2/ε).
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A. Deferred proofs for Section 1.1
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U, V ∈ U(d), the metrics ‖U(U)− U(V )‖�, distphaseop(U, V ), and dist(U,U(1)V ) are equivalent up
to constants. Specifically, the following inequalities hold.

distphaseop(U, V ) ≤ dist(U,U(1)V ) ≤ π
2 distphaseop(U, V ) (6)

1
2‖U(U)− U(V )‖� ≤ distphaseop(U, V ) ≤ ‖U(U)− U(V )‖� (7)
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Proof. We can get Eq. (6) from minimizing the terms in the inequality Item 3.2(b) over a global
phase. So, it suffices to prove Eq. (7), which relates diamond-norm distance to the other distances.

Let λ1, . . . , λd denote the eigenvalues of U †V , and let σ denote their spread, i.e. the length of the
shortest arc (of the complex unit circle) containing the spectrum of U †V :

σ = max
−2π≤a≤b≤2π
{λi}⊂{eiθ|θ∈[a,b]}

|b− a|. (87)

Then, examining the geometry, we can rewrite all of the distances in terms of this spread σ.9
For diamond-norm distance, we get a simple formula using special properties for when the two

channels are isometries.

‖U(U)− U(V )‖� = max
x∈Cd
‖Ux(Ux)† − V x(V x)†‖1 by [Wat18, Theorem 3.55]

= max
x∈Cd

2
√

1− |x†U †V x|2 by [Wat18, Equation 1.186]

= 2
√

1−min{|z|2 : z ∈ convex-hull(λ1, . . . , λd)} (88)

=

2
√

1− |12(1 + eiσ)|2 = 2 sin(σ/2) if σ < π

2 if π ≤ σ ≤ 2π
(89)

To get Eq. (88), if the spread is ≥ π, then the convex hull must contain the origin, and so the
minimum is 0; otherwise, the minimum is achieved at the midpoint of the extremal eigenvalues,
1
2(eia + eib) according to the notation in Eq. (87).

We can also see

distphaseop(U, V ) = min
φ∈U(1)

‖I− φU †V ‖op = min
φ∈U(1)

max
i
|1− φλi| = |1− eiσ/2| = 2 sin(σ/4); (90)

dist(U,U(1)V ) = min
φ∈U(1)

dist(I, φU †V ) = min
φ∈U(1)

max
i

dist(1, φλi) = σ/2. (91)

Using the following basic inequalities,

1
2 sin(σ/2) ≤ sin(σ/4) ≤ sin(σ/2) for σ < π, (92)

1
2 ≤ sin(σ/4) ≤ 1 for π ≤ σ ≤ 2π,

we can conclude from Eqs. (89) and (90) that Eq. (7) holds:

1
2‖U(U)− U(V )‖� ≤ distphaseop(U, V ) ≤ ‖U(U)− U(V )‖�.

Proposition 1.9. For all d and any unitaries U, V ∈ U(d),

4F (U(U),U(V )) ≤ ‖U(U)− U(V )‖2� ≤ 2d · F (U(U),U(V )). (11)

The left-hand side is sharp for d even and the right-hand side is sharp for all d ≥ 2:

sup
U /∈U(1)V

F (U(U),U(V ))
‖U(U)− U(V )‖2�

= 1
4 if d is even, and sup

U /∈U(1)V

‖U(U)− U(V )‖2�
F (U(U),U(V ))

= 2d. (12)

9This reflects that all these norms are worst-case norms, in that they in some sense maximize error over all possible
directions.
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Proof. For d = 1, there is only one unitary channel (the identity channel), so all distances are zero
and the equality holds trivially. So, suppose d ≥ 2 and, as in the proof above, let λ1, . . . , λd denote
the eigenvalues of U †V . Let σ ∈ [0, 2π) be the length of a shortest arc on the unit complex circle
that covers all the eigenvalues. By rotating if necessary, we may set λ1 = eiσ/2 and λd = e−iσ/2.
Recall the following expressions.

F (U(U),U(V )) = 1−
∣∣∣1d Tr(U †V )

∣∣∣2 = 1−
∣∣∣1d ∑

i

λi
∣∣∣2, (Eq. (9))

1
4‖U(U)− U(V )‖2� = 1−min{|z|2 : z ∈ convex-hull(λ1, . . . , λd)} (Eq. (88)) (93)

= sin2(min(σ, π)/2). (Eq. (89))

Since 1
d
∑
i λi is a point in the convex hull, the first two lines here give the left-hand side of the

proposition. For the right-hand side, if σ ≤ π, then∣∣∣∣∣1d ∑
i

λi

∣∣∣∣∣ =
∣∣∣∣∣2d cos σ2 + 1

d

d−1∑
i=2

λi

∣∣∣∣∣ ≤ 2
d cos σ2 + d− 2

d . (94)

If σ > π, then d > 2 and there must be some eigenvalue, say, λj = eiθ where θ is in the
interval J := [−π

2 + σ−π
2 , π2 −

σ−π
2 ], since otherwise there would be a shorter arc containing all the

eigenvalues. It is easy to see by drawing a parallelogram on the complex plane that the magnitude
of eiσ/2 + e−iσ/2 + eix for varying x ∈ J assumes the largest value 1 when x is either end point of
the interval J . So,∣∣∣∣∣1d ∑

i

λi

∣∣∣∣∣ ≤ 1
d |λ1 + λj + λd|+

1
d

∣∣∣∣∣∣
∑

i 6=1,j,d
λi

∣∣∣∣∣∣ ≤ 1
d + d− 3

d = d− 2
d . (95)

Therefore, if we set σ′ = min(σ, π) in all cases, we have∣∣∣∣∣1d ∑
i

λi

∣∣∣∣∣ ≤ 2
d cos σ

′

2 + d− 2
d , (96)

F (U(U),U(V )) ≥ 1−
(2

d cos σ
′

2 + d− 2
d

)2
≥ 2

d sin2 σ
′

2 = 1
2d‖U(U)− U(V )‖2�

where the second inequality in the second line uses d ≥ 2 and cos(σ′/2) ≥ 0.
The tightness of the left-hand side is seen by setting λ1 = · · · = λd/2 6= λd/2+1 = · · · = λd where d

is even. The tightness of the right-hand side is seen by setting λ1 = eiσ/2, λd = e−iσ/2 with small σ
and λi = 1 for all other i.

Proposition 1.18 ([YRC20, Lemma 2]). If a unitary estimation algorithm A with an output
distribution ϕ(Ẑ|Z)dẐ is unitarily covariant, i.e., ϕ(AẐB|AZB) = ϕ(Ẑ|Z) for all A,B ∈ U(d),
then

F (U(Z),M(Ẑ)) = ‖U(Z)−M(Ẑ)‖�. (18)

Therefore, by Remark 1.17 and Proposition 1.9,

‖U(Z)−M(Ẑ)‖� = F (U(Z),M(Ẑ)) = E
Ẑ

F (U(Z),U(Ẑ)) ≤ 1
4 E
Ẑ

[‖U(Z)− U(Ẑ)‖2�]. (19)

The inequality follows from [YRC20, Lem. 2], but we give another short proof (with worse
constants) using the idea of “Mixing Unitary” Lemma of [Has16, Cam17].
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Proof of Eq. (19). Write Z†U = eX where ‖X‖op ≤ π. Since the distribution of X is conjugation
invariant,

E
X
X = E

X

∫
dV VXV † = E

X

TrX
d I. (97)

Then, for any state ρ that may be entangled with some ancilla, we see, using nested commutators
[X, ρ]k = [X, [X, ρ]k−1] for k > 0 and [X, ρ]0 = ρ,

‖M(U)− U(Z)‖� =
∥∥∥∥EU UρU † − ZρZ†

∥∥∥∥
1

=
∥∥∥∥EX eXρe−X − ρ

∥∥∥∥
1

=
∥∥∥∥∥EX

∞∑
k=1

[X, ρ]k
k!

∥∥∥∥∥
1

≤
∥∥∥∥EX[X, ρ]

∥∥∥∥
1

+
∥∥∥∥∥EX

∞∑
k=2

[X, ρ]k
k!

∥∥∥∥∥
1

≤ E
X

∞∑
k=2

2k‖X‖kop‖ρ‖1
k!

≤ E
X

4‖X‖2op exp(2π) = E
U

4 dist(Z,U(1)U)2 exp(2π). (98)

The result follows using norm equivalence (Proposition 1.6).

B. Estimating eigenvalues

In this section we describe an algorithm that, given access to an unknown unitary Z ∈ U(d), outputs
an approximation to the eigenvalues of Z that is close in “L∞-distance up to a global phase”. Let
us make this precise:

Definition B.1. Let Θ1,Θ2 ⊂ [0, 2π) be two finite sets of “eigenphases”. We write

dH̃(Θ1,Θ2) = min
τ∈[0,2π)

dH(Θ1 + τ,Θ2), (99)

where dH denotes Hausdorff distance in R/2πZ. In other words, dH̃(Θ1,Θ2) ≤ ε iff, for some τ ,
the sets Θ′1 = Θ1 + τ and Θ2 have the following property (when all numbers are taken mod 2π):
For every θ1 ∈ Θ′1 there is θ2 ∈ Θ2 with |θ1 − θ2| ≤ ε, and vice versa (interchanging the roles of
Θ′1 and Θ2).

Our goal is to prove the following theorem:

Theorem B.2. There is an eigenvalue estimation algorithm that, given ε > 0 and access to an
unknown unitary Z ∈ U(d), applies Z at most O(d/ε) · log2 d times and outputs the classical
description of a set Θ̂ ⊂ [0, 2π) such that dH̃(Θ, Θ̂) ≤ ε except with probability at most d−100, where
Θ is the set of Z’s eigenphases. (That is, Θ = {θ ∈ [0, 2π) : eiθ is an eigenvalue of Z}.) Moreover,
the quantum space requirement for the algorithm is only 2 qudits plus 1-qubit, and the gate complexity
beyond the uses of Z is only poly log(d/ε).

The overall algorithm is similar to Phase Estimation. We begin as follows:

Proposition B.3. There is an algorithm that, given ε, η > 0, access to an unknown Z ∈ U(d), and
two eigenvectors |a〉, |b〉 with eigenphases α, β ∈ [0, 2π) (respectively), has the following behavior:
The algorithm uses one additional qubit, applies Z at most O(log(1/η)/ε) times, and outputs an
estimate θ that is within ±ε of β − α, except with probability at most η. In addition, at the end of
the algorithm still holds |a〉 ⊗ |b〉, unentangled with its results.

Proof. The algorithm strongly resembles Quantum Phase Estimation. Given |a〉 ⊗ |b〉 in “registers 1
and 2”, suppose we:
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• Adjoin a qubit |+〉 in a new “register 0”.

• Performed controlled-SWAP on registers 1, 2, controlled on register 0.

• Apply Z to register 1.

• Perform controlled-SWAP again.

• Detach the qubit in register 0.
It is easy to calculate that this procedure leaves registers 1 and 2 in the state |a〉 ⊗ |b〉, with the
detached qubit in state

√
1/2(eiα |0〉+ eiβ |1〉). Up to a global phase, this is

√
1/2(|0〉+ ei(β−α) |1〉).

We can then repeat this procedure but with Z2, Z4, Z8, etc. in place of Z, yielding qubits√
1/2(|0〉 + ei2k(β−α) |1〉) for all 0 ≤ k < m, at a cost of 2m − 1 uses of Z. This is precisely the

scenario arising within textbook Quantum Phase Estimation [CEMM98], prior to its QFT. If
we were to finish with QFT, we would essentially complete the proof, except that it would use
m = log(1/ε) + O(1) qubits to achieve error ε with probability 2/3. Instead, if we use Iterative
Quantum Phase Estimation [DJSW07], we only need one additional qubit to get the same guarantee.
Finally, repeating the whole algorithm O(log(1/η)) times and taking the median result completes
the proof.

Proposition B.4. There is an algorithm that, given ε > 0, access to an unknown Z ∈ U(d), and
an eigenvector |a〉, has the following behavior: The algorithm uses one additional qudit and one
additional qubit, applies Z at most O(d/ε) · log2 d times, and outputs the classical description of a
set Θ̂ ⊂ [0, 2π) such that dH̃(Θ, Θ̂) ≤ ε except with probability at most d−100, where Θ is the set of
Z’s eigenphases.
Proof. Write α for the eigenphase of Z on |a〉. The algorithm repeatedly does the following: Adjoin
to |a〉 a second qudit in the maximally mixed state. Then use the routine from Proposition B.3,
with η = d−C for some large constant C. The result is that except with probability at most d−C , the
routine uses O(1/ε) · log d applications of Z, and ends up holding the following: |a〉 ⊗ |b〉 together
with an ε-accurate estimate of β − α, where |b〉 is a uniformly random eigenvector of Z and eiβ is
the associated eigenvalue. At this point, the difference β − α may be recorded, and the register
containing |b〉 discarded.

By repeating this procedure O(d log d) times, the Coupon Collector analysis ensures that the
algorithm will record ε-accurate values of θ − α for the at most d distinct values θ ∈ Θ. (Except
with probability at most d−100, having chosen C appropriately.) It follows that the collection Θ̂ of
recorded values satisfies dH̃(Θ, Θ̂) ≤ ε (independent of what α is), as required.

Remark B.5. If log(1/ε) � log d then the log factors in the preceding analysis may be slightly
improved. In this case, since the number of possible values for θ − α is only O(1/ε), one can use
analysis of Non-Uniform Coupon Collecting to show that only O(d log 1/ε) repetitions are required.
We omit further details.

Finally, Theorem B.2 now follows by applying the algorithm from Proposition B.4 with the
maximally mixed state in place of |a〉.

C. Gate-efficient pure state tomography with optimal sample
complexity

Although it doesn’t seem to significantly improve the gate complexity of our algorithm, we record
the following result:
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Theorem C.1. There is a tomography algorithm for d-dimensional pure states, d = 2n, with the
following behavior. Given ε > 0 and O(d/ε) copies of an unknown n-qubit pure state |u〉 ∈ Cd,
the algorithm sequentially measures the copies using von Neumann measurements and collects the
classical results. The measurements are nonadaptively chosen using classical randomness, and each
is implemented with gate complexity nO(1) · log(1/ε) on the minimal number of qubits, n. Finally,
after the classical results are processed in dO(1) time, an estimate |û〉 is output, and except with
probability at most d−100 it satisfies |〈u|û〉| ≥ 1− ε.

We were unable to find this theorem in the literature, although it follows from relatively standard
ideas. It would seem that all previous works on gate-efficient pure state tomography (e.g., [GLF+10,
CL14, KRT17, GKKT20]) have sample complexity no better than O(d log(d)/ε).

Proof. Recall the standard pure state tomography algorithm from Proposition 2.2 and its analysis
from Section 2.1. Slightly more strongly we use that, with m = O(d/ε) copies, it can be made to
satisfy ([GKKT20, Theorem 5])

Pr[‖|u〉〈u| −L‖op ≥ t
√
ε] ≤ 2 exp(O(d) · (1− t2)) (100)

simultaneously for all constants t > 0, from which

E[‖|u〉〈u| −L‖op] ≤ c
√
ε (101)

easily follows (for some constant c). Hence for any positive even integer k,

0 ≤ E[Tr((|u〉〈u| −L)k)] ≤ d(c
√
ε)k. (102)

Recall that
L = d + 1

m

m∑
t=1
Vt |Jt〉〈Jt|V †t − I, (103)

where V1, . . . ,Vm are independent Haar-random unitaries and Jt denotes the column index of the
tth measurement outcome. For a given t ∈ [m], let us define a “Vt-entry” to be an expression of the
form 〈i|Vt|Jt〉 〈Jt|V †t |i′〉, where |i〉 , |i′〉 are standard basis vectors.

Now

E[Tr((|u〉〈u| −L)k)] = E

Tr

(I + |u〉〈u| − d + 1
m

m∑
t=1
Vt |Jt〉〈Jt|V †t

)k
= E

Tr


 d∑
i1=1
|i1〉〈i1|+ |u〉〈u| −

d + 1
m

m∑
t=1

d∑
i2,i3=1

|i2〉〈i2|Vt|Jt〉〈Jt|V †t |i3〉〈i3|

k

,

which in turn is a sum of (d + 1 +md2)k “monomials”, each of the form

c · (product of k1 V1-entries)(product of k2 V2-entries) · · · (product of km Vm-entries) (104)

for a constant c with |c| ≤ 1 and nonnegative integers kt summing to at most k. Note that the
expected value of a monomial as in Equation (104) is equal to

c ·E[(product of k1 V1-entries)] · · ·E[(product of km Vm-entries)], (105)

since V1, . . . ,Vm are independent.
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Let us now introduce independent but pseudorandom unitaries V ′1 , . . . ,V ′m. We write L′ and J ′t
and repeat the above development. Now suppose the following holds:∣∣E[(product of kt V ′t -entries)]−E[(product of the same kt Vt-entries)]

∣∣ ≤ η for any kt ≤ k.
(106)

Then—using that any Vt-entry or V ′t -entry has magnitude at most 1—it’s not hard to conclude that∣∣∣E[Tr((|u〉〈u| −L′)k)]−E[Tr((|u〉〈u| −L)k)]
∣∣∣ ≤ (d + 1 +md2)k ·mη. (107)

Thus for some η ≤ (d/ε)−O(k) the difference is at most εk and from Equation (102) we get

0 ≤ E[Tr((|u〉〈u| −L′)k)] ≤ 2d(c
√
ε)k =⇒ Pr[Tr((|u〉〈u| −L′)k) ≥ 2d101(c

√
ε)k] ≤ d−100.

(108)
But when Tr((|u〉〈u| −L′)k) ≥ 2d101(c

√
ε)k we have

‖|u〉〈u| −L′‖op ≤ (2d101)1/k(c
√
ε) = O(

√
ε), (109)

provided k = Ω(log d).
In summary, provided:

• V ′1 , . . . ,V
′
m achieve Equation (106) for k = Ω(log d) and η = O(d/ε)−O(k),

• each V ′t can be implemented with gate complexity nO(1) · log(1/ε),

we get that ‖|u〉〈u| −L′‖op ≤ O(
√
ε) except with probability at most d−100, from which the result

follows as in Section 2.1.
Let us now consider a generic product of kt Vt-entries. Dropping the t subscript for notational

simplicity, it looks like

〈i1|V |J〉〈J |V †|`1〉 · 〈i2|V |J〉〈J |V †|`2〉 · · · 〈ik|V |J〉〈J |V †|`k〉 . (110)

Since Pr[J = j | V = V ] = 〈u|V |j〉〈j|V †|u〉, the expectation of the above quantity is

d∑
j=1

E[〈u|V |j〉〈j|V †|u〉 · 〈i1|V |j〉〈j|V †|`1〉 · 〈i2|V |j〉〈j|V †|`2〉 · · · 〈ik|V |j〉〈j|V †|`k〉]. (111)

Since |u〉 is a unit vector, it follows that the above expectation changes by no more than
√

d · λ in
magnitude if V is replaced by V ′ distributed as a quantum (d, λ, k + 1)-tensor-product-expander
(see Definition 1 and equations (4)–(6) of [BaHH16]). By the work of [BaHH16] (see also the
latest strengthening from [Haf22]), we know that a (d, λ, k)-TPE can be generated by certain
simple probability distribution on n-qubit unitary circuits with poly(n, k) · log(1/λ) gates (provided
k = o(d)). With k = Θ(log d) = Θ(n) and λ = O(d/ε)O(k), this is nO(1) log(1/ε) gates, as needed to
complete the proof of the theorem.

D. Compressed proof of Proposition 4.2

Here we give a summary of the proof of [BMQ22, Thm. 5]. The content in this appendix is an
excerpt of results in [CDP08, CE16, HHHH10, BMQ22]. Our exposition will omit much of general
discussion in those references, but present necessary pieces.
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Step 1: Quantum Testers. It is well known that a quantum channel C (unitary or not)
corresponds to a Choi operator C, which is nothing but a density operator obtained by applying C
to an unnormalized pure density matrix

∑
i,i′ |ii〉 〈i′i′| that is maximally entangled with an ancilla

of dimension equal to that of the input of C. The Choi operator of the composition of quantum
channels has a formula in terms of the Choi operators of the component channels, using so-called
link product denoted by ∗ [CDP08]. Although the link product involves partial transposes (that
generally do not preserve positivity) whenever an output of a channel is plugged in to another
channel, the result of a link product is always a positive semidefinite (PSD) operator.

Let us call a sequence of quantum channels a quantum network, which is not necessarily a unitary.
It has been observed [CDP08] that even if some part of a quantum network is unspecified, one can
associate a Choi operator to a quantum network by introducing a Hilbert space for each of input
and output of an unspecified channel, giving a blank slot that will be filled by a quantum channel.
Given a Choi operator Tx for a quantum network with Q slots unfilled and with an outcome x
postselected, if we have Q Choi operators C1, C2, . . . , CQ of quantum channels to fill the Q slots, we
can express the probability of obtaining x as

Pr[x] = Tx ∗ C = Tr(TxCT ) = Tr(T Tx C) (112)

where C = C1⊗C2⊗· · ·⊗CQ and ∗ is the link product [CE16, §2.4]. This encompasses the scenario
where the Q channels are not parallel but causally ordered since Tx can include e.g. identity channels
in between the slots. Here, CT is the full, rather than a partial, transpose of C. Normally, a link
product of two Choi operators takes partial transpose on the input Hilbert space of the causally
succeeding factor, but since each channel Cj takes input from an open “leg” of Tx and some other leg
of Tx takes input from the output of Cj , we equivalently take full transpose of Cj while keeping Tx
intact. We may think of this as a consequence of the fact that Tx ∗C is a one-dimensional operator,
a number. Note that CTj is a Choi operator of a quantum channel; in particular, if Cj is that of a
unitary channel, so is CTj . The collection {Tx}x is called a quantum tester [CDP09].

Step 2: Semidefinite programming. Now we consider the problem in the statement of Proposi-
tion 4.2. There are N candidate channels, labeled by x = 1, . . . , N . We are given access to Q uses of
one of the candidates. Letting a quantum network to output y, we have a tester {Ty | y = 1, 2, . . . , N}
that has Q blank slots to which we plug in Q identical channels, chosen uniformly at random from
the candidates. Given Q uses of a candidate channel labeled by x, the probability of outputting y is
Tr(Ty(V ⊗Qx )T ) by Eq. (112) where Vx is the corresponding Choi operator. The average probability
of outputting a correct label is given by

psucc = 1
N

N∑
x=1

Tr(Tx(V ⊗Qx )T ). (113)

Now, each operator Tx is a link product of some PSD operators, and hence is PSD. In addition,
since probabilities must add up to 1, we have Tr(

∑
y Ty(V ⊗Qx )T ) = 1 for each x.

Actually, the blank slots of a tester may be filled with arbitrary channels and must still produce a
probability distribution. In particular, we must have

Tr(TallV
⊗Q) = 1, Tall =

∑
x

Tx (114)

for every V that is the Choi operator of a unitary channel. Here we do not need to take transpose
because the transpose of the Choi operator V (U) of a unitary channel U(U) is still the Choi
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operator V (U∗) of the complex conjugate unitary channel U(U∗). This condition consists of infinitely
many equations; however, one observes [CE16] that this condition is equivalent to demanding
Tr(TallW ) = 1 for any affine combination W in the affine span

W =
{∑

i

ξiV (Ui)⊗Q
∣∣∣∣∣ Ui ∈ U(d), ξi ∈ R,

∑
i

ξi = 1
}

(115)

This seemingly more complicated condition simplifies the situation because any affine space in a
finite dimensional vector space has a finite basis. So, the condition transcribes to a finite number of
equations Tr(TallWj) = 1, one for each affine basis element Wj of W.

A set of PSD operators Ty with the affine constraint Tr(TallWj) = 1 may go beyond what a physical
quantum network gives and may not qualify as a tester; we do not claim that physically realizable
testers are fully characterized by W. Nonetheless, we consider a semidefinite program [CE16]
specified by {Vx | x = 1, 2, . . . , N}:

maximize 1
N

N∑
x=1

Tr(Tx(V ⊗Qx )T ) by varying {Tx}x subject to
{
Ty � 0 ∀y,
Tr(TallWj) = 1 ∀j.

(116)

Since any physically realizable tester is a feasible solution, the optimal value of this program is an
upper bound on psucc. Suppose that {Tx}x is a feasible solution. Observe that

∃λ ∈ R, ∃W ∈ W, ∀y : 1
N

(V ⊗Qy )T � λW =⇒ psucc ≤ λ (117)

because, if W =
∑
j ξjWj with

∑
j ξj = 1, then

∑
x

1
N

Tr(Tx(V ⊗Qx )T ) ≤
∑
x

Tr(Tx
∑
j

λξjWj) = λ
∑
j

ξj Tr(TallWj) = λ. (118)

It is an instance of the weak duality of semidefinite programming. The larger the class W is, the
stronger our bound λ will be.

Step 3: Some representation theory. By construction, W contains

C̄ =
∫

U(d)
V (U)⊗QdU (119)

where dU is the Haar measure on U(d) and V (U) is the Choi operator of the unitary channel U(U).
We claim [BMQ22] that for any T ∈ U(d),

V (T )⊗Q �
(
Q+ d2 − 1

Q

)
︸ ︷︷ ︸

=Nλ

C̄, (120)

which is in the form of Eq. (117) and will therefore complete the proof of Proposition 4.2. Now,
Eq. (120) is equivalent to saying [HHHH10] that there is γ =

(Q+d2−1
Q

)
> 0 with which |〈φ|ψ〉|2 ≤

γEU 〈φ|R(U) |ψ〉 〈ψ|R(U)† |φ〉 for any vector |φ〉 where |ψ〉 is a pure unnormalized state corre-
sponding to V (T )⊗Q and R(U) = (I⊗U)⊗Q is a unitary representation of a compact Lie group U(d).
It is standard to work in a basis where R(U) is block-diagonal, so R(U) =

⊕
µRµ(U)⊗ Im(µ) where

µ ranges over all inequivalent irreps occurring in R. The natural number m(µ) is the multiplicity
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of µ within R. Correspondingly we have |ψ〉 =
⊕
µ |ψµ〉 and |φ〉 =

⊕
µ |φµ〉 where each orthogonal

summand, |ψµ〉 or |φµ〉, can be viewed as an entangled state across the irrep Rµ and the “multiplicity
space.” Let dµ = dimRµ and d′µ = min(dµ,m(µ)). We may write |ψµ〉 =

∑d′µ
a=1 |ψRµ,a〉 |ψMµ,a〉 where

each |ψRµ,a〉 is normalized. By Cauchy–Schwarz,

|〈φ|ψ〉|2 =

∣∣∣∣∣∣
∑
µ

∑
a(µ)

√
dµ
dµ
〈φµ|ψRµ,aψMµ,a〉

∣∣∣∣∣∣
2

≤

∑
µ

∑
a(µ)

dµ


︸ ︷︷ ︸

γ′

∑
µ

∑
a(µ)

1
dµ
|〈φµ|ψRµ,aψMµ,a〉|2

. (121)

On the other hand, The average of conjugation by an irrep Rµ is to trace it out and replace it by
the identity, scaled to preserve the trace (Schur’s lemma). Hence,

E
U
〈φ|R(U) |ψ〉 〈ψ|R(U)† |φ〉 =

∑
µ

〈φµ|
1
dµ

IRµ ⊗ ψMµ |φµ〉 ≥
∑
µ

∑
a(µ)

1
dµ
|〈φµ|ψRµ,aψMµ,a〉|2. (122)

Therefore, we have proved V (T )⊗Q � γ′C̄ [HHHH10].
It remains to show that γ′ ≤

(Q+d2−1
Q

)
= γ. Because d′µ ≤ dµ = dimRµ by definition, we aim to

show

∑
µ

(dimRµ)2 =
(
Q+ d2 − 1

Q

)
. (123)

As noted in [BMQ22], this is a formula appearing in Schur’s thesis [Sch01, Eq. (57)]. We note the
following pointers to modern textbooks (e.g. [FH04, App. A]) to prove this identity. Obviously,
an irrep appears in R(U) = (I ⊗ U)⊗Q if and only if it does in U⊗Q. It is well known that the
irreps Rµ of U(d) in the Q-fold tensor representation correspond to Young diagrams µ with Q boxes
and at most d rows (English notation). The character TrRµ(U) is given by the Schur polyno-
mial sµ(u1, . . . , ud) of degree Q evaluated at the eigenvalues uk of U . An identity that is useful for
us is the Cauchy identity

∑
λ

sλ(u)sλ(v) =
d∏
k=1

d∏
`=1

1
1− ukv`

(124)

where λ ranges over all Young diagrams with at most d nonzero rows but unlimited number of boxes.
Here all the inverse polynomials should be understood as a formal power series. The dimension dµ
is sµ(1, 1, . . . , 1), so if we take the degree 2n part of the right-hand side of Eq. (124) and evaluate
it at uk = v` = 1 for all k, `, then we obtain

∑
µ(dimRµ)2. This is equivalent to reading off the

coefficient of tQ in the series expansion of (1 − t)−d2 . Applying (Q!)−1∂Qt , the identity Eq. (123)
follows.
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