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Abstract
In this paper we consider the following question: how many vertices of the discrete torus

must be deleted so that no topologically nontrivial cycles remain?
We look at two different edge structures for the discrete torus. For(Zd

m)1, where two
vertices inZm are connected if theirL1 distance is 1, we show a nontrivial upper bound of
dlog2(3/2)md−1 ≈ d.6md−1 on the number of vertices that must be deleted. For(Zd

m)∞, where
two vertices are connected if theirL∞ distance is 1, Saks, Samorodnitsky and Zosin [8] already
gave a nearly tight lower bound ofd(m− 1)d−1 using arguments involving linear algebra. We
give a more elementary proof which improves the bound tomd− (m− 1)d, which is precisely
tight.

1 Introduction

In this paper we consider a “vertex multicut” problem on discrete torus graphs. Let us begin by
defining the two graphs of interest to us.

Definition 1. TheL1 discrete torus of widthm and dimensiond, denoted(Zd
m)1, is the undirected

graph on vertex setZd
m in which two vertices are connected if theirL1 distance is 1.

TheL∞ discrete torus of widthm and dimensiond, denoted(Zd
m)∞, is the undirected graph

on vertex setZd
m in which two vertices are connected if theirL∞ distance is 1.

We will also write(Zd)1 and(Zd)∞ for the similarly defined infinite graphs on vertex setZd.

In each of these tori we are interested in the set of cycles that “wrap around” the torus in at
least one dimension. Let us define this notion formally.

Definition 2. A cycle in(Zd
m)1 (respectively,(Zd

m)∞) is said to be noncontractible if, when re-
garded as a loop inside the solid torus, it is homotopically nontrivial.
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Main problem. In this paper we want to study the minimal number of vertices in either discrete
torus that must be deleted so that every noncontractible cycle is broken. In other words, we consider
the problem of finding the set of vertices of minimal size that intersects every noncontractible
cycle in(Zd

m)1 or (Zd
m)∞. We denote the minimal number for(Zd

m)1 by S1(m, d) and the minimal
number for(Zd

m)∞ by S∞(m, d).

We note that there are some obvious bounds that hold for bothS1(m, d) andS∞(m, d). A lower
bound ofmd−1 follows by considering, in either graph, themd−1 noncontractible cycles which are
parallel to the first axis. These cycles are vertex-disjoint, so at least one vertex must be deleted
from each of them. An obvious upper bound ofmd − (m − 1)d is obtained by deleting the union
of d “walls”, one in each dimension; by a “wall” we mean a set of the form{x : xi = a} for some
i ∈ [d], a ∈ Zm.

1.1 History and motivation

The problem discussed in this paper is a natural one in the context of the combinatorics of the
discrete torus (see e.g. [2, 1, 3]), but it has other motivations as well.

Discrete foams. Our problem is related to the isoperimetry of periodic tilings of space. The
connection is apparent from the following formulation of our problem. We say that a finite setS
in Zd generates a discrete foam for(Zd)1 with periodicitym · Zd if the set

Zd \ {S + v}v∈m·Zd

contains no paths in(Zd)1 of infinite length. (We can give a similar definition for(Zd)∞.) It can
easily be verified that our problem is identical to that of finding the minimal size of a set generating
a discrete foam with periodicitym · Zd.

This problem can be essentially regarded as that of finding a tiling ofZd with periodicitym ·Zd

that has minimal vertex boundary; this is a discrete version of the problem of finding a (continuous)
closed foam in<d with periodicityZd and minimal surface area. Although there has been a lot of
work on soap bubble and foam problems in<d and even on the flat torus — see e.g. [7] — very
little is known. We hope that discrete versions of the problem may prove to be a useful source for
new observations regarding foams.

Directed minimum multicut. Another area in which our problem arises is in theoretical com-
puter science, as was noted in a paper of Saks, Samorodnitsky and Zosin [8]. This paper studied
the integrality gap of the natural linear programming formulation of the “directed minimum mul-
ticut” problem. This is the problem in which one is given a directed graph andd “source-sink”
pairs of vertices(s1, t1), . . . , (sd, td), and one is required to delete as few edges as possible so that
there is no longer anysi-to-ti path. To obtain their integrality gap bound, Saks et al. translated the
directed minimum multicut problem on a certain graph to an undirected vertex-deletion problem.
Specifically, they looked at the graph([m]d)∞ — i.e., thed-dimensional, widthm grid with L∞
edges — and studied following quantity:

Definition 3. S ′∞(m, d) is the minimum number of vertices in([m]d)∞ that need to be deleted to
disconnect alld pairs of opposing walls.
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ClearlyS ′∞(m, d) ≥ S∞(m, d). Saks et al. proved a lower bound ofd(m−1)d−1 onS ′∞(m, d),
but their proof immediately gives the same lower bound forS∞(m, d). This result yielded an
integrality gap arbitrarily close tod (which is the best possible) for the directed multicut problem.
In this paper we improve the lower bound forS∞(m, d) (and thus forS ′∞(m, d)) to md− (m−1)d,
which exactly matches the upper bound mentioned earlier.

Parallel repetition on odd cycles. Our original motivation came from a problem in the study
of parallel repetition of two-prover one-round games [4, 6], and in particular a question due to
Feige [5] about how the max-cut problem on odd cycles behaves under parallel repetition.

The details of this problem are beyond the scope of this paper; suffice it to say that it can be
reduced to a problem very similar to that of eliminating cycles in(Zd

m)∞ (we give more details
in Section3). However, it seems that solving that problem requires a proof of a lower bound on
S∞(m, d) that is “robust”, in the sense that it should imply a nontrivial bound even under a certain
relaxed hypothesis. The lower bound of Saks et al. relies on a linear algebraic argument, and this
seems too fragile to give anything once hypotheses are relaxed. Our lower bound, on the other
hand, is proven using more elementary methods; hence it seems to have more of a chance to be
generalizable.

1.2 Our results

We have two main results. Our first result is an improved upper bound onS1(m, d).

Theorem 1. S1(m, d) ≤ dlog2(3/2)md−1.

As far as we know, no nontrivial upper bound onS1(m, d) was previously known.

Our second result is a lower bound onS∞(m, d) that precisely matches the obvious upper
bound already discussed. This result improves on the lower bound of Saks, Samorodnitsky and
Zosin [8] and eliminates their use of linear algebra.

Theorem 2. S∞(m, d) ≥ md − (m− 1)d, and henceS∞(m, d) = md − (m− 1)d.

2 The upper bound onS1(m, d)

Our main goal in this section is to prove Theorem1, showing an upper bound forS1(m, d). Before
doing this, we will motivate our bound by giving a tight construction in two dimensions which has
size about(3/2)m.

2.1 A tight bound for (Z2
m)1

It is easy to see that the following set of size at most(3/2)m blocks all noncontractible cycles in
(Z2

m)1:
S = {(x, x) : x ∈ Zm} ∪ {(x,−x) : 0 ≤ x ≤ k/2}.

Let us sketch a proof of this fact. It is well-known that in two dimensions,(Z2
m)∞ is dual to(Z2

m)1.
The setS contains a cycle in(Z2

m)∞ that winds once in the first dimension and no times in the
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second dimension — call such a cycle a(1, 0)-cycle. This blocks all cycles in(Z2
m)1 except those

of type(c, 0). ButS also contains a(0, 1)-cycle in(Z2
m)∞, thus blocking all(c, 0)-cycles in(Z2

m)1,
c 6= 0.

If we count precisely, we see thatS actually has size(3/2)m − 1 whenm is even and size
(3/2)m− 1/2 whenm is odd. We will now show these upper bounds are optimal by showing that
(3/2)m− 1 is a lower bound.

So supposeS ⊂ Z2
m blocks all noncontractible cycles. To block all(1, 0)-cyclesS must con-

tain some(a, b)-cycle,C, in (Z2
m)∞ with b 6= 0. If either |a| or |b| is at least 2 thenC contains at

least2m points. So we may assume thatC is of type either(0, 1) or (1, 1). But now to block all
cycles in(Z2

m)1 that are parallel toC (i.e., have the same type asC), S must contain some other
nontrivial cycleC ′ in (Z2

m)∞ not parallel toC. Hence we can conclude without loss of generality
that one of the following three cases occurs in(Z2

m)∞: (i) S has a(1, 0)-cycle and a(0, 1)-cycle;
(ii) S has a(1, 0)-cycle and a(1, 1)-cycle; or, (iii) S has a(1, 1)-cycle and a(1,−1)-cycle.

For case (i), letC be the(1, 0)-cycle andC ′ the (0, 1)-cycle. Suppose thatC containst steps
with vertical displacement of 1. Then it must also contain exactlyt steps with vertical displace-
ment−1, because its type is(1, 0). ThusC has length at leastmax(m, 2t). Also, C is contained
in the union oft + 1 horizontal lines, so it follows thatC ′ must have at leastm− t− 1 points not
in C, since it has type(0, 1). ThusS has size at leastmax(m, 2t) + m − t − 1, which is at least
(3/2)m− 1, as claimed.

The argument for case (ii) is identical. For case (iii) things are even easier. In this case letC
be the(1, 1)-cycle, and note thatC travels up at leastm steps and right at leastm steps. IfC is
to have fewer than(3/2)m points by itself, then at leastm/2 of these steps must be shared; i.e.,
C must have at leastm/2 (1, 1)-steps. Now letC ′ be the(1,−1)-cycle. ThenC ′ needs to take at
leastm steps that are either horizontal, vertical, or(1,−1)-steps. Since none of these are them/2
(1, 1)-steps ofC, we conclude thatC andC ′ together have at least(3/2)m vertices, as claimed.

2.2 Proof of Theorem1

Having analyzed the case ofd = 2, we will prove Theorem1 by generalizing the example from
the previous subsection to higher dimensions. Our proof uses the foam perspective described in
Section1. That is, we show a set that generates a discrete foam with periodicitym · Zd and has
the size claimed in the theorem. To define the discrete foam boundary, it will help to first define a
continuous foam.

We define inductively a setB(r) in Euclidean space<d, whered = 2r. The setB(0) will be
the set of allx1 ∈ <1 satisfying

0 ≤ x1 < m.

In other words,B(0) = [0,m). The inductive definition ofB(r) ⊂ <d is

(x1, . . . , xd) ∈ B(r) ⇔ (x1 + x2, . . . , xd−1 + xd) ∈ B(r − 1) and

(x1−x2

2
, . . . , xd−1−xd

2
) ∈ B(r − 1).
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Thus we have thatB(1) ⊂ <2 is the set of points(x1, x2) satisfying

0 ≤ x1 + x2 < m

0 ≤ x1 − x2 < 2m,

andB(2) ⊂ <4 is the the set of points(x1, x2, x3, x4) satisfying

0 ≤ x1 + x2 + x3 + x4 < m

0 ≤ x1 − x2 + x3 − x4 < 2m

0 ≤ x1 + x2 − x3 − x4 < 2m

0 ≤ x1 − x2 − x3 + x4 < 4m,

and it can easily be checked thatB(r) is the set of pointsx ∈ <d satisfying0 ≤ Hrx < mur,
whereHr denotes the standard2r × 2r Hadamard matrix andur denotes therth tensor power of
the vector(1, 2).

Let us also introduce the following notation: LetL(r) denote the “lower boundary” ofB(r),
containing all the points inB(r) for which one of the inequalities hold as an equality; and, letB(r)
be the closure ofB(r), which can also be obtained by replacing all strict inequalities by non-strict
inequalities.

Since the Hadarmard matrix is orthogonal, it is easy to see thatB(r) is a closed rectangular
box in<d (although it is not axis-parallel). We will show thatB(r) tiles<d with periodicitym ·Zd.
This is a consequence of the following two propositions:

Proposition 2.1. No two points ofB(r) are the same modulom · Zd.

Proposition 2.2. The volume ofB(r) is md.

Proof. (Proposition2.1.) The proof is by induction; the statement is clearly true forr = 0. For
largerr, supposex is in B(r) andx + m · (a1, . . . , ad) is also inB(r), where theai’s are integers.
We wish to show that allai’s equal 0. By definition, we know that

(x1 + x2, . . . , xd−1 + xd) ∈ B(r − 1),

(x1 + x2 + m · (a1 + a2), . . . , xd−1 + xd + m · (ad−1 + ad)) ∈ B(r − 1).

By induction, then, we get
a1 + a2 = · · · = ad−1 + ad = 0. (1)

It follows thata1 − a2, . . . ,ad−1 − ad are all even and thus(a1 − a2)/2, . . . ,(ad−1 − ad)/2 are all
integers. But by definition we also know that

(x1−x2

2
, . . . , xd−1−xd

2
) ∈ B(r − 1),

(x1−x2

2
+ ma1−a2

2
, . . . , xd−1−xd

2
+ mad−1−ad

2
) ∈ B(r − 1),

so by induction,
(a1 − a2)/2 = · · · = (ad−1 − ad)/2 = 0. (2)

Combining (1) and (2) we get that allai’s are 0. This completes the induction.

5



Proof. (Proposition2.2.) As mentioned,B(r) is a rectangular box, so its volume is simply the
product of its side lengths. The normal vectors to its sides are the rows of the Hadamard matrix
Hr, which have length

√
d. ThusB(r)’s sides have length(m/

√
d) · (ur)1, . . . , (m/

√
d) · (ur)d,

where we recall the vectorur is therth tensor product of(1, 2). So to complete the proof it suffices
to show that

∏d
i=1(ur)i = dd/2. This follows by induction since it is easy to see we have the

recurrenceu0 = 1,
∏d

i=1(ur)i = 2d/2(
∏d/2

i=1(ur−1)i)
2.

We have now shown thatB(r) tiles <d with periodicity m · Zd. It follows easily thatL(r)
generates a continious closed foam in<d with preriodicitym · Zd.

Let us now return to the discrete problem in which we are interested. A natural approach
would be to show thatL(r)∩Zd generates a discrete foam in(Zd)1 with periodicitym ·Zd, which
it indeed does, and to upper-boundS1(m, d) by counting the lattice points onL(r). However, to
avoid the need to approximate the number of lattice points onL(r), we take a slightly different tack.

Let L′(r) denote a thickening ofL(r) to width 1/
√

d; in other words,L′(r) = {x ∈ B(r) :
dist(x, L(r)) ≤ 1/

√
d}. Note thatL(r) + v generates a continuous foam in<d with periodicity

m · Zd for any vectorv ∈ <d. From this it’s easy to see that(L′(r) + v) ∩ Zd generates a discrete
foam in(Zd)1 with periodicitym ·Zd; the reason is that the normals to the faces ofL(r) are of the
form (±1,±1, . . . ,±1), and so every edge of(Zd)1 travels length at most1/

√
d perpendicular to

L(r)’s faces. Thus any infinite path in(Zd)1 would have to pass throughL′(r).

We can now upper-boundS1(m, d) by counting the number of points in(L′(r) + v) ∩ Zd for
any particularv. By volume considerations, it is clear that there exists a vectorv such that

#((L′(r) + v) ∩ Zd) ≤ vol(L′(r)) ≤ area(L(r))/
√

d.

Thus to prove Theorem1 it suffices to show that the surface area ofL(r) is at mostdlog2(3/2)md−1 ·√
d. SinceB(r) is a rectangular box, the surface area ofL(r) is equal to the sum of the reciprocals

of B(r)’s side lengths times its volume (i.e.,md, by Proposition2.2). B(r)’s side lengths equal
(m/

√
d) · (ur)i, as was mentioned in the proof of Proposition2.2, where the vectorur is the

rth tensor power of(1, 2). Thus to complete the proof we need to show that
∑d

i=1 1/(ur)i =
dlog2(3/2) = (3/2)r. This can be proven by induction, as one can easily derive the recurrence
1/u0 = 1,

∑d
i=1 1/(ur)i = (3/2)

∑d/2
i=1 1/(ur−1)i.

3 The lower bound onS∞(m, d)

In this section we prove Theorem2. Our proof begins with the same strategy used by Saks et al.
in [8], which involvessectionsandtubes.

Definition 4 (sections and tubes).Given a directioni ∈ [d] and a pointx ∈ Zd
m, we define

the section based atx and perpendicular to directioni to be the(d − 1)-dimensional hypercube
containing the points

{x + f : f ∈ {0, 1}i−1 × {0} × {0, 1}d−i}.
A tube in directioni is the union of a section perpendicular to directioni with all of its translates
by multiples of the vectorei = (0, . . . , 0, 1, 0, . . . , 0). A tube is therefore a union ofm parallel
sections.
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The lower bound of Saks et al., as well as our tight lower bound, is based on the following
observation:

Observation 3.1. If S is any set of vertices in(Zd
m)∞ that touches all noncontractible cycles, then

S must contain at least one complete section fromeverytube.

The proof of this observation is clear: if there were some tube for which every section had
a vertex missed byS, then these vertices would form a noncontractible cycle, since all pairs of
consecutive sections are completely mutually connected in(Zd

m)∞.

Given the observation above, we will now prove a lower bound ofmd − (m − 1)d on the size
of any subsetS that contains a full section in every tube. In fact it suffices to forget about the tubes
which “wrap around” the torus and think instead of the graph([m]d)∞, which only contains the
d(m − 1)d−1 tubes that are inside the grid. We prove the lower bound for anyS ⊆ [m]d which
contains a complete section from each one of these tubes.

The proof of Saks et al. showed that anyS ⊆ [m]d containing at least one full section in each
of these tubes contains at leastd(m − 1)d−1 points. Their proof used a linear algebraic argument;
it considered the dimension of the space spanned by indicators of the sections contained inS. We
provide a more elementary argument, which gives a tight lower bound and seems to have more
potential for generalizations. In particular, we would like to generalize the lower bound to the case
whereS is only known to contain a fixed fraction of the points of one section per tube. A good
lower bound in this regime would translate to an advancement in the parallel repetition problem
discussed briefly in Section1.

Our proof goes by induction, where the key is to take a stronger induction statement. For this
purpose, we define acubeto be a set of the form

{x + f : f ∈ {0, 1}d} ⊆ [m]d;

in other words, a cube is the union of two consecutive sections. Theorem2 follows immediately
from the following:

Theorem 3. LetS be a subset of the vertices of[m]d containing at least one complete section per
tube and also containing at leastc cubes. Then the cardinality ofS is at leastmd − (m− 1)d + c.

Proof. Let us first argue about the cased = 2 andc = 0. In this case we are considering the
two-dimensional grid[m]2. Tubes can be thought of as them − 1 vertical columns between the
vertices and them−1 horizontal rows between the vertices; sections can be thought of as horizontal
edges and vertical edges (more accurately, as the pair of vertices making up these edges). Suppose
S contains at least one horizontal edge per column and one vertical edge per row. When taken
together, its clear that these2m− 2 edges cannot form any cycle since they never have two edges
“one above the other” (or “one to the left of the other”). Since an acyclic graph with2m − 2 has
exactly2m− 1 = m2 − (m− 1)2 vertices, the proof of thed = 2, c = 0 case is complete.

We next consider thed = 2 case for generalc. In this case, we know thatS contains at least
m − 1 vertical edges (sections) and it is clear that it must contain at leastc more vertical edges
because of the presence ofc cubes (cubes are squares, in two dimensions). We have so far identified

7



m− 1 + c vertical edges contained inS. Now consider adding them− 1 horizontal sections that
S must contain. The resulting set of2m − 2 + c edges must still be acyclic since it has no two
horizontal edges in the same tube. Thus it contains2m− 1 + c = m2 − (m− 1)2 + c vertices as
required by the induction.

With the cased = 2 completely proven, we move to the induction on the dimensiond. So
supposeS is a subset of[m]d with at least one section per tube and also at leastc cubes. Consider
the set of sections perpendicular to thedth direction. We know that there are at least(m − 1)d−1

of these which are contained inS — one per tube going thedth direction. There must also be at
leastc tubes in thedth direction whereS contains an additional section, because of thec cubes
it contains. Let us stratify these sections according to what level1, . . . , m they are on in thedth
direction. Specifically, say we haveci of them on leveli, wherec1 + · · ·+ cm ≥ (m− 1)d−1 + c.

We now view theith level as an inductive instance in dimensiond− 1. BecauseS has at least
one section per tube in[m]d, it is easy to see that it also has at least one (lower-dimensional) section
per (lower-dimensional) tube in[m]d−1. It also has at leastci cubes. So by induction,S has at least
md−1 − (m− 1)d−1 + ci vertices on theith level of [m]d. Summing this overi yields at least

m(md−1 − (m− 1)d−1) + (m− 1)d−1 + c = md − (m− 1)d + c

as a lower bound for the number of points inS.

Theorem2 follows from Theorem3 by takingc = 0.
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