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Abstract

In this paper we prove a new inequality relating the decision tree complexity and the influ-
ences of boolean functions. In particular, we show that any balanced boolean function with a
decision tree of depth d has a variable with influence at least %. The only previous nontriv-
ial lower bound known was Q(d2~¢). Our inequality has many generalizations, allowing us to
prove influence lower bounds for randomized decision trees, decision trees on arbitrary product
probability spaces, and decision trees with non-boolean outputs. As an application of our re-
sults we give a very easy proof that the randomized query complexity of nontrivial monotone
graph properties is at least Q(v%/3/p'/3), where v is the number of vertices and p < % is the
critical threshold probability. This supersedes the milestone Q(v*/%) bound of Hajnal [14] and
is sometimes superior to the best known lower bounds of Chakrabarti-Khot [9] and Friedgut-
Kahn-Wigderson [11].
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1 Introduction

1.1 Motivation. This paper lies at the intersection of two topics within the theory of boolean
functions.

The first topic is decision tree complexity. A deterministic decision tree (DDT) for a boolean
function f : {—1,1}" — {—1,1} is a deterministic adaptive strategy for reading variables so as to
determine the value of f (a formal definition appears in Section 3.1). The cost of a DDT on a given
input is simply the number of input variables that it reads, and the DDT complexity of a function
f, D(f), is the minimum over all DDT’s for f of the maximum cost of any input. A randomized
decision tree (RDT) for f is a probability distribution over DDTs for f; such trees are sometimes
known as zero-error randomized decision trees. The RDT complexity of f, R(f), is the minimum
over all RDT’s for f of the maximum expected cost of any input. Decision tree complexity has
been studied in theoretical science for over 30 years and there is now a significant body of research
on the subject (for a survey, see e.g. [8]).

The second topic is variable influences, introduced to theoretical computer science by Ben-
Or and Linial in 1985 [2]. Any n-variate boolean function f has an associated influence vector
(Infy(f),...,Inf,(f)) where Inf;(f) measures the extent to which the value of f depends on vari-
able ¢ (a precise definition appears in Section 1.2). A number of papers have dealt with properties
of this vector and its relation to other properties of boolean functions; perhaps the best known work
along these lines is that of Kahn, Kalai and Linial [15] (“KKL”) concerning the maximum influence
Inf . (f) = max{Inf;(f) : ¢ € [n]}. Their result implies, for example, that Inf . (f) = Q(l—(’%—")
for any near-balanced boolean function f (where we say that f is near-balanced if both |f~1(1)|/2"
and |f~1(—1)]/2" are Q(1)).

The question that originally motivated this paper was: what is the best lower bound on
Inf . (f) that holds for all near-balanced boolean functions f satisfying D(f) < d? It is easy
to see that such a function f depends on at most 2¢ of its variables and therefore the KKL result
implies Inf .y (f) > Q(%); prior to this work, this was the best lower bound known. Our main
inequality for boolean functions, Theorem 1.1, implies a (tight) lower bound of Infmax(f) > Q(3)
for any near-balanced function f satisfying D(f) < d.

In fact, Theorem 1.1 provides a lower bound on a weighted average of the influence vector,
where Inf;(f) is weighted by the probability that a DDT for f queries z; when z is a randomly
chosen input. This lets us extend our lower bound on Infy,.(f) to functions with R(f) < d and
even to functions with A(f) < d, where A(f) denotes the expected number of queries made by the
best DDT for f on a random input (again, see Section 1.2 for precise definitions).

1.2 The main theorem for boolean functions. Our main theorem holds in a very general
setting, that of functions from product probability spaces into metric spaces. However the case of

greatest interest to us is much simpler. Let {—1, 1}&) denote the discrete cube endowed with the

p-biased measure, 0 < p < 1; when we write simply {—1,1}" the uniform measure case p = 3 is

implied. Our main interest is in boolean functions f : {—1, 1}?1)) — {—1,1}, and in this section we
will describe our main theorem in this case.
First we recall a few definitions. We have

Var[f] = E[f’] - E[f]* = 4Pr[f = 1]Pr[f = -1].

This measures the “balance” of f; if f is equally likely to be true or false then Var[f] = 1. We also
make the following definition for the influence of the ith coordinate on f:

Infi(f) =2 Pr[f(z) # f(=?)],

z,z()
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where z is drawn from {—1, 1}&) and z() is formed by rerandomizing the ith coordinate of f. Note

that our definition agrees with the one introduced in [2] in the uniform measure case p = %, which
was Inf;[f] = Pr[f(z) # f(z ®1)]. (Our definition differs from the p-biased notion of influences
used in, e.g., [12] by a factor of 4p(1 — p); we prefer rerandomizing the ith coordinate to flipping
it since this makes sense in more general product probability spaces which we will consider later.)
We call Inf(f) := >""" | Inf;(f) the total influence of f.

Finally, since the notion of influences involves randomizing over the input domain, it makes sense
to introduce a notion of randomizing over inputs for decision trees. Let T' be a DDT computing a
function f: {—1, 1}?;0) — {-1,1}. We write

(52@ ) (T) =  Pr_ [T queries z;], and
. re(-L1k,
AP(T) = E 55” ) (T) = . 1131} [number of coordinates of z queried by 7.
: T€E{— s
i=1 ()

We also let A®)(f) denote the minimum of A®)(T) over all DDTs T’ computing f : {—1, 1}’&]) —
{—1,1}. It is easy to see this is equivalent to minimizing over all RDTs computing f; hence
AP)(f) < R(f) for all p. Also note that A®)(f) can be upper-bounded in terms of the size
(number of leaves) of the smallest DDT for f: [20] shows A®)(f) < log,(DDT-size(f))/H (p), where
H(p) = —plogyp — (1 — p)logy(1 — p) is the binary entropy of p.

We may now state our main theorem in the case of functions f : {—1, 1}80) —{-1,1}:

Theorem 1.1 Let f : {—1,1}&) — {=1,1} and let T be a DDT computing f. Then
n
Var[f] < Y 6%)(T) Infy(f).
=1

As an immediate corollary we obtain the lower bound on Inf,,.(f) mentioned in Section 1.1:

Corollary 1.2 Let f: {-1, 1}’(11)) — {—1,1} with AP)(f) < d. Then Infy.(f) > Vaz(f).

Proof: Let T be a DDT for f with A®)(T) < d. From Theorem 1.1,
Var(f] < 3 67(T) Infi(f) < Infunax(f) > 67(T) = Infrnax(f) - AP(T) < Infrax(f) -d. O
=1 i=1

Some brief comments on our main theorem:

e It is linear in the 51@ ) (T')’s. Hence if we allow an RDT 7 for f and make the natural definition
of (5§p ) (T), the result still holds by averaging over the distribution 7.

e It can be sharp; see Section 3.5 for cases of equality.

e Other corollaries along the lines of Corollary 1.2 follow; for example, if d is an integer then
the sum of the influences of the d most influential variables is at least Var[f].

e In Section 3.3 we will give a “two function” version, which yields an inequality for the case
when T is allowed to make a small number of mistakes in computing f.



1.2.1 Influence lower bounds — comparison with previous work. Proving lower bounds
on the influences of boolean functions has had a long history in theoretical computer science,
starting with the 1985 paper of Ben-Or and Linial [2] on collective coin flipping. Ben-Or and Linial
made the basic observation that if f : {—1,1}" — {—1,1} is balanced, then Infma(f) > . This
follows from the edge isoperimetric inequality on the discrete cube (see, e.g., [6]); however, it is
more instructive for us to view it as following from the Efron-Stein inequality [10, 27],

Var(f] <Inf(f) = }_Infi(f), (1)

which holds in the general p-biased case, and also in the much more general setting of f : Q@ — R,
where () is a n-wise product probability space and Inf; is defined appropriately for real-valued func-
tions. (See Appendix A for a more detailed discussion of this setting.) Theorem 1.1 is immediately
seen to generalize the Efron-Stein inequality in the case of functions f : {—1, 1}’(11)) — {-1,1}.

Ben-Or and Linial constructed a balanced function f : {—1,1}" — {—1,1} (“Tribes”) satisfying
Inf.(f) = @(10%) and conjectured that this was worst possible. There were small improvements
on the simple 1 bound (2% by Alon, 2=¢ by Chor and Gereb-Graus; see [15]) before the famous
KKL paper [15] confirmed the conjecture. Note that our theorem improves upon KKL whenever f
has A(f) = o(n/logn); in particular, whenever f has a DDT of size 2°("/1087)

The KKL result was subsequently generalized by Talagrand [28] who proved that for any f :

{_17 1}?1)) - {_15 1}5

var(f] < O(log - ! Infi(f). (2)

1 n
(1 —p)) ; logy(8p(1 — p)/Inf;(f))

Talagrand’s motivation for proving this was that when f : {—1,1}", — {—1,1} is monotone,
lower bounds on the sum of f’s influences imply “sharp thresholds” for f, via the Russo-Margulis
lemma [17, 22]. Indeed, this connection with threshold phenomena is one of the chief motivations
for studying influences, and it is considered an important problem in the theory of boolean functions
and random graphs to provide general conditions under which the total influence is large [7]. Our
main inequality provides such a condition: Inf(f) is large if f has a randomized decision tree T

with 51@ ) (7) small for all . Note that when f is a transitive function, this is equivalent to the
natural condition that A®)(f) is small. (See Section 2 for definitions of monotone and transitive
functions, as well as further discussion of random graph properties.)

In particular, ours seems to be the first quantitatively strong influence lower bound that takes
into account the “structure” or computational complexity of f. We note that previously achievable
lower bounds on influences in terms of some measure of the complexity of f yield quantitatively
much weaker results than can be obtained from our inequality. For instance, Nisan and Szegedy [19]
showed that if f: {—1,1}" — {—1,1} is computed by a polynomial over R of degree deg(f), then
every coordinate ¢ with nonzero influence has Inf;(f) > 2798, Since D(f) < O(deg(f)*) (by a
result of Nisan and Smolensky [8]), our Corollary 1.2 implies that the maximum influence in fact
satisfies Inf . (f) > Q(Var[f]/deg(f)*). As another example, suppose f: {—1,1}" — {—1,1} is
approximately computed by a polynomial over R of degree c/léé( f) — i.e. there is a polynomial p(z) of
degree aéé(f) such that |p(z) — f(z)| < 1/3 for all z. Talagrand’s result implies that Infy,(f) >
exp(—O(Inf(f)/Var[f])). Since by [25] we have Inf(f) < O(a;g(f)), one could conclude that

Infax(f) > exp(—O(deg(f)/Var[f])). However by contrast, since D(f) < O((TeE(f)G) by [1], our
Corollary 1.2 implies that the maximum influence in fact satisfies Inf .« (f) > Q(Var[f]/deg(f)®).



2 Randomized decision tree complexity lower bounds

In this section we give an application of Theorem 1.1 to the problem of randomized decision tree
complexity for monotone graph properties. We prove Theorem 1.1 in a more general setting in
Section 3.

2.1 History. As mentioned in Section 1.1, decision tree complexity has been extensively studied
for over three decades. Two special classes of functions have played a prominent role in these
investigations. The first is the class of monotone functions, those satisfying f(y) > f(z) when-
ever y > x under the componentwise partial order. The second is the class of transitive func-
tions. An automorphism of the n-variate boolean function f is a permutation o of [n] satisfying
flz1, .., 20) = f(zo1),---,Ton)) for all inputs z. We say that f is transitive if for each pair
i,7 € [n] there is an automorphism of f that sends i to j. For example, Rivest and Vuillemin [21]
proved that for n a prime power, any n-variate monotone transitive function f has D(f) = n.
One long studied open question about boolean decision tree complexity is the following: how
small can R(f) be in relation to D(f)? It is well known [5] that R(f) > Q(y/D(f)) for any function
f, and this is the best general lower bound known. The largest known separation is given by the
following recursively defined function: Let fy be the identity function on a single variable and for
k > 1, let fx be the function on n = 4% variables given by (fi_; A f2_,) V (ff_, A fi_,), where
f,i_l is the value of f;_; on the ith group of 4¥~1 variables. The function f; is monotone and
transitive, and so by the above result of Rivest and Vuillemin, D(fx) = n. Snir [26] gave an RDT

for fy establishing R(f) < nf where 8 = log, (L{?ﬁ) ~ 0.753. Saks and Wigderson [23] proved

that Snir’s RDT is optimal for fj, and conjectured that R(f) > Q(D(f)?) for any boolean function;
this is not even known to hold for all monotone transitive functions.

A well studied subclass of transitive boolean functions consists of functions derived from graph
properties. A property of v-vertex (undirected) graphs is a set of graphs on vertex set V = {1,...,v}
that is invariant under vertex relabellings; e.g., the set of graphs on V' that are properly 3-colorable.
We restrict attention to properties that are non-trivial; i.e., at least one graph has the property
and at least one graph does not have the property.

Let (‘2/) denote the set of 2-elements subsets of V. Each graph G on V can be identified with

the boolean vector z¢ € {1, 1}(‘2/) where mg,j} is 1if {i,5} € E(G) and is —1 otherwise. A graph

property P is thus naturally identified with a boolean function fp : {—1, 1}(‘2/) — {—1,1} which
maps the vector ¢ to 1 if and only if G satisfies P. The invariance of properties under vertex
relabellings implies that the associated functions are transitive.

There are examples of graph properties on v vertices that have deterministic decision trees of
depth O(v); e.g., the property of being a “scorpion graph” [4]. However, for graph properties that
are monotone (those whose associated function is monotone), Rivest and Vuillemin [21] proved a
lower bound Q(v?) on DDT complexity. A conjecture made by Yao [29] and also attributed to
Karp [23] is that this 2(v?) lower bound extends to RDT complexity. This is the problem we make
progress on in this section.

Yao observed that an (v) lower bound for RDT computation of monotone graph properties
follows is easy to prove; this also follows from the general bound R(f) = Q(1/D(f)) mentioned
earlier. The first improvement on this naive bound came a decade later from Yao himself, who
proved an Q(v logl/ 12 v) lower bound using “graph packing” arguments [30]. These arguments were
improved by King [16] yielding an Q(v%/*) lower bound and by Hajnal [14] yielding an Q(v*/3)
lower bound. This lower bound stood for a decade before Chakrabarti and Khot [9] gave a small
improvement to Q(v*/3log!/? v). Both the Hajnal and Chakrabarti-Khot bounds have rather long



and technical proofs based on graph packing.

Fairly recently, Friedgut, Kahn and Wigderson [11] proved a general lower bound of a somewhat
different form. Given a nonconstant monotone boolean function f : {—1, 1}?p) — {—=1,1}, it is easy
to see that E[f] is a continuous increasing function of p; therefore there is a critical probability p
for which E[f] = 0, i.e., Var[f] = 1. Friedgut, Kahn and Wigderson proved that any nontrivial

monotone v-vertex graph property has RDT complexity Q(min{ when p is the

2
min p 1-p)°? logv})
critical probability for f. In fact they show that A®)(f) is at least this quantity. The FKW bound
can improve on Chakrabarthi-Khot in cases where the critical probability is sufficiently close to 0

or 1. We remark that the proof in FKW also uses a graph packing argument.

2.2 Our result. As a simple consequence of our elementary main inequality Theorem 1.1 and a
recent elementary inequality from [20], we obtain the following:

Theorem 2.1 Let f: {1, 1}’(1])) — {—=1,1} be a nonconstant monotone transitive function, where
p s the critical probability for f. Write q =1 —p. Then

n2/3
R(f) 2 AV(f) 2 rosirs-
In particular,
o3
R(f) > AP)(f) = (B2p) /3

if f corresponds to a v-vertex graph property.

Proof: The inequality we need from [20] is the following:

For all p, if f: {-1, 1}@,) — {—1,1} is monotone then Inf(f) < 2\/pg\/ AP (f). (3)

Fix p to be the critical probability of f and let T' be the DDT computing f with expected cost
A®)(f). We apply Theorem 1.1, using Var[f] = 1 since p is critical and Inf;(f) = Inf(f)/n since f
is transitive (and hence all coordinates have the same influence). This gives 1 < (Inf(f)/n)-A®)(f).
Using (3) to bound Inf(f) we get 1 < (2,/pg/n) - (A®)(£))3/2, and this can be rearranged to give
the desired result. O

2.3 Discussion. In the case of monotone graph properties, our result always improves on Haj-
nal’s Q(v*3) lower bound and can be superior to both Chakrabarti-Khot (when min{p, ¢} is small
enough) and to FKW (when min{p, ¢} is large enough). It is worth noting that unlike all previous
lower bounds for monotone graph properties, our proof makes no use of graph packing arguments,
instead relying only on elementary probabilistic arguments (see Appendix A for a generalized proof
of [20]’s inequality, noting that the proof is even simpler when specialized back to (3)).

Most interestingly, we obtain a result essentially as good as the best unconditional bound
(Chakrabarti-Khot) in the more general context of monotone transitive functions, not just graph
properties. Further, our bound for monotone transitive functions is known to be essentially tight
in the case of p = 3: in [3], a family (f,) of 3-critical monotone transitive functions is presented
with A(fn) < O(n?/3logn). It’s quite curious to note that the place where the RDT complexity
of monotone graph properties has been stuck for almost 15 years, v*/3, is exactly the tight bound
for monotone transitive functions. Perhaps this suggests that in some way the argument of Hajnal
is not really using the fact that f is a graph property — just that it’s transitive. Indeed, one might
wonder the same thing about Chakrabarti-Khot, since their v*/3 logl/ 3 v lower bound could also
hold for monotone transitive functions — the example of [3] is not able to rule it out.



3 The main inequality

3.1 Decision trees, variation, influences — general definitions. The proof of Theorem 1.1
is most naturally carried out in a significantly more general context than that of functions f :
{-1, 1}?;)) — {—1,1}. Specifically, we will consider functions

fiQ—2Z

mapping a product probability space into a metric space. In this section we give the necessary
definitions.

Let us begin with the domain. Here we have an n-wise product probability space Q = (X, p),
meaning that that the underlying set X is a product set X; X --- X X,, and the measure y is a
product probability measure g X -++ X p,, where y; is a measure on X;.! We write €; for the
probability space (X, 4;). We use the notation z < € to mean that z is an element of X randomly
selected according to €.

The range of our functions is a metric space (Z,d). (Actually we can allow a “pseudo-metric”,
meaning we relax the condition that d(z,2’) = 0 = z = 2'.) Useful examples to keep in mind
are the following: Z any finite set with d(z,2') = 1,_,;; and, Z = R with d(z,7') = |z — 2/|. Of
course, in the special case of boolean-valued functions, Z = {—1, 1}, all metrics are the same up to
a constant factor.

We now give the definitions of decision trees, variation, and influences for functions f : Q2 — Z.

The definitions of decision trees in the context of functions mapping a product set domain
X = X1 x--- x X, into a set Z are the obvious ones. Briefly, a DDT will be a rooted directed
tree T in which each internal node v is labelled by a coordinate i, € [n] and each leaf is labelled
by an element of the output set Z. Further, the arcs emanating from each internal node v must
be in one-to-one correspondence with X; . The node labels along every root-leaf path are required
to be distinct. T computes a function fr : X — Z in the obvious way; we retain the notion of the
cost of T on input z as the length of the root-leaf path T follows on input z. Thus we have the
usual notions of D(T') and D(f), and also the (zero-error) randomized decision tree complexities
R(T) and R(f). With the product probability measure p on X, we can also naturally extend our
notions of expected cost from Section 1.2: given a DDT T computing f,

MTy= P T ies z;
i (1) M_Q:I('XM[ queries ;]
and A*(T') and AH(f) are similarly defined. We will henceforth drop the superscript x4 when it is
clear from context. Note that as before we have A(f) < R(f) (assuming, without loss of generality,
that p’s support is all of X).
We now give the definitions of variation and influences for functions f : 2 — Z. The variation
of f:Q—>Zis
vrtifl= E  [d(f(z), :
iff]= B (@ f0)]
To define influences, first let Q@ denote the probability space given by pairs (x,w(i)), where z is
chosen from Q and z(®) is formed by rerandomizing the ith coordinate of z using p;. Then the
influence of the ith coordinate on f : Q) — Z is defined to be

Inf*(f)= B [d(f(z), f(z?))].

N (z,2(9) Q)

'For simplicity, we assume in this paper that X is finite.



We will usually drop the superscripts 4 and d on Vr and Inf; when they are implied by context.
Note that if we view the functions f : {—1, 1}&) — {—1,1} from Section 1 as mapping into the
metric space on {—1,1} with distance d given by d(z, 2') = |z—2'| = 2-1,..,, then we get agreement
in the definitions of Inf;(f) and also Vr[f] = Var[f].

3.2 Theorem and proof. We now state and prove our main inequality, which includes Theo-
rem 1.1 as a special case.

Theorem 3.1 Let f : Q — (Z,d) be a function mapping an n-wise product probability space into
a metric space, and let T be a DDT computing f. Then

Vr|f] <Z<5 ) Inf;(f).

Proof: Let z and y be random inputs chosen independently from Q. Given a subset J C [n] we
will write z sy for the hybrid input in X that agrees with z on the coordinates in J and with y on
the coordinates in [n] \ J. Let i1,...,174 denote the sequence of variables queried by T' on input z
(these 4’s are random variables and d is also a random variable). For ¢t > 0, let J[t] = {i, : 7 > t}.
Finally, let u[t] = z jqy. All E[-]’s and Pr[-]’s in what follows are over all the random variables just
described (i.e., z, y, i’s, d, u[]’s).

We begin with the simple observation

Vr[f] = E[d(f(z), f(y))] = E[d(f (u[0]), f (u[d]))],

which follows because y = u[d] and f(z) = f(u[0]) (although z does not necessarily equal u[0]).
This latter equality is the only place in the proof we use the fact that T' computes f.
We next make the obvious step

B{d(f (ul0)). £ (ud))] < B[S d(f(uft ~ 1)), £ (uld])]
t>1
which uses the fact that d is a metric (and the fact that u[t] = u[d] for all ¢ > d). We now use
linearity of expectation and then condition on the value of 4;:

B[} d(f(ult - 1)), f(ult])] = 3 Pri, = i E[d(f(ult = 1), flt]) | i =i]. @

t>1 t>1 i=1

(Technically, i; may be “undefined” when ¢ > d, but this doesn’t matter since u[t] = u[t + 1] then
and hence 0 is contributed to the expectation.)

We now come to the key observation of the proof: we claim that conditioned on i; = 1,
(ut — 1], u[t]) is distributed according to Q®). Certainly conditioning on 4; = i imposes some
constraints on z;,...,z;,_,. However it is clear that z;,,...,z;, are independent of both i; and
Ziys-- -, Ti,_,, and this is of course also true of all coordinates of y. Since x;,...,z;,_, are reran-
domized using y’s values in the formation of u[t — 1], we conclude that u[t — 1] conditioned on
iy = 1 is simply distributed according to 2. And then conditioned on i; = i, u[t] is distributed as
u[t — 1] with the ith coordinate rerandomized. Hence we have justified the claim that, conditioned
on iy = i, (uft — 1], u[t]) is distributed according to Q).

Thus we have

Z Z Prli; =] Inf;,(f) = Z(Z Prfi; = z]) Inf,( Z 0;(T') Inf,(

t>1 =1 i=1 t>0

and the proof is complete. O



3.3 Corollaries and two function version. In this section we treat some immediate corollaries
of Theorem 3.1. Certainly the analogue of Corollary 1.2 holds for Theorem 3.1, as do the first and
third remarks made at the end of Section 1.2. We now give the promised “two function” version.
Define

CoVr[f,g]= E_ [d(f(2),9(y))] — E [d(f(z),g(2))];

(z,y)O2xQ 0

so in particular CoVr[f, f] = Vr[f]. Thus the following theorem generalizes Theorem 3.1:

Theorem 3.2 Let f,g: Q — (Z,d) be functions mapping an n-wise product probability space into
a metric space, and let T be an RDT computing f. Then

|CoVr(f,g]| <Y 6(T) Infy(g).
im1

Proof: As usual we can assume by averaging that 7 is a DDT T computing f. Using the same
setup as in the proof of Theorem 3.1, we have

CoVr(f, ] = E[d(f (), 9(y))] —E[d(f (u[0]), g(u[0]))] = E[d(f (u[0]), g(u[d]))] -E[d(f (u[0]), g(u[0]))]

where in the first equality we used that u[0] is, in isolation, distributed according to €, and in the
second equality we used the fact that f(z) = f(u[0]) since T computes f (as in the previous proof).
Now using the fact that d is a metric we get

CoVr(f,g] = E[d(f (u[0]), g(u[d]))] — E[d(f (u[0]), g(u[0]))] < E[d(g(u[0]), g(uld]))]

and of course this is also true for —CoVr[f, g]. The proof now proceeds exactly as before with g
in place of f; note that from this point on in the previous proof we did not use the fact that T
computed f. O

We give an alternate two function extension in Appendix B.

As mentioned at the end of Section 1.2, Theorem 3.2 can be useful when g is a function that
is “close” to having a good decision tree. Consider, for example, the case when Z is an arbitrary
set and d(z,2') = 1,2,. Now suppose g is e-close to some function f : Q@ — (Z,d) having a good
randomized decision tree T, meaning that Pr[g # f] = E[d(f(z),g(z))] = e. Write Z = {z1,...,25}
and assume without loss of generality that p; < py < --- < ps, where p; = Pr[g(z) = z;]. Let us
further assume that € is “small”; specifically, that € < py.

We have CoVr[f,g] = Pr[f(z) # g(y)] — ¢, where z and y are independent, and Vr[g] =
> oi_ 1 pi(1—p;). It’s not too hard to see that, subject to Pr[f # g] = €, we have that Pr[f(z) # g(y)]
is minimized when the following holds: f(z) = g(z) whenever g(z) # z1; further, when g(z) = 21,
f(z) = 2 with probability 1 — €/p; and is z, otherwise. In this case,

s—1
Pr(f(z) # 9(y)] = p1(1 = p1+€) +ps(1 —ps —€) + >_pi(1 — p;) = Vrlg] — (ps — p1)e,
i=2
and hence we conclude

n

Vrlg] — 2e < Vr[g] — (1 + (ps — p1))e = CoVrlf,g] < Zéi(T) Inf;(g),

which can provide a good lower bound on Inf,,«(g) if € is small and the §;’s for f are small.



3.4 When d is not a metric. In this section we generalize our results to the case when f maps
into (Z, p), where (Z,p) is a “semimetric”’. This just means that p need not satisfy the triangle
inequality; specifically, all we require of p is that p > 0, p(z,2) =0, and p(z,2') = p(7',2). (Again
we do not insist that p(z,2') =0 = z = 2’.) Our main motivation for studying this extension is the
case Z = R with p = pa(2,2') := (2 — 2)2/2. In this case Vr”?[f] = Var[f] and Inf??(f) has the
meaning commonly associated with this notation for functions f : 2 — R; e.g., the interpretation
used in the Efron-Stein inequality. See Appendix A for further discussion.

To study the semimetric case, we simply introduce a quantity measuring the extent to which the
triangle inequality fails for p on paths of length k. We define the defect of a sequence zy, 21,..., 2k €
ZF+1 to be p(zo, 2k) / (Zle p(zt—1,2t)), where % is taken to be 1. We then define the k-defect of
p, denoted Defy(p), to be the maximum defect of any sequence zy, ..., zx. The following facts are
easy to check:

e Defi(p) = 1 and Defy(p) is nondecreasing with k.

e Defy(p 1 implies that p satisfies the triangle inequality, which, in turn, implies that

(0)
e Defy(p) < (supp)/(inf p) for all k.
(p) =
Def(p) =1 for all k; i.e., p is a metric.

e If p!/9 is a metric for some ¢ > 1 then Defy(p) < k9~'. Thus in our motivating case with
Z =R and p(z,2') = (z — 2')?/2 we have Defy(p) < k.

o If Z C R and p(z,2') = |z — 2|9 for some g > 1, then Defy(p) < |Z|?7! for all k.

It is easy to see how to generalize Theorems 3.1 and 3.2 for semimetrics p; since Theorem 3.2 is
more general, we will only state its extension:

Theorem 3.3 Let f,g: Q — (Z,p) be functions mapping an n-wise product probability space into
a semimetric space, and let T be an RDT computing f. Let k be the length of the longest path in
any DDT in T ’s support. Then

|CoVr[f, g]| < Defy(p Za T) Inf,(

This is the most general version of our main inequality that we prove. In the semimetric setting
we are most interested in, namely that of one function f : Q@ — (R, p2), we have the following:

Corollary 3.4 Let f: Q — (R, p2) be a function mapping an n-wise product probability space into
the real line with semimetric pa(z,2') = (z — 2')2/2, and let T be an RDT computing f. Let k be
the length of the longest path in any DDT in T ’s support. Then

Var[f] <k Y _ 6 (T) Inf?(f),

=1

In particular, if D(f) <k then f must have a coordinate with pa-influence at least Var|[f]/k>.



3.5 Tightness of the inequality Our main Theorem 3.1 can be tight; one class of DDTs for
which it is tight are read-once decision trees. These are simply decision trees in which each internal
node queries a different variable. It is quite easy to see that equality is achieved in Theorem 3.1
when T is read-once. The only inequality in the proof comes from

d(f (@[0]), f(uld])) <D d(f(ult — 1)), f (ult])- (5)

t>1

If T is read-once then the first time u[t — 1] and wu[t] differ, further replacement of the variables
it+1 cannot affect the path T follows, and hence f(u[t]) = f(u[t+1]) = f(u[t+2]) =---. Thus the
sequence f(u[0]), f(u[l]),..., f(u[d]) changes value at most once, hence (5) and thus Theorem 3.1
have equality. Note that this argument shows that equality holds even if d = p is just a semimetric.

Simple examples of read-once DDTs are those for AND : {-1,1}" — {-1,1} and OR :
{-1,1}" — {—1,1}. The simplest nontrivial balanced example is the “selection function” SEL :
{-1,1}3 = {~1,1} which maps (1, 9, 3) to =3 if z1 = 1, or z3 if 71 = —1.

To get a more general family of examples we introduce the notion of “recursively read-once
trees”. The definition is as follows: Any read-once DDT is recursively read-once. Now suppose
that T is a recursively read-once DDT computing the function fr : X; x --- x X;, = Z and that
Ui,...,U, are also recursively read-once DDTs, where U; computes the function fy, : Yix - x
YTfLi — X;. Then we have a composition function F' = fr(fvy,,..-, fu,) on the product domain
V! x Yy x --- x Y* . Further, there is a natural DDT V = T(Uy,...,U,) computing F, and we
stipulate that this DDT is also recursively read-once. Note that a recursively read-once DDT will
not, in general, be read-once.

It is not hard to check that recursively read-once trees compute functions f that are tight for
Theorem 3.1; by induction one can show that the sequences f(u[0]), f(u[1]),..., f(u[d]) arising in
the proof still have the property that they change value at most once. Hence Theorem 3.1 is tight for
any Tribes-type function (OR of disjoint ANDs) and the natural (non-read-once) DDT computing
it; as another example, it is tight for the recursive SEL function SEL(SEL(- - - ), SEL(- - - ), SEL(-- - ))
of any depth and the natural (non-read-once) DDT computing it.

Finally, we discuss the necessity of the factor Def(p) in the “one function” version of The-
orem 3.3. We do not have any general family of examples showing the necessity of this factor.
Indeed, as far as we know, it may be possible to replace the factor Def(p) by an absolute constant.
This possibility is particularly intriguing in the case of p = po from Corollary 3.4 ([24] raised a
similar question which turns out to be related — see Appendix A). However we can show that
the inequality of Theorem 3.3 with the constant 1 in place of Def(p) does not hold, even in the
(R, p2) case. The {—1,1}® — (R, p2) example shown in Figure 1 — naturally, not a read-once tree
— demonstrates that a constant slightly greater than 1 is necessary. Except for optimizing the leaf
labels in this particular tree, this is the worst example we know.

4 Questions for Future Work

e Ts it possible to explain the “coincidence” that our near-tight lower bound on A®)(f) for
monotone transitive functions gives a lower bound for graph properties — about /3 —
that essentially matches the lower bound barrier that has stood since Hajnal 917 Perhaps
either the Hajnal/Chakrabarti-Khot arguments can be reframed in terms of merely transitive
functions (if true of Chakrabarti-Khot, this would be quite interesting); or, perhaps graph-
theoretic arguments can augment our elementary probabilistic reasoning to produce a better
lower bound.

e Can our inequality in the real-valued, ps case — Corollary 3.4 — be sharpened? If the factor
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Figure 1: Left edges correspond to —1, right edges to 1. The function f : {—1,1}3 — R computed
by T has Var[f] = 3, but (81(T),02(T),8(T)) = (1,%,3) and (Inf{*(f), Infy’(f), Inf5*(f)) =
(%7 %a %)a where 92(55’?/) = ("E - y)2/27 S0 Z?:l JZ(T) Info(f) = % < %

k could be replaced by a universal constant, this would be a very strong near-sharpening of
the Efron-Stein inequality.

e What other applications might our main inequality have? We suggest there might be appli-
cations in computational learning theory or in the theory of random graphs.
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A Real-valued functions

In this section we discuss further the case of functions f : Q@ — (R, p2), where Q is an n-wise
probability space and py is the semimetric pa(2,2') = (z — 2')?/2. As noted in Section 3.4, in this
case we have Vr??[f] = Var[f], the usual variance of f; also

Inf??[f] = Eq[Varg,[f]].

For this section only, we will drop the superscript po on Inf;. This quadratic, real-valued notion
of “influence” arises naturally in the Efron-Stein inequality [10, 27] and other discrete log-Sobolev
and Poincaré inequalities [13], in Talgrand’s result (2) from [28], and elsewhere [18]. Efron-Stein (1)
and Talgrand’s (2) both hold with this definition of Inf;(f).

Recall our inequality in this setting, Corollary 3.4:

Varlf] < k'S 5,(T) Infi(f),
1=1

where 7 is an RDT computing f and k is the maximum path length in any DDT in 7. This
inequality is incomparable with Efron-Stein, but it is tempting to wonder if the factor k& can be
replaced with an absolute constant; in this case, we would, like Talagrand, get an inequality strictly
better than Efron-Stein “up to constants”. However, as shown in Section 3.5, the factor k cannot
be replaced with the constant 1.

In the remainder of this section, we will give a slight sharpening of Corollary 3.4 via a completely
different method of proof. Intriguingly, the proof is by giving a common generalization of the
proofs of two other recent inequalities. The first is the main inequality from [20] (a paper on
learning monotone functions), a special case of which (3) we used in the proof of Theorem 2.1: If
f{-1, 1}7(’1)) — R is computed by the randomized decision tree 7, then

Zf({i}) < I fll2y/ APX(T). (6)

Here f denotes the p-biased Fourier transform of f; we will discuss Fourier transforms shortly. The
second inequality generalized is the main technical inequality from [24] (a paper on exceptional
times for percolation problems): If f : {—1,1}" — R is computed by the randomized decision tree
T, then forallk =1...n,

> F(8)? < (max 6,(T)) - k- || £13- (7)

S|=k

It should be noted that (6) was proved in the more general setting that 7 is a randomized sub-
cube partition computing f (see [20] for the appropriate definition). We note that our generalizing
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inequality, Theorem A.1 below, is also easily seen to hold for randomized subcube partitions; how-
ever, we omit this extension for simplicity.

To state our generalized inequality for functions f : & — R we need to use an orthogonal
decomposition of 2 and the associated “Fourier transform” of f. (The same is used in some proofs
of the Efron-Stein inequality.) The space of functions 2 — R is an inner product space under the
inner product (f,g9) = Ezeq[f(z)g(z)]. Given z € X and S C [n], let g denote {z; : i € S}.
Now (2 is an orthogonal sum of spaces = @gc[n){2s, where (g denotes the space of all functions
f 92 — R such that

e f(z) depends only on zg, and
e f is orthogonal to all functions in the spaces Xg for S’ C S.

Hence we can write any f: Q — R as

fle)="Y" fs(x), (8)
SC[n]

where fg is the projection of f onto Q5. We will refer to (8) as the “Fourier expansion” of f, since
it agrees with the usual Fourier expansions for {—1,1}" and {-1, 1}80) when fg(z) is identified

with f(S)xs(z). Tt is straightforward to verify “Plancherel’s identity”

<fag> = Z <fSagS>,

5Cln]

as well as the formulas for variance and influences:

Var[f] = |Ifsll3,  Infi(f) =Y |Ifsll3.

S0 534

Summing the influence formulas we get
Inf(f) =Y Infi(f) = > IS [Ifsl3.
i=1 SCin]

Incidentally, with these formulas in hand the Efron-Stein inequality Var[f] < Inf(f) becomes im-
mediate.

We can now give our generalized inequality. Recall that an antichain on [n] is a family of
subsets S such that S C S’ never holds for S, S’ € S. For functions f, g, we denote their covariance
by

Covlf,g] = E[fg] - E[f] E[g].

Theorem A.1 Let f: Q — R be a real-valued function on an n-wise product probability space, and
let T be an RDT computing f. Let g : 2 — R be a function whose Fourier expansion is supported
on an antichain; i.e., for some antichain S of [n], it holds that gs =0 for all S ¢ S. Then

Cov|f,g]> < Var[f]- > &(T) Infi(g).

=1
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Before proving Theorem A.1, let us see how it implies inequalities (6), (7), and Corollary 3.4.
For (6) we take g = > 1" | Xx{;}; we then get

(Ssh) < vasis- Y

After taking a square root, this is equivalent to (6) (since f may be replaced by f — E[f]). For (7)
we take g = 37 ¢ f(S)xs and obtain

2
(Z f(S)2> < Varlf]- > &(T) Y. f(8)? 9)

[S|=k i=1 |S|=k, S$>i
< Var[f]- (max §;(T Z F(8)?
i=1|S|=k, S3i
= Var[f] - (max §;(T Z f(S)

which is equivalent to (7) after dividing by Z| S|=k f(S)2. Finally, for Corollary 3.4, let deg(f)
denote the “degree” of f, max{|S|: fs # 0}. Repeat (9) in the more general context g = 3,5, fs,
and then sum over k = 1...deg(f); one obtains

deg(f) 2 n n
S fslE] < varf]- Y D a(T)Y ] fsls = Var[f]- Y 6(T) Infi(f).
k=1 |S|=k i=1 S34 =1

But by Cauchy-Schwarz,

deg(f) , 2 1 , 2 1 \
= —Var|f|".

Hence

Var|f] < deg(f Z 0;(T) Inf,(

which is stronger than Corollary 3.4 since if f has a decision tree in which no path has length more
than k then it is easy to see that deg(f) < k.

We now present the proof of Theorem A.1:
Proof: Without loss of generality we may assume E[f] = E[g] = 0. We will prove

=1

E[fg] <|fI2JZ<5 T)Inf;(g), (10)

and since we can also assume E[fg] > 0 by replacing g with —g, squaring the above proves the
theorem.

The choice of a random z < 2 can be achieved via a two-step procedure: First, pick a random
DDT T from 7, and pick a random root-to-leaf path P of T' according to the natural probability
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distribution on 7’s paths inherited from ). This gives a “partial input” that will form part of z.

Second, choose the remainder of z — call it 5 — by choosing each of the unset coordinates z;
uniformly from p;. Given a function h :  — R, we denote by h|p the restricted function given by
fixing the partial input from P.

We have

E[fg] = E%[flp(xﬁ)glp(xﬁ)] = E[f(P) £[9|P($ﬁ)“a

where we have abused notation by writing f(P) in place of the constant function f|p. By Cauchy-
Schwarz we have

ElA(P) Elglp(=p)ll < \/EIF (PP, [Elglp(zp)]* = [|fll2, | Elglp(zp)]

and so to prove (10) it remains to show
E[g\P z5))? < Z(S T)Inf;(g (11)

For notational ease let us write G = g|p. We will also write the Fourier transform of G as
G = > scin] Gs- This is also a slight abuse of notation, in that G is not a function on all of [n];
however, we can let Gg = 0 if S includes a coordinate on which G does not depend.

Since S, the antichain on which g’s Fourier expansion is supported, cannot contain (), we surely

have
£[9|P("EP)] = ||Gyll5 < Z IGsll5 = > 11Gsll5- (12)
P Ses

By Plancherel and the fact that ¢g’s Fourier expansion is supported on S, the first sum on the right
n (12) is

E[G(zp)?’] = E 2 = 2.

B(G(zp)’] = B [o(e)) = Y llos]3

P Ses

Let’s now consider the subtracted sum on the right in (12), Y ¢.5||Gsl3. We initially have g =
Y ses9s; then the coordinates in P are fixed and g becomes G. Fix a particular S € S. If P
contains a coordinate in S then this “reduces” the component gg and it will not appear in the
Fourier expansion of G. On the other hand, if P does not contain any coordinate of S, then the
component gg will remain in the Fourier expansion of G; here we crucially use the fact that S is an
antichain, so that it is impossible for any component ggr “above” gg (i.e., with S" 2 S) to “reduce”
onto gg. Thus we conclude

Z G52 = Z Pr[P queries no coord. in S] - ||gs||3.
Ses Ses
Therefore
(12) = Z llgsll5 — Z Pr[P queries no coord. in S] - ||gs||3
Ses ses

= Z Pr[P queries at least one coord. in S] - ||gs||3

SCln]

> <26i<7))-||gs||%
SCln] \i€S

= > &)Y llgsllz =D 6:(T)Infi(g
1€S S31 1€S
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confirming (11) and completing the proof. O

Two final remarks: First, it is tempting to wonder if the condition that g is supported on an
antichain can be removed. However this is not possible in general, for then we could take g = f
and recover Corollary 3.4 without the factor k, contradicting the example in Figure 1. Second: it
would be interesting to see if Theorem A.1 could be unified with any of the Efron-Stein inequality,
Talagrand’s inequality, or our main inequality Theorem 3.2. At present we do not see any way do
S0.

B Alternate two function version

We now give an alternate two function extension of the theorem.

Theorem B.1 (Covariance inequality) Let (2, 1) be an n-wise product probability space. Let
f:Q—=[-1,1],g:Q =R, and let T be a randomized decision tree computing f. Set §;(f) = 6;(T)
and p1(z,y) = |z —y| for z,y € R. Then

[Covlf,gl| < 3 4i(/) Inff'[g).

Proof: Again, we may assume that the tree is deterministic. It suffices to consider the case
Cov|f,g] > 0, since we may replace f by —f. We have E[f(z)g(v[0])] = E[f(v[0])g(v[0])], because
f[0]) = f(z), and also E[f(v[0])g(v[0])] = E[f(z)g(z)], because v[0] has the same distribution as
z. Hence,

Cov[/,g) = B[/(2)g(x)] — B[/ (2)9(v)] = BIf(@)g(v[0]) — f(@)g(v[a})]
d d
—E[f(@) Y (g(elt ~ 1) - g(lD) | <E[D [g(elt — 1) - gwlt))]]-

t=1

The rest of the proof proceeds as in Theorem 3.2 and will be omitted. O
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