Lower bound for K_G (Based on ideas of U. Haagerup).
Let S denote the unit sphere in \mathbb{R}^n or \mathbb{C}^n, let σ denote the normalised area measure of S, and let B denote the set of all measurable (real or complex, as appropriate) functions f on S, with $|f(x)| \leq 1$ for all $x \in S$. For $0 < \rho < 1$, define

$$M_\rho = \sup_{f \in B} \left| \int_S f(y)g(x) < x,y > d\sigma(x)d\sigma(y) - \rho \int f(x)g(x)d\sigma(x) \right|$$

Then

$$K_GM_\rho \geq \rho \int_S f(y)g(x) < x,y > d\sigma(x)d\sigma(y) - \rho \int f(x)d\sigma(x) = 1 - \rho$$

So

$$K_G \geq \sup_{0 < \rho < 1} \frac{1 - \rho}{M_\rho}$$

We obtain an upper bound for M_ρ. Note that

$$M_\rho = \sup_{f \in B} \left| \int_S f(y)g(x) < x,y > d\sigma(x)d\sigma(y) - \rho \int fgdx \right|$$

Fix $f,g \in B$. Let $h(x) = f < x,y > f(y)d\sigma(y)$. Then h is linear and so there is $z \in S$ and a scalar λ so that $h(x) = \lambda < x,z >$ for all vectors x. We have $\lambda = h(z) = f < z,y > f(y)d\sigma(y)$. Let us write $\mu = f < z,x > \overline{g}(x)dx$. Then

$$\Re \left\{ \int_S f(x)g(x) < x,y > d\sigma(x)d\sigma(y) \right\} = \Re \mu = |\lambda + \mu|^2/4$$

and since $\lambda + \mu = f(f(x) + \overline{g}(x)) < x,z > d\sigma(x)$ it follows that

$$M_\rho \leq \sup_{f \in B} n \left[\int_S (f(x) + \overline{g}(x))z_1d\sigma(x) \right]^2 - \rho \Re \int fgdx$$

This inequality holds in both real and complex cases (in the real case, the \Re and complex conjugate symbols can of course be omitted). From now on, we consider the two cases separately.

Real case. In this case we have $f(x) + g(x) \leq 1 + f(x)g(x)$ whenever $f,g \in B$, so, writing $\phi(x) = (1 + f(x)g(x))/2$, we have

$$M_\rho \leq \sup_{f \in B} n \left\{ \int (\phi(x)x_1d\sigma(x))^2 + \rho(1 - 2\phi(x)) \right\}$$

1
where T is the set of measurable ϕ with $0 \leq \phi \leq 1$. For a given value of $f \phi dr$, the expression on the right will be maximized by choosing $\phi = 1$ when $|x_1| > \lambda$ and 0 otherwise, for appropriate λ. Hence

$$M_\rho \leq \sup_{0 < \lambda < \infty} n \left(\int_{|x_1| > \lambda} |x_1| |dr| \right)^2 + \rho \left(1 - 2\sigma \{ |x_1| > \lambda \} \right)^2 + \rho \left(1 - 2\sigma \{ |x_1| > \lambda \} \right)^2.$$

Now let $n \to \infty$; then the distribution of $n^{1/2} x_1$ under σ tends to standard normal, and we have

$$M_\rho \leq \sup_{0 < \lambda < \infty} \left(\int_{\lambda}^{\infty} 2\sqrt{2\pi e^{-z^2/2}} dz \right)^2 + \rho \left(1 - 2\sqrt{2/\pi} \int_{\lambda}^{\infty} e^{-z^2/2} dz \right)^2.$$

or $M_\rho \leq \sup_{0 < \lambda < \infty} F_\rho(\lambda)$ where

$$F_\rho(\lambda) = \frac{2}{\pi} e^{-\lambda^2} + \rho \left(1 - 2\sqrt{2/\pi} \int_{\lambda}^{\infty} e^{-z^2/2} dz \right)$$

Consideration of the derivative of F_ρ shows that, if $\rho \geq \sqrt{2/\pi} e^{-1/2}$ then F_ρ is monotone increasing, and its supremum is ρ, whereas if $0 < \rho < \sqrt{2/\pi} e^{-1/2}$ then F_ρ has a local maximum at the smaller root (i.e. the root in $(0,1)$) of $\sqrt{2/\pi} \lambda e^{-\lambda^2/2} = \rho$; its supremum is the greater of ρ and its value at this maximum. It follows that if $0 < \lambda < 1$ and $\rho = \rho(\lambda) = \sqrt{2/\pi} \lambda e^{-\lambda^2/2}$ then $M_\rho \leq \max(\rho, F_\rho)$. Hence

$$K_C(R) \geq \sup_{0 < \lambda < 1} \frac{1 - \rho(\lambda)}{\max(\rho(\lambda), F_\rho(\lambda))}.$$

Numerically, we find the value 1.67696 for the expression on the right.

Complex case. Now we use the inequality $|f(x) + g(x)|^2 \leq R|f(x)g(x)|$ and write $\psi(x) = \sqrt{R} |(1 + f(x)g(x))/2|$, obtaining

$$M_\rho \leq \sup_{\psi \in \mathcal{L}} n \left(\int |\psi(x)| |x_1| |dr| \right)^2 + \rho \left(1 - 2 \int |\psi(x)|^2 |dr| \right)^2.$$

The maximum will be attained when ψ is either identically zero or of the form $\psi(x) = \psi_{\lambda}(|x_1|) = \min(1, |x_1|/\lambda)$ for some $\lambda \geq 0$. If we also pass to the
limit \(n \to \infty \), when the distribution of \(n^{1/2}x_1 \) approaches complex standard normal, we obtain

\[
M_x \leq \sup_{0 < c < \infty} \left\{ \int_0^\infty 2r^2 \psi_1(r) e^{-rt} dr \right\}^2 + \rho \left(1 - 4 \int_t^\infty \psi_1(r)^2 e^{-rt} dr \right)
\]

Evaluating the integrals we obtain \(M_x \leq \sup_{0 < c < \infty} G_\rho(\lambda) \) where

\[
G_\rho(\lambda) = \left\{ \lambda^{-1}(1 - e^{-\lambda^2}) + \int_\lambda^\infty e^{-r^2} dr \right\}^2 + \rho \{ 1 - 2\lambda^2(1 - e^{-\lambda^2}) \}
\]

We find that if \(\rho \geq 1/2 \) then \(G_\rho \) is monotone and has supremum \(\rho \), whereas if \(0 < \rho < 1/2 \) it attains its supremum at the unique value of \(\lambda \) satisfying

\[
\rho = \theta(\lambda) = \frac{1}{2} \{ 1 - e^{-\lambda^2} + \lambda \int_\lambda^\infty e^{-r^2} dr \}. \text{ Hence we obtain}
\]

\[
K_\rho(C) \geq \sup_{0 < c < \infty} \frac{1 - \theta(\lambda)}{G_\rho(\lambda)}
\]

Numerically, we find that the expression on the right is 1.33807 to 5 decimal places.