Sum of squares lower bounds for refuting any CSP

Pravesh K. Kothari* Ryuhei Morif Ryan O’Donnell* David Witmer?

January 16, 2017

Abstract

Let P : {0,1}* — {0,1} be a nontrivial k-ary predicate. Consider a random instance of
the constraint satisfaction problem CSP(P) on n variables with An constraints, each being P
applied to k randomly chosen literals. Provided the constraint density satisfies A > 1, such an
instance is unsatisfiable with high probability. The refutation problem is to efficiently find a
proof of unsatisfiability.

We show that whenever the predicate P supports a t-wise uniform probability distribution

on its satisfying assignments, the sum of squares (SOS) algorithm of degree d = @(m)

(which runs in time n®®) cannot refute a random instance of CSP(P). In particular, the
polynomial-time SOS algorithm requires Q(n(*+1)/2) constraints to refute random instances of
CSP(P) when P supports a t-wise uniform distribution on its satisfying assignments. Together
with recent work of Lee et al. [LRS15], our result also implies that any polynomial-size semidef-
inite programming relaxation for refutation requires at least ?Z(n(”l)/ %) constraints.

More generally, we consider the d-refutation problem, in which the goal is to certify that
at most a (1 — d)-fraction of constraints can be simultaneously satisfied. We show that if P is
é-close to supporting a t-wise uniform distribution on satisfying assignments, then the degree-
@(m) SOS algorithm cannot (6 + o(1))-refute a random instance of CSP(P). This
is the first result to show a distinction between the degree SOS needs to solve the refutation
problem and the degree it needs to solve the harder §-refutation problem.

Our results (which also extend with no change to CSPs over larger alphabets) subsume all
previously known lower bounds for semialgebraic refutation of random CSPs. For every con-
straint predicate P, they give a three-way hardness tradeoff between the density of constraints,
the SOS degree (hence running time), and the strength of the refutation. By recent algorithmic
results of Allen et al. [AOW15] and Raghavendra et al. [RRS16], this full three-way tradeoff is
tight, up to lower-order factors.

*Princeton University and TAS. kothari@cs.princeton.edu

TDepartment of Mathematical and Computing Sciences, Tokyo Institute of Technology. mori@is.titech.ac.jp

fComputer Science Department, Carnegie Mellon University. Supported by NSF grant CCF-1618679.
{odonnell,dwitmer }@cs.cmu.edu

kothari@cs.princeton.edu
mori@is.titech.ac.jp

1 Introduction

Where are the hard problems?

In computational complexity, we have a comprehensive theory of worst-case hardness, assuming
P # NP. The theory is particular rich in the context of constraint satisfaction problems (CSPs)
— optimization tasks that are both simple to state and powerfully expressive. (See, e.g., [BJK05,
Rag08].) But despite our many successes in the theory of NP-completeness and NP-hardness-of-
approximation, we know relatively little about the nature of hard instances. For example, 3-SAT
is conjecturally hard to solve — or even approximate to factor % + ¢ — in 2°™ time. But what do
hard(-seeming) instances look like? How can we generate one? These sorts of questions are a key
part of understanding what makes various algorithmic problems truly hard. They are particularly
important for CSPs, as these are nearly always the starting point for hardness reductions; the
ability to find hard instances for CSPs yields the ability to find hard instances for many other
algorithmic problems.

In some sense, a single instance can never be “hard” because its solution can always be hard-
coded into an algorithm. Thus it is natural to turn to random instances, and the theory of average-
case hardness. Uniformly random instances of CSPs are a particularly simple and natural source
of hard(-seeming) instances. Furthermore, they arise as the fundamental object of study in many
disparate areas of research, including cryptography [ABW10], proof complexity [BSB02], hardness
of approximation [Fei02], learning theory [DLSS14], SAT-solving [SAT], statistical physics [CLP02],
and combinatorics.

1.1 Random CSPs

Let Q be a finite alphabet and let P be a collection of nontrivial predicates Q% — {0,1}. An input Z
to the problem CSP(P) consists of n variables z1, ..., z,, along with a list £ of m constraints (P, 5),
where P is a predicate from P, and S € [n]* is a scope of k distinct variables. We often think of the
associated “factor graph”: that is, the bipartite graph with n “variable-vertices”, m “constraint-
vertices” of degree k, and edges defined by the scopes.

Given Z, the algorithmic task is to find an assignment to the variables so as to maximize the
fraction of satisfied constraints, avgpg)ce P(2s,,...,2s,). We write Opt(Z) for the maximum
possible fraction, and say that Z is satisfiable if Opt(Z) = 1. For a fixed constraint density A =
A(n) > 0, a random instance of CSP(P) is defined simply by choosing m = An constraints
uniformly at random: random scopes and random P € P.

The most typical examples involve a binary alphabet Q = {0, 1}, a fixed predicate P : {0,1}*F —
{0,1}, and P = P*, where by P we mean the collection of all 2¥ predicates obtained by letting P
act on possibly-negated input bits (“literals”). For example, if P is the k-bit logical OR function,
then CSP(P¥*) is simply the k-SAT problem. In this introductory section, we’ll focus mainly on
these kinds of CSPs.

For random CSPs, the constraint density A plays a critical role; naturally, the larger it is, the
more likely 7 is to be unsatisfiable. For a fixed P, it is easy to show the existence of constants
ap < o such that when A < ap, a random instance Z of CSP(P) is satisfiable with high probability
(whp), and when A > aq, Z is unsatisfiable whp. For most interesting P, it is conjectured that
there is even a sharp threshold oy = oy = . (This has been proven for k-SAT with k large
enough [DSS15]. See [CD09] for a characterization of those Boolean CSPs for which a sharp
threshold is expected.)

For random instances with subcritical constraint density, A < ., the natural algorithmic task
is to try to efficiently find satisfying assignments. There have been quite a few theoretical and

practical successes for this problem, for A quite large and even approaching «. [Gab16, MPRT'16].
On the other hand, for random instances with supercritical constraint density, A > «., the natural
algorithmic task is to try to efficiently refute them; i.e., produce a certificate of unsatisfiability. For
many CSPs, this task seems much harder, even heuristically. For example, random 3-SAT instances
are unsatisfiable (whp) once A > 4.49 [DKMPGO8]; however, even for A as large as n'4? there is
no known algorithm that efficiently refutes random instances — even heuristically /experimentally.
Thus the refutation task for random instances of CSPs with many constraints may be a source of
simple-to-generate, yet hard-to-solve problems.

1.2 The importance and utility of hardness assumptions for random CSPs

In this section, we discuss the task of refuting random CSP instances and the importance of
understanding the “constraint density vs. running time vs. refutation strength tradeoff” for all
predicate families P. To define our terms, a (weak) refutation algorithm for CSP(P) is an algorithm
that takes as input an instance Z and either correctly outputs “unsatisfiable”, or else outputs “don’t
know”. For a given density A (larger than the critical density), we say the algorithm “succeeds”
if it outputs “unsatisfiable” with high probability (over the choice of Z, and over its internal
coins, if any). More generally, we can consider refutation algorithms that always output a correct
upper bound on Opt(Z); we call them §-refutation algorithms if they output an upper bound of
1 — 4 (or smaller) with high probability. The case of 6 = 1/m, where m = An is the number of
constraints, corresponds to the simple weak refutation task described earlier (with an output of
“1” corresponding to “don’t know”). In general, we refer to 0 as the “strength” of the refutation.

For a wide variety of areas — cryptography, learning theory, and approximation algorithms —
it is of significant utility to have concrete hardness assumptions concerning random CSPs. Because
uniformly random CSPs are very simply and concretely defined, they form an excellent basis for
constructing other potentially hard problems by reduction. An early concrete hypothesis comes
from an influential paper of Feige [Fei02]:

Feige’s R3SAT Hypothesis. For every small § > 0 and for large enough constant A, there is
no polynomial-time algorithm that succeeds in §-refuting random instances of 3-SAT.

Feige’s main motivation was hardness of approximation; e.g., he showed that the R3SAT Hy-
pothesis implies stronger hardness of approximation results than were previously known for several
problems (Balanced Bipartite Clique, Min-Bisection, Dense k-Subgraph, 2-Catalog). By reducing
from these problems, several more new hardness of approximation results based on Feige’s Hy-
pothesis have been shown in a variety of domains [BKP04, DFHS06, Bri08, AGT12]. Feige [Fei02]
also related hardness of refuting 3-SAT to hardness of refuting 3-XOR. The assumption that refut-
ing 3-XOR is hard has been used to prove new hardness results in subsequent work [OWWZ14].
Alekhnovich [Ale03] further showed that certain average-case hardness assumptions for XOR imply
additional hardness results, as well as the existence of secure public key cryptosystems.

In even earlier cryptography work, Goldreich [Gol00] proposed using the average-case hardness
of random CSPs as the basis for candidate one-way functions. Subsequent work (e.g., [MST03])
suggested using similar functions as candidate pseudorandom generators (PRGs). The advantage
of this kind of construction is the extreme simplicity of computing the PRG: indeed, its output
bits can be computed in NCY, constant parallel time. Further work investigated variations and
extensions of Goldreich’s suggestion [ABW10, ABR12, AL16]; see Applebaum’s survey [App13] for
many more details. Of course, the security of these candidate cryptographic constructions depends
heavily on the hardness of refuting random CSPs. Applebaum, Ishai, and Kushilevitz [ATKO06] took

a slightly different approach to showing that PRGs exist in NC°, instead basing their result on one
of Alekhnovich’s average case XOR hardness assumptions [Ale03].

Finally, a recent exciting sequence of works due to Daniely and coauthors [DLSS13, DLSS14,
DS14, Danl15] has linked hardness of random CSPs to hardness of learning. By making concrete
conjectures about the hardness of refuting random CSP(P) for various P and for superpolyno-
mial A, they obtained negative results for several longstanding problems in learning theory, such
as learning DNF's and learning halfspaces with noise.

1.3 Desiderata for hardness results

While Feige’s R3SAT Hypothesis has proven useful in hardness of approximation, there are several
important strengthenings of it that would lead to even further utility. We discuss here four key
desiderata for hardness results about random CSPs:

1. Predicates other than SAT. The hardness of random 3-SAT and 3-XOR has been most
extensively studied, but for applications it is quite important to consider other predicates.
For hardness of approximation, already Feige [Fei02] noted that he could prove stronger
inapproximability for the 2-Catalog problem assuming hardness of refuting random k-AND
for large k. Subsequent work has used assumptions about the hardness of refuting CSPs with
other predicates to prove additional worst-case hardness results [GL04, AAM*11, CMVZ12,
BCMV12, RSW16]. Relatedly, Barak, Kindler, and Steurer [BKS13] have recently considered
a generalization of Feige’s Hypothesis to all Boolean predicates, in which the assumption
is that the “basic SDP” provides the best J-refutation algorithm when A = O(1). They
also describe the relevance of predicates over larger alphabet sizes and with superconstant
arity for problems such as the Sliding Scale Conjecture and Densest k-Subgraph. Bhaskara
et al. [BCGT12] prove an SOS lower bound for Densest k-Subgraph via a reduction from
Tulsiani’s SOS lower bound for random instances of CSP(P) with P a g-ary linear code
[Tul09]. A computational hardness assumption for refutation of this CSP would therefore
give a hardness result for Densest k-Subgraph.

Regarding cryptographic applications, the potential security of Goldreich’s candidate PRGs
depends heavily on what predicates they are instantiated with. Goldreich originally suggested
a random predicate, with a slightly superconstant arity k. However algorithmic attacks on
random CSP(P) by Bogdanov and Qiao [BQ09] showed that predicates that are not at least
“3-wise uniform” do not lead to secure PRGs with significant stretch. Quite a few subsequent
works have tried to analyze what properties of a predicate family P may — or may not —
lead to secure PRGs [BQ09, ABR12, OW14, AL16].

Regarding the approach of Daniely et al. to hardness of learning, there are close connections
between the predicates for which random CSP(P) is assumed hard and the concept class for
which one achieves hardness of learning. For example, the earlier work [DLSS14] assumed
hardness of refuting random CSP(P¥) for P being (i) the “Huang predicate” [Hual3, Hual4],
(ii) Majority, (iii) a certain AND of 8 thresholds; it thereby deduced hardness of learning
(i) DNFs, (ii) halfspaces with noise, (iii) intersections of halfspaces. Unfortunately, Allen
et al. [AOW15] gave efficient algorithms refuting all three hardness assumptions; fortunately,
the results were mostly recovered in later works [DS14, Danl15] assuming hardness of refuting
random k-SAT and k-XOR. Although these are more “standard” predicates, a careful inspec-
tion of [DS14)’s hardness of learning DNF result shows that it essentially works by reduction
from CSP(P*) where P is a “tribes” predicate. (It first shows hardness for this predicate by

reduction from k-SAT.) From these discussions, one can see the utility of understanding the
hardness of random CSP(P) for as wide a variety of predicates P as possible.

2. Superlinear number of constraints. Much of the prior work on hardness of refuting
random CSPs (assumptions and evidence for it) has focused on the regime of A = O(1); i.e.,
random CSPs with O(n) constraints. However, it is quite important in a number of settings
to have evidence of hardness even when the number of constraints is superlinear. An obvious
case of this arises in the application to security of Goldreich-style PRGs; here the number
of constraints directly corresponds to the stretch of the PRG. It’s natural, then, to look for
arbitrarily large polynomial stretch. In particular, having NC® PRGs with m = n't2() stretch
yields secure two-party communication with constant overhead [IKOS08]. This motivates
getting hardness of refuting random CSPs with A = n®(1) . As another example, the hardness
of learning results in the work of Daniely et al. [DLSS14, DS14, Dan15] all require hardness
of refuting random CSPs with m = n®, for arbitrarily large C. In general, given a predicate
family P, it is interesting to try to determine the least A for which refuting random CSP(P)
instances at density A becomes easy.

3. Stronger refutation. Most previous work on the hardness of refuting random CSPs has
focused just on weak refutation (especially in the proof complexity community), or on J-
refutation for arbitrarily small § > 0. The latter framework is arguably more natural: as
discussed in [Fei02], seeking just weak refutation makes the problem less robust to the precise
model of random instances, and requiring d-refutation for some 4 > 0 allows some more
natural CSPs like k-XOR (where unsatisfiable instances are easy to refute) to be discussed.
In fact, it is natural and important to study J-refutation for all values of §. As an example,
given P it is easy to show that there is a large enough constant Ay such that for any A > Ag
a random instance Z of CSP(P) has Opt(Z) < up + o(1), where pp is the probability a
random assignment satisfies a random predicate P € P. Thus it is quite natural to ask
for o-refutation for 6 = 1 — up — o(1); i.e., for an algorithm that certifies the true value
of Opt(Z) up to o(1) (whp). This is sometimes termed strong refutation. As an example,
Barak and Moitra [BM16] show hardness of tensor completion based on hardness of strongly
refuting random 3-SAT with A <« n'/2. In general, there is a very close connection between
refutation algorithms for CSP(P) and approximation algorithms for CSP(P); e.g., hardness
of d-refutation results for LP- and SDP-based proof systems can be viewed as saying that
random instances are 1 — § vs. up + o(1) integrality gap instances for CSP(P).

4. Hardness against superpolynomial time. Naturally, we would prefer to have evidence
against superpolynomial-time refutation, or even subexponential-time refutation, of random
CSP(P); for example, this would be desirable for cryptography applications. This desire also
fits in with the recent surge of work on hardness assuming the Exponential Time Hypothesis
(ETH). We already know of two works that use a strengthening of the ETH for random CSPs.
The first, due to Khot and Moshkovitz [KM16], is a candidate hard Unique Game, based on
the assumption that random instances of CSP(P¥) require time 202n) to strongly refute,
where P is the k-ary “Hadamard predicate”. The second, due to Razenshteyn et al. [RSW16]
proves hardness for the Weighted Low Rank Approximation problem assuming that refuting
random 4-SAT requires time 2% An even further interesting direction, in light of the
work of Feige, Kim, and Ofek [FKOO06], is to find evidence against efficient nondeterministic
refutations of random CSPs.

These discussions lead us to the following goal:

Goal: For every predicate family P, provide strong evidence for the hardness of
refuting random instances of CSP(P), with the best possible tradeoff between number of
constraints, refutation strength, and running time.

The main theorem in this work, stated in Section 1.5, completely accomplishes this goal in the
context of the Sum of Squares (SOS) method. Before stating our results, we review this method,
as well as prior results in the direction of the above goal.

1.4 Prior results in proof complexity, and the SOS method

Absent the ability to even prove P # NP, the most natural way to get evidence of hardness
for refuting random CSP(P) is to prove unconditional negative results for specific proof systems.
It’s particularly natural to consider automatizable proof systems, as these correspond to efficient
deterministic refutation algorithms.

Much of the work in this area has focused on random instances of k-SAT. A seminal early work
of Chvatal and Szemerédi [CS88] showed that Resolution refutations of random instances of k-SAT
require exponential size when A is a sufficiently large constant. Ben-Sasson and Wigderson [BSWO01,
BS01] later strengthened this result to show that Resolution refutations require width Q(W)
for any € > 0. Ben-Sasson and Impagliazzo and Alekhnovich and Razborov further extended these
results to the Polynomial Calculus proof system [BSI99, AR01]; for example, the latter work showed
that Polynomial Calculus refutations of random k-SAT instances with density A require degree
U zo7=r1058)-

On the other hand, much of the positive work on refuting random k-SAT has used spectral
techniques and semialgebraic proof systems. These latter proof systems are often automatizable
using linear programming and semidefinite programming, and thereby have the advantage that they
can naturally give stronger d-refutation algorithms. As examples, Goerdt and Krivelevich [GKO01]
showed that spectral techniques (which can be captured by SDP hierarchies) enable refutation
of random k-SAT with m = nl*/2] constraints; Friedman and Goerdt [FCG01] improved this to
m = n?2T°(1) in the case of random 3-SAT. One of the first lower bounds for random CSPs using
SDP hierarchies was given by Buresh-Oppenheim et al. [BOGH"03]; it showed that the Lovasz—
Schrijvery (LS4) proof system cannot refute random instances of k-SAT with k > 5 and constant A.
Alekhnovich, Arora, and Tourlakis [AAT05] extended this result to random instances of 3-SAT.

The strongest results along these lines involve the Sum of Squares (AKA Positivstellensatz
or Lasserre) proof system. This system, parameterized by a tuneable “degree” parameter d, is
known to be very powerful; e.g., it generalizes the degree-d Sherali-Adamsy (SA.) and LSy proof
systems. In the context of CSP(P) over domain {0, 1}, it is also (approximately) automatizable in
n@ time using semidefinite programming. As such, it has proven to be a very powerful positive
tool in algorithm design, both for CSPs and for other tasks; in particular, it has been used to show
that several conjectured hard instances for CSPs are actually easy [BBaH"12, 0Z13, KOTZ14].
Finally, thanks to work of Lee, Raghavendra, and Steurer [LRS15], it is known that constant-degree
SOS approximates the optimum value of CSPs at least as well as any polynomial-size family of
SDP relaxations. See, e.g., [0Z13, BS14, Lau09] for surveys concerning SOS.

Early on, Grigoriev [Gri01] showed that SOS of degree ©2(n) could not refute k-XOR instances
on sufficiently good expanders. Schoenebeck [Sch08] essentially rediscovered this proof and showed
that it applied to random instances of k-SAT and k-XOR, specifically showing that SOS degree
~e7ci=m— is required to refute instances with density A. Tulsiani [Tul09] extended this result to
the alphabet-q generalization of random 3-XOR.

Much less was previously known about predicates other than k-SAT and k-XOR. Austrin and

Mossel [AMOS8] established a connection between hardness of CSP(P) and pairwise-uniform dis-
tributions, showing inapproximability beyond the random-threshold subject to the Unique Games
Conjecture. A key work of Benabbas et al. [BGMT12] showed an unconditional analog of this re-
sult: random instances of CSP(P*) with sufficiently large constant constraint density require Q(n)
degree to refute in the SA; SDP hierarchy when P is a predicate (over any alphabet) supporting a
pairwise-uniform distribution on satisfying assignments. O’Donnell and Witmer [OW14] extended
these results by observing a density/degree tradeoff: they showed that if the predicate supports a
(t — 1)-wise uniform distribution, then the SA LP hierarchy at degree n®(®)
instances of CSP(P¥) with m = nt/2=¢ constraints. They also showed the same thing for the SA
SDP hierarchy, provided one can remove a carefully chosen o(m) constraints from the random in-
stance. Extending results of Tulsiani and Worah [TW13], Mori and Witmer [MW16] showed this
result for the SA4 and LS, SDP hierarchies, for purely random instances. Finally, Barak, Chan,
and Kothari [BCK15] recently extended the [BGMT12] result to the SOS system, though not for
purely random instances: they showed that for any Boolean predicate P supporting a pairwise-
uniform distribution, if one chooses a random instance of CSP(P¥) with large constant A and then
carefully removes a certain o(n) constraints, then SOS needs degree 2(n) to refute the instance.
Beyond semialgebraic proof systems and hierarchies, even less is known about non-SAT, non-
XOR predicates. Feldman, Perkins, and Vempala [FPV15] proved lower bounds for refutation of
CSP(P*) using statistical algorithms when P supports a (¢ — 1)-wise uniform distribution. Their
results are incomparable to the above lower bounds for LP and SDP hierarchies: the class of
statistical algorithms is quite general and includes any convex relaxation, but the [FPV15] lower
bounds are not strong enough to rule out refutation by polynomial-size SDP and LP relaxations.

cannot refute random

Summary. For the strongest semialgebraic proof system, SOS, our evidence of hardness for
random CSPs from previous work was somewhat limited. We did not know any hardness results
for a superlinear number of constraints, except in the case of k-SAT/k-XOR and the alphabet-q
generalization of 3-XOR. We did not know any results that differentiated weak refutation from
S-refutation. Finally, the results known for refuting CSP(P*) with pairwise-uniform-supporting P
did not hold for purely random instances.

1.5 Our result

We essentially achieve the Goal described in Section 1.3 in the context of the powerful SOS hierarchy.
Specifically, for every predicate family P, we provide a full three-way tradeoff between constraint
density, SOS degree, and strength of refutation. Our lower bound subsumes all of the hardness
results for semialgebraic proof systems mentioned in the previous section. Furthermore, as we will
describe, known algorithmic work implies that our full three-way hardness tradeoff is tight, up to
lower-order terms.

To state our result, we need a definition. For a predicate P : QF — {0,1} and an integer
1 <t <k, we define dp(t) to be P’s distance from supporting a t-wise uniform distribution.
Formally,

dp(t) = min dry(u,0),
1 is a t-wise uniform distribution on QF,
o is a distribution supported on satisfying assignments for P

where drv (-, -) denotes total variation distance.

We can now (slightly informally) state our main theorem in the context of Boolean predicates:

Theorem 1.1. Let P be a k-ary Boolean predicate and let 1 <t < k. Let T be a random instance
of CSP(P*) with m = An constraints. Then with high probability, degree—fl <W) SOS fails
to (6p(t) + o(1))-refute I.

Additionally, in the case that dp(t) = 0, our result does not need the additive o(1) in refutation
strength. That is:

Theorem 1.2. Let P be a k-ary predicate and let C(P) be the minimum integer 3 < 7 < k for which
P fails to support a T-wise uniform distribution. Then if T is a random instance of CSP(P*) with

m = An constraints, with high probability degree-ﬁ (W) SOS fails to (weakly) refute T.

Remark 1.3. We comment here on the (surprisingly mild) parameter-dependence hidden by the
Q(-) and o(1) in these bounds. See Section 7 for full details.

e In terms of A, the ﬁ() is only hiding a factor of log A. Thus we get a full linear Q(n)-degree
lower bound for m = O(n) in both theorems above.

e In terms of k, and t, the Q(-) is only hiding a factor of 1/(k20%/9)). There are a num-
ber of interesting cases where one may take t = O(k); for example, k-SAT, k-XOR, and
XORy 2 @ MAJy)9, a predicate often used in cryptography (e.g., it was suggested by [AL16]
for as the basis for high-stretch PRGs in NC%). In these cases, the dependence of the degree
lower bound depends only linearly on k and thus, there’s little loss in having k significantly
superconstant.

e Indeed in this case of t = O(k), if we also have A = 29(%) then the degree lower bound for
weak refutation in Theorem 1.2 is Q(n) for k as large as €(n); here, both €(-)’s hide only a
universal constants. The regime of A = 29 is the algorithmically hardest one for k-SAT,
and thus in this very natural case we have a linear-degree lower bound even for k = Q(n).

e The refutation strength 0p(t) +o0(1) in Theorem 1.1 is more precisely dp(t) +O(1/y/n) when-
ever A = n1),

e Theorem 1.1 also holds for predicates P with alphabet size ¢ > 2, with absolutely no additional
parameter dependence on q.

The full three-way tradeoff in Theorem 1.1 between constraint density, SOS degree, and strength
of refutation is tight up to a polylogarithmic factor in the degree and an additive o(1) term in the
strength of the refutation. The tightness follows from the below theorem, which is an immediate
consequence of the general d-refutation framework of Allen et al. [AOW15] and the strong refuta-
tion algorithm for XOR due to Raghavendra, Rao, and Schramm [RRS16] (which fits in the SOS
framework).

Theorem 1.4. (Follows from [AOW15, RRS16].) Let P be a k-ary Boolean predicate and let
1 <t<k. LetT be a random instance of CSP(P¥) with m = An constraints. Then with high

probability, degree-O (W) SOS does (6p(t)—o(1))-refute Z. Furthermore, with high probability
degree-O(1) SOS succeeds in (dp(2) — o(1))-refuting Z, provided A is at least some polylog(n).

An example. As the parameters can be a little difficult to grasp, we illustrate our main theorem
and its tightness with a simple example. Let P be the 3-bit predicate that is true if exactly one if its
three inputs is true. The resulting 3-SAT variant CSP(P*) is traditionally called 1-in-3-SAT. Let
us compute the d(¢) values. The uniform distribution on the odd-weight inputs is pairwise-uniform,
and it only has probability mass i off of P’s satisfying assignments. This is minimum possible, and
therefore 01.in-3.5a7(2) = i. The only 3-wise uniform distribution on {0,1}? is the fully uniform
one, and it has probability mass % off of P’s satisfying assignments; thus 01.,.3.5a7(3) = %.

Let us also note that as soon as A is a large enough constant, Opt(Z) < 2 4 o(1) (with high
probability, a qualifier we will henceforth omit). Furthermore, it’s long been known [BSB02] that
for A = O(log n) there is an efficient algorithm that weakly refutes Z; i.e., certifies Opt(Z) < 1. But
what can be said about stronger refutation? Let us see what our Theorem 1.1 and its counterpart
Theorem 1.4 tell us.

Suppose first that there are m = npolylog(n) constraints. Theorem 1.4 tells us that constant-
degree SOS certifies Opt(Z) < 2 + o(1). However our result, Theorem 1.1, says this 2 cannot be

improved: SOS cannot certify Opt(Z) < 3 — o(1) until the degree is as large as Q(n). (Of course
at degree n, SOS can certify the exact value of Opt(Z).)

What if there are m = n'! constraints, meaning A = n''? Our result says SOS still cannot
certify Opt(Z) < 2 — o(1) until the degree is as large as n®/O(logn). On the other hand, as soon

as the degree gets bigger than some 5(71'8), SOS does certify Opt(Z) < % —o(1); in fact, it certifies
Opt(Z) < 3 +o(1).

Similarly (dropping lower-order terms for brevity), if there are m = n' constraints, SOS is
stuck at certifying just Opt(Z) < % up until degree n'%, at which point it jumps to being able to cer-
tify the truth, Opt(Z) < 2+o0(1). If there are n'4% constraints, SOS remains stuck at certifying just
Opt(Z) < 3 up until degree n'%2. Finally (as already shown in [AOW15]), once m = n'*® polylog(n),
constant-degree SOS can certify Opt(Z) < 2 4 o(1). (End of example.)

1.2

More generally, for a given predicate P and a fixed number of random constraints m = n'+e¢,
we provably get a “time vs. quality” tradeoff with an intriguing discrete set of breakpoints: With
constant degree, SOS can dp(2)-refute, and then as the degree increases to n'=2¢, n!=¢ nl—2¢/3
etc., SOS can dp(3)-refute, 0p(4)-refute, 0p(5)-refute, etc.

An alternative way to look at the tradeoff is by fixing the SOS degree to some n and considering
how refutation strength varies with the number of constraints. So for m between n and n3/2—¢/2
SOS can dp(2)-refute; for m between n*/2-¢/2 and n?~¢ SOS can §p(3)-refute; for m between n?—¢
and n®/273¢/2 SOS can p(4)-refute; etc.

It is particularly natural to examine our tradeoff in the case of constant-degree SOS, as this
corresponds to polynomial time. In this case, our Theorem 1.1 says that random CSP(P¥) cannot
be (0p(t) 4 o(1))-refuted when m < n(+1/2 and it cannot even be weakly refuted when m <
n¢P)/2 Now by applying the work of Lee, Raghavendra, and Steurer [LRS15], we get the same
hardness results for any polynomial-size SDP-based refutation algorithm. (See [LRS15] for precise
definitions.)

Corollary 1.5. Let P be a k-ary predicate, and fiz a sequence of polynomial-size SDP relazations
for CSP(P*). If T is a random instance of CSP(P*) with m < Q(nc(P)/Q) constraints, then whp
the SDP relazation will have value 1 on T. Furthermore, if m < Q(n+1/2) (for 1 <t < k), then
whp the SDP relazation will have value at least 1 — ép(t) — o(1) on I.

The results in this corollary are tight up to the polylogs on m, by the SOS algorithms of [AOW15].

2 Technical framework

In Section 1, we described our results as being SOS lower bounds for random CSPs, with constraints
chosen randomly from a fixed predicate family P. However it is conceptually clearest to divorce
our results from the “random CSP” model as quickly as possible.

e Our lower bound applies whenever the underlying factor graph (bipartite constraint/variable
graph) does not contain certain small forbidden subgraphs, which we call “implausible” sub-
graphs. Granted, the only examples we know of such graphs are random graphs (whp).
Further, the condition of “does not contain any implausible subgraphs” is highly related to
the condition of “has very good vertex expansion”. Still, we believe the right way to think
about the requirement is in terms of forbidden subgraphs.

e Our lower bound doesn’t really involve CSPs and constraints, per se. For each constraint-
vertex f in the underlying factor graph, rather than assuming it comes equipped with a
constraint predicate P applied to its vertex-variable neighbors, we assume it comes equipped
with a probability distribution py on assignments to its vertex-variable neighbors. We can
have a different 115 for every constraint-vertex f if we want (indeed, the constraints need not
even have the same arity).

e Our SOS lower bounds now take the following form: Assume we are given a factor graph G
with no implausible subgraphs, and assume each constraint-vertex f has an associated dis-
tribution py that is t-wise uniform. Then the low-degree SOS proof system “thinks” that
there is a global assignment to the variables such that, at every constraint-vertex f, the local
assignment to the neighboring variable-vertices is in the support of ps. (Indeed, it “thinks”
that there is a probability distribution on global assignments such that for almost all f, the
marginal distribution on f’s neighbors is equal to fy.)

Let us make some of these notions more precise.

2.1 Constraint satisfaction

Notation 2.1. We fix an alphabet €2 of cardinality g > 2, and a mazimum constraint arity K > 3.

The reader is strongly advised to focus on the case ¢ = 2, with = {£1}, as the only real
difficulty posed by larger alphabets is notational. Also, although we describe K as a maximum
arity, there will be no loss in thinking of every constraint as having arity K.

Definition 2.2 (t-wise uniform distributions). A probability distribution g on QF is said to be
t-wise uniform if its marginal on every subset of ¢ coordinates is uniform.

Rather than our full Theorem 1.1 concerning §-refutation, the reader is advised to mainly keep in
mind our Theorem 1.2, which is concerned with (weak) refutation of CSPs for which the predicates
support a (7 — 1)-wise uniform distribution. Given our proof of Theorem 1.2, the more general
Theorem 1.1 will fall out fairly easily.

Notation 2.3. We fix an integer 7 satisfying 3 <7 < K.

The reader is advised to focus on the simplest case of 7 = 3 (corresponding to predicates
supporting pairwise-uniform distributions), as the value of 7 makes no real difference to our proofs.

Notation 2.4 (Instance). The instance we work with consists of two parts: a factor graph and
its constraint distributions. The factor graph, denoted G, is a bipartite graph with edges going
between n variable-vertices and m constraint-vertices. For a constraint-vertex f we write N(f) for
the neighborhood of f, which we take to be an ordered list of the variable-vertices adjacent to f. We
assume that the degree (“arity”) of every constraint-vertex f satisfies 7—1 < |N(f)| < K. Finally,
each constraint-vertex f also comes with a constraint distribution py on QN 1t is assumed that
each iy is (7 — 1)-wise uniform.

To orient the reader vis-a-vis our description of CSPs in Section 1.1, consider our Theorem 1.2
in which we have CSP(P¥) instances, where P : {£1}* — {0,1} is a k-ary Boolean predicate
with complexity C(P) = 7. This means there exists some (7 — 1)-wise uniform distribution p on
{£1}* supported on satisfying assignments for P. Note that for any “literal pattern” ¢ € {£}*, the
distribution p, gotten by negating inputs to p according to £ is also (7 — 1)-wise uniform. In the
CSP(Pi) instance, to every constraint with literal pattern £ the associated “constraint distribution”
will be pg. (In the more general context of Theorem 1.1 where we have a k-ary predicate P with
§ = dp(t), this means there is some distribution p on {#1}* which is t-wise uniform and which is
0-close to being supported on P. We will take 7 =t + 1 and take the constraint distributions to be

¢ again.)

2.2 Plausible factor graphs

As mentioned earlier, our SOS lower bounds will hold whenever the factor graph G has no “im-

plausible” subgraphs. The meaning of this will be discussed in much greater detail in Section 4,
but here we will give the briefest possible definition.

Notation 2.5. We introduce two parameters: 1 < SMALL < n/2 and 0 < ¢ < 1. (For the sake
of intuition, the reader might think of, e.g., SMALL = nfM) and ¢ = Oén.) The parameters are
assumed to satisfy K < ¢ - SMALL.

Plausibility Assumption. Henceforth the factor graph G is assumed to satisfy the following
property: Let H be an edge-induced subgraph in which every constraint-vertex has minimum de-
gree 7. Suppose H has ¢ constraint-vertices, v variable-vertices, and e edges, with ¢ < 2 - SMALL.
Then (T — ()c > 2(e — v).

We call the subgraphs H for which the inequality holds plausible because they are indeed the
ones that may plausibly show up when the factor graph G is randomly chosen:

Proposition 2.6. (Roughly stated; see Theorem /.12 for a precise statement.) A random G with

constraint density A will satisfy the Plausibility Assumption whp provided SMALL < A—2=0"

The Plausibility Assumption is highly similar to the assumption that G has good vertex-
expansion, and indeed our proof of Theorem 4.12 in Appendix A is a completely standard variant
of the well-known proof that random bipartite graphs have good vertex-expansion.

2.3 The Sum of Squares algorithm, and pseudoexpectations

We give a brief overview of the Sum of Squares algorithm/proof system here. For more general
background see, e.g., [BS]; for more details germane to this paper, see Section 5.3.

The Sum of Squares (SOS) algorithm is a hierarchy of semidefinite programming-based relax-
ations applicable to polynomial optimization problems; i.e., maximizing an n-variate polynomial

10

subject to polynomial inequality and equality constraints. Each algorithm in the hierarchy is in-
dexed by a parameter d known as the degree of the relaxation. Central to the algorithm is the
concept of pseudoexpectations that describe the feasible points of the SOS algorithm of degree d.
Definition 2.7 (Pseudoexpectations). Given n indeterminates, a degree-d pseudoexpectation is a
linear operator E on the space of real polynomials of degree at most d in those indeterminates,
such that E[l] = 1. We also generally want it to satisfy the Positive Semidefiniteness condition:
E[pQ] > 0 for every polynomial p of degree at most d/2.

Definition 2.8 (Pseudoexpectations satisfying an identity). A degree-d pseudoexpectation E is
said to satisfy a polynomial identity “p = 0" if, for every polynomial ¢ with deg(p) + deg(q) < d,
we have E[pq] = 0.

Given a polynomial optimization problem — say, maximizing a polynomial p; subject to con-
straints {¢; = 0 : i € [m]} — the degree-d SOS relaxation maximizes E[p1] over all degree-d
pseudoexpectations E that satisfy the identities {¢; = 0 : i € [m]}. A feasibility problem, in
particular, would ask if there is a degree-d pseudoexpectation satisfying certain polynomial equal-
ity constraints. These SOS relaxations can be expressed using a semidefinite program (SDP) of
size n9@ . The Sum of Squares algorithm refers to (approximately) solving the SDP, which can
generally be done in n°@ time.

As suggested by the name, pseudoexpectations generalize the notion of expectations with respect
to a probability distribution on real indeterminate values satisfying the given polynomial identity
constraints. In particular, if there is at least one real solution for the polynomial identity con-
straints, then any probability distribution on solutions yields a valid degree-d pseudoexpectation,
for any d. However, even when the polynomial constraints have no real solution, there may well be
pseudoexpectations of limited degree that satisfy all the constraints. As one would expect, as the
degree d grows, the pseudoexpectations resemble actual expectations more and more. Indeed, if
the constraints include that the n indeterminates are Boolean (“? = x;” or “z? = 1”) then every
degree-2n pseudoexpectation in fact corresponds to an actual distribution on real solutions.

In our context of CSPs, we can think of a constraint satisfaction problem & = {(F;, S;)} over n
Boolean variables x1, ..., x, as a polynomial feasibility problem, with (the arithmetization of) the
constraints P;(zg;) = 1 as polynomial identities. As we know, randomly chosen CSPs with A > 1
are unsatisfiable whp; to show a lower bound on the degree-d SOS refutation algorithm amounts to
showing that there exists a degree-d pseudoexpectation that satisfies all the constraints. In more
casual terminology, we say that degree-d SOS “thinks” that the CSP is satisfiable.

2.4 Main result

We can now describe our main result with the terminology and set-up developed above.

Theorem 2.9 (Roughly stated; cf. Theorem 6.1.). Suppose we are given an instance, with factor
graph G satisfying the Plausibility Assumption, and constraint distributions piy for each constraint-
vertex. Then for D = %C - SMALL, there exists a degree-D pseudoexpectation E on global variable
assignments such that for every constraint-vertex f, the following (suitably encoded) polynomial
identity is satisfied: “The marginal distribution on assignments to the variable-neighbors of f is
supported within supp(uys).” (Indeed, for almost all f, a stronger identity is satisfied, that the
marginal simply equals juy.)

In particular, if our instance comes from an actual random CSP with predicates, where for
each f the distribution p is supported on satisfying assignments for the predicate at f, then the

11

degree-D SOS algorithm “thinks” that the CSP is completely satisfiable. This is of course despite
the fact that, whp, the CSP is not satisfiable.

Given Proposition 2.6 and Theorem 2.9, we can now point out how the constraint density
vs. SOS-degree tradeoff arises in our Theorem 1.2. For CSP(P*) with C(P) = 7 and An random
constraints, we get an SOS lower bound for degree roughly ¢ - +577-5=¢. The best choice of (is

roughly 1/log A, and this indeed yields a degree bound of Q <W). More precise details of
parameter-setting are given in Section 7.

3 Sketch of our techniques

Throughout this section, we describe our techniques in the context of CSPs on n Boolean variables
and k-ary predicates that are (7 — 1)-wise uniform. As stated before, almost all of our ideas are
present in this special case. Our goal is to build a degree-d pseudoexpectation operator E as
described in Theorem 2.9.

3.1 Constructing the pseudoexpectation

As in all previous works on CSP lower bounds for hierarchies, we use a variant of the natural
pseudoexpectation introduced by Benabbas et al. [BGMT12]. This pseudoexpectation is always
defined in terms of a certain “closure” operator on instance graphs; previous works have used
slightly different notions of “closure”. Our method introduces yet another definition of closure that
we believe is the “right” one; at the very least, it seems to be precisely the right definition for
facilitating our proofs.

3.1.1 Closures

We can describe a pseudoexpectation by prescribing its values on the basis of monomials of degree
at most d. We work with the Fourier basis; i.e., =1 notation.

In the context of CSPs, a natural way to come up with a pseudoexpectation is via the idea of
local distributions. If E is a degree-d pseudoexpectation, then for every collection S of at most d/2
variables, E agrees with the expectation of an actual probability distribution. In particular, the
pseudoexpectation of a monomial 2° := [],cg2; for S C [n] (or indeed any function on S) can
then be described as the expectation of z° with respect to the local distribution ng that E induces
on the set S of variables. For such a definition to make sense, the local distributions must satisfy
consistency: the pseudoexpectation of 27 should equal the expectation of 27 with respect to the
local distribution ng for any S that includes 7" and is of size at most d.

We would like to choose local distributions ng that are supported on satisfying assignments
of all constraints completely included in S (we call these the constraints covered by S). At first
blush, we could choose the uniform distribution over the set of satisfying assignments for the
constraints covered by S. However, this choice doesn’t satisfy the consistency constraints. The
t-wise uniform distributions that are supported on satisfying assignments of the predicate P now
come to our rescue: if we obtain a local probability distribution that induces g on the literals of
any constraint in our CSP instance, we should intuitively expect be in good shape because t-wise
uniformity roughly guarantees that any constraint that intersects S in ¢ or less variables has a
satisfying assignment that agrees with the assignment sampled for S. A natural choice is to define
the probability of an assignment to S to be the product of the probabilities (with respect to u)
of the partial assignments corresponding to the constraints covered by S. This doesn’t work as-is,

12

either: there could be constraints that intersect S in many variables and yet are not completely
contained inside S. A sample from 7ng thus might already force such a constraint to not be satisfied.

To correct for this, we want to collect all such “dependencies” before choosing the local dis-
tribution. Benabbas et al. [BGMT12] make this idea precise by defining a notion of closure for a
set of variables S: intuitively, these are all the variables that one should care about when defining
the local distribution on S. Concretely, their closure maps S into a larger set S’ such that for any
T D S, the marginal of 57 on S is equal to the marginal of ngs on S. We then choose ng to be
the local distribution on S’ and define ng to be the marginal of ng on S. For such an effort to
be feasible, S’ shouldn’t be much bigger than S: if in the extreme case the closure happened to
be the whole set of variables [n], we cannot define a distribution on satisfying assignments of all
constraints covered by S’.

The closure of Benabbas et al. [BGMT12]| guarantees local consistency as we wanted. Local
consistency is all that is required for showing a Sherali-Adams lower bound and is equivalent to
the following local positivity condition, which is weaker than positive semidefiniteness: E[p] > 0
for p for every truly nonnegative polynomial p depending on at most d variables. However, when
trying to show that the more global E[p?] positive-semidefiniteness condition holds, the [BGMT12]
construction seems hard to analyze.

To address this problem, Barak, Chan, and Kothari [BCK15] introduced a simpler variant of the
[BGMT12] closure in order to show that the E defined above satisfies the positive-semidefiniteness
condition for certain pruned random instances of the CSP(P¥), when P supports a pairwise-uniform
distribution. However, their definition of closure degenerates into the set of all variables with high
probability when the random CSP has A = w(1).

Our closure. One of the main innovations in our work is the introduction of a new, simpler
definition of closure that plays a key role in our proof of positive semidefiniteness and gives a
definition of E that works even when the number of constraints is superlinear in n. In addition,
our definition of closure enables us to extend our results to J-refutation.

Our closure for a set of variables S is a subgraph of the factor graph of the CSP instance,
including both variables and constraints. We think of the closure of S as being the set of variables
and constraints that “matter” when defining the distribution ng. Given that a predicate P sup-
ports a (7 — 1)-wise uniform distribution, any constraint that affects g must have at least 7 — 1
variables in S. Otherwise, (7 — 1)-wise uniformity implies that we could ignore such a constraint
without changing ng. Any variable v not in S that occurs in only one constraint isn’t necessary
for defining ng, either. We could sum 7ng over the two assignments to v to get a new distribution
that no longer depends on v. This leads to a natural choice of the closure as the union of all small
subgraphs of the factor graph such that each constraint contains at least 7 — 1 variables and each
variable outside of S occurs in at least two constraints. For a formal definition, see Section 5.

3.2 Proving positivity

Once we have the definition of the pseudoexpectation, we get to the main challenge in showing
any SOS lower bound: arguing positive-semidefiniteness of the E constructed. The high level idea
in our analysis builds on the work of Barak, Chan and Kothari [BCK15]. Their idea of proving
positive-semidefiniteness is simple. They begin by observing that it suffices to verify positive-
semidefiniteness for a basis that satisfies orthogonality under E[], meaning, the pseudoexpectation
of the product of any distinct pair of basis polynomials is 0.

Fact 3.1. Suppose there exists a basis fi1, fa,... for degree-d polynomials such that the following
two properties hold:

13

1. E[fif;] =0 for all i # j.
2. B[f2] > 0 for all i.

Then E[gQ] > 0 for all g of degree at most d.

Proof. Write g as), a;f;. Then E[¢%] = Zaiaj f)[fzfj] = Zag E[f?]>0. O
i\j i

Notice that the standard Fourier monomial basis guarantees us positivity (since E satisfies the
local Sherali-Adams positivity condition by construction). However, it is not orthogonal in general.
How can we construct such a basis? One way to construct a basis that is orthogonal under E[] is
to perform the Gram—Schmidt process on, say, the monomial basis 1, x1,xo,...,z129,... to get a
new basis f1, fo,.... Now, Property 1 above holds for this new basis by construction. However, the
Gram-Schmidt process is highly sequential and, in particular, the basis function towards the end
could depend on all n variables. Thus, we cannot appeal to local positivity of E in order to argue
positive-semidefiniteness of the newly generated basis. It appears that we have made no progress,
ensuring orthogonality but potentially losing positivity.

The idea of Barak et al. to escape this pitfall is to show that local orthogonalization is enough.
Before the start of the Gram—Schmidt process, we fix an order on basis vectors. In each step of
the process, one orthogonalizes a basis function against all previous basis functions in this order
by subtracting off its projection onto their span. Barak et al. analyze the variant of this process in
which one orthogonalizes a basis function z° by subtracting off its projection onto the span of all
basis functions the precede it in the order and are functions of variables that lie in a small “ball”
around S in the factor graph G of the instance. This lets them ensure that the new basis satisfies
positivity (since it now depends only on a small number of variables, one can appeal to the local
positivity of E), and they show that this relaxed variant of the Gram—Schmidt process still ensures
orthogonality.

Their proof, however, is highly combinatorial and requires various assumptions on the factor
graph of the instance that intuitively shouldn’t matter. In particular, they need that the factor
graph have no small cycles (girth should be logarithmic): while this can be ensured by pruning o(n)
fraction of the constraints in a random instance with ©(n) constraints, this proof strategy breaks
down for super-linear number of constraints .

Our approach Our main idea simplifies the analysis without requiring the assumptions of
[BCK15] and yields tight results. It also naturally extends to the case of ¢t-wise uniform predi-
cates and further to §-approximate ¢t-wise uniform predicates. We next describe our key technical
ideas that makes this possible.

At a high level, our argument drops the local orthogonalization strategy of Barak et al. [BCK15]
and instead runs the Gram—Schmidt procedure “as-is”. Thus orthogonality of the resulting basis
functions is immediate, and we need only show positive-semidefiniteness. We show that for any
sequential ordering of the basis monomials in the Gram—Schmidt procedure, so long as it is of
increasing degree, whenever we orthogonalize a monomial z°, the result basis function depends
only on a small number of variables.

To see why such an assertion might be plausible, let us consider the task of orthogonalizing the
singletons. The monomial basis may not orthogonal under E[]; e.g., consider the following 3-XOR

14

instance:

r1x273 =1 Y1y2ys = —1
Toxgxs = 1 Yoyays = —1
Tax576 = 1 Yaysye = —1
xex7r8 = 1 Yeyrys = —1
xgxr7rg =1 ysyrys = —1

Observe that 1 and y; each appear in exactly one constraint and all other variables each occur in
exactly two constraints. Multiplying each block of constraints together, we see that if E[] satisfies
all constraints then E[z1] = 1 and E[y;] = —1. So neither 21 nor y; are orthogonal to 1. Since the
two sets of equations are disjoint, we also know that E[xlyl] = —1, so z1 and y; are not orthogonal.
We note that many such blocks may occur in a random instance with m > n!# constraints. Let’s
try to understand what happens when we run the Gram—Schmidt procedure on this basis. Consider
an instance consisting of n such disjoint blocks of 5 constraints on 8n variables. Let x;; be the
variables that is fixed in block ¢. Then every x;; is not orthogonal to 1 and every pair x;1,xj1 is
not orthogonal. Intuitively, the variables x;1, ;1 behave independently, but are biased. To fix this
bias, consider the functions Z;; (where we use the notation z := z — E[2]). Now we have that T
is orthogonal to 1 and, by independence of the blocks, E[@l -Zj1] = 0 for all 4, j.

Ideally, we might hope this this new basis satisfies orthogonality when we move to degree 2, as
well. Unfortunately, in general the basis {1,771, T2, ..., Tpn, T1Z2, ...} again need not be orthogonal.
Consider a 3-XOR instance with n constraints xoz;y; = b; for i € [n]; call this an n-star. Random
instances contain stars of superconstant size with high probability. For all (g) pairs ¢, 7, it holds

that Z;y; and ;y; are not orthogonal under E[]

E[miyi . a:jyj] = E[a:iyi . xjyj] — E[xzyz] E[a:jyj] = bibj —-0= bibj.
Instead, consider the basis
T=1,T0=20, TI=T1, -, JL=Y1, T2 =Y2, -+ , T1Y1 = T1Y1 — b120, TaYa = T2ya — bao, - ..

A simple calculation shows that these basis functions are orthogonal. Each basis function depends
on at most 3 variables, so the degree-3 Sherali-Adams positivity condition and Fact 3.1 imply that
degree-2 positive semidefiniteness holds. We give a proof of orthogonality of z;y; and z;y; that
illustrates the underlying intuition. Observe that z;y; and z;y; are independent conditioned on zo
for all ¢ # j, and we can write

E(z;y; - ;y;] = Elz;y; - ;Y;) (E[] is a valid expectation on small sets)
= E[E[z;y; - ;9;|x0]] (law of total expectation)
= E[E[z;yi|xo] - E[z;y;|z0]] (conditional independence of z;y; and z;y; given x).

Next, note that

_ 1 _

E[7;yi|ro = 0] = Prlzo = 0] E[Z:yi - Lzo=t} (20)],

where 17,4y is the indicator function for zp = b. Since we have orthogonalized T;y; against
all degree-1 basis functions and 1g, ;1 is a degree-1 polynomial, this expression is equal to 0.

Therefore, E[z;y;|zo] = 0 and Z;y; and z;y; are orthogonal. In this case, z;y; and z;y; are correlated

15

because they are connected by xg. After subtracting off their correlation with xg, the resulting
functions are orthogonal and no longer correlated.

Let us now formalize this intuition and generalize it to higher degree. At a high level, our idea is
to show that the Gram—Schmidt process produces a basis such that each new basis element depends
only on a small number of variables. Let ys be the result of applying the Gram-Schmidt process
to 2. If yp appears in yg with a nonzero coefficient, then it must be the case that E[z° - yr] # 0.
That is, 2° and yr are correlated under E[-]. We show that this correlation is “witnessed” by some
small, “dense” subgraph containing many constraints covered by few variables. If yg has many
variables in its support, then there must be many such subgraphs. We show that the union of
these subgraphs is dense enough to be “implausible”. This means that yg cannot have too many
variables in its support.

Our witness can be seen as a generalization of the connected sets in the degree-2 case discussed
above. Call two sets of vertices c-connected if removing any set of ¢ — 1 vertices cannot disconnect
them. In the degree-1 case, nonzero correlation between z° and yr with |S| = |T| = 1 is witnessed
by a small, dense, connected (1-connected) subgraph. In the degree-2 case after orthogonalizing
against degree-1 terms, we expect based on the star example that if S and 1" are only 1-connected,
then z° and y7 will no longer be correlated. We show that nonzero correlation between z° and yr
with |S| = |T'| = 2 is then witnessed by a small, dense, 2-connected subgraph. In general, we show
that nonzero correlation between x° and yr with |S| = |T| = d is witnessed by a small, dense, d-
connected subgraph. This stronger connectivity requirement enables us to show that these witness
subgraphs and their unions are dense enough to be implausible if the support of a basis function
grows too large. For details of this argument, see Section 6.

4 Forbidden subgraphs for the factor graph

Let us make a few definitions concerning factor graphs, after which we will elaborate on the “Plau-
sibility Assumption”.

Definition 4.1 (Subgraphs). We call H a subgraph of G if it is an edge-induced subgraph; i.e.,
H = G[A] for some subset A of the edges of G. We explicitly allow A = () and hence H = (). The
subgraph H need not be connected.

Notation 4.2. For H a subgraph, we write vbls(H) for the set of variables appearing in H, cons(H)
for the set of constraints appearing in H, and edges(H) for the set of edges appearing in H.

Notation 4.3. Given f € cons(H), we write Ny (f) = {i € vbls(H) : (f,7) € edges(H)}. Note
that this is not necessarily the same thing as N(f) N vbls(H).

We will typically measure the “size” of a subgraph by the number of constraints in it:
Definition 4.4 (Small subgraphs). We say that subgraph H is small if |cons(H)| < SMALL.

Now regarding the Plausibility Assumption, for intuition’s sake let us suppose we are concerned
with weak refutation and degree-O(1) SOS, as in Corollary 1.5. Thus we have some k-ary predi-
cate P with C(P) = 7, and we are selecting a random CSP with slightly fewer than n/? constraints;
say m = n(7¢)/2. What does a random factor graph look like in this case? Which small subgraphs
may appear? A quick-and-dirty method to analyze this is as follows. Consider the fixed small
subgraph in Figure 1; call it H.

16

Figure 1: An example small subgraph. Constraint-vertices are squares, variable-vertices are circles.

What is the expected number of copies of H in a random factor graph G with n variable-vertices
and m = n(7=9/2 constraint-vertices? There are (g‘) ~ m? choices for H’s 2 constraint-vertices
and (Z) ~ n* choices for H’s 4 variable-vertices. Thinking of each constraint-vertex as choosing
k = O(1) random neighbors, the chance that the 6 edges of H show up is roughly n=%. Thus, very
roughly, we expect about m?n*n=6 = n2(7=0/2+(4=6) copies of H in a random G. Thus copies of H
“plausibly” show up if and only 2- (7 —()/24 (4 —6) > 0; i.e., if and only if 7 > 2+ (. Since 7 > 3
always, this means we should certainly expect copies of H in G.

For a general subgraph H with ¢ = |cons(H)|, v = |vbls(H)|, e = |edges(H)],

E[# copies of H] ~ m®n?n~¢ = n¢7=0/24v=¢ — H “plausibly occurs” iff ¢-(7—¢)/24(v—e) > 0.
(1)
This inequality is precisely the one occurring in the Plausibility Assumption from Section 2.2.
Despite the simple form of the inequality, we will find it helpful to view it in a different way. For
reasons that will become clear in Section 5, we will be concerned almost exclusively with subgraphs
of G in which all constraint-vertices have degree at least 7:

Definition 4.5 (7-subgraphs). Let H be a subgraph. We will call H a 7-subgraph if every
constraint-vertex in H has degree at least 7 within H; i.e., [Ny (f)| > 7 for all f € cons(H).

Remark 4.6. The empty subgraph () is always trivially a 7-subgraph. Also, if H and H' are
T-subgraphs then so is H U H'.

Definition 4.7 (Leaf vertices and interior vertices). Given a subgraph H, we classify the variable-
vertices in H as either leaf or interior depending on whether they have degree 1 or at least 2.
(Since H is an edge-induced subgraph, it does not have any isolated vertices.)

For T-subgraphs, there is a different way to view the “plausibility inequality” that will be more
useful for us. We define it with some “accounting” terminology.

Definition 4.8 (Credit, debit, excess, revenue, cost, income). Let H be a 7-subgraph. For the
purposes of this definition, consider each of its edges to be two directed edges.

e For each variable-vertex, we assign it a credit of 1 if it is a leaf vertex. We’ll write £ for the
total credits.

e For each variable-vertex, any out-edges in excess of 2 are called excess, and we assign a debit
for each. We’ll write e, for the total number of these.

e For each constraint-vertex, any out-edges in excess of 7 are called excess, and we assign a
debit for each. We’ll write e, for the total number of these, and e = e. + e, for the total debit
(number of excess edges).

e The sum of credits minus the sum of debits, £—e, is called the revenue. We denote it by R(H).

e Each constraint-vertex has a cost of (. We write C(H) = (- |cons(H)| for the total cost.

17

e The income is I(H) = R(H) — C(H).

Definition 4.9 (Plausible 7-subgraphs). Let H be a 7-subgraph. We say that H is plausible
if I(H) > 0.

Remark 4.10. H being plausible implies (indeed, is equivalent to) |cons(H)| < % - R(H). Thus
controlling a subgraph’s revenue is equivalent to controlling its size.

The next lemma implies that the inequality I(H) > 0 is the same as the inequality appearing
in the Plausibility Assumption and in (1).

Lemma 4.11. Let H be a T-subgraph with ¢ = |cons(H)|, v = |vbls(H)|, e = |edges(H)|, and
I=1I(H). Thene= %_C-c—i—v—é.

Proof. We count the number of “directed edges” in H. Counting those coming out of variable-
vertices, the ¢ leaf vertices contribute 1 each, and the v — ¢ interior vertices contribute 2(v —£) + €.
Counting the directed edges coming out of constraint-vertices yields 7¢ + e.. Thus

directed edges =2e =+ 2(v—4)+ e, +Tc+e.=Tc+2v— ({ —e) =Tc+2v — ((c+ 1),
since { —e = R(H) = C(H) + I(H). The claim follows. O

In light of this, we may restate the Plausibility Assumption:

Plausibility Assumption, Restated. Henceforth we assume the factor graph G has the follow-
ing property: All T-subgraphs H of G with |cons(H)| < 2 - SMALL are plausible.

As mentioned earlier, for an appropriate choice of SMALL, the Plausibility Assumption holds for
a random instance. More precisely, in Appendix A we prove the below theorem. The reader is
advised that in this theorem, the first claim is the main one; it is used to show our Theorem 1.2
concerning weak refutation. The second claim (“Moreover...”) is a technical variant needed to
extend our results to give Theorem 1.1 concerning d-refutation.

Theorem 4.12. Let \=7—-22>1. Fix 0 < (< .99\, 0 < 8 < % Then except with probability at
most B, when G is a random instance with m = An constraints, the Plausibility Assumption holds
provided

n
SI\"IALL S v m,

A\ 0)
where v = % (25}1(/”) . Moreover, assuming (< 1, except with probability at most 8 we have

1+¢

#{nonempty 7-subgraphs H with cons(H) <2-SMALL: I[(H)<7—-1} <An"2 .

5 Defining the pseudoexpectation

5.1 Closures

In this section we define the “closure” of a set of variables. Roughly speaking, this can be thought
of as the smallest T-subgraph of G that fully determines the distribution on S under a natural
“planted distribution”.

18

Definition 5.1 (S-closed subgraph). Let S be a set of variables. We say that a subgraph H is
S-closed if it is a 7-subgraph and all its leaf vertices are in S.

Remark 5.2. For every constraint in G, if H is taken to be the full neighborhood of that constraint,
and S is the set of variables in that constraint, then H is S-closed.

Note that a union of S-closed 7-subgraphs is S-closed. This leads us to the following definition:

Definition 5.3 (Closure, cl(S)). Let S be a set of variables. We define the closure of S, written
cl(S), to be the union of all small S-closed T-subgraphs H. Note that cl(S) is itself an S-closed
T-subgraph.

Remark 5.4. A key warning to remember: we do not necessarily have S C vbls(cl(5)).

Remark 5.5. Let 7' C S. Then if H is T-closed, it is also S-closed. It follows that cl(T") C cl(.5).

Fact 5.6. The only plausible O-closed T-subgraph H is H = (). It follows that c1(0) = (.

Proof. If H is (-closed then its revenue is at most 0. Hence if it is plausible, its cost is 0. O
We will now give an important generalization of this fact for S-closures, |S| > 0

Theorem 5.7. Let S be a set of variables with |S| < ¢ - SMALL. Then cl(S) is small and satisfies
R(cl(5)) < 5].

Proof. Since cl(S) is S-closed, all its leaf vertices are in S; thus cl(S) has at most |.S| credits and so
R(cl(S)) < |S5], as claimed. Observe that if Hy,..., H; is the complete list of S-closed 7-subgraphs,
we may make the same deduction about Hy U---U H; for any 1 < j < ¢, in particular deducing
that R(Hy U---U Hj) < (- SMALL for each j. The smallness of cl(.S) is now a consequence of the
lemma that immediately follows. O

Lemma 5.8. Suppose that H is a T-subgraph formed as a union, H = H; U --- U Hy, where each
Hj is small and where we have R(H1 U ---U Hj) < (- SMALL for all 1 < j <t. Then H is small.

Proof. The proof is by induction on ¢, with the base case of t = 1 being immediate. In general,
suppose H' = HyU---UH,;_1 is small. Since H; is also small we have |cons(H")|, |cons(H;)| < SMALL
and hence |cons(H' U Hy)| < 2-SMALL. Thus H' U Hy is plausible and so

cons(H' U Hy) = (1/¢) - C(H' U Hy) < (1/¢) - R(H' U Hy) < (1/¢) - ¢ - SMALL = SMALL,
showing that H' U H; is small, completing the induction.]

In proving Theorem 5.7, we iteratively formed the union of all small S-closed subgraphs, at
each step verifying that we have a small T-subgraph of revenue at most |S|. Once we finish pro-
ducing cl(S) in this way, let V' = vbls(cl(5)), and suppose we continue iteratively adding in small
T-subgraphs that are (SUV')-closed. This process cannot add any leaf vertices except possibly in S
thus we will still have that revenue is bounded by |S| < ¢ - SMALL, and Lemma 5.8 will still imply
the resulting 7-subgraph is small. Thus we end up with a small, S-closed 7-subgraph— which by
definition is already contained in cl(S). Thus we have shown:

Theorem 5.9. Let S be a set of variables with |S| < ¢ - SMALL. Then cl(S U vbls(cl(S))) = cl(S).

19

5.2 The planted distribution

Definition 5.10 (Planted distribution on a small subgraph). Let H be a small subgraph of G.
The planted distribution on H is a probability distribution on assignments & € " to the variables
of G, defined as follows: For each constraint f € cons(H) we independently draw an assignment
wy € QN according to pg. We write its component associated to variable i € Ny (f) as wy,;, and
think of it as an assignment “suggested” for this variable. (Note that we will ignore the components
of wy correspoding to variables not in Ny (f).) Now each variable i € vbls(H) has one or more
assignments in 2 suggested by its adjacent constraints. We get a unique assignment x; for it by
conditioning on all the suggestions being consistent. (We will show later in (8) that this occurs
with nonzero probability.) Finally, assignments for variables not in H are chosen independently
and uniformly from 2.

We'll write ng for the probability distribution on 2" associated to this planted distribution
on H, and we’ll write Eg[-] for the associated expectation.

Definition 5.11. For each i € vbls(G) and each ¢ € Q, we introduce an “indeterminate” 1.(z;)
that is supposed to stand for 1 if variable 7 is assigned ¢ and 0 otherwise.

The key theorem about the planted distributions is that as soon as a subgraph H contains cl(.5),
the marginal of ng on S is determined. In some sense, this property is exactly the reason we defined
the closure the way we did.

Theorem 5.12. Let S be a set of variables and let H 2 cl(S) be a small subgraph. Then the
marginal of ng on S is the same as the marginal of ng(sy on S.

Remark 5.13. Although the notation in the below proof looks cumbersome, the calculations are
actually fairly straightforward. We strongly encourage the reader to work through the proof in the
case of ¢ = 2, Q = {£1}, with “I.(z;)” replaced by cx; € {+1}.

Proof. For brevity we write vy = |vbls(H)| and ey = |edges(H)|. We also introduce the notation
Te(x;) = qle(x;) — 1. Recalling that ny puts the uniform distribution on the n — vy variables
outside H, we have

pr(z) = Pr[w suggestions consistent, and the assignment to vbls(H) they agree on is x]
w

B [(0 + Tay, (@)

w
(f,i)€edges(H)

=g Y B [T Tep(@) (2)

H'CH (fi)eedges(H’)

= qUETEeHTT. Z H E H 1wf7i (J;z)’ (3)

WE~pF
H'CH fecons(H') €N (f)

where we used that the draws wy ~ py are independent across f’s. Now whenever f € cons(H')
has [Ng(f)| < 7, the (7 — 1)-wise uniformity of ps implies that

E] Tw.@= E [I Twn@= J] E Tu.(@)=0

Wepg wyi~ . wy,i~
i€Ny (f) uniform, indep. i€Ny(f) i€N (f) uniform
since Ecwqlle(z;)] = 0 for any fixed value € Q. Thus in (3) it is equivalent to sum over

7-subgraphs H’', and so returning to (2) we get

pu@) =g 3 B] e, (4)
H'CH (fyi)cedges(H")
H' a t-subgraph

20

Suppose now that T C [n] is a set of variables. We’ll decompose an x € Q" into its projection zp
onto the coordinates in 7" and x7 onto the coordinates not in 7'. Then

pr(zr) = Pr[w suggestions consistent, and the assignment to 7" they agree on is x|
w

= > pulerap) =¢" " E_|py(ar,z7)]

T
QT Sy
zpeQ uniform
ey —|T T
= quH—eH IT] E E H 1wf,i (.CI;‘Z) - E - H 1wf’¢ ($z)7 (5)
H'CH (f,i)€edges(H') w2 (¢) cedges(H')
H’ a T-subgraph €T uniform i€T

where we used (4). Now suppose the 7-subgraph H’ has a leaf vertex j that is in T} i.e., it’s not
in T'. Then x; appears exactly once in the above, within the expression

E T Tw.(z). (6)

_OT
TT 2 (f,i)€edges(H")
uniform T

As x; is chosen uniformly and independently of all random variables, the above contains a factor of
the form Eq ~q[lw, (x;)]. But for any fixed outcome of wy,;, this expectation is 0, meaning (6)
will vanish. Thus any summand H’ in (5) will vanish if H' has a leaf variable outside T'. Thus we
may equivalently sum only over T-closed H'. That is,

pr(xr) = Pr[w suggestions consistent, and the assignment to 7' they agree on is x7]
w

_ qUH*eH*‘T| . Z E} H Tfﬂ(ﬂjl) . H]'wf,i (mi)

_oT
H'CH (fsi)€edges(H') T~ p i cedges(H')
H' is T-closed =y uniform T

— qua—en—ITl . Z E E H Tw, . (x;). (7)
y w x~Q" unif., . fi
H'CH condit. on xp=xp (fi)Eedges(H')
H'’ is T-closed

Suppose we took T' = () above. Since H is small, every subgraph H' is plausible and hence Fact 5.6
implies that the above has only one summand, corresponding to H' = (). The summand is trivially 1,
and hence

l?ur['w suggestions consistent] = ¢”#~“H . (8)

Observe that this does not depend at all on the py’s; in particular, it is easily seen to the be
the probability of consistent suggestions under completely uniform f¢’s. In any case, since (8) is
positive, as promised, we may condition on the associated event; thus from (7) we obtain

Pr[the suggested assignment to S is xg | the suggestions w are consistent]
w

—g .Y B B [Te.(@)

~Q™ unif.,

H'CH condit. on zg=zg (f,i)Eedges(H’)
H' is S-closed
This formula visibly has the property that once H D cl(S), it does not depend on H. O

5.3 Pseudoexpectations

In this section, we formally define the pseudoexpectation with which we will work.

21

Definition 5.14. Given a polynomial expression p(x) in the indeterminates 1.(z;), we write

vbls(p) = {i : at least one 1.(x;) appears in p(x)},
deg,in (p) = max{|vbls(M)| : M(z) is a monomial in p(x)}.

We call the latter the multilinear-degree; note that deg, i, (p) < deg(p) always.

Recall that a pseudoexpectation on polynomials of degree at most D is a linear map E[] sat-
isfying E[l] = 1. We can uniquely define it by specifying its values on all monomials of degree at
most D. Further, recall that if p(x) is a polynomial, we say that E[] satisfies the identity p(x) =0
if E[p(z) - q()] = 0 for all polynomials ¢(x) with deg(p - q) < D.

Definition 5.15 (Our pseudoexpectation). We’ll define our pseudoexpectation E[] on all poly-
nomials of multilinear-degree at most ¢ - SMALL; in particular, this defines it for all polynomials of
(usual) degree at most ¢ - SMALL. We define it by imposing that E[M (z)] = Eabis(ay)[M (x)] for
all monomials M (x) having deg, ;i (M) < ¢-SMALL. (Here we are using the abbreviation Eq[M (x)]
for Egn.[g(x)].) By Theorem 5.7, this makes sense in that cl(vbls(M)) will always be small. Note

that we have E[1] = E¢g)[1] = 1, as required.

Theorem 5.16. Let p(x) be a polynomial expression of multilinear-degree at most ¢ - SMALL. Let
H be any small subgraph containing

H = U{Cl(vbls(M)) : M(x) is a monomial of p(x)}.
For example, if cl(vbls(p)) is small then it would qualify for H. Then
E[p(z)] = Elp(z)] = E[p(z)].
Proof. This is immediate from Theorem 5.12 and Remark 5.5. O

Theorem 5.17. Let p(x) be a polynomial with S = vbls(p) satisfying |S| < deg(p), |S| < ¢-SMALL.
Assume that p(x) is identically zero for ® ~ ngs). (Note that cl(S) is small by Theorem 5.7.)

Then our E[] satisfies the identity p(z) = 0.

Proof. Let q(x) be a nonzero polynomial with deg(p - ¢) < ¢ - SMALL. Writing ¢(z) = Zj M;(x)
where each M;(x) is a monomial, we have

Blp(x) - a(e)] = Y Blp(e) Mi@)] =30 B pa) - M (@) ()

7 SUvbls(Mj))

Here the last equality used Theorem 5.16 and the smallness of cl(S Uvbls(M;)), which follows from
Theorem 5.7 and the fact that [S Uvbls(M;)| < deg(p) + deg(q) = deg(p-¢q) < (- SMALL. But since
cl(S Uvbls(M;)) D cl(S) (Remark 5.5), Theorem 5.12 tells us that p(x) has the same distribution
under 7e(suvbls(az;)) and Neysy; i-e., it is identically 0. Thus (9) vanishes, as needed. O

We have the following immediate corollaries:
Corollary 5.18. Our pseudoexpectation E[] satisfies the following identities:
o > cqle(wi) =1 foralli € [n] (ie., the identity > .qlc(x;) —1=0).

o 1.(7;)% = 1.(x;) for all c € i € [n].

22

As an immediate consequence of the latter, we always have E[p(z)] = E[multilin(p(z))], where
multilin(p(z)) is defined by replacing any positive power of 1.(x;) in p(x) with just 1.(x;).

Another corollary is the following (cf. the rough statement of our main technical result, Theo-
rem 2.9):

Corollary 5.19. Our pseudoexpectation f)[] satisfies the identity

spe):= >] le(w) =1

cesupp(uys) iEN(f)

for all f € cons(G); i.e., “E[] s distribution on N(f) is always in supp(us)”.

Proof. We apply Theorem 5.17, with S = N(f), which satisfies |S| = deg(sy) and |S| < K <
¢-SMALL. Note that if H; denotes the 7-subgraph induced by all edges of G incident on constraint-
vertex f, then Hy is S-closed and so Hy C cl(S). It then follows from the definition of & ~ 7g)
that s¢(x) = 1, since the restriction of & to N(f) will always be supported on supp(py). O

6 The proof of positive semidefiniteness

6.1 Setup
Throughout this section, fix a degree D satisfying 1 < D < %C -SMALL. Our goal will be to establish:

Theorem 6.1. If p(x) is a polynomial expression of degree at most D, then E[p(:v)2] >0.

In light of Corollary 5.18, we may assume that p(z) is “multilinear” (i.e., does not contain 1.(z;)*
for any k > 1). Another way to state this assumption is p(z) € span(z® : S € M=P), where we
introduce the following notation:

Definition 6.2. A monomial index will be a set S of pairs (i,¢) € [n] x Q, with no variable ¢ € [n]
occurring more than once. We write 2 for the monomial [(irc)€S 1¢(x;), with the usual convention

that 2” = 1. Finally, we write M=P for the collection of monomial indices S with |S| < D.

Notation 6.3. We abuse notation as follows: If a monomial index S occurs in a place where a
subset of variables is expected, we intend the subset of variables {i : (i,¢) € S for some c}.

Remark 6.4. All of the ideas in our proof of Theorem 6.1 are present in the ¢ = 2 case; only
notational complexities arise for ¢ > 2. Thus the reader is encouraged to keep the Boolean case
() = {false, true} in mind. In this case, since f)[] satisfies the identity 1gyse(2;) = 1 — lipue(2s), one
can also ignore the indeterminate 1gyse(7;) (since 1 € span(M=Y) already). Then one can more
naturally write the indeterminate lie(;) as z; and the monomial 2° becomes [Lics -

6.2 Gram—Schmidt overview

Notation 6.5. Let < denote any total ordering on M=P that respects cardinality, so that if T
and S are monomial indices with |T| < [S|, then T' < S. For S # 0, let pr(S) denote the immediate
predecessor of S under <.

23

Our goal in this section is to show that the modified Gram—Schmidt process from linear algebra
can be successfully applied to the monomials (z° : S € M=P), in the ordering <, using E[] as the
“inner product”: (p(z), q(z)) = E[p(z)-q(z)]. Of course, we don’t know that this is a genuine inner
product (indeed, that’s essentially what we're trying to prove). We will discuss this issue shortly,
but we first remind the reader that the modified Gram—Schmidt process would typically produce
a collection of polynomials ys = yg(x), for S € M=P, that are orthogonal under E[] (meaning
Elys - ys] = 0if § # 5) and that have the same span as (z° : § € MSP). As well, it would

produce “normalized” versions of these polynomials zg = yg/4/ E[y%], satisfying]:][z?g] =1.

We now address the obviously difficulty that E[] is not (known to be) an inner product, because

we don’t know it’s positive definite on the monomials of M=P. Our goal will be to show that as
we follow the Gram—Schmidt process, it never encounters any “positive definiteness problems”, and
therefore “succeeds”. The main “positive definiteness problem” Gram-Schmidt might encounter
would be if it creates a polynomial yg with E[y%] < 0. In this case, when it tries to produce the
normalized polynomial zg, it would certainly fail.
_ There is one additional potential problem, occurring if Gram-Schmidt produces a yg with
E[y?g] = 0. In the usual process from linear algebra this may indeed occur, and the Gram—Schmidt
algorithm copes by treating zg as 0 (effectively, throwing it out of the span). This is a valid strategy
because genuine inner products are strictly positive definite. However we only expect our “inner
product” E[-] to be positive semidefinite. We therefore need a different coping mechanism. For us,
when E[y?q] = 0 occurs, we will simply define its “normalized” version zg to be yg. The challenge
of this is that Gram—Schmidt’s guarantee of producing an orthogonal collection (ys : S € M=P)
relies syntactically on all the zg polynomials satisfying E[zg] = 1. Thus we will have an additional
burden: we will have to “manually” show that E[y%] = 0 implies that yg is orthogonal under E[]
to all other polynomials. It will count as a “positive definiteness problem” if we are unable to
show this; we will call this the “pseudovariance zero problem”. We remark that the main positive
definiteness problem is fundamentally more important than this “pseudovariance zero problem”,
and the reader may wish to ignore the pseudovariance zero issue on first reading.

We now describe the modified Gram—Schmidt process in detail. The process works in stages,
named after the elements of M= and in order of <. At the end of stage S it creates a certain
polynomial zg. Stagej) always “succeeds” and simply consists of defining z3 = 1. In some cases
it may happen that E[z?g] = 0. In this case we say that zg has pseudovariance zero, and the
Gram—Schmidt algorithm will add S to a growing collection called PvZ.

Each stage S is further divided into substages, associated to monomial indices T' < S in order
of <. Let us introduce some notation:

Notation 6.6. Let M3 =P denote the collection of all pairs (S,T) € M=P x M=SP with T < S.
We define a total ordering <o on ./\/l2 via

(8", T") =22 (S, T) < S’ <S,or =S and T' < T.

Thus the overall progression of substages in Gram—Schmidt is through the elements of M;D in
order of <5. Substage (S,T) creates a polynomial yg 7 as follows:

¥ — E[2”] it T = 0:
Ys;r = ~
YS,pr(T) — E[?/S,pr(T) - zplzp else.
Stage S ends just after substage (5, pr(S)). At this point, the Gram—Schmidt process defines

\/ if E > 0;
YS = YS,pr(S) zg = {ys / VEW] [vg]

if E[ys] = 0, in which case S is placed into PvZ.

24

Of course, if E[yg] < 0 then we have encountered a positive definiteness problem. Indeed, to be
conservative we will treat it as a problem if E[y?g 7] <0 for any (S,T) € M5P.

It is a syntactic property of the usual modified Gram-Schmidt process that when ygr is pro-
duced, it is orthogonal to zr under f)[] However this relies on E[z%] = 1, which fails for us if
T € PvZ. Thus we will need to explicitly prove that T' € PvZ implies E[y&pr(T) - zp] = 0. If this
doesn’t hold, we've encountered the pseudovariance zero problem. But assuming it does hold, ys
will simply become yg ,.(7) and we will have the desired orthogonality of ysr and 27. We remark
that the usual Gram-Schmidt property of ys r being orthogonal to all zp with 77 < T follows by
induction in the usual way; this only needs the inductive property that the zp’s are orthogonal (not
that they’re orthonormal).

We may now summarize the discussion so far:

Definition 6.7. A positive definiteness problem occurs at substage (S,7") of modified Gram—
Schmidt if either ﬁ[ygT] < 0, or if T € PvZ but E[y&pr(ﬂ - zr] # 0. (The latter is called a
pseudovariance zero problem.) We say that the modified Gram—Schmidt process succeeds through
substage (S, T) if it encounters no positive definiteness problem at any substage (S, 7") <2 (S,T).

Proposition 6.8. Suppose the modified Gram—Schmidt process succeeds through substage (S, T).
Then we have:

® ysr = z% — p(x) for some polynomial p(x) supported on monomials 2" with T! < T

°]T][yg,T'zT/] =0 for allT' <X T, and hence E[ygpq(x)] = 0 for all polynomials q(z) supported
on monomials z7 with T' < T

e E[yZ,] >0.

In particular, if the process succeeds through stage S, we have:
e 25 =c-x% — p(x) for some positive constant ¢ > 0 and some polynomial p(x) supported on

monomials 1 with T < S;
e span(z® : §' < S) =span(zg : S’ < S);

o Elzg-27] =0 for all T < S, and hence Elzs - q(x)] = 0 for all polynomials q(x) supported on
monomials 2 with T' < S;

o }Tl[zg] =0 if S is put in PvZ, else E[zg] =1.

Our main Theorem 6.1 follows provided the modified Gram—Schmidt process succeeds through
all substages in MQSD. The reason is that then any multilinear p(z) of degree at most D can be
expressed as p(x) = > <p crzr. This implies

E[p(z)’] = Z crep Blzr - 2] = Z ¢t >0,
|T},|T"|<D |T|<D
TEPVL

using Proposition 6.8.

25

6.3 Advanced accounting

Definition 6.9. A 7-subgraph™ is defined to be a T-subgraph, together with zero or more isolated
variable-vertices.

We still have that the union of 7-subgraphs™ is a 7-subgraph™. We extend the cons(H) and
vbls(H) notation to 7-subgraphs™, and also the planted distribution notation ng (being the same
as ng where H' is formed from H by deleting its isolated vertices).

Definition 6.10. For a 7-subgraph® H, we extend the definition of revenue by assigning two
credits for all isolated variable-vertices in H.

Remark 6.11. If H is a 7-subgraph™ and H’ is the T-subgraph formed by deleting isolated vertices,
then cons(H') = cons(H), C(H') = C(H), and R(H') < R(H). Thus the Plausibility Assumption
immediately implies that all 7-subgraphs™ with at most 2 - SMALL constraints are also plausible.

Lemma 6.12. Let H be a small T-subgraph™ with R(H) < r. Let H' be a small T-subgraph with
at most s leaf variables that are not in H. Assume r + s < (- SMALL. Then H U H' is small and
satisfies R(HU H') <r + s.

Proof. Adding H' into H cannot remove any of the debits of H, and the only additional credits that
can be created come from the s leaf variables in H' that are not in H. (Since H' is only a T-subgraph
it has no isolated variables.) This establishes R(H U H') < r + s. The smallness conclusion follows
immediately from Lemma 5.8 (here it does not matter that H is a 7-subgraph™). O

A key aspect to our main theorem will be that in some cases this revenue bound can be improved:

Lemma 6.13. In the setup of Lemma 6.12, suppose also that H' has b edges that are “boundary”
for H, in the sense that each has exactly one endpoint in H. Then in fact R(HUH') <r+s—b.

Proof. Let a be an edge in H' with exactly one endpoint, call it w, in H. We show that the addition
of this edge to H causes a drop of 1 in revenue. If w is a constraint-vertex, then this follows because
w already had degree at least 7 in H, so a becomes a new excess edge in H, creating a new debit.
So suppose w is a variable-vertex. If w had degree at least 2 in H then a is again excess and creates
a new debit. If w had degree 1 in H then the addition of a changes w from a leaf variable to an
interior variable, removing 1 credit from H. Finally, if w was isolated in H then the addition of a
turns it into a leaf variable, again removing 1 credit from H. Repeating this argument for all b
boundary edges completes the proof. O

6.4 The key lemma

Lemma 6.14. Let y = y(z) be a polynomial expression of degree d. Assume 2d < ¢ - SMALL and
that E[y-p(z)] = 0 for all polynomials p of degree strictly less than d. Let H be a small T-subgraph™
with vbls(H) 2 vbls(y) and R(H) < r, where we assume r + d < - SMALL. Finally, suppose T is
a monomial index with |T| = d such that

Ely-2"] # 0.

Then there exists a small T-subgraph™ Hyew 2 H with vbls(Hpew) 2 vbls(y) UT and R(Hpew) < 7.
(In writing vbls(y) UT, we are using the abuse described in Notation 6.3.)

26

Proof. Let us define
Thew =T \ vbls(H), Toa = T Nvbls(H), B =cl(vbls(H)UT), Hyew = HUB.

First, we show that the T-subgraph™ H,e is small; it follows that the 7-subgraph B is also small.
Claim 6.15. H, . is small.

Proof. Write cl(vbls(H)UT) = H{ U ---U Hj for small (vbls(H) U T')-closed T-subgraphs H/. Let
H. ;= HjU---UH]_,, and let s; denote the number of leaves of H; that are not in HUH’ ;. Then
it is easy to see that 22:1 s; < d. Now, iteratively apply Lemma 6.12 to H U H{, (H U H}) U Hj,
((HUH})U Hy) U Hj, ... to prove the claim. O

Next, observe that we have vbls(Hyew) 2 vbls(H) 2 vbls(y); therefore to prove the lemma, it
suffices to show that vbls(Hyew) 2 Thew and that R(Hpew) < R(H).

For the first of these, given an (i,c) € T we write T; = 1.(z;) — E[lc(z;)] and 77 = [Licr @i
Observe that 7 — 27T is a polynomial of degree strictly less than d; thus E[y (T —21)] = 0 and
so E[y-zT] # 0. Now using Theorem 5.16 and B D cl(vbls(H)UT) 2 cl(vbls(y - 7)), we conclude

Ely '] #0. (10)

In light of this, we claim that every variable j € Ty must appear as a vertex in B (and hence in
vbls(Hyew), as needed). For if j & vbls(B), then Z; is independent of all other random variables @;
under np, and so

Ely -z'] = E[z;] - E[ly -z e\l (using j ¢ vbls(H) 2 vbls(y))
— E[z;] - Ely - gloa . glhen\li}] = (using B 2 cl(T) 2 cl({;j}) and E[z,] = 0)

in contradiction to (10).

It remains to show that R(Hpew) < R(H), which we will do using Lemma 6.13 (with H' = B,
and s = |Tyew|, recalling that all of B’s leaves are in vbls(H)UT). We must show that the number
of “boundary edges” — i.e., edges in B that have exactly one endpoint in H — is at least |Thew|-
Supposing otherwise, the set

V = {variable-vertices v € B : v is incident on a boundary edge} U Tjjq

would satisfy |V| < |Thew| + [Told| = |T'| < d. We will show that this contradicts (10).

Claim 6.16. The deletion of variable-vertices V' from B disconnects all variables in T from all
variables in vbls(H) within B. (Note that when a variable does not even appear in a subgraph, it
is trivially disconnected from all other variables.)

Proof. 1t suffices to show that deleting V' disconnects Thew from vbls(H) within B, as the vertices
of T,)q are already in V. Suppose j € Thew is connected to some variable i € vbls(H) by a path
within B. Since j ¢ vbls(H), there must be some edge in this path that has exactly one endpoint
in H. This edge is a boundary edge, and hence the variable-vertex incident on it is in V. Thus we
have indeed established that every path within B from a variable in Ty to a variable in vbls(H)
must pass through a variable in V. O

27

Recall that the proof is complete once we show that |V| < d contradicts (10). Now
—T7 _ =T RS
EB)[y-m]—EB)[y T Z:l[acZ ClVZGV]}
Qv
— Ll = o V5
- Z];}[y z' 1z, =c; Vie V]| (11)

ceqv

We claim that every summand above equals 0. The reason is that for each summand ¢, either
1llx; = ¢; Vi € V] is always 0 under np (establishing the claim), or else we may condition on the
event, yielding

]ligl[y~ET'1[wi:ci Vi € V] :f;r[a:i:ci WGV]-EB)[y'ET|wi:cZ- Vi e V).

By Claim 6.16 and the definition of the planted distribution np (and vbls(y) C vbls(H)), we have
that y and Z' are conditionally independent under 1p, conditioned on all (z; : i € V). Therefore

EB)[y-ET|:ci:cz-Vz'eV]:%[y\wi:ciViEV]-EB)[fT]wi:ciVieV].
Combining the previous two equations yields
EB)[y-ET Az, =¢; Vie V]| = %[y Az =¢; Vi e V]] -EB)[ET | =c; VieV].

Finally, using |V| < d we will show that the first factor above is 0 (thereby establishing the claim
that every term in (11) is 0, in contradiction to (10)). To see this, we have

Ely-1lz; =i Vie V] = Ely- 1;[/1@(:1:@-)]

because cl(vbls(y) U V) C cl(vbls(H) U vbls(B)) C B, where we used Theorem 5.9. But this
pseudoexpectation is indeed 0 by the lemma’s assumption, because [[;cy 1¢;(2;) is a polynomial
expression of degree at most |V| < d. O

6.5 Gram—Schmidt details

We wish to show that Gram—Schmidt succeeds through substage (S,T') for all (S,T) € MQSD. We
will do this by induction along the order <5. The key to showing that no positive definiteness
problem is encountered at stage (S,T') will be the existence of a witness:

Definition 6.17. A witness for substage (S,T) € M;D is defined to be a small 7-subgraph™ Hg
with vbls(Hg 1) 2 vbls(ysr) and R(Hgr) < 2D.

Remark 6.18. For any substage of the form (S,), we may always take as a witness the T-subgraph™
consisting of all variables in S as isolated vertices.

As the below proposition shows, witnesses are useful for showing that one kind of positive
definiteness problem does not occur. (They will also assist in showing the other kind does not
occur.)

Proposition 6.19. The existence of a witness Hgr for substage (S,T') implies]:J[ygT] > 0.

Proof. By Lemma 6.12, we have that H := HgrUcl(vbls(ys 7)) is small. Thus E[y%T] = Eﬁ[y%j] >0,
using Theorem 5.16.]

28

‘We now come to our main technical theorem:
Theorem 6.20. Let (S,T) € M5, Then:

(i) Given any witness Hgy for substage (S,0), there is a witness Hgp for substage (S,T) satis-
fying Hsr 2 Hgp.

(ii) The Gram-Schmidt process succeeds through substage (S,T).

Proof. The proof will be by (strong) induction on (.S, 7") along <s. Observe that in proving part (ii)
of the theorem, by induction we only need to show that no positive definiteness problem occurs at
substage (S,T). Further, if we can inductively establish part (i) of the theorem, then Remark 6.18
and Proposition 6.19 imply that E[y% 7] > 0. Thus to also establish part (ii), it would only
remain to prove that no “pseudovariaﬁce zero problem” problem occurs. Also, observe that the
pseudovariance zero problem can never occur when 7' = (). Thus for substages (.9, 0), we only need
to establish part (i) of the theorem statement. But part (i) is trivial for (S, () substages. Thus
all substages of the form (S, () are taken care of, including the base case of the induction (namely
substage ({(io,co)},), where {(io,co)} is the first singleton in the order <).

Thus it remains to establish, for a particular substage (S,7T) with T # (), that part (i) of
the theorem statement holds, and also that no pseudovariance zero problem occurs. Given any
witness Hg for substage (.5, 0), by induction we may obtain a witness H, s,pr(T) 2 Hs g for substage
(S,pr(T)). We now distinguish two cases.

Case 1: E[ys,pr(T) - zr| = 0. In this case, ys = yYgpr(r) and therefore]T][ygj - zr] = 0. Thus
certainly no pseudovariance zero problem occurs, and also we can establish part (i) of the theorem
statement simply by taking Hgr = Hg (7). Thus the inductive step is completed in this case.

Case 2: Elyg (1) - 2r] # 0. This is where the main work in the proof occurs. First, we will
show in this case that T" € PvZ is impossible, and hence the pseudovariance zero problem cannot
have occurred. We can then complete the induction by finding a witness Hg 1 2 Hg (1) for sub-
stage (5,7).

First, suppose for contradiction that 7" € PvZ. We have that yg (1) = x% — q(x) for some
q(z) supported on monomials 27" with 77 < pr(T) < T. By Proposition 6.8 and induction, zp is
orthogonal to all such polynomials. Thus we deduce

0 7£ E[ys,pr(T) . ZT] = E[ajs . ZT] = E[ajs . yT,pr(T)]’ (12)

the last equality because T" € PvZ and hence 21 = yr = yg (). By induction (and using Re-
mark 6.18), we have a witness Hy () for yr (7). By Lemma 6.12 (using 2D+[S| < 3D < (-SMALL)
we have that H := Hrp (1) Ucl(S) is small. (In writing cl(S) we used the abuse from Notation 6.3.).
Now vbls(H) D VbIs(Hr pr(1y) U S 2 vbls(z? - Y7pr(1))> 80 by Theorem 5.16 we have

o o .2

E[JUS : yT,pr(T)] = %[CBS : yT,pr(T)]a and also %[’y%pr(ﬂ] = E[y%,prm] =E[27] =0,

the last equality because we’re assuming T' € PvZ. But the second identity above shows that y?r pr(T)

is identically 0 under 777, meaning the first expression above must be 0. This contradicts (12).
Having ruled out the pseudovariance zero problem, we can complete the induction by finding a
witness Hsr 2 Hg 1) for substage (S,T). By Proposition 6.8 we have that zr = c- zT — p(x)

29

for some constant ¢ > 0 and some polynomial p(x) supported on monomials 27" with T' < pr(T).
Furthermore, yg () is orthogonal to p(x) under E[-]. Thus, since we are in Case 2, we may deduce
that

E[y&pr(T) : xT] 7& 0. (13)

We may now apply Lemma 6.14 (with y = yg (1), H = Hgp(r), and 7 = 2D) to obtain a
small 7-subgraph™ Hyew 2 Hg () With vbls(Hpew) 2 vbls(ygpr(ry) UT and R(Hpew) < 2D.
This Hpew is almost able to serve as the witness for substage (S,7). The only deficiency is that,
although it contains all the variables in yg () and zT', it doesn’t necessarily contain all the
variables appearing in zp — as it would need to in order to contain all variables in the new
Ys, T = Ys,pr(T) — BlYspr(r) - 2r]27. However, we can fix this by induction; we apply the induction
hypothesis to substage (T,pr(T)), taking Hpew as the “given witness Hpp”. This produces a
witness — call it H] ., — for substage (T, pr(T)) that satisfies H} , 2 Hpew. This witness H]

now additionally contains all variables in yr () = 2r, and therefore it can now serve as the needed
witness for substage (S,7). O

7 Wrapping things up by setting parameters

To prove our main result on weak refutation, Theorem 1.2, we simply need to combine Theo-
rems 4.12 and Theorem 6.1. Together these give us a pseudoexpectation defined up to degree
/X
D:Q(y)-c-m, Where’y:%.

We need to decide how to best set parameters, which we do under the assumption that A > 10.

We start with the special but interesting case when A is thought of very large; specifically, A >
Q(log A). This case arises, e.g., for high-arity K-SAT (where A = K —2) with clause density 20%),
In this case, by choosing ¢ = %)\ and 8 = e 9@ for our probability bound, we get D = n/QO(K/)‘).
Note that if A = O(K), as it is in the case of K-SAT, then our SOS degree lower bound is linear
in n with absolutely no dependence on K = K (n) (all the way up to K = Q(n))!

In the more general regime (e.g., when one thinks of K as “constant” and A as asymptotically
large), a good choice for (is @, which entails

n

D =Q(y) - A2/ og A’

With this setting, Theorem 4.12 tells us that with high probability we get a pseudoexpectation
satisfying Corollaries 5.18, 5.19. Thus we have established the following more precise version of
Theorem 1.2:

Theorem 7.1. Let P be a k-ary Boolean predicate and let C(P) be the minimum integer 3 < 1 < k
for which P fails to support a T-wise uniform distribution. Then if I is a random instance of
CSP(P*) with m = An constraints (A > 10), then except with probability at most (3, degree-D
SOS fails to (weakly) refute T, where

60(1/6(}’)) n

D = {007y Aajem)-2) log A’

The result also holds if P is a predicate over an alphabet of size ¢ > 2 (with an appropriate notion
of “literals”), with no change in parameters.

30

Proving our main result on d-refutation, Theorem 1.1, requires just a little work. We now
imagine that our instance comes from a random CSP(P¥) as in Theorem 1.1. As discussed at
the end of Section 2.1, given ¢ and taking 7 = t + 1, we have some ¢-wise uniform distribution
p on {#1}* which is d-close to being supported on P, where § = §p(t). We assume that all of
the constraint distributions s are now simply equal to p, up to the appropriate negation pattern.
Thus a draw from py satisfies the constraint at f except with probability at most 4.

With the parameter settings chosen earlier, Theorem 4.12 tells us moreover that

o logn
#{nonempty 7-subgraphs H with |cons(H)| <2-SMALL: I(H) < 7—1} < An %S gzigs. L
n
(14)

Observe that this bound is always o(m), and in the very typical case that A > nf2M) | the bound
is O(%) Let us see what this bound means for the pseudodistribution.

Supposing (14) holds, let f be any constraint-vertex in G, let S = N(f), and let H; be the
(small) 7-subgraph induced by the edges between f and S. Certainly cl(S) 2 Hy, but we may ask
whether cl(9) is strictly bigger than H;. Suppose this is the case; i.e., there is some small S-closed
H ¢ Hy. Then H' = H; U H is a T-subgraph satisfying |cons(H’)| < 2 - SMALL. Furthermore,
the number of leaf variables in H' must be at least 1 (else H' is (-closed and hence empty by
Fact 5.6) and strictly less than K (else H \ Hy will be (-closed and hence empty). Finally, we
claim R(H') < 7 — 1. This is because R(Hy) = 7, the addition of H cannot add any new credits
(since all its leaf variables are already in Hy), and in fact the addition of H must cause a drop
of at least one in revenue since H must have at least one edge not in Hy. (This argument is
similar to Lemma 6.13.) We conclude that whenever cl(N(f)) # Hy, there must exist a nonempty
T-subgraph H' with the following properties: (i) |cons(H")| < 2-SMALL; (ii) I(H') < R(H') < 7-1;
(iii) H' has at least one leaf variable; (iv) all leaves of H' are adjacent to f.

But (14) bounds the number of 7-subgraphs with the first two properties above, and every
T-subgraph with the latter two properties uniquely determines f. Thus we conclude:

#{constraints f : cl(N(f)) # Hs} < 9ries . L

LD

Finally, when cl(N(f)) = Hy, observe that the planted distribution 7¢(n(s)) is just py, and hence

E[l[l’ satisfies f]} = Pr [1[3: satisfies f]} >1-0.

T g
Combining the last two deductions yields

~ logn 1
E [fraction of constraints satisﬁed} >1—9§—22lgd . |
n

In summary, we have proven the following more precise version of Theorem 1.1:

Theorem 7.2. Let P be a k-ary Boolean predicate and let 1 <t < k. Let T be a random instance
of CSP(P*) with m = An constraints. Then except with probability at most 3, degree-D SOS fails
to (6p(t) + €)-refute I, where

logn 1 oasy n
_gpeen. 1 _ 8 .
€ = 221 g A \/ﬁ’ D — k-20(k/?) AZ/(tfl) logA

We remark that € = o(1) always, and € = O(ﬁ) whenever A = n*1) . Finally, the result also holds

if P is a predicate over an alphabet of size ¢ > 2 (with an appropriate notion of “literals”), with no
change in parameters.

31

Remark 7.3. We should mention that in our é-refutation result Theorem 7.2, our pseudoexpec-
tation does not satisfy “solution value = 1 — §y” as a constraint for any dy < §; it merely has
E[solution value] > 1 — 4. Achieving the (stronger) former condition is a direction for future work.
By contrast, for our weak refutation result Theorem 1.2, the pseudoexpectation does satisfy all the
constraints and hence also satisfies E[solution value] = 1 as a constraint.

Acknowledgment

We would like to thank the Institute for Mathematical Sciences, National University of Singapore
in 2016; a visit there was where some of the initial research for this work began.

References

[AAM'11] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri We-
instein. Inapproximability of densest k-subgraph from average case hardness. 2011.
1

[AATO5] Mikhail Alekhnovich, Sanjeev Arora, and Iannis Tourlakis. Towards strong nonap-
proximability results in the Lovasz-Schrijver hierarchy. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, pages 294-303, 2005. 1.4

[ABR12] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-
bias generators. In Ronald Cramer, editor, Theory of Cryptography, volume 7194 of
Lecture Notes in Computer Science, pages 600-617. Springer Berlin Heidelberg, 2012.
12,1

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from
different assumptions. In Proceedings of the 42nd ACM Symposium on Theory of
Computing, pages 171-180, 2010. 1, 1.2

[AGT12] Noga Alon, Iftah Gamzu, and Moshe Tennenholtz. Optimizing budget allocation
among channels and influencers. In Proceedings of the 21st International Conference
on World Wide Web, pages 381-388, 2012. 1.2

[ATKO06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC°. STAM
Journal on Computing, 36(4):845-888, 2006. 1.2

[AL16] Benny Applebaum and Shachar Lovett. Algebraic Attacks against Random Local
Functions and Their Countermeasures. In Proceedings of the 48th Annual ACM
Symposium on Theory of Computing, pages 1087-1100, 2016. 1.2, 1, 1.3

[Ale03] M. Alekhnovich. More on average case vs approximation complexity. In Proceedings
of the 44th IEEE Symposium on Foundations of Computer Science, pages 298-307,
2003. 1.2

[AMOS] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pair-

wise independence. In Proceedings of the 23rd IEEE Conference on Computational
Complezity, pages 249-258, 2008. 1.4

[AOW15] Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to refute a random CSP.
In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer
Science, pages 689-708, 2015. (document), 1, 1.5, 1.4, 1.5, 1.5

32

[App13]

[ARO1]

[BBaH*12]

[BCGT12]

[BCK15]

[BCMV12]

[BGMT12]

[BJKO5]

[BKP04]

[BKS13]

[BM16]

[BOGH*03]

Benny Applebaum. Cryptographic hardness of random local functions—survey. In
10th Theory of Cryptography Conference, 2013. 1.2

Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial
calculus: non-binomial case. In Proceedings of the 42nd Annual IEEE Symposium on
Foundations of Computer Science, pages 190-199. 2001. 1.4

Boaz Barak, Fernando G. S. L. Brandao, Aram W. Harrow, Jonathan Kelner, David
Steurer, and Yuan Zhou. Hypercontractivity, Sum-of-Squares Proofs, and their Appli-
cations. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing,
pages 307-326, 2012. 1.4

Aditya Bhaskara, Moses Charikar, Venkatesan Guruswami, Aravindan Vijayaragha-
van, and Yuan Zhou. Polynomial integrality gaps for strong sdp relaxations of densest
k-subgraph. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algo-
rithms, pages 388-405, 2012. 1

Boaz Barak, Siu On Chan, and Pravesh K. Kothari. Sum of squares lower bounds from
pairwise independence. In Proceedings of the forty-sevent annual ACM symposium
on Theory of computing, 2015. 1.4, 3.1.1, 3.2, 3.2

Aditya Bhaskara, Moses Charikar, Rajsekar Manokaran, and Aravindan Vijayaragha-
van. On quadratic programming with a ratio objective. In Proceedings of the 39th
International Colloquium on Automata, Languages and Programming, pages 109-120,
2012. 1

Siavosh Bennabas, Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. SDP
gaps from pairwise independence. Theory of Computing, 8(12):269-289, 2012. 1.4,
3.1, 3.1.1

Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720-742, 2005. 1

Punit Bhargava, Sriram C. Krishnan, and Rina Panigrahy. Efficient multicast on a
terabit router. In Proceedings of the 12th Annual IEEE Symposium on High Perfor-
mance Interconnects, pages 61-67, 2004. 1.2

Boaz Barak, Guy Kindler, and David Steurer. On the optimality of semidefinite
relaxations for average-case and generalized constraint satisfaction. In Innovations in
Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013,
pages 197-214, 2013. 1

Boaz Barak and Ankur Moitra. Noisy Tensor Completion via the Sum-of-Squares
Hierarchy. In Proceedings of the 29th Annual Conference on Learning Theory, pages
417-445, 2016. 3

Joshua Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann
Pitassi. Rank bounds and integrality gaps for cutting planes procedures. In Proceed-
ings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pages
318-327, 2003. 1.4

33

(BQOY]

[Bri0g]

[BS]

[BSO1]

[BS14]

[BSB02]

[BSI9Y)]

[BSWO1]

[CD0Y]

[CLP02]

[CMVZ12]

[CS8S]

[Danl15]

[DFHS06]

Andrej Bogdanov and Youming Qiao. On the security of Goldreich’s one-way func-
tion. In Irit Dinur, Klaus Jansen, Joseph Naor, and José Rolim, editors, Approxima-
tion, Randomization, and Combinatorial Optimization: Algorithms and Techniques,
volume 5687 of Lecture Notes in Computer Science, pages 392—405. Springer Berlin
Heidelberg, 2009. 1

Patrick Briest. Uniform Budgets and the Envy-Free Pricing Problem. In Proceedings
of the 35th International Colloquium on Automata, Languages and Programming,
pages 808-819. 2008. 1.2

Boaz Barak and David Steurer. Proofs, beliefs, and algorithms through the lens of
sum-of-squares. http://sumofsquares.org/public/index.html. 2.3

Eli Ben-Sasson. FEzxpansion in Proof Complexity. PhD thesis, Hebrew University,
2001. 1.4

Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal
algorithms. arXiv preprint arXiv:1404.52536, 2014. 1.4

Eli Ben-Sasson and Yonatan Bilu. A gap in average proof complexity. Flectronic
Collogquium on Computational Complexity (ECCC), 9(3), 2002. 1, 1.5

Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard for the polynomial
calculus. In Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science, pages 415-421, 1999. 1.4

Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
J. ACM, 48(2):149-169, 2001. 1.4

Nadia Creignou and Hervé Daudé. The SAT-UNSAT transition for random constraint
satisfaction problems. Discrete Math., 309(8):2085-2099, 2009. 1.1

A Crisanti, L Leuzzi, and G Parisi. The 3-sat problem with large number of clauses in
the oco-replica symmetry breaking scheme. Journal of Physics A: Mathematical and
General, 35(3):481, 2002. 1

Julia Chuzhoy, Yury Makarychev, Aravindan Vijayaraghavan, and Yuan Zhou. Ap-
proximation algorithms and hardness of the k-route cut problem. In Proceedings of the
23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 780-799, 2012.
1

Vasek Chvatal and Endre Szemerédi. Many hard examples for resolution. J. Assoc.
Comput. Mach., 35(4):759-768, 1988. 1.4

Amit Daniely. Complexity Theoretic Limitations on Learning Halfspaces. CoRR,
abs/1505.05800, 2015. 1.2, 1, 2

Erik D. Demaine, Uriel Feige, Mohammad Taghi Hajiaghayi, and Mohammad R.
Salavatipour. Combination can be hard: Approximability of the unique coverage
problem. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 162-171, 2006. 1.2

34

http://sumofsquares.org/public/index.html

[DKMPGO8] Josep Diaz, Lefteris Kirousis, Dieter Mitsche, and Xavier Perez-Gimenez. A new

[DLSS13]

[DLSS14]

[DS14]

[DSS15]

[Fei02]

[FGO1]

[FKOO6]

[FPV15]

[Gab16]

[GKO1]

[GL04]

[Gol00]

[Gri01]

[Hual3]

upper bound for 3-SAT. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 2, pages 163—174, 2008. 1.1

Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. More data speeds up training
time in learning halfspaces over sparse vectors. In Advances in Neural Information
Processing Systems, pages 145-153, 2013. 1.2

Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity
to improper learning complexity. In Proceedings of the 46th Annual ACM Symposium
on Theory of Computing, pages 441-448. ACM, 2014. 1, 1.2, 1, 2

Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning
DNF’s. Technical Report 1404.3378, arXiv, 2014. 1.2, 1, 2

Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k.
In Proceedings of the 47th Annual ACM Symposium on Theory of Computing, pages
59-68, 2015. 1.1

Uriel Feige. Relations Between Average Case Complexity and Approximation Com-
plexity. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
pages 534-543, 2002. 1, 1.2, 1.2, 1, 3

Joel Friedman and Andreas Goerdt. Recognizing more unsatisfiable random 3-SAT
instances efficiently. In Automata, languages and programming, volume 2076 of Lec-
ture Notes in Comput. Sci., pages 310-321. Springer, Berlin, 2001. 1.4

Uriel Feige, Jeong Han Kim, and Eran Ofek. Witnesses for non-satisfiability of dense
random 3CNF formulas. In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, pages 497-508, 2006. 4

Vitaly Feldman, Will Perkins, and Santosh Vempala. On the Complexity of Random
Satisfiability Problems with Planted Solutions. In Proceedings of the /7th Annual
ACM Symposium on Theory of Computing, pages 77-86, 2015. 1.4

Oliver Gableske. dimetheus. In Proceedings of SAT Competition 2016: Solver and
Benchmark Descriptions, pages 37-38, 2016. 1.1

Andreas Goerdt and Michael Krivelevich. Efficient recognition of random unsatisfiable
E-SAT instances by spectral methods. In STACS 2001 (Dresden), volume 2010 of
Lecture Notes in Comput. Sci., pages 294-304. Springer, Berlin, 2001. 1.4

Andreas Goerdt and André Lanka. An approximation hardness result for bipartite
Clique. FElectronic Colloquium on Computational Complexity (ECCC), (048), 2004. 1

Oded Goldreich. Candidate One-Way Functions Based on Expander Graphs. In
Electronic Colloquium on Computational Complexity (ECCC), volume 7, 2000. 1.2

Dima Grigoriev. Complexity of positivstellensatz proofs for the knapsack. Computa-
tional Complexity, 10(2):139-154, 2001. 1.4

Sangxia Huang. Approximation resistance on satisfiable instances for predicates with
few accepting inputs (extended abstract). In Proceedings of the 45th Annual ACM
Symposium on Theory of Computing, pages 457-466, 2013. 1

35

[Hual4]

[TKOS08]

[KM16]

[KOTZ14]

[Lau09]

[LRS15]

[MPRT16]

[MSTO3]

MW 16]

[OW14]

[OWWZ14]

[0Z13]

[Rag08]

[RRS16]

Sangxia Huang. Approximation Resistance on Satisfiable Instances for Predicates
with Few Accepting Inputs. Theory of Computing, 10(14):359-388, 2014. 1

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with
constant computational overhead. In Proceedings of the 40th ACM Symposium on
Theory of Computing, pages 433-442, 2008. 2

Subhash Khot and Dana Moshkovitz. Candidate hard unique game. In Proceedings
of the 48th Annual ACM Symposium on Theory of Computing, pages 63-76, 2016. 4

Manuel Kauers, Ryan O’Donnell, Li-Yang Tan, and Yuan Zhou. Hypercontractive
inequalities via SOS, and the Frankl-Rodl graph. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1644-1658, 2014. 1.4

Monique Laurent. Sums of squares, moment matrices and optimization over polyno-
mials. In Emerging applications of algebraic geometry, volume 149 of IMA Vol. Math.
Appl., pages 157-270. Springer, New York, 2009. 1.4

James R Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size
of semidefinite programming relaxations. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing. ACM, 2015. (document), 1.4, 1.5

Raffaele Marino, Giorgio Parisi, and Federico Ricci-Tersenghi. The backtracking
survey propagation algorithm for solving random K-SAT problems. Nature Commu-
nications, 7(12996), 2016. 1.1

Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NCP.
In Proceedings of the 44th IEEE Symposium on Foundations of Computer Science,
pages 136-145, 2003. 1.2

Ryuhei Mori and David Witmer. Lower bounds for CSP refutation by SDP hierar-
chies. In RANDOM ’16, 2016. 1.4

Ryan O’Donnell and David Witmer. Goldreich’s PRG: Evidence for near-optimal
polynomial stretch. In Proceedings of the 29th Annual Conference on Computational
Complezity, pages 1-12, 2014. 1, 1.4

Ryan O’Donnell, John Wright, Chenggang Wu, and Yuan Zhou. Hardness of robust
graph isomorphism, Lasserre gaps, and asymmetry of random graphs. In Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1659-1677,
2014. 1.2

Ryan O’Donnell and Yuan Zhou. Approximability and proof complexity. In Proceed-
ings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1537-1556. SIAM, 2013. 1.4

Prasad Raghavendra. Optimal Algorithms and Inapproximability Results for Every
CSP? In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
pages 245-254, 2008. 1

Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random
csps below the spectral threshold. CoRR, abs/1605.00058, 2016. (document), 1.5, 1.4

36

[RSW16] Ilya Razenshteyn, Zhao Song, and David P. Woodruff. Weighted low rank approxima-
tions with provable guarantees. In Proceedings of the 48th Annual ACM Symposium
on Theory of Computing, pages 250-263, 2016. 1, 4

[SAT] http://satcompetition.org/2014/certunsat.shtml. 1

[Sch08] Grant Schoenebeck. Linear Level Lasserre Lower Bounds for Certain k-CSPs. In Pro-
ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,
pages 593-602, 2008. 1.4

[Tul09] Madhur Tulsiani. CSP gaps and reductions in the lasserre hierarchy. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 303-312, 2009. 1, 1.4

[TW13] Madhur Tulsiani and Pratik Worah. LS lower bounds from pairwise independence.
In Proceedings of the 28th Annual Conference on Computational Complexity, pages
121-132, 2013. 1.4

A Proof that random graphs satisfy the Plausibility Assumption

Here we prove Theorem 4.12, which we restate for convenience:

Theorem 4.12 restated. Let A=7—-2> 1. Fiz 0 < (< .99\, 0 < B < Then except
with probability at most 5, when G is a random instance with m = An constraints, the Plausibility
Assumption holds provided

D=

n

(15)

o)
where v = % (%) . Moreover, assuming ¢ < 1, except with probability at most B we have

#{nonempty 7-subgraphs H with cons(H) <2-SMALL: I(H) <71 -1} < An'z" (16)

Proof. A remark before we begin: the expression in (15) was chosen precisely so that

A=¢
¢ <2-SMALL — 205 . A (K)"2" < g/50%, (17)

provided the O(1) in the definition of v is a sufficiently large universal constant.
The proof is a standard argument of the kind used to show that a random bipartite graph has
good expansion. Fixing Iy € {0,7 — 1}, 1 < ¢ <2-SMALL, and 1 < v < K, let us upper-bound

E[#{7-subgraphs with ¢ constraints, v vertices, and income at most Iy}]. (18)
There are (T) choices for the constraints and (Z) choices for the variables. Then by using Lemma 4.11,

m

(18) < <

) (n) Prifixed set of ¢ constraints and v variables gets at least A edges], (19)
c)\v

where A = TT_C‘C—H)—%O. In (19), we may imagine that a constraint’s variables are chosen uniformly
and independently (i.e., without conditioning on them being distinct), as this only increases the

37

http://satcompetition.org/2014/certunsat.shtml

probability in question. Now any fixed set of ¢ constraints has at most K¢ edges coming out it, so
the probability that some integer a > A of them will go into a fixed set of v variables is at most

()G e () <2 ()"

Thus

<2 (1) (0) G <2 () () ()" = o) oo () 5

(209). ¢ (Key o2 (g

IN

where the equality used the definition of A and the subsequent inequality used v < Ke.
We now split into two cases, depending on whether Iy is 0 or 7 — 1. When [y = 0 we use

A=¢\ ¢ c
(18) < (20) = (QOK A (Ko) < (50&1{) ,
using (17). Summing over the at most K¢ possibilities for v gives
C
E[#{7-subgraphs with ¢ constraints and income at most 0}] < K¢ (%) .

Now summing this expression over all 1 < ¢ < 2-SMALL we get
E[#{implausible 7-subgraphs H : |cons(H)| < 2-SMALL}] < ZKc <50K> < B.

Thus Markov’s inequality implies that the Plausibility Assumption holds except with probability
at most £.
The analysis for Iy = 7 — 1 is similar. In this case, we use

2 = 03 7)) =) e

50K

again using (17). We again sum this over the at most K¢ possibilities for v. We also only need to
sum this over all ¢ > 2, since if cons(H) = 1 then I(H) =7 — ¢ > 7 — 1. We then obtain

E[#{nonempty small 7-subgraphs H with |cons(H)| < 2-SMALL: I(H) <71 — 1}]

and again Markov’s inequality establishes that (16) holds except with probability at most . [

38

	Introduction
	Random CSPs
	The importance and utility of hardness assumptions for random CSPs
	Desiderata for hardness results
	Prior results in proof complexity, and the SOS method
	Our result

	Technical framework
	Constraint satisfaction
	Plausible factor graphs
	The Sum of Squares algorithm, and pseudoexpectations
	Main result

	Sketch of our techniques
	Constructing the pseudoexpectation
	Closures

	Proving positivity

	Forbidden subgraphs for the factor graph
	Defining the pseudoexpectation
	Closures
	The planted distribution
	Pseudoexpectations

	The proof of positive semidefiniteness
	Setup
	Gram–Schmidt overview
	Advanced accounting
	The key lemma
	Gram–Schmidt details

	Wrapping things up by setting parameters
	Proof that random graphs satisfy the Plausibility Assumption

