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Abstract

In 2013, Courtade and Kumar posed the following problem: Let x ∼ {±1}n be uniformly
random, and form y ∼ {±1}n by negating each bit of x independently with probability α. Is
it true that the mutual information I(f(x) ; y) is maximized among f : {±1}n → {±1} by
f(x) = x1? We do not resolve this problem. Instead, we make a couple of observations about
the fixed-mean version of the conjecture. We show that Courtade and Kumar’s stronger Lex
Conjecture fails for small noise rates. We also prove a continuous version of the conjecture on
the sphere and show that it implies the previously-known analogue for Gaussian space.

1 The Courtade–Kumar Conjecture

In 2013, Courtade and Kumar [KC13, CK14] made the following conjecture:

The Courtade–Kumar “Most Informative Boolean Function” Conjecture.
Let x ∼ {±1}n be uniformly random and form y ∼ {±1}n by negating each bit of x indepen-

dently with probability α. Then for any f : {±1}n → {±1} it holds that I(f(x) ; y) ≤ 1 − h(α).
(This bound is achieved by any f of the form f(x) = ±xi.)

The conjecture attracted fairly widespread attention; it is currently unresolved (though [CK14]
verifies it for n ≤ 7). Courtade offers a prize of $100 for a proof or disproof [Cou14].

Let us briefly discuss the notation used in this problem. First, we henceforth assume α ≤ 1
2 , as

it’s easy to see the problem is unchanged if α is replaced by 1−α. The mutual information I(A ;B)
of two discrete random variables is defined to be H(B) −H(B|A). Here H(B) denotes entropy,
namely H(B) =

∑
bPr[B = b] log( 1

Pr[B=b]) (with log = log2), and H(B|A) denotes conditional

entropy, namely the expected value of H(B | A = a) when a is distributed as A. For β ∈ [0, 1] we
write h(β) = β log( 1

β ) + (1− β) log( 1
1−β ) for the entropy of the two-valued random variable that is

−1 with probability β and +1 with probability 1 − β. We will also be using traditional notation
from the field of analysis of Boolean functions [O’D14]. In particular, recall that (x,y) is said to
be a pair of ρ-correlated random strings, where ρ = E[xiyi] = 1− 2α ≥ 0 (and (y,x) has the same
distribution). Also recall that for f : {±1}n → R, the function Tρf : {±1}n → R is defined by
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Tρf(x) = E[f(y) | x = x]. Note that E[Tρf ] = E[f ] (where we use the shorthand E[g] = E[g(x)]).
Using this notation, and defining for convenience

Φ : [−1, 1]→ [0, 1], Φ(t) = 1− h(1
2 −

1
2 t) = 1

ln 2 ·
(

1
2·1 · t

2 + 1
4·3 · t

4 + 1
6·5 · t

6 + · · ·
)

(1)

we have

I(f(x) ; y) = H(f(x))−H(f(x)|y) = h(1
2 + 1

2 E[f ])−E[h(1
2 + 1

2Tρf(x))]

= E[Φ(Tρf(x))]− Φ(E[Tρf(x)]) = EntΦ[Tρf ],

where in the last equality we are using the Φ-entropy notation from, e.g., [Cha04]. Thus we have
the following equivalent formulation:

Courtade–Kumar Conjecture (equivalently). For f : {±1}n → {±1} and ρ ∈ [0, 1] it holds
that EntΦ[Tρf ] ≤ Φ(ρ), where Φ is as in (1).

We remark that Φ is very close to the function t 7→ t2, and that the analogous statement

Entt→t
2
[Tρf ] = Var[Tρf ] ≤ ρ2 = (1− 2α)2,

(with equality if and only if f(x) = ±xi, presuming 0 < |ρ| < 1) has a rather trivial Fourier-theoretic
proof. (Combine [O’D14, Prop. 1.13, Prop 2.47, Ex. 1.19(a)].)

1.1 Prior work

The Courtade–Kumar Conjecture is a very natural one in information theory and the analysis
of Boolean functions. Courtade and Kumar report that their original motivation came from the
work [KKBS14], which observed that among f : {±1}n → {±1} with E[f ] = µ ≥ 0, the quantity
I(f(x) ; x1) is maximized by those f with f(x) ≥ x1. In turn, [KKBS14] was motivated by
a work [SJ08] on the regulatory network of E. coli. A connection between the conjecture and
cryptography is discussed in [CVM+13]. Finally, Courtade and Kumar also offered a motivation
from gambling (stock markets, horse races), and in fact closely related problems were studied earlier
by Erkip and Cover [EC98]. In [CK14] the weaker result I(f(x) ; y) ≤ (1− 2α)2 = ρ2 is attributed
to Erkip [Erk96].

There are some natural weakenings of the conjecture that are still open. For example, it is
natural to expect that maximizing f are unbiased, meaning E[f ] = 0. However, the conjecture re-
mains open even under this assumption. Courtade and Kumar also left open the weaker conjecture
“I(f(x) ; g(y)) ≤ 1− h(α) for f, g : {±1}n → {±1}”, but remarked that it is an exercise assuming
both f and g are unbiased. Bogdanov and Nair [BN13] have apparently proved this weaker con-
jecture under the assumption that f = g (and α ≥ 1

2); see also [AGKN13], in which the weaker
conjecture is reduced to an explicit three-dimensional numerical inequality which, empirically, ap-
pears to be true. Courtade and Kumar also proved the weakening

∑n
i=1 I(f(x) ; yi) ≤ 1 − h(α)

under the assumption that f is unbiased.
Certain strengthenings of the Courtade–Kumar Conjecture have also been considered; see,

e.g., the information theory work [CVM14]. Another interesting example comes from the work of
Chandar and Tchamkerten [CT14], who considered the more general conjecture

I(f(x) ; y)

k
≤ 1− h(α) for all f : {±1}n → {±1}k. (2)

Chandar and Tchamkerten generalized the Erkip–Cover bound by showing that one can take
(1− 2α)2 on the right-hand side above, for all k. However they also showed that (2) is too strong;
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in fact, a right-hand side of (1 − 2α)2 can be achieved in the limit when first n → ∞ and then
k →∞. In particular, by taking f to be the indicator of certain perfect codes, they showed that (2)
can fail when, e.g., n = 15, k = 11, α ∈ [0.05, 0.5].

In recent work, Ordentlich, Shayevitz, and Weinstein [OSW15] showed that the Courtade-
Kumar Conjecture holds for unbiased functions when α is very close to 0 or 1

2 . In particular, they
proved that the conjecture is true with no restrictions on f for α ∈ [0, αn] such that αn → 0 as
n → ∞. For α ∈

[
1
2 − αn,

1
2

]
with αn → 0 as n → 0, they showed that the conjecture holds

under the additional assumption that f is unbiased. They also improved the bound of [Erk96] for
unbiased functions f , showing that in this case

I(f(x) ; y) ≤ log e

2
(1− 2α)2 + 9

(
1− log e

2

)
(1− 2α)4

for α ∈
[

1
2

(
1− 1√

3

)
, 1

2

]
. The authors point out that this bound approaches 1− h(α) as α→ 1

2 .

2 A problematic approach to the conjecture

It is natural to attempt to strengthen the Courtade–Kumar Conjecture by determining the maxi-
mum value of I(f(x) ; y) among functions of each fixed mean µ = E[f ]. For example, one might
try to prove the equivalent formulation in terms of EntΦ by an induction on n (or tensorization),
as discussed in [Cha04]. Although the maximizing f for the original conjecture presumably occurs
for µ = 0, an inductive approach would lead to subfunctions of f which wouldn’t necessarily have
mean 0.

Indeed, Courtade and Kumar made such a stronger conjecture, discussed in this section. In
discussing this generalization of the problem, we will find it convenient to switch notation, now
thinking of f : {±1}n → {0, 1}.

Courtade–Kumar Lex Conjecture. Fix n and let (x,y) be ρ-correlated n-bit strings. Among
all functions f : {±1}n → {0, 1} with a fixed mean E[f ] = µ, the mutual information I(f(x) ; y)
is maximized when f is “lex”; i.e., the indicator of the first µ2n points of {±1}n in lexicographic
ordering.

Remark 2.1. In particular, if µ is of the form 2−k for some integer 0 ≤ k ≤ n, the conjecture is
that a maximizing f is an indicator of a k-codimensional subcube; equivalently, a logical k-AND
function.

If true, this Lex Conjecture would essentially resolve the original conjecture. We remark that
when f is a k-AND function as in Remark 2.1, it’s not hard to calculate that I(f(x) ; y) has the
simple form k21−k(1 − h(α)), making the Lex Conjecture particularly tempting. Unfortunately,
Chandar and Tchamkerten [CT14] showed that the Lex Conjecture fails. Specifically, they showed
that for each α there exists k ∈ N such that k-AND functions do not maximize I(f(x) ; y) among
f : {±1}n → {0, 1} of mean 2−k (assuming n is sufficiently large). In particular, they showed that
indicators of (essentially) Hamming spheres do better.

A subsequent version of the Courtade–Kumar paper [CK14] suggested working around this
counterexample by revising the Lex Conjecture to assume that h(µ) ≥ 1− h(α); i.e., that µ is not
too close to 0 or 1. Unfortunately, we show below that this revision does not help. Indeed, we show
that once µ is close enough to 0 (but still “constant”), the Lex Conjecture becomes false as ρ→ 0
(which is equivalent to α→ 1

2 and hence 1− h(α)→ 0).
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Failure of the Lex Conjecture as ρ → 0. To see this, first note that among functions f :
{±1}n → {0, 1} of fixed mean µ, maximizing I(f(x) ; y) is equivalent to minimizing E[h(Tρf(x))].
Recall the Fourier formula

Tρf = µ+ ρf=1 + ρ2f=2 + ρ3f=3 + · · · ,

where f=j =
∑
|S|=j f̂(S)

∏
i∈S xi. Thinking of ρ→ 0, we apply the Taylor expansion to h(Tρf(x))

and deduce that it is of the form

h(µ) + c0(µ)f=1(x) · ρ+
(
c1(µ)f=2(x) + c2(µ)f=1(x)2

)
· ρ2 +

(
· · ·
)
· ρ3 + · · · ,

where the ci(µ)’s are certain constants depending only on µ. In particular one may check that
c2(µ) = − 1

2 ln 2·µ(1−µ) < 0. Thus when we take the expectation over x, we find that minimizing

E[h(Tρf)] (for ρ sufficiently close to 0) becomes equivalent to maximizing W1[f ] = E[f=1(x)2] =∑n
i=1 f̂({i})2, the Fourier weight at degree 1.
The question of precisely maximizing the Fourier weight at degree 1 among f : {±1}n → {0, 1}

of mean µ is a well-known, difficult one. However, it is a folklore fact that indicators of Hamming
balls are superior to logical ANDs (i.e., lex functions) when µ is sufficiently small. More precisely,
suppose we fix µ = 2−k for some k ∈ N+. Then from [O’D14, Props. 5.24,5.25,5.27] we have that
W1[ANDk] = µ2 log( 1

µ) but that there are Hamming ball indicators fn : {±1}n → {0, 1} with

E[fn]
n→∞−−−→ µ, W1[fn]

n→∞−−−→ U(µ)2 ∼ (2 ln 2)µ2 log( 1
µ) ≥ 1.386µ2 log( 1

µ).

Here U denotes the Gaussian isoperimetric function. If k is large enough that U(µ)2 ≥ 1.38µ2 log( 1
µ)

then by taking n large enough and slightly modifying fn we can ensure that E[fn] = µ exactly while
still retaining W1[fn] ≥ 1.3µ2 log( 1

µ) = 1.3W1[ANDk]. Then for ρ sufficiently close to 0 (i.e., α

sufficiently close to 1
2) we will be able to conclude that I(fn(x) ; y) > I(ANDk(x) ; y).

3 The problem in continuous settings

We have shown that resolving the more general conjecture of maximizing I(f(x) ; y) among f of a
fixed mean looks to be very difficult in the Boolean setting, since even the problem of maximizing
W1[f ] among f of fixed mean is unsolved. A difficulty with this problem seems to be the lack of
effective symmetrization techniques in the discrete setting.

Gaussian space. Instead, several people have considered the Courtade–Kumar problem in Gaus-
sian space. We still consider 0/1-valued functions f , but now x and y are in Rn. We define
H(f(x)|y) = Ey[H(f(x)|y = y)]. Now, the Courtade–Kumar problem can be stated as “What
function maximizes H(f(x)) − H(f(x)|y) when x and y are ρ-correlated vectors in Gaussian
space?”. We define x and y to be ρ-correlated n-dimensional standard Gaussian random vectors
if x is a standard n-dimensional Gaussian random vector and y = ρx +

√
1− ρ2z, where z is

an independent standard n-dimensional Gaussian random vector. Equivalently, the pairs (xi,yi)
are independent across 1 ≤ i ≤ n and each is distributed as a 2-dimensional mean-zero Gaus-

sian with covariance matrix

(
1 ρ
ρ 1

)
. In analogy with Tρ, we define the Gaussian noise operator

Uρf(x) = E[f(y) | x = x]. We can then write −H(f(x)|y) = Ex∼N(0,1)n [−h(Uρf(x))].
For functions f with mean µ, the optimality of halfspaces in the Gaussian case can be straight-

forwardly deduced from Borell’s Isoperimetric Theorem [Bor85]. This was suggested to us by Oded
Regev [Reg15] and shown independently by Eldan and Lee [EL15]. Observe that for the fixed-mean
problem we want to find f of mean µ maximizing −H(f(x)|y).

4



Theorem 3.1. Let f : Rn → {0, 1} and let x and y be ρ-correlated standard Gaussian random
vectors with 0 ≤ ρ < 1. Then −H(f(x)|y) ≤ −H(1η(x)|y), where 1η is the indicator of a halfspace
η such that Ex∼N(0,1)n [1η(x)] = Ex∼N(0,1)n [f(x)].

We present the deduction of this theorem from Borell’s Theorem, as communicated to us by
Eldan and Lee. We first recall Borell’s Theorem:

Theorem 3.2. [Bor85] Let f : Rn → {0, 1} and Ψ : R≥0 → R be increasing and convex. Then

E
x∼N(0,1)n

[Ψ(Uρf(x))] ≤ E
x∼N(0,1)n

[Ψ(Uρ1η(x))],

where 1η is the indicator function of any halfspace η such that Ex∼N(0,1)n [1η(x)] = Ex∼N(0,1)n [f(x)].

Proof of Theorem 3.1. Fix c < 1
2 . Define ψc(x) as follows:

ψc(x) =


−h(c)− h′(c)(x− c) for x ∈ [0, c]

−h(x) for x ∈ [c, 1− c]
−h(1− c)− h′(1− c)(x− (1− c)) for x ∈ [1− c, 1],

where we recall that h is the binary entropy function. Now observe that Ψ(x) = ψc(x) + h′(c)x
is convex and increasing. For any f : Rn → {0, 1}, we can apply Theorem 3.2 to show that
Ex∼N(0,1)n [Ψ(Uρf(x))] ≤ Ex∼N(0,1)n [Ψ(Uρ1η(x))]. By linearity of expectation, we then see that

E
x∼N(0,1)n

[ψc(Uρf(x))] ≤ E
x∼N(0,1)n

[ψc(Uρ1η(x))].

Taking the limit as c → 0 and noting that ψc converges pointwise to −h on the compact interval
[0, 1] concludes the proof.

We expect that halfspaces with mean 1
2 are optimal overall, but have not shown this.

The sphere. In this note, we show that halfspaces are also optimal for the fixed-mean Courtade–
Kumar problem on the sphere. We define x and y to be ρ-correlated points on the unit sphere Sn−1

in n dimensions if x is a uniformly random point on the surface of Sn−1 and that y is the result
of a ln(1/ρ)-time Brownian motion on Sn−1 started at x. Equivalently, y is defined to be the first
point on Sn−1 hit by a standard n-dimensional Brownian motion started from ρx. We denote the
corresponding noise operator by Pρ. Then −H(f(x)|y) = Ex∼N(0,1)n [−h(Pρf(x))]. We again want
to find the function that maximizes H(f(x))−H(f(x)|y) when x and y are ρ-correlated vectors.
In the fixed-mean case, this reduces to finding f maximizing −H(f(x)|y).

We show the following result. We write x ∼ Sn−1 for x drawn uniformly at random from the
surface of Sn−1.

Theorem 3.3. Let f : Sn−1 → {0, 1} and let x and y be ρ-correlated points on the unit sphere
Sn−1 with 0 ≤ ρ < 1. Then −H(f(x)|y) ≤ −H(1η(x)|y), where 1η is the indicator of a halfspace
η such that Ex∼Sn−1 [1η(x)] = Ex∼Sn−1 [f(x)].

Again, we believe that halfspaces with mean 1/2 are optimal, but have not shown this.
To prove Theorem 3.3, we think of the halfspace 1η is a symmetrization of the corresponding

function f . Rather than directly proving that this symmetrization increases the mutual information,
we show that a much simpler notion of symmetrization called polarization increases the mutual
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information. The halfspace symmetrization can be thought of as the limit of repeated polarization
and we use an argument of Baernstein and Taylor [BT76] to pass from polarizations to halfspaces.

In addition to being of independent interest, the spherical result gives an alternate proof of the
Gaussian result above. This is essentially folklore and follows from the observation that a uniform
random point on a high-dimensional sphere projected onto a small number of coordinates looks
Gaussian, which is sometimes called Poincaré’s limit. We give details in Appendix A. The proof
idea is from Beckner [Bec92] with details filled in by Carlen and Loss [CL90].

4 Proof of the spherical case

First, we give an alternate formulation of the noise operator on the sphere. The Poisson kernel Pρ
is defined as

Pρ(x, y) =
1− ρ2

‖x− ρy‖n
.

We can write Pρf(x) in terms of the Poisson kernel: Pρf(x) = Ey∼Sn−1 [Pρ(x,y)f(y)]. Expressions
of this form arise in the study of symmetrizations on the sphere (e.g., [BT76]) and we will use
techniques from this area to prove Theorem 3.3.

We now state our main technical result, which, very loosely, says that symmetrization can only
increase the expected value of a convex functional applied to a smoothed function. Let Sn−1

R be
the sphere of radius R in n dimensions. For x = (x1, x2, . . . , xn) ∈ Sn−1

R , the polar angle θx is the
angle between x and r = (R, 0, . . . , 0). In other words, x1 = R cos θx. Let ωn−1,R be the uniform
probability measure on Sn−1

R ; we will omit the subscripts when they are clear from the context. Let
C(θ) denote the spherical cap {x ∈ Sn−1

R : θx ∈ [0, θ)}. For f : Sn−1
R → R, we define the symmetric

decreasing rearrangement of f as

f̃(x) = inf{t : ω(y : f(y) > t) ≤ ω(C(θx))}.

Formally, our main technical result is as follows:

Theorem 4.1. Let m be a uniform measure on Sn−1
R , which may or may not be normalized. Let

Ψ : R→ R be a convex, uniformly continuous function and let f : Sn−1
R → [0, 1] be integrable. Let

K : R→ R be a non-decreasing bounded measurable function. Then∫
Sn−1
R

Ψ

(∫
Sn−1
R

K(〈x, y〉)f(y) dm(y)

)
dm(x) ≤

∫
Sn−1
R

Ψ

(∫
Sn−1
R

K(〈x, y〉)f̃(y) dm(y)

)
dm(x).

Theorem 3.3 is an immediate corollary.

Proof of Theorem 3.3. Observe that

−H(f(x)|y) = E[−h(Pρf(x))] =

∫
Sn−1

−h
(∫

Sn−1

Pρ(x, y)f(y) dω(y)

)
dω(x).

Since Pρ(x, y) is a non-decreasing function of 〈x, y〉 and −h is convex, Theorem 4.1 implies that
this quantity is upper bounded by∫

Sn−1

−h(Pρf̃(x))dω(x) = E[−h(Pρf̃(x))] = −H(f̃(x)|y).

It is easy to see that f̃ = 1η for some halfspace η such that E[f ] = E[1η].
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Following Baernstein and Taylor [BT76], we prove Theorem 4.1 for a simpler symmetrization
called a polarization. The symmetric decreasing rearrangement can be thought of as the limit of
repeated polarizations, so we obtain the desired result.

We now define the polarization operation. Let σ be a hyperplane through the origin that does
not pass though r. Let H+

σ be the hemisphere defined by σ that contains r and let H−σ be the other
hemisphere defined by σ. For x ∈ SnR, we will denote the reflection of x across σ as σx. Then the
polarization of f : Sn−1

R → R with respect to σ is

fσ(x) =

{
max{f(x), f(σx)} if x ∈ H+

σ

min{f(x), f(σx)} if x ∈ H−σ .

To simplify notation, define Kf(x) =
∫
Sn−1
R

K(〈x, y〉)f(y) dm(y). We will prove the following
statement:

Theorem 4.2. Under the assumptions of Theorem 4.1,∫
Sn−1
R

Ψ(Kf(x)) dm(x) ≤
∫
Sn−1
R

Ψ(Kfσ(x)) dm(x).

for every hyperplane σ passing through the origin that does not contain r.

As in [BT76], proving this result for polarizations implies the corresponding result for the
symmetric decreasing rearrangement.

Lemma 4.3. Under the assumptions of Theorem 4.1, if∫
Sn−1
R

Ψ(Kf(x)) dm(x) ≤
∫
Sn−1
R

Ψ(Kfσ(x)) dm(x),

for every hyperplane σ passing through the origin that does not contain r, then∫
Sn−1
R

Ψ(Kf(x)) dm(x) ≤
∫
Sn−1
R

Ψ(Kf̃(x)) dm(x).

The proof of this lemma exactly follows an argument from [BT76]; we include the proof in
Appendix B for completeness.

We will now prove Theorem 4.2. First, we will need a couple of lemmas about the interaction
of these reflections with inner products.

Lemma 4.4. For x, y ∈ Sn−1 and any hyperplane σ through the origin, 〈x, y〉 = 〈σx, σy〉.

Proof. σx = Ux for some unitary matrix U . The lemma follows.

Lemma 4.5. If x ∈ H+
σ , then 〈x, y〉 ≥ 〈σx, y〉 for all y ∈ H+

σ . Similarly, if x ∈ H−σ , then
〈x, y〉 ≤ 〈σx, y〉 for all y ∈ H+

σ .

Proof. Let v be the unit vector perpendicular to the hyperplane σ such that v ∈ H+
σ . Write

x = αxv+ v⊥x , where v⊥x is orthogonal to v. Then σx = −αxv+ v⊥x . For x, y ∈ H+
σ , αx, αy ≥ 0 and

we then have that

〈x, y〉 = αxαy + 〈v⊥x , v⊥y 〉 ≥ −αxαy + 〈v⊥x , v⊥y 〉 = 〈σx, y〉.

The proof of the second statement is similar.
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We now come to the two main lemmas of this section.

Lemma 4.6. Kf(x) +Kf(σx) = Kfσ(x) +Kfσ(σx).

Proof. Expanding definitions and using reflections, we can write Kf(x) +Kf(σx) as∫
H+
σ

K(〈x, y〉)f(y) +K(〈x, σy〉)f(σy) +K(〈σx, y〉)f(y) +K(〈σx, σy〉)f(σy) dm(y).

By Lemma 4.4, this is equal to
∫
H+
σ

(K(〈x, y〉) +K(〈σx, y〉))(f(y) + f(σy)) dm(y).
Similarly,

Kfσ(x) +Kfσ(σx) =

∫
H+
σ

(K(〈x, y〉) +K(〈σx, y〉))(fσ(y) + fσ(σy)) dm(y).

By the definition of fσ, f(y) + f(σy) = fσ(y) + fσ(σy), so the two integrands are equal and the
lemma follows.

Lemma 4.7. |Kfσ(x)−Kfσ(σx)| ≥ |Kf(x)−Kf(σx)|.

Proof. By similar calculations to those in the proof of the previous lemma,

Kfσ(x)−Kfσ(σx) =

∫
H+
σ

(K(〈x, y〉)−K(〈σx, y〉))(fσ(y)− fσ(σy)) dm(y)

Kf(x)−Kf(σx) =

∫
H+
σ

(K(〈x, y〉)−K(〈σx, y〉))(f(y)− f(σy)) dm(y).

First, observe that fσ(y) − fσ(σy) = |f(y)− f(σy)| for y ∈ H+
σ . Next, note that for fixed x,

K(〈x, y〉) − K(〈σx, y〉) has the same sign for all y ∈ H+
σ . Indeed, if x ∈ H+

σ , then K(〈x, y〉) ≥
K(〈σx, y〉) for all y ∈ H+

σ by Lemma 4.5. Likewise, if x ∈ H−σ , then K(〈x, y〉) ≤ K(〈σx, y〉) for all
y ∈ H+

σ . We can therefore write

|Kfσ(x)−Kfσ(σx)| =
∫
H+
σ

|(K(〈x, y〉)−K(〈σx, y〉))(f(y)− f(σy))| dm(y)

≥
∣∣∣∣∫
H+
σ

(K(〈x, y〉)−K(〈σx, y〉))(f(y)− f(σy)) dm(y)

∣∣∣∣ .
Using Lemmas 4.6 and 4.7, the theorem follows immediately from Karamata’s Inequality.

Proof of Theorem 4.1. First, observe that∫
Sn−1
R

Ψ(Kf(x)) dm(x) =

∫
H+
σ

Ψ(Kf(x)) + Ψ(Kf(σx)) dm(x).

Lemmas 4.6 and 4.7 allow us to apply Karamata’s Inequality to deduce that the right-hand side is
at most ∫

H+
σ

Ψ(Kfσ(x)) + Ψ(Kfσ(σx)) dm(x) =

∫
Sn−1
R

Ψ(Kfσ(x)) dm(x).
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A An alternate proof of the Gaussian case

In this section, we will use Theorem 4.1 to prove that halfspaces are most informative in Gaussian
space. Let γ be the standard Gaussian measure on Rn, which has density 1

(2π)n/2
exp

(
−1

2‖x‖
2
)
.

As in the spherical case, we need to express the noise operator in terms of a kernel. Define the
Mehler kernel Uρ(x, y) as

Uρ(x, y) =
1

(1− ρ2)n/2
exp

(
−ρ

2‖x‖2 + 2ρ〈x, y〉+ ρ2‖y‖2

2(1− ρ2)

)
.

Then Uρf(x) = Ey∼N(0,1)n [Uρ(x,y)f(y)].
We will show the following result:

Theorem A.1. Let Ψ : R → R be convex, bounded, and uniformly continuous and let f : Rn →
{0, 1}. Let ρ ∈ [0, 1). Then∫

Rn
Ψ(Uρf(x)) dγ(x) ≤

∫
Rn

Ψ(Uρ1η(x)) dγ(x),

where 1η is the indicator function of some halfspace η such that Ex∈N(0,1)n [f(x)] = Ex∈N(0,1)n [1η(x)].

Taking Ψ = −h, this immediately implies Theorem 3.1. To reduce clutter, we will write drop
the factor of 1

(2π)n/2
and write dγ(x) = exp

(
−1

2‖x‖
2
)
dx for the rest of this section.
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A.1 The proof idea

First, we give the intuition behind the proof. For u drawn uniformly at random from SN−1√
N

, the

projection of u onto its first n coordinates is close to being distributed as an n-dimensional Gaussian
for large N . This well-known fact is sometimes called Poincaré’s observation. We can use this idea
to transfer results for the sphere to Gaussian space as was done in [Bec92, CL90].

To make this plan more concrete, observe that we can write u ∈ SN−1
R as

u =

x,(1− ‖x‖
2

R

)1/2

v

 , (3)

where x ∈ Bn
R and v ∈ SN−n−1

R . Given f : Rn → R, we then define f ext to be the extension of f to
SN−1
R . More formally, we define f ext : SN−1

R → R such that f ext(u) = f(u1, u2, . . . , un). The idea
of the proof is to show the desired inequality involving f on the sphere for f ext and then take the
limit as N increases to derive the corresponding inequality for f .

We now give a simple example: For bounded f : Rn → R, the expectation of f ext on SN−1
R

converges to the expectation of f in Gaussian space. First, we give a formula for integrating over
the sphere according to the decomposition in (3). Let sN−1,R be the uniform surface measure on
SN−1
R . We will suppress the subscripts, as they will be clear from the context.

Lemma A.2. Let g : SN−1
R → R. Then

∫
SN−1
R

g(u) ds(u) =

∫
BnR

∫
SN−n−1
R

g(x, v)

(
1− ‖x‖

2

R2

)N−n−3
2

ds(v) dx.

This is essentially shown in, e.g., [ABR01].
For the rest of this paper, set R =

√
N − n− 3. Then observe that

lim
N→∞

(
1− ‖x‖

2

R2

)N−n−3
2

dx = exp

(
−‖x‖

2

2

)
dx = dγ(x).

Together with Lemma A.2, this implies that

lim
N→∞

∫
SN−1
R

f ext(u) dω(u) =

∫
Rn

f(x) dγ(x).

The proof of Theorem A.1 is not quite so simple: the use of the noise operator raises technical
complications. However, Carlen and Loss [CL90] showed how to overcome these difficulties and
pass from inequalities involving the spherical noise operator to inequalities involving the Gaussian
noise operator. We largely follow their treatment, introducing a “Poisson-like” kernel Qρ such
that limN→∞

∫
Ψ(Qρf

ext(u)) dω(u) =
∫

Ψ(Uρf(x)) dγ(x) and then using Theorem 4.1 to show that∫
Ψ(Qρf

ext(u)) dω(u) ≤
∫

Ψ(Qρ1
ext
η (u)) dω(u).

A.2 Rewriting a “Poisson-like” kernel in terms of a “Mehler-like” kernel

Following [CL90], we will construct Qρ on SN−1
R × SN−1

R that converges to the Mehler kernel as N
increases. Thinking of SN−1

R as the product of Bn
R and SN−n−1

R as in (3), Qρ will factor into UN,ρ ·Pρ′
such that UN,ρ : Bn

R × Bn
R → R converges to the Mehler kernel and Pρ′ : SN−n−1

R × SN−n−1
R → R

is a Poisson kernel that integrates to 1.
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We will now give formal statements of these ideas. The lemmas in this section are essentially
given in [CL90]; we include proofs in Appendix C. Recall that ρ ∈ [0, 1). First, define Qρ :
SN−1
R × SN−1

R → R so that

Qρ(u, v) =
R(1− ρ2)1−n/2

|SN−n−1| ‖u− ρv‖N−n
,

where |SN−n−1| is the surface area of SN−n−1. The “Mehler kernel” factor of this quantity is

Uρ,N (y, z) =
(1− ρ2)1−n/2

(1− r2(y, z))A(y, z)
N−n

2

.

where

A(y, z) =
1 + ρ2 − 2ρ

R2 〈y, z〉
2

+

√√√√(1 + ρ2 − 2ρ
R2 〈y, z〉

2

)2

− ρ2

(
1− ‖y‖

2

R2

)(
1− ‖z‖

2

R2

)
and

r(y, z) =
ρ
(

1− ‖y‖
2

R2

)1/2 (
1− ‖z‖

2

R2

)1/2

A(y, z)
.

The next lemma shows that Qρ can be written as a product of Uρ,N (y, z) and a Poisson kernel.

Lemma A.3. Let u =

(
y,
(

1− ‖y‖
2

R2

)1/2
w

)
∈ SN−1

R such that y ∈ Bn
R and w ∈ SN−n−1

R as in (3).

Likewise, let v =

(
z,
(

1− ‖z‖
2

R2

)1/2
x

)
∈ SN−1

R such that z ∈ Bn
R and x ∈ SN−n−1

R . Then

Qρ(u, v) = Uρ,N (y, z)
R(1− r2)

|SN−n−1| ‖w − rx‖N−n

and r ∈ [0, 1).

We address the Mehler and Poisson factors in turn. As N goes to ∞, Uρ,N (y, z) converges to
the Mehler kernel.

Lemma A.4. limN→∞ Uρ,N (y, z) = Uρ(y, z).

The Poisson kernel factor integrates to 1.

Lemma A.5.
∫
SN−n−1
R

R(1−r2)

|SN−n−1|‖w−rx‖N−n
ds(x) = 1.

Define Qρf(u) =
∫
SN−1
R

Qρ(u, v)f(v) dω(v) and

Uρ,Nf(y) =

∫
Rn

1‖y‖≤RUρ,N (y, z)f(z)

(
1− ‖z‖

2

R2

)N−n−3
2

dz.

In the main lemma of this section, we will use the above lemmas to rewrite the spherical quantity∫
Ψ(Qρf(u)) dω(u) in terms of Uρ,N .

Lemma A.6.∫
SN−1
R

Ψ
(∣∣∣SN−1

R

∣∣∣ ·Qρf ext(u)
)
dω(u) =

∣∣∣SN−n−1
R

∣∣∣∣∣∣SN−1
R

∣∣∣
∫
Rn

1‖y‖≤R Ψ (Uρ,Nf(y))

(
1− ‖y‖

2

R2

)N−n−3
2

dy.
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Proof. Lemmas A.2 and A.3 imply that Qρf
ext(u) is equal to

1∣∣∣SN−1
R

∣∣∣
∫
BnR

f(z)Uρ,N (y, z)

(∫
SN−n−1
R

R(1− r2)

|SN−n−1| ‖w − rx‖N−n
ds(x)

)(
1− ‖z‖

2

R2

)N−n−3
2

dz.

Lemma A.5 then shows that Qρf
ext(u) = 1

|SN−1
R |Uρ,Nf(x). Applying Lemma A.2 to the outer

integral completes the proof.

A.3 Passing from the sphere to Gaussian space

Using the previous section, we now prove our main lemma. It essentially states that the spherical
quantity

∫
Ψ(Qρf(u)) dω(u) converges to the Gaussian quantity

∫
Ψ(Uρf(y)) dγ(y) that we would

like to bound.

Lemma A.7. limN→∞
∫
SN−1
R

Ψ
(∣∣∣SN−1

R

∣∣∣ ·Qρf ext(u)
)
dω(u) =

∫
Rn Ψ(Uρf(y)) dγ(y).

To prove this lemma, we will need an additional technical lemma given in [CL90].

Lemma A.8.
(

1− ‖y‖
2

R2

)1/2 (
1− ‖z‖

2

R2

)1/2
≤ A(y, x).

We give a proof of this lemma in Appendix C.

Proof of Lemma A.7. By Lemma A.6, it suffices to show that

lim
N→∞

∫
Rn

1‖y‖≤R Ψ (Uρ,Nf(y))

(
1− ‖y‖

2

R2

)N−n−3
2

dy =

∫
Rn

Ψ(Uρf(y)) dγ(y).

First, we prove that limN→∞ Uρ,Nf(y) = Uρf(y). For each y, z ∈ Rn, Lemma A.4 implies that

lim
N→∞

1‖y‖≤RUρ,N (y, z)f(z)

(
1− ‖z‖

2

R2

)N−n−3
2

= Uρ(y, z)f(z) exp

(
−1

2
‖z‖2

)
.

We then wish to upper bound

∣∣∣∣1‖y‖≤RUρ,N (y, z)f(z)
(

1− ‖z‖
2

R2

)N−n−3
2

∣∣∣∣ by an integrable function so

we can apply dominated convergence. Lemma A.8 implies that r ≤ ρ and, using the definition of
Uρ,N , we see that

∣∣∣∣∣∣1‖y‖≤RUρ,N (y, z)f(z)

(
1− ‖z‖

2

R2

)N−n−3
2

∣∣∣∣∣∣ ≤
(

1− ‖z‖
2

R2

)N−n−3
2

(1− ρ2)n/2A
N−n

2

.

Applying Lemma A.8 again shows that the right hand side is at most c exp
(
‖y‖2

4

)
exp

(
−‖z‖

2

4

)
for

some c that does not depend on z or N . For a given y, this is integrable; dominated convergence
then implies that limN→∞ Uρ,Nf(y) = Uρf(y). Since Ψ is uniformly continuous, we exchange the
limit and the application of Ψ. Since Ψ is bounded, we can apply dominated convergence to the
outer integral to complete the proof.

We can now prove Theorem A.1.
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Proof of Theorem A.1. By Theorem 4.1,∫
SN−1
R

Ψ
(∣∣∣SN−1

R

∣∣∣ ·Qρf ext(u)
)
dω(u) ≤

∫
SN−1
R

Ψ
(∣∣∣SN−1

R

∣∣∣ ·Qρf̃ ext(u)
)
dω(u).

Since f ext is 0/1-valued, f̃ ext is the indicator function 1η of a halfspace η. By symmetry, we assume
that η = {u ∈ RN : u1 ≥ t} for some t ∈ R. Then h depends only on the first coordinate of u and
1η = 1ext

η′ , where η′ is the halfspace {u ∈ Rn : u1 ≥ t}. Using Lemma A.7 to take the limit on both

sides, we obtain
∫
Rn Ψ(Uρf(y)) dγ(y) ≤

∫
Rn Ψ(Uρ1η′(y)) dγ(y).

It remains to show that Ex∈N(0,1)n [f(x)] = Ex∈N(0,1)n [1η′(x)]. To see this, observe that∫
SN−1
R

f ext(u) dω(u) =
∫
SN−1
R

1ext
η′ (u) dω(u). The result then follows from (A.1).

B From polarizations to the symmetric decreasing rearrangement

In this section, we give a proof of Lemma 4.3, which was essentially proven by Baernstein and
Taylor [BT76]. Our setting is very slightly different, but no new techniques are required and the
proof exactly follows the outline of [BT76].

Lemma 4.3. Let m be a uniform measure on SnR, which may or may not be normalized. Let
Ψ : R → R be a convex, uniformly continuous function and let f : SnR → [0, 1] be integrable. Let
K : R→ R be a non-decreasing bounded measurable function. If∫

SnR

Ψ(Kf(x)) dm(x) ≤
∫
SnR

Ψ(Kfσ(x)) dm(x),

for every hyperplane σ passing through the origin that does not contain r = (R, 0, . . . , 0), then∫
SnR

Ψ(Kf(x)) dm(x) ≤
∫
SnR

Ψ(Kf̃(x)) dm(x).

Proof. For brevity, define J(f) =
∫
SnR

Ψ(Kf(x)) dm(x). As described in [BT76], it suffices to

consider continuous functions f : For any f ∈ L1(SnR) there a sequence of continuous functions {fi}
converging to f in the L1 norm. Let C(SnR) be the set of continuous functions on SnR; C(SnR) is
complete under the supremum norm. Recall the definition of the modulus of continuity:

ω(δ, f) = sup{|f(x)− f(y)| : |x− y| ≤ δ, x, y ∈ SnR}.

We can then define

P = {F ∈ C(SnR) : ω(·, F ) ≤ ω(·, f), F̃ = f̃ , and J(f) ≤ J(F )}.

Observe that P is nonempty: it contains fσ for all hyperplanes σ through the origin. The fact that
the modulus of continuity decreases under polarizations and f̃ = f̃σ is given in [BT76, Lemma 1].
To prove the lemma, it suffices to show that f̃ ∈ P. Assume for a contradiction that f̃ /∈ P.
Consider

D(F ) =

∫
SnR

(F − f̃)2 dm.

We will derive a contradiction by showing that for any function h that minimizes D on P with
h 6= f̃ , we can find another function h′ such that D(h′) < D(h). To do this, we first need to show
that D attains a minimum value on P using the Extreme Value Theorem. In order to use this
theorem, we need to show that P is compact and D is continuous.
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Claim B.1. P is compact under the supremum norm.

Proof. We first use the Arzelà-Ascoli Theorem to show that P is relatively compact and then show
that the limit of any convergent sequence of functions in P is also P.

To apply the Arzelà-Ascoli Theorem, we need P to be equicontinuous and uniformly bounded.
Equicontinuity is immediate from the definition of P. To see that P is uniformly bounded, observe
that for any F ∈ P, it holds this |F | ≤ supx∈SnR{|f̃(x)|}. This follows from continuity of F and

F̃ = f̃ . Since f̃ ∈ L1(SnR), it is bounded and thus P is uniformly bounded.
It remains to show that the limit of any convergent sequence of functions in P is also in P. Let

{gi}i∈N be a convergent sequence in P and let limi→∞ gi = g. Since C(SnR) is complete, it suffices

to show that ω(·, g) ≤ ω(·, f), g̃ = f̃ , and J(f) ≤ J(g). It is clear that ω(·, g) ≤ ω(·, f) holds.
To see that g̃ = f̃ , assume for a contradiction that g̃(x) > f̃(x); this is without loss of generality.

Then there exist t ∈ R and ε > 0 such that m(x : g(x) > t + ε) > m(x : f(x) > t). The right
hand side is equal to m(x : gi(x) > t) for all i since g̃i = f̃ . Then for all i, there exists x such that
g(x)− gi(x) > ε. The contradicts convergence of the gi’s in the supremum norm.

Lastly, we show that J(f) ≤ J(g). Note that the gi’s are uniformly bounded. We can then
apply dominated convergence and use uniform continuity of Ψ to deduce that limi→∞ J(gi) = J(g).
Since J(f) ≤ J(gi), it must be the case that J(f) ≤ J(g).

Claim B.2. D is continuous.

Proof. Observe that

|D(F )−D(G)| =

∣∣∣∣∣
∫
SnR

(F −G)(F +G+ 2f̃) dm

∣∣∣∣∣ ≤ sup
x∈SnR

|F (x)−G(x)|
∫
SnR

|F +G+ 2f̃ | dm.

Since F , G, and f̃ are bounded,
∫
SnR
|F +G+ 2f̃ | dm is bounded and |D(F )−D(G)| goes to 0 as

the supremum norm supx∈SnR |F (x)−G(x)| goes to 0.

Using these two claims, the Extreme Value Theorem implies that D attains a minimum value
on P. Let h 6= f̃ be a minimizing function in P. Now we will derive a contradiction by exhibiting
a function h′ in P such that D(h′) < D(h). We will set h′ = hσ for an appropriately chosen
hyperplane σ.

Claim B.3. There exists a hyperplane σ through the origin and a set B ⊆ H+
σ of positive measure

such that
f̃(x) > f̃(σx) and h(σx) > h(x)

for all x ∈ B.

Proof. Since h̃ = f̃ but h 6= f̃ , h must not be symmetric decreasing. That is, there must exist some
t such that E = {x : h(x) > t} is not equal to C = {x : f̃(x) > t}. We know that f̃ and h are
continuous and that m(E) = m(C), so both E\C and C\E have positive measure. Let x be density
point of E \C and y be a density point of C \E. Let σ be the hyperplane through the origin such
that σx = y. Then f̃(y) > t ≥ f̃(x), so r /∈ σ and y ∈ H+

σ . Define B = H+
σ ∩ (C \E)∩σ(E \C). By

considering a small neighborhood around y and its reflection under σ, we see that B has positive
measure. Then for x ∈ B it holds that f̃(x) > f̃(σx) and h(σx) > h(x).

Claim B.4. ∫
SnR

hf̃ dm <

∫
SnR

hσf̃ dm
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Proof. Lemma 4.5 shows that 〈x, r〉 ≥ 〈σx, r〉 for all x ∈ H+
σ . Since 〈x, r〉 = R2 cos θx, f̃ is an

increasing function of 〈x, r〉 and so f̃(x) ≥ f̃(σx) for x ∈ H+
σ . By definition, hσ(x) ≥ hσ(σx) for x ∈

H+
σ . For a1, a2, b1, b2 ∈ R with a1 ≥ a2 and b1 ≥ b2, it is easy to show that a1b2+a2b1 ≤ a1b1+a2b2,

with strict inequality if a1 > a2 and b1 > b2. In our case, this implies that h(x)f̃(x)+h(σx)f̃(σx) ≤
hσ(x)f̃(x)+hσ(σx)f̃(σx) for all x ∈ H+

σ \B and h(x)f̃(x)+h(σx)f̃(σx) < hσ(x)f̃(x)+hσ(σx)f̃(σx)
for all x ∈ B. The claim follows:∫

SnR

h(x)f̃(x) dm(x) =

∫
H+
σ

h(x)f̃(x) + h(σx)f̃(σx) dm(x)

<

∫
H+
σ

hσ(x)f̃(x) + hσ(σx)f̃(σx) dm(x)

=

∫
SnR

hσ(x)f̃(x) dm.

Using this claim, we can complete the proof. Note that h and hσ have the same L2 norm. Then

D(h) =

∫
(h− f̃)2 dm =

∫
h2−2hf̃ + f̃2 dm >

∫
(hσ)2−2hσf̃ + f̃2 dm =

∫
(hσ− f̃)2 dm = D(h′),

which is a contradiction.

C Proofs omitted from Section A

The proofs in this section follow those of Carlen and Loss [CL90]. Recall the following definitions:

Qρ(u, v) =
R(1− ρ2)1−n/2

|SN−n−1| ‖u− ρv‖N−n

Uρ,N (y, z) =
(1− ρ2)1−n/2

(1− r2(y, z))A(y, z)
N−n

2

.

where

A(y, z) =
1 + ρ2 − 2ρ

R2 〈y, z〉
2

+

√√√√(1 + ρ2 − 2ρ
R2 〈y, z〉

2

)2

− ρ2

(
1− ‖y‖

2

R2

)(
1− ‖z‖

2

R2

)
and

r(y, z) =
ρ
(

1− ‖y‖
2

R2

)1/2 (
1− ‖z‖

2

R2

)1/2

A(y, z)
.

As above, we set R =
√
N − n− 3 and define |SN−1| to be the surface area of SN−1.

C.1 Proof of Lemma A.3

Lemma A.3. Let u =

(
y,
(

1− ‖y‖
2

R2

)1/2
w

)
∈ SN−1

R such that y ∈ Bn
R and w ∈ SN−n−1

R as in (3).

Likewise, let v =

(
z,
(

1− ‖z‖
2

R2

)1/2
x

)
∈ SN−1

R such that z ∈ Bn
R and x ∈ SN−n−1

R . Then

Qρ(u, v) = Uρ,N (y, z)
R(1− r2)

|SN−n−1| ‖w − rx‖N−n

and r ∈ [0, 1).

16



The proof is outlined in [CL90].

Proof. We want to find A(x, y) and r(x, y) such that

‖u− ρv‖2 = A ‖w − rx‖2 .

Since ‖w‖ = ‖x‖ = R, the left hand side is

‖u− ρv‖2 = ‖y − ρz‖2 +

∥∥∥∥∥∥
(

1− ‖y‖
2

R2

)1/2

w −

(
1− ‖z‖

2

R2

)1/2

ρx

∥∥∥∥∥∥
2

= R2

(
1 + ρ2 − 2ρ

R2
〈y, z〉

)
− 2ρ

(
1− ‖y‖

2

R2

)1/2(
1− ‖z‖

2

R2

)1/2

〈w, x〉.

The right hand side is
A ‖w − rx‖2 = AR2(1 + r2)− 2Ar〈w, x〉.

Setting

2Ar = 2ρ

(
1− ‖y‖

2

R2

)1/2(
1− ‖z‖

2

R2

)1/2

,

we get that

r =
ρ
(

1− ‖y‖
2

R2

)1/2 (
1− ‖z‖

2

R2

)1/2

A
.

Setting

AR2(1 + r2) = R2

(
1 + ρ2 − 2ρ

R2
〈y, z〉

)
and substituting in the above value for s, we get the equation

A2 −
(

1 + ρ2 − 2ρ

R2
〈y, z〉

)
A+ ρ2

(
1− ‖y‖

2

R2

)(
1− ‖z‖

2

R2

)
= 0.

Solving, we obtain

A =
1 + ρ2 − 2ρ

R2 〈y, z〉
2

+

√√√√(1 + ρ2 − 2ρ
R2 〈y, z〉

2

)2

− ρ2

(
1− ‖y‖

2

R2

)(
1− ‖z‖

2

R2

)
.

So we have that

Qρ(u, v) =
R(1− ρ2)1−n/2

|SN−n−1| ‖u− ρv‖N−n

=
R(1− ρ2)1−n/2

|SN−n−1|A
N−n

2 ‖ω − sσ‖N−n

=

(
(1− ρ2)1−n/2

(1− r2)A
N−n

2

)(
R(1− r2)

|SN−n−1| ‖w − rx‖N−n

)

= Uρ,N (y, z)
R(1− r2)

|SN−n−1| ‖w − rx‖N−n
.

The fact that r ∈ [0, 1) follows from Lemma A.8, which prove below in Appendix C.4.
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C.2 Proof of Lemma A.4

Lemma A.4. limN→∞ Uρ,N (y, z) = Uρ(y, z).

This lemma is stated without proof in [CL90]. We give a proof for completeness.

Proof. First, note that

lim
N→∞

A(y, z) =
1 + ρ2

2
+

√(
1 + ρ2

2

)2

− ρ2 =
1 + ρ2

2
+

1− ρ2

2
= 1,

so
lim
N→∞

r(y, z) = ρ.

Therefore, it suffices to show that

lim
N→∞

A(y, z)
N−n

2 = exp

(
(ρ2(‖y‖2 + ‖z‖2)− 2ρ〈y, z〉)

2(1− ρ2)

)
.

An easy calculation shows that(
1 + ρ2 − 2ρ

R2 〈y, z〉
2

)2

−ρ2

(
1− ‖y‖

2

R2

)(
1− ‖z‖

2

R2

)
=

(
1− ρ2

2
+
ρ2(‖y‖2 + ‖z‖2)− ρ(1 + ρ2)〈y, z〉+ o(1)

R2(1− ρ2)

)2

.

Plugging this in to the definition of A, we get

A(y, z) = 1 +
ρ2(‖y‖2 + ‖z‖2)− 2ρ〈y, z〉+ o(1)

R2(1− ρ2)
.

Since N−n
2 = R2/2 + o(R2),

lim
N→∞

A(y, z)
N−n

2 = exp

(
−(ρ2(‖y‖2 + ‖z‖2)− 2ρ〈y, z〉)

2(1− ρ2)

)

as desired.

C.3 Proof of Lemma A.5

Lemma A.5.
∫
SN−n−1
R

R(1−r2)

|SN−n−1|‖w−rx‖N−n
ds(x) = 1.

To prove this, we need the following corollary of the Poisson Integral Formula (e.g., Theorem 3.43
of [MP10]).

Corollary C.1. For 0 ≤ r < 1, ∫
SN−1

1− r2

‖u− rv‖N
dω(v) = 1.

Proof of Lemma A.5. Using Corollary C.1, a simple change of variables shows that∫
SN−n−1
R

1− r2

‖w − rx‖N−n
ds(x) =

|SN−n−1|
R

.
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C.4 Proof of Lemma A.8

Lemma A.8.
(

1− ‖y‖
2

R2

)1/2 (
1− ‖z‖

2

R2

)1/2
≤ A(y, z).

The proof is given in [CL90]. We include it for completeness.

Proof. Assume that ‖y‖ < R and ‖z‖ < R. Otherwise, the claim is trivial. Define A′ as follows:

A′ =
1 + ρ2 − 2ρ

R2 ‖y‖ ‖z‖
2

+

√√√√(1 + ρ2 − 2ρ
R2 ‖y‖ ‖z‖
2

)2

− ρ2

(
1− ‖y‖

2

R2

)(
1− ‖z‖

2

R2

)
.

By Cauchy-Schwarz, we know that A′ ≤ A, so it suffices to show that(
1− ‖y‖

2

R2

)1/2(
1− ‖z‖

2

R2

)1/2

≤ A′.

Now define α =
(

1− ‖y‖
2

R2

)1/2
, β =

(
1− ‖z‖

2

R2

)1/2
, and let B =

1+ρ2−2ρ
√

1−α2
√

1−β2

2αβ . Then

B +
√
B2 − ρ2 =

1 + ρ2 − 2ρ
√

1− α2
√

1− β2

2αβ
+

√(
1+ρ2−2ρ

√
1−α2
√

1−β2

2

)2

− ρ2α2β2

αβ
=
A′

αβ
,

so we will show that
1 ≤ B +

√
B2 − ρ2.

This statement, in turn, is implied by
1 + ρ2

2
≤ B.

To prove this, observe that for any α, β,

(1− α2)(1− β2) ≤ (1− αβ)2

and for any ρ,
2ρ ≤ 1 + ρ2.

Then
2ρ
√

1− α2
√

1− β2 ≤ (1 + ρ2)(1− αβ).

Rearranging, we see that

1 + ρ2

2
≤ 1 + ρ2 − 2ρ

√
1− α2

√
1− β2

2αβ
= B.
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