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ABSTRACT
The price of anarchy (POA) is a worst-case measure of the
inefficiency of selfish behavior, defined as the ratio of the
objective function value of a worst Nash equilibrium of a
game and that of an optimal outcome. This measure im-
plicitly assumes that players successfully reach some Nash
equilibrium. This drawback motivates the search for ineffi-
ciency bounds that apply more generally to weaker notions
of equilibria, such as mixed Nash and correlated equilibria;
or to sequences of outcomes generated by natural experi-
mentation strategies, such as successive best responses or
simultaneous regret-minimization.

We prove a general and fundamental connection between
the price of anarchy and its seemingly stronger relatives in
classes of games with a sum objective. First, we identify a
“canonical sufficient condition” for an upper bound of the
POA for pure Nash equilibria, which we call a smoothness
argument. Second, we show that every bound derived via a
smoothness argument extends automatically, with no quan-
titative degradation in the bound, to mixed Nash equilib-
ria, correlated equilibria, and the average objective function
value of regret-minimizing players (or “price of total anar-
chy”). Smoothness arguments also have automatic implica-
tions for the inefficiency of approximate and Bayesian-Nash
equilibria and, under mild additional assumptions, for bi-
criteria bounds and for polynomial-length best-response se-
quences.

We also identify classes of games — most notably, con-
gestion games with cost functions restricted to an arbitrary
fixed set — that are tight, in the sense that smoothness ar-
guments are guaranteed to produce an optimal worst-case
upper bound on the POA, even for the smallest set of inter-
est (pure Nash equilibria). Byproducts of our proof of this
result include the first tight bounds on the POA in conges-
tion games with non-polynomial cost functions, and the first
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structural characterization of atomic congestion games that
are universal worst-case examples for the POA.
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1. INTRODUCTION
Self-interested behavior by autonomous decision-makers

with competing objectives generally leads to an inefficient
result—an outcome that could be improved upon given dic-
tatorial control over everyone’s actions. Imposing such con-
trol can be costly or infeasible in large systems (the Inter-
net being an obvious example), motivating the search for
conditions under which decentralized optimization by com-
peting individuals is guaranteed to produce a near-optimal
outcome.

Any guarantee of this type requires a formal behavioral
model, in order to define “the outcome of selfish behav-
ior”. The majority of the literature studies pure-strategy
Nash equilibria, defined as follows. Each of k players se-
lects a strategy si from a set Si (e.g., a path in a network),
with the cost Ci(s) of each player i depending on all of the
selected strategies s. A strategy profile s is then a pure-
strategy Nash equilibrium if no player can decrease its cost
via a unilateral deviation: Ci(s) ≤ Ci(s

′
i, s−i) for every i and

s′i ∈ Si, where s−i denotes the strategies chosen by the play-
ers other than i. (These concepts can be defined equally well
via payoff-maximization rather than cost-minimization.)

The price of anarchy (POA) is a standard measure of the
suboptimality introduced by self-interested behavior. Given
a game, a notion of an “equilibrium” (such as pure Nash
equilibria), and an objective function (such as the sum of
players’ costs), the POA of the game is defined as the ratio
between the largest cost of an equilibrium and the cost of an
optimal (minimum-cost) outcome. A POA guarantee has an
attractive worst-case flavor: it applies to every possible equi-
librium and obviates the need to predict a single outcome of
selfish behavior. Many POA guarantees for pure Nash equi-
libria and mixed-strategy Nash equilibria (in which players
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Figure 1: Some of the generalizations of pure
Nash equilibria that are amenable to POA bounds.
“PNE” stands for pure Nash equilibria; “MNE” for
mixed Nash equilibria; “CorEq” for correlated equi-
libria; and “No Regret (CCE)” for coarse correlated
equilibria, which are the empirical distributions of
joint play in which every player has no asymptotic
external regret.

randomize to minimize their expected costs) are known, in
a number of different models; see [25, Chapters 17–21] and
the references therein.

A bound on the POA implicitly assumes that players suc-
cessfully reach some equilibrium. For pure Nash equilibria,
however, there are a number of reasons why this might not
occur: perhaps the players fail to coordinate on one of mul-
tiple equilibria; or they are playing a game in which comput-
ing a pure Nash equilibrium is PLS-complete [15]; or, even
more fundamentally, a game in which pure Nash equilibria
simply do not exist. These critiques motivate worst-case
performance bounds that apply to as wide a range of out-
comes as possible, and under minimal assumptions about
how players play and coordinate in a game.

For example, Figure 1 shows a hierarchy of sets of proba-
bility distributions over outcomes that generalize pure Nash
equilibria: mixed-strategy Nash equilibria, correlated equi-
libria, and coarse correlated equilibria (see Section 2 for for-
mal definitions). The three largest sets in Figure 1 are guar-
anteed to be non-empty in every finite game [24], and some
of them significantly relax the behavioral assumptions neces-
sary to justify Nash equilibrium analysis. For instance, the
largest set comprises the empirical distributions of joint play
by players that incur no external regret, and this joint play
need not“converge” in any sense. All of the inclusions shown
in Figure 1 are generally strict, and there are a number of
specific games where, for example, correlated equilibria can
have much larger expected cost than (mixed or pure) Nash
equilibria [2, 8, 9].

The primary contribution of this paper is the formulation
and proof of the following general result:

For many fundamental classes of games and for sum
objective functions, the worst-case POA is identical for
all of the equilibrium concepts in Figure 1.

In this sense, POA bounds for pure Nash equilibria in such
classes of games are “intrinsically robust”.

Our techniques also imply performance guarantees for ap-
proximate Nash equilibria and Bayes-Nash equilibria in these
classes of games as well as, under mild extra conditions,
for polynomial-length best-response sequences and “bicrite-
ria bounds”.

1.1 Overview
Our contributions can be divided into three parts.

(A) We identify a sufficient condition for an upper bound
on the POA of pure Nash equilibria of a game, which
encodes a “canonical proof template” for deriving such
bounds. Most of the POA upper bounds in the liter-
ature for games with a sum objective can be recast as
instantiations of this canonical method.

(B) We show that, for every game with a sum objective,
every POA bound proved using this canonical tech-
nique extends automatically, without any quantitative
degradation, to all of the sets in Figure 1 (among other
applications).

(C) We identify classes of games — most notably, conges-
tion games with cost functions restricted to an arbi-
trary fixed set — that are tight, meaning that our
canonical upper bound technique is guaranteed to pro-
duce an optimal worst-case upper bound on the POA,
even for the smallest set of interest (pure Nash equi-
libria).

We now provide some details and examples to illustrate
these three points. By a cost-minimization game, we mean
a game (defined as above) together with the total cost ob-

jective function C(s) =
Pk

i=1 Ci(s). Our canonical method
of upper bounding the POA of a cost-minimization game, as
discussed in step (A) above, is by what we call a “smooth-
ness” argument.

Definition 1.1 (Smooth Games) A cost-minimization
game is (λ,µ)-smooth if for every two outcomes s and s∗,

kX

i=1

Ci(s
∗
i , s−i) ≤ λ · C(s∗) + µ · C(s). (1)

If a game is (λ, µ)-smooth (with λ ≥ 0 and µ < 1), then
each of its pure Nash equilibria s has cost at most λ/(1−µ)
times that of an optimal solution s∗. To justify this, use
the definition of the cost objective, the Nash equilibrium
condition, and smoothness to derive

C(s) =

kX

i=1

Ci(s) ≤
kX

i=1

Ci(s
∗
i , s−i) ≤ λ·C(s∗)+µ·C(s); (2)

rearranging terms yields the claimed bound.
We define the robust POA as the best (i.e., least) upper

bound on the POA that is provable via a smoothness argu-
ment.

Definition 1.2 (Robust POA) The robust price of anar-
chy of a cost-minimization game is

inf


λ

1 − µ
: (λ, µ) s.t. the game is (λ,µ)-smooth

ff
.

The strength of Definition 1.1 is that inequality (1) is re-
quired to hold for every outcome s, and not only for Nash
equilibria; this is the reason that an upper bound on the
robust POA has immediate implications beyond pure Nash
equilibria. To appreciate this and highlight a special case of
our second contribution (B), consider a sequence s1, s2, . . . , sT

of outcomes of a (λ, µ)-smooth game. (We consider only



pure strategies here; see Section 2 for the general mixed-
strategy case.) Define δi(s

t) = Ci(s
t) − Ci(s

∗
i , st

−i) for each
i and t, where s∗ again denotes a minimum-cost outcome.
We can mimic the derivation in (2) to obtain

C(st) ≤
λ

1 − µ
· C(s∗) +

Pk

i=1 δi(s
t)

1 − µ
(3)

for each t. Suppose that every player i experiences vanishing
average external regret, in that

X

t

Ci(s
t) ≤

"
min

s′
i

X

t

Ci(s
′
i, s

t
−i)

#
+ o(T ).

Averaging (3) over the T time steps and reversing the order
of the resulting double summation yields

1

T

TX

t=1

C(st) ≤
λ

1 − µ
· C(s∗) +

1

1 − µ

kX

i=1

 
1

T

TX

t=1

δi(s
t)

!
.

(4)
Recalling that δi(s

t) = Ci(s
t)−Ci(s

∗
i , st

−i) is the additional
cost of player i at time t beyond that incurred by playing
the (fixed) strategy s∗i , the no-regret guarantee implies that
[
P

t δi(s
t)]/T goes to 0 with T . Since this holds for every

player i, inequality (4) implies that the average cost of out-
comes in the sequence is no more than the robust POA times
the minimum-possible cost, plus an o(1) factor that goes to
zero as T → ∞.

1.2 Two Concrete Examples
Nervousness about the range of applicability of a defini-

tion grows as its interesting consequences accumulate. To
alleviate such fears and add some concreteness to the dis-
cussion, we next single out two well-known POA analyses
that can be recast as smoothness arguments. (See the full
version of this paper for a much longer list.) These examples
demonstrate that Definition 1.1 is non-vacuous and, at the
very least, can be used to derive a host of known results in a
simple and unified way. (New results will have to wait until
Section 3.)

The first example is a special class of congestion games;
Section 3 studies the general case in detail. The second ex-
ample, which concerns Vetta’s well-studied utility games [33],
illustrates how smoothness arguments can be defined and
used in payoff-maximization games, and also with a “one-
sided” variant of sum objective functions.

Example 1.3 (Congestion Games) A congestion game
is a cost-minimization game defined by a ground set E, a
set of k players with strategy sets S1, . . . , Sk ⊆ 2E , and a
non-negative, non-decreasing cost function ce : Z+ → R+

for each element e ∈ E [28]. A canonical example is atomic
selfish routing (or “network congestion”) games, where E
is the edge set of a network, and Si is the set of paths
from a source vertex to a sink vertex. Given a strategy
profile x = (x1, . . . , xk), with xi ∈ Si for each i, let xe =
|{i : e ∈ xi}| denote the load on e, defined as the num-
ber of players that use it. The cost to player i is defined
as Ci(x) =

P
e∈xi

ce(xe). For this example, we assume that

every cost function is affine, meaning that ce(xe) = aexe+be

with ae, be ≥ 0 for every e ∈ E.
We claim that every congestion game with affine cost func-

tions is (5/3, 1/3)-smooth. The basic reason for this was

identified by Christodoulou and Koutsoupias [13, Lemma
1], who noted that

y(z + 1) ≤ 5
3
y2 + 1

3
z2

for all nonnegative integers y, z.1 Thus, for all a, b ≥ 0 and
nonnegative integers y, z,

ay(z + 1) + by ≤ 5
3

`
ay2 + by

´
+ 1

3

`
z2 + bz

´
.

To establish smoothness, consider a pair x,x∗ of outcomes
of a congestion game with affine cost functions. Since the
number of players using resource e in the outcome (x∗

i , x−i)
is at most one more than that in x, and this resource con-
tributes to precisely x∗

e terms of the form Ci(x
∗
i , x−i), we

have

kX

i=1

Ci(x
∗
i , x−i) ≤

X

e∈E

(ae(xe + 1) + be)x
∗
e

≤
X

e∈E

5

3
(aex

∗
e + be)x

∗
e +

X

e∈E

1

3
(aexe + be)xe

=
5

3
C(x∗) +

1

3
C(x),

as desired. This smoothness guarantee implies an upper
bound of 5/2 for the POA of pure Nash equilibria; this was
first proved in [6, 13], where matching lower bounds were
also supplied. The framework introduced in this paper im-
plies that the bound automatically extends to, in partic-
ular, the three other sets of outcomes shown in Figure 1;
these extensions were originally established in two different
papers [8, 12] subsequent to the original POA bound [6, 13].

Example 1.4 (Valid Utility Games) Our second exam-
ple concerns a class of games called valid utility games [33].
These games are naturally phrased as payoff-maximization
games, where each player has a payoff function Πi(s) that it
strives to maximize. We use Π to denote the objective func-
tion of a payoff-maximization game. We call such a game
(λ, µ)-smooth if

X

i

Πi(s
∗
i , s−i) ≥ λ · Π(s∗) − µ · Π(s)

for every pair s, s∗ of outcomes. A derivation similar to (2)
shows that, in a (λ, µ)-smooth payoff-maximization game,
the objective function value of every pure Nash equilibrium
is at least a λ/(1 + µ) fraction of the maximum possible.
(Similarly to (3) and (4), the same bound applies to, for
example, no-regret sequences.) We define the robust POA
of a payoff-maximization game as the supremum of λ/(1+µ)
over all legitimate smoothness parameters (λ, µ).

A valid utility game is defined by a ground set E, a non-
negative submodular function V defined on subsets of E,
and a strategy set Si ⊆ 2E and a payoff function Πi for each
player i = 1, 2, . . . , k. For an outcome s, let U(s) ⊆ E denote
the union of players’ strategies in s. The objective function
value of an outcome s is defined as Π(s) = V (U(s)). Fur-
thermore, the definition requires that two conditions hold:
(1) for each player i, Πi(s) ≥ V (U(s))−V (U(∅, s−i)) for ev-

ery outcome s; and (2)
Pk

i=1 Πi(s) ≤ Π(s) for every outcome

1The statement of this lemma in [12, 13] contains a typo,
but it is applied correctly in both works.



s. One concrete example of such a game is competitive facil-
ity location with price-taking markets and profit-maximizing
firms [33].

Valid utility games do not have a sum objective function
in the sense we have defined them, in that the inequality
in condition (2) is generally strict. But inspection of the
(payoff-maximization analog of) the derivation in (2) shows
that this one-sided inequality is sufficient to conclude a POA
bound of λ/(1+µ) from an (λ, µ)-smoothness guarantee. (In
a cost-minimization context, all of our derivations remain
valid for objective functions C satisfying C(s) ≤

Pk

i=1 Ci(s)
for every outcome s.)

We claim that every valid utility game with a nondecreas-
ing objective function V is (1, 1)-smooth. The proof is es-
sentially a few key inequalities from [33, Theorem 3.2], as
follows. Let s, s∗ denote arbitrary outcomes of a valid utility
game with a nondecreasing objective function. Let Ui ⊆ E
denote the union of all of the players’ strategies in s, together
with the strategies employed by players 1, 2, . . . , i in s∗. Ap-
plying condition (1), the submodularity of V , and the non-
decreasing property of V yields

kX

i=1

Πi(s
∗
i , s−i) ≥

kX

i=1

[V (U(s∗i , s−i)) − V (U(∅, s−i))]

≥
kX

i=1

[V (Ui) − V (Ui−1)]

≥ Π(s∗) − Π(s),

as desired. This smoothness argument implies a lower bound
of 1/2 on the POA of pure Nash equilibria (first proved
in [33], along with a matching upper bound) and more gen-
erally of no-regret sequences (recently established in [8]).

1.3 Tight Classes of Games
The best-possible POA upper bound for a set of allow-

able outcomes increases as the set grows bigger. Or so one
would think. Examples 1.3 and 1.4 share a remarkable prop-
erty: smoothness arguments, despite their automatic gener-
ality, provide a tight bound on the POA, even for pure Nash
equilibria. Our third contribution (C) studies whether this
property is coincidental or fundamental.

Let G denote a set of games, and assume that a non-
negative objective function has been defined on the out-
comes of these games. Let A(G) denote the parameter val-
ues (λ,µ) such that every game of G is (λ,µ)-smooth. Let
bG ⊆ G denote the games with at least one pure Nash equi-
librium, and ρpure(G) the POA of pure Nash equilibria in

a game G ∈ bG. Our work thus far shows, as a very spe-

cial case, that for every (λ, µ) ∈ A(G) and every G ∈ bG,
ρpure(G) ≤ λ/(1−µ). We call a class of games tight if equal-

ity holds for suitable choices of (λ, µ) ∈ A(G) and G ∈ bG.

Definition 1.5 (Tight Class of Games) A class G of
games is tight if

sup
G∈ bG

ρpure(G) = inf
(λ,µ)∈A(G)

λ

1 − µ
. (5)

The right-hand side of (5) is the best upper bound provable
via a worst-case smoothness argument. The left-hand side
of (5) is the actual worst-case POA of pure Nash equilibria

in G, among games with at least one pure Nash equilib-
rium. We reiterate that the left-hand side is trivially upper
bounded by the right-hand side, in the spirit of “weak du-
ality”. Tight classes of games are characterized by the min-
max condition (5), which can be very loosely interpreted as
a “strong duality-type” result.

For instance, Example 1.3 shows that, if G is the set of
congestion games with affine cost functions, then the right-
hand side of (5) is at most 5/2. Constructions of Awerbuch
et al. [6] and Christodoulou and Koutsoupias [13] show that
the left-hand side is at least 5/2 for this class of games.
Thus, congestion games with affine cost functions form a
tight class.

The final main result of this paper shows that this result
is no fluke: for every fixed set C of allowable cost functions,
the class of congestion games with cost functions in C is
tight. Byproducts of our proof of this result include the
first tight bounds on the POA in congestion games with
non-polynomial cost functions, and the first structural char-
acterization of (atomic) congestion games that are universal
worst-case examples for the POA.

1.4 Related Work
The price of anarchy was first studied in [22] for makespan

minimization in scheduling games; note this is not a sum ob-
jective and our framework does not imply anything interest-
ing about it. Indeed, the worst-case POA in this model was
immediately recognized to be different for pure and mixed
Nash equilibria [14, 21, 22], and later for correlated equilibria
and regret-minimizing players [8]. For other gaps between
the sets in Figure 1, see e.g. [2, 9].

The POA with a sum objective was first studied in [31] for
“nonatomic” games, with infinitely many players of negligi-
ble size. The first general results on the POA of pure Nash
equilibria for atomic congestion games and their weighted
variants are in [6, 13], who gave tight bounds for games with
affine cost functions and reasonably close upper and lower
bounds for games with polynomial cost functions with non-
negative coefficients; matching upper and lower bounds for
the latter class were later given independently in [1] and [26].
While most of the proof techniques in [1, 26] apply only to
games with polynomial cost functions, this paper greatly
generalizes some of the core ideas in [1], resulting in a char-
acterization of the worst-case POA as general as that previ-
ously proved in Roughgarden [30] for nonatomic congestion
games.

Many results extending a POA bound for pure Nash equi-
libria to a larger set of outcomes are scattered across the
literature. The underlying bound on the POA of pure Nash
equilibria can be formulated as a smoothness argument in
almost all of these cases, so our general analysis immedi-
ately implies (and in most cases strengthens) these previous
results. Specifically, the authors in [1, 6, 13, 33] each ob-
serve that their upper bounds on the worst-case POA of pure
Nash equilibria carry over easily to mixed Nash equilibria.
In [12] the worst-case POA of correlated equilibria is shown
to be the same as for pure Nash equilibria in unweighted
and weighted congestion games with affine cost functions.
Blum et al. [7, 8] rework and generalize several bounds on
the worst-case POA of pure Nash equilibria to show that the
same bounds hold for the average objective function value
earned by no-regret players, a type of bound that they dub
the “price of total anarchy”. They accomplish this for the



optimal bounds for nonatomic congestion games in [32], the
optimal bounds for valid utility games in [33], and the (sub-
optimal) bounds of [6, 13] for unweighted congestion games
with polynomial cost functions. Blum et al. [8] also give a re-
sult of this type for a constant-sum location game and a fair-
ness objective, which falls outside of our framework. Finally,
Goemans et al. [19] and Awerbuch et al. [5] prove that, under
various conditions, best-response dynamics quickly reaches
a state that approximately obeys the worst-case POA bound
for pure Nash equilibria. Our results imply those in [5, 19]
except for the upper bounds in [19] on the “price of sinking”
in non-potential games (see [23]), such as weighted conges-
tion games with non-affine cost functions; it is unclear if
smoothness can be used to derive directly the latter results.

2. SOME CONSEQUENCES OF ROBUST
POA BOUNDS

This section outlines some of the many promised conse-
quences of an upper bound on the robust POA of a game
with a sum objective. There are also easy consequences
for the worst-case inefficiency of approximate Nash equilib-
ria and for Bayes-Nash equilibria; these applications are de-
tailed in the full version of this extended abstract. We work
with cost-minimization games, though similar results hold
for smooth payoff-maximization games (as in Example 1.4).

2.1 Nash, Correlated, and Coarse Correlated
Equilibria

We begin with the most direct consequences of a smooth-
ness argument: bounds on the four sets in Figure 1. While
the stronger results in this section directly imply the weaker
ones, we prefer to develop the theory one step at a time,
defining the necessary concepts along the way.

Nash and Correlated Equilibria.
We already noted in (2) that an upper bound on the robust

POA of a cost-minimization game easily implies the same
bound on the POA of its pure Nash equilibria.

Proposition 2.1 (POA of Pure Nash Equilibria) For
every cost-minimization game G with robust POA ρ(G), for
every pure Nash equilibrium s and outcome s∗ of G,

C(s) ≤ ρ(G) · C(s∗).

To extend Proposition 2.1 to more general equilibrium
concepts, we prove that the smoothness condition (1) for
pairs of outcomes automatically extends to (not necessarily
product) probability distributions over outcomes.

Lemma 2.2 (Smoothness for Distributions) Let G be
a (λ, µ)-smooth cost-minimization game, σ a probability dis-
tribution over the outcomes of G, and s∗ an outcome of G.
Then

kX

i=1

E s−i∼σ−i
[Ci(s

∗
i , s−i)] ≤ λ · C(s∗) + µ · E s∼σ[C(s)],

where σ−i denotes the marginal distribution of σ for players
other than i.

Proof. Using linearity of expectation and the smooth-
ness guarantee, we obtain

kX

i=1

E s−i∼σ−i
[Ci(s

∗
i , s−i)] =

kX

i=1

E s∼σ[Ci(s
∗
i , s−i)]

= E s∼σ

"
kX

i=1

Ci(s
∗
i , s−i)

#

≤ E s∼σ [λ · C(s∗) + µ · C(s)]

= λ · C(s∗) + µ · E s∼σ[C(s)].

A set (σ1, . . . , σk) of independent probability distributions
over strategy sets — one per player of a cost-minimization
game — is a mixed-strategy Nash equilibrium of the game if
no player can decrease its expected cost under the product
distribution σ = σ1 × · · · × σk via a unilateral deviation:

E s∼σ[Ci(s)] ≤ E s−i∼σ−i
[Ci(s

′
i, s−i)]

for every i and s′i ∈ Si, where σ−i is the product distri-
bution of all σj ’s other than σi. (By linearity, it suffices
to consider only pure-strategy unilateral deviations.) Obvi-
ously, every pure Nash equilibrium is a mixed-strategy Nash
equilibrium and not conversely; indeed, many games have no
pure Nash equilibrium, but every finite game has a mixed-
strategy Nash equilibrium [24].

Substituting expected cost E s∼σ[C(s)] in place of cost
C(s) and Lemma 2.2 in place of Definition 1.1 in the deriva-
tion (2) shows that the robust POA of a cost-minimization
game upper bounds its POA with respect to mixed Nash
equilibria.

Proposition 2.3 (POA of Mixed Nash Equilibria) For
every cost-minimization game G with robust POA ρ(G), ev-
ery mixed-strategy Nash equilibrium σ1, . . . , σk of G, and ev-
ery outcome s∗ of G,

E s∼σ[C(s)] ≤ ρ(G) · C(s∗).

A correlated equilibrium [3] of a cost-minimization game G
is a joint probability distribution σ over the outcomes of G
with the property that

E s∼σ [Ci(s)|si] ≤ E s∼σ[Ci(s
′
i, s−i)|si] (6)

for every i and si, s
′
i ∈ Si. A classical interpretation of a cor-

related equilibrium is in terms of a mediator, who draws an
outcome s from the publicly known distribution σ and pri-
vately “recommends” strategy si to each player i. The equi-
librium condition requires that following a recommended
strategy always minimizes the expected cost of a player (con-
ditioned on the recommendation). One easily verifies that
mixed-strategy Nash equilibria are precisely the correlated
equilibria that are also product distributions. Correlated
equilibria have been widely studied as strategies for a benev-
olent mediator, and also because of strong connections to
Bayesian rationality [4] and to learning (e.g. [16, 20]), and
for their relative computational tractability [18, 27].

Since Lemma 2.2 applies to arbitrary joint distributions,
the proof of Proposition 2.3 carries over without change to
bound the POA for correlated equilibria.



Proposition 2.4 (POA of Correlated Equilibria) For
every cost-minimization game G with robust POA ρ(G), ev-
ery correlated equilibrium σ of G, and every outcome s∗

of G,

E s∼σ[C(s)] ≤ ρ(G) · C(s∗).

Regret-Minimization, Coarse Correlated Equilibria, and
the Price of Total Anarchy.

A no-regret sequence σ1, . . . , σT of (not necessarily prod-
uct) probability distributions over outcomes is defined by
the property that the total expected cost of each player is
at most o(T ) more than that of the best fixed strategy in
hindsight: for all i and s′i ∈ Si,

E

"
TX

t=1

Ci(s
t)

#
≤ E

"
TX

t=1

Ci(s
′
i, s

t
−i)

#
+ o(T ),

where st ∼ σt and st
−i ∼ σt

−i for every t. Players that em-
ploy no-regret algorithms — and many fast and simple such
algorithms exist, see e.g. [10] — are guaranteed to gener-
ate a no-regret sequence, and such sequences can also arise
for other reasons. No-regret sequences can simulate the ex-
pected costs of every correlated equilibrium and are strictly
more general; and even the empirical distribution of such a
sequence need not converge as T → ∞.

Blum et al. [8] define the price of total anarchy as the
worst-case ratio between the expected average cost of a no-
regret sequence and the cost of an optimal outcome. Substi-
tuting expected costs E

s
t∼σt [C(st)] in place of costs C(st)

and Lemma 2.2 in place of Definition 1.1 in the deriva-
tions (3) and (4) shows that the robust POA of a cost-
minimization game upper bounds its price of total anarchy.

Proposition 2.5 (Price of Total Anarchy) For every
cost-minimization game G with robust POA ρ(G), every no-
regret sequence σ1, . . . , σT , and every outcome s∗ of G,

1

T

TX

t=1

E
s
t∼σt [C(st)] ≤ [ρ(G) + o(1)] · C(s∗)

as T → ∞.

In particular, the robust POA of a game applies to all
of its coarse correlated equilibria, meaning the probability
distributions σ over outcomes that satisfy

E s∼σ[Ci(s)] ≤ E s∼σ[Ci(s
′
i, s−i)] (7)

for every i and si, s
′
i ∈ Si. The set of all such distributions

is also sometimes called the Hannan set; see Young [34], for
example. While a correlated equilibrium (6) protects against
deviations by players aware of their recommended strategy,
a coarse correlated equilibrium (7) is only constrained by
player deviations that are committed to in advance of the
sampled outcome.

2.2 Short Best-Response Sequences
Best-response dynamics (BRD) is a natural myopic model

of how players search for a pure Nash equilibrium: if the cur-
rent outcome s is not a pure Nash equilibrium, then choose
some player i who can decrease its cost and switch the player
to a strategy that minimizes Ci(s

′
i, s−i). BRD always con-

verges in a cost-minimization game that admits a potential

function Φ, which by definition satisfies

Φ(s) − Φ(s′i, s−i) = Ci(s) − Ci(s
′
i, s−i)

for every outcome s, player i, and deviation s′i [23]. For con-
venience, we define a lower potential function as one that
only underestimates cost: Φ(s) ≤ C(s) for every s. It will
be evident that the result below holds, with a worse con-
vergence bound, for general potential functions. Congestion
games (see Section 3) are prominent examples of games with
(lower) potentials; for others, see e.g. [5].

Since every round of BRD decreases the potential func-
tion, it eventually converges to a pure Nash equilibrium.
An upper bound on the POA obviously applies to BRD at
termination, but convergence requires exponential time in
general [15]. We next observe that in smooth games with a
lower potential function, two forms of BRD are guaranteed
to reach quickly outcomes that meet the robust POA bound.
(The full version of this extended abstract describes addi-
tional results along these lines.) The key to these results is
the following lemma, which is inspired by arguments in [5,
11]. Roughly, it states that as long as the player chosen in
each round of BRD is likely to have at least an average in-
centive to deviate, relative to the other players, then BRD
rapidly reaches outcomes that obey the robust POA bound.

Proposition 2.6 (Bounds for BRD) Let s0, . . . , sT be a
best-response sequence of a cost-minimization game G with
robust POA ρ, s∗ a minimum-cost outcome of G, and ǫ, α >
0 parameters. Define δi(s

t) = Ci(s
t)−Ci(s

∗
i , s

t
−i) and ∆(st) =Pk

i=1 δi(s
t).

If G has a nonnegative, integral lower potential Φ and the
(possibly randomly chosen) player i(t) at each time t satisfies

E [δi(t)(s
t)|st] ≥ ∆(st)/α,

then with high probability, all but O(α
ǫ

log Φ(s0)) of the out-

comes st satisfy C(st) ≤ ρ

1−ǫ
· C(s∗).

Proof. Let G be (λ, µ)-smooth. We treat 1 − µ as a
constant in asymptotic quantities. Call a state st bad if
∆(st) ≥ ǫ · (1 − µ)C(st). Inequality (3) reduces the proof
to showing that only O(α

ǫ
log Φ(s0)) states st are bad (with

high probability). Since Φ underestimates C, ∆(st) ≥ ǫ·(1−
µ)Φ(st) in a bad state st. By assumption, E [δi(t)(s

t)|st] ≥
ǫ(1−µ)

α
· Φ(st). Since δi(s

t) lower bounds the improvement

of a best response by i from st and Φ is a potential func-

tion, E [Φ(st+1)|Φ(st)] ≤ (1 − ǫ(1−µ)
α

)Φ(st) whenever st is a

bad state. Since Φ(st) is decreasing in t with probability 1,
standard large deviation arguments complete the proof.

We note two immediate corollaries. By maximum-gain
BRD we mean the variant in which, in each round, the
player with the maximum available improvement is chosen;
in random BRD, a player is chosen each round uniformly
at random. Since δi(s

t) denotes the benefit of switching to
the particular strategy s∗i , it lower bounds the cost decrease
that i can achieve in s. Thus maximum-gain BRD always
picks a player i with δi(s

t) ≥ ∆(st)/k, and random BRD
satisfies E [δi(s

t)|st] ≥ ∆(st)/k. By Proposition 2.6, both
variants generate best-response sequences in which the ap-
proximation factor of all but O( k

ǫ
log Φ(s0)) outcomes are

within a 1/(1 − ǫ) factor of the robust POA bound. (For
random BRD, this guarantee holds with high probability.)



2.3 Bicriteria Bounds
We next consider cost-minimization games that, infor-

mally, remain well defined and smooth after duplicating one
or more players. By a “bicriteria bound”, we mean a bound
on the cost of an equilibrium relative to that of an optimal
outcome with additional players. A canonical application is
in routing, where a comparison to an optimal solution with
extra traffic translates to a comparison between additional
network capacity and centralized control [29, §3.5].

Abusing notation, we write s1 + s2 to denote the super-
position of two outcomes s1 and s2 of an underlying cost-
minimization game G. We assume that cost functions are
defined more generally for such superpositions. We assume
that cost is superadditive, in that C(s1+s2) ≥ C(s1)+C(s2)
for every pair s1, s2 of outcomes, and similarly that players’
cost functions are superadditive.

Proposition 2.7 (Bicriteria Bounds) For every cost-
minimization game G that is (λ, µ)-smooth and superaddi-
tive with duplicated players, for every pure Nash equilib-
rium s and outcomes s1, . . . , sℓ of G,

C(s) ≤
λ

ℓ − µ
· C(s1 + · · · + sℓ).

Proof. Suppose G is (λ, µ)-smooth. Applying the Nash
equilibrium condition and adding, followed by superadditiv-
ity of players’ cost functions, followed by smoothness, we
can derive

ℓ · C(s) ≤
ℓX

j=1

kX

i=1

Ci(s
j
i , s−i)

≤
kX

i=1

Ci(s
1
i + · · · + sℓ

i , s−i)

≤ λ · C(s1 + · · · + sℓ) + µ · C(s);

rearranging as usual completes the proof.

For example, consider congestion games with affine cost
functions (Example 1.3), which satisfy all of the extra as-
sumptions needed in Proposition 2.7. Since λ/(2 − µ) = 1
for such games, the proposition implies that the cost of a
pure Nash equilibrium of such a game is no more than the
cost of an optimal solution with two copies of every player.

We note that a weaker bound of λ/ℓ(1 − µ) — or more
generally, the POA divided by ℓ — is easy to prove without
using smoothness. This weaker bound is not sufficient, for
example, to prove the preceding fact about congestion games
with affine cost functions.

3. CONGESTION GAMES ARE TIGHT
This section proves that, for every fixed set of cost func-

tions C, congestion games with cost functions in C form a
tight class of games in the sense of Definition 1.5. (Several
variants of congestion games are also tight, as we detail in
the full version.) In addition to showing that smoothness
arguments always give optimal POA bounds in congestion
games, this result implies the first POA bounds of any sort
for congestion games with non-polynomial cost functions,
and the first structural characterization of universal worst-
case examples for the POA in congestion games.

Recall from Example 1.3 the definition of and notation for
congestion games. Here we consider arbitrary nonnegative

and nondecreasing cost functions ce. To streamline the ex-
position, we assume that cost functions are strictly positive;
more general results follow from extra case analysis in the
proof of Theorem 3.4, below.

The worst-case POA in congestion games depends on the
“degree of nonlinearity” of the allowable cost functions and
is +∞ unless these functions are restricted in some way.
For example, for polynomial cost functions with nonnegative
coefficients and degree at most d, the worst-case POA in
congestion games grows exponentially with d [1, 6, 13, 26].

An ideal analysis of the POA in congestion games would
solve every possible special case simultaneously, in the form
of a characterization, for every set C of allowable cost func-
tions, of the worst-case POA among congestion games with
cost functions in C. Such a characterization was previously
known in nonatomic congestion games, where players are in-
finitesimally small: roughly, the largest-possible POA, among
all nonatomic congestion games with cost functions lying in
a prescribed set, is always attained in a game with only
two resources and singleton strategies (i.e., a two-link net-
work), in which one of the resources has a constant cost
function. (See [30, 32] for precise statements.) This section
provides the first such characterization for (atomic) conges-
tion games. Since we use smoothness arguments to establish
our POA upper bounds, they apply more generally to, for
example, all of the equilibrium concepts shown in Figure 1.

Theorem 3.1 For every non-empty set C of nondecreasing,
positive cost functions, the set of congestion games with cost
functions in C is tight.

We prove Theorem 3.1 in several steps, and then conclude
by pointing out important implications of the proof. Fix a
set C of positive, nondecreasing cost functions and let G(C)
denote the set of congestion games with cost functions in C.
Let L = {(λ, µ) : µ < 1} denote the legal values for param-
eters λ and µ. We begin with a generic upper bound on the
robust POA. Define γ(C) as

inf


λ

1 − µ
: (λ, µ) s.t. c(x + 1)x∗ ≤ λ · c(x∗)x∗ + µ · c(x)x}

ff
,

(8)
where (λ, µ) ∈ L and the inequality constraints range over
all integers x ≥ 0, x∗ ≥ 1, and functions c ∈ C. (We define
γ(C) = +∞ if no pairs (λ, µ) ∈ L meet all of the constraints.)
Intuitively, γ(C) quantifies the best POA bound achievable
via a local “elementwise” smoothness argument. It is an
upper bound on the worst-case robust POA of games in
G(C). The proof is similar to the derivation in Example 1.3
and we record it for future reference.

Proposition 3.2 For every set C, the robust POA of every
game of G(C) is at most γ(C).

Proof. We can assume that γ(C) is finite. Consider a
game in G(C) and a pair x,x∗ of its outcomes. We show that
the game is (λ, µ)-smooth for every (λ,µ) in the feasible set
in (8). Indeed, for every such pair we have

kX

i=1

Ci(x
∗
i , x−i) ≤

X

e∈E

ce(xe + 1)x∗
e (9)

≤
X

e∈E

[λce(x
∗
e)x

∗
e + µce(xe)xe] (10)

= λ · C(x∗) + µ · C(x),



where in the first inequality we use that exactly x∗
e players

ponder a deviation to a strategy x∗
i that contains e, which

in turn is used by at most xe players in x−i.

In the language of Definition 1.5, the proof of Proposi-
tion 3.2 shows that every pair (λ,µ) meeting the defining
constraints in (8) also belongs to the set A(G(C)); as a con-
sequence, the number γ(C) upper bounds the right-hand side
of (5).

The hard part of Theorem 3.1 is to show a matching lower
bound on the left-hand side of (5). We now exhibit, for ev-
ery set C, a game of G(C) with (pure) POA arbitrarily close
to γ(C). For the time being, assume that C is finite and that
the allowable number of players is bounded by a parame-
ter n. Let A(C, n) denote the pairs (λ, µ) that meet the con-
straints in (8) for all values of x, x∗ that are at most n. The
set A(C, n) is non-empty: since cost functions are strictly
positive and we are assuming that C is finite, for any fixed
µ < 1 we can take λ sufficiently large so that all of the
inequalities are satisfied. Geometrically, A(C, n) is the in-
tersection of the halfplane L with a finite number of half-
planes, each containing everything“northeast” of a line with
negative slope (Figure 2). Let γ(C, n) denote the infimum
of λ/(1 − µ) for (λ, µ) ∈ A(C, n).

Our goal is to exhibit a congestion game of G(C) with
POA equal to γ(C, n). In such a game, the inequalities in (9)
and (10) must hold (essentially) with equality. This is im-
possible for values of (λ, µ) ∈ A(C, n) other than ones that
determine γ(C, n); the following technical lemma identifies
special properties that such optimal values possess. We give
the lemma (Lemma 3.3), then our main construction (The-
orem 3.4), and finally an example to illustrate the proof
techniques (Example 3.5).

Lemma 3.3 Fix finite C and n and suppose there exist (λ̂, µ̂)
such that

λ̂

1 − µ̂
= γ(C, n).

Then there exist c1, c2 ∈ C, x1, x2 ∈ {0, 1, . . . , n}, x∗
1, x

∗
2 ∈

{1, 2, . . . , n}, and η ∈ [0, 1] such that

cj(xj + 1)x∗
j = λ̂ · cj(x

∗
j )x

∗
j + µ̂ · cj(xj)xj (11)

for j = 1, 2; and

η · c1(x1 + 1)x∗
1 + (1 − η) · c2(x2 + 1)x∗

2 =

η · c1(x1)x1 + (1 − η) · c2(x2)x2. (12)

Proof. We begin with preliminary observations about
the candidate residences for (λ̂, µ̂). Write

Hc,x,x∗ = {(λ, µ) : c(x + 1)x∗ ≤ λ · c(x∗)x∗ + µ · c(x)x}

for the halfplane corresponding to c, x, x∗, and ∂Hc,x,x∗ for
its boundary (points (λ, µ) that satisfy the inequality with
equality). Fix c, x, x∗ and define

βc,x,x∗ =
c(x)x

c(x + 1)x∗
;

this is well defined as x∗ ≥ 1 and cost functions are strictly
positive. If x ≥ 1, then the line ∂Hc,x,x∗ is in general po-
sition; we can then uniquely express λ in terms of µ and
derive

λ

1 − µ
=

c(x + 1)

c(x∗)

1 − (βc,x,x∗)µ

1 − µ
(13)

for points of the polyhedral face (i.e., line segment) A(C, n)∩
∂Hc,x,x∗ . Using (13), we make several assertions.

(a) If βc,x,x∗ = 1, then every point of A(C, n) ∩ ∂Hc,x,x∗

has the same value of λ/(1 − µ).

(b) If βc,x,x∗ < 1 and x ≥ 1, then the unique minimizer of
λ/(1−µ) among points of A(C, n)∩∂Hc,x,x∗ is the one
with the minimum value of µ, and hence the maximum
value of λ (i.e., the rightmost endpoint). If Hc,x,x∗ de-
termines the rightmost (infinite) face of the boundary,
then the value of λ/(1 − µ) is strictly decreasing as
λ → ∞ over the entire face.

(c) If βc,x,x∗ > 1, then the unique minimizer of λ/(1 − µ)
among points of A(C, n)∩∂Hc,x,x∗ is the one with the
maximum value of µ, and hence the minimum value of
λ (i.e., the leftmost endpoint).

(d) All halfplanes of the form Hc,0,x∗ are redundant, ex-
cept possibly for one of the form Hc,0,1 = {(λ, µ) :
λ ≥ 1}. The unique minimizer of λ/(1 − µ) among
points of A(C, n) ∩ ∂Hc,0,1 is the one with λ = 1 and
minimum value of µ (i.e., the bottommost endpoint).

By assumption, there is a point (λ̂, µ̂) that attains the in-
fimum in (8). Since λ/(1−µ) is strictly decreasing in both λ

and µ, (λ̂, µ̂) inhabits the closed, “southwestern” boundary
of A(c, n). In particular, it belongs to some line ∂Hc,x,x∗ ,
where c, x, x∗ satisfy equation (11). In the lucky event that
βc,x,x∗ = 1, we can take c1 = c2 = c, x1 = x2 = x, and
x∗

1 = x∗
2 = x∗ (and any value of η ∈ [0, 1]) to satisfy (12)

and complete the proof.
When βc,x,x∗ 6= 1, we claim that (λ̂, µ̂) ∈ ∂Hc′,y,y∗ for

a second halfplane boundary ∂Hc′,y,y∗ . This follows from

our assertions (b)–(d) and our assumption that (λ̂, µ̂) exists:

if βc,x,x∗ < 1 (βc,x,x∗ > 1), (λ̂, µ̂) must be the rightmost
(leftmost) endpoint of A(C, n) ∩ ∂Hc,x,x∗ , and hence also
the leftmost (rightmost) endpoint of A(C, n) ∩ ∂Hc′,y,y∗ for
some halfplane Hc′,y,y∗ with βc′,y,y∗ > 1 (βc′,y,y∗ < 1).

Relabel c, c′, x, x∗, y, y∗ so that (λ̂, µ̂) is the right end-
point of Hc1,x1,x∗

1
and the left endpoint of Hc2,x2,x∗

2
. Equa-

tion (11) is satisfied. Since βc1,x1,x∗

1
< 1 and βc2,x2,x∗

2
> 1,

c1(x1 + 1)x∗
1 > c1(x1)x1 while c2(x2 + 1)x∗

2 < c2(x2)x2.
Choosing a suitable η ∈ [0, 1] then satisfies equation (12) as
well, completing the proof.

Theorem 3.4 For every set C of cost functions, there exist
congestion games with cost functions in C and (pure) POA
arbitrarily close to γ(C).

Proof. By a limiting argument, we only need to prove
that, for arbitrarily large finite sets C and natural numbers n,
there is a congestion game with cost functions in C and POA
equal to γ(C, n). By using standard scaling and replication
tricks (as in [30, Lemma 4.8]), we also have the luxury of
deploying positive scalar multiples of functions in C.

Fix such a C and n, and suppose there are parameters
(λ̂, µ̂) satisfying λ̂/(1 − µ̂) = γ(C, n). Choose c1, c2, x1, x2,
x∗

1, x∗
2, η as in Lemma 3.3. The ground set E1∪E2 should be

thought of as two disjoint “cycles”, where each cycle has k =
max{x1 +x∗

1, x2 +x∗
2} elements that are labeled from 1 to k.

Elements from E1 and E2 are each given the cost function
η · c1(x) and (1 − η) · c2(x), respectively. There are also k
players, each with two strategies. Player i’s first strategy Pi



uses precisely xj consecutive elements of Ej (for j = 1, 2),
starting with the ith element of each cycle (wrapping around
to the beginning, if necessary). Player i’s second strategy Qi

uses x∗
j consecutive elements of Ej (for j = 1, 2), ending with

the (i − 1)th element of each cycle (wrapping around from
the end, if necessary). We have chosen k large enough that,
for each i, the strategies Pi and Qi are disjoint.

Let y and y∗ denote the outcomes in which each player
selects the strategy Pi and Qi, respectively. By symmetry,
ye = x1 and y∗

e = x∗
1 for elements e ∈ E1, while ye = x2 and

y∗
e = x∗

2 for elements e ∈ E2. Thus, for example, the value
x1 serves both as the cardinality of every set Pi ∩ E1, and
as the load ye of every element e ∈ E1 (in the outcome y).

To verify that y is a pure Nash equilibrium, fix a player i
and derive

Ci(y) =
X

e∈Pi∩E1

η · c1(ye) +
X

e∈P1∩E2

(1 − η) · c2(ye)

= η · c1(x1)x1 + (1 − η) · c2(x2)x2

= η · c1(x1 + 1)x∗
1 + (1 − η) · c2(x2 + 1)x∗

2 (14)

=
X

e∈Qi∩E1

η · c1(ye + 1) +
X

e∈Qi∩E2

(1 − η) · c2(ye + 1)

= Ci(y
∗
i , y−i), (15)

where equation (14) follows from requirement (12) in Lem-
ma 3.3, and equation (15) follows from the disjointness of Pi

and Qi, Moreover, using (14) as a launching pad, we can
derive

C(y) =
kX

i=1

Ci(y)

= k · [η · c1(x1 + 1)x∗
1 + (1 − η) · c2(x2 + 1)x∗

2]

= kη ·
“
λ̂ · c1(x

∗
1)x

∗
1 + µ̂ · c1(x1)x1

”
+

k(1 − η) ·
“
λ̂ · c2(x

∗
2)x

∗
2 + µ̂ · c2(x2)x2

”
(16)

= λ̂ · k · (η · c1(x
∗
1)x

∗
1 + (1 − η) · c2(x

∗
2)x

∗
2) +

µ̂ · k · (η · c1(x1)x1 + (1 − η) · c2(x2)x2)

= λ̂ · C(y∗) + µ̂ · C(y),

where (16) follows from condition (11) in Lemma 3.3. Rear-

ranging gives a lower bound of C(y)/C(y∗) = λ̂/(1 − µ̂) =
γ(C, n) on the POA of this congestion game, completing the
proof in the (common) case where the infimum in (8) is at-

tained by a pair (λ̂, µ̂).
Finally, we consider the remaining case in which γ(C) is

not attained by any pair (λ, µ). (This can in fact occur,
for example if C contains only a very fast-growing function
like the factorial function.) Assertion (b) in the proof of
Lemma 3.3 shows that this case arises only when the right-
most (infinite) face of the boundary of A(C, n) has β-value
less than 1, in which case the infimum is approached by the
value of λ/(1 − µ) for points on this face as λ → ∞ and
µ → −∞. This face corresponds to the line ∂Hc,x,x∗ with
least negative slope −c(x∗)x∗/c(x)x, which in turn must sat-
isfy x = n and x∗ = 1. Using (13), in this case we have

γ(C, n) = βc,n,1 ·
c(n + 1)

c(1)
=

c(n)n

c(1)
.

Also, βc,n,1 < 1 implies that c(n + 1) > c(n)n.
Now, define E = {e1, . . . , en+1} and introduce n +1 play-

ers, where player i’s two strategies are {ei} and E \ {ei}. If

λ+4µ=3

λ=1

λ+µ=2
µ=1

Figure 2: Example 3.5. The halfplanes that define
the parameter γ(C, n).

players choose their singleton strategies, the resulting out-
come has cost (n + 1) · c(1). If players choose their non-
singleton strategies, the cost is (n+1)·c(n)n. Since c(n+1) >
c(n)n, the latter outcome is a Nash equilibrium. The POA
of this game is therefore at least c(n)n/c(1) = γ(C, n), and
thus the proof is complete.

Example 3.5 Consider the special case in which n = 2
and C contains only the identity function c(x) = x. Not
counting the constraint that µ < 1, there are six constraints
in the definition (8) of γ(C, n), corresponding to the two
and three permitted values of x∗ and x, respectively. Four
of these are redundant, leaving the feasible choices of (λ,µ)
constrained by the inequalities λ + µ ≥ 2 (corresponding
to x = x∗ = 1) and λ + 4µ ≥ 3 (corresponding to x = 2
and x∗ = 1). See Figure 2. Since βc,1,1 < 1 < βc,1,2,
the value γ(C, n) is attained at the intersection of the two

corresponding lines, with (λ̂, µ̂) = ( 5
3
, 1

3
) and γ(C, n) = 5

2
.

The proof of Theorem 3.4, specialized to this example,
regenerates an construction from [13] that gives a match-
ing lower bound on the POA of pure Nash equilibria. First
observe that, in the notation of Lemma 3.3, the (unique)
value of η corresponding to these two halfplanes is 1

2
. De-

fine a congestion game with three players 0, 1, 2 and six re-
sources u0, u1, u2, v0, v1, v2, all with the cost function c(x) =
x/2. (Using c(x) = x instead yields an equivalent example.)
Player i has two strategies, {ui, vi} and {ui+1, vi+1, vi+2},
where all arithmetic is modulo 3. If all players use their
smaller strategies, each incurs cost 1. If all players use their
larger strategies, each incurs cost 1

2
+2 · 2

2
= 5

2
; since switch-

ing strategies would also yield cost 2
2

+ 3
2

= 5
2
, this outcome

is a pure Nash equilibrium and shows that the POA in the
game is at least 5/2.

Remark 3.6 (POA Bounds for All Cost Functions)
Proposition 3.2 and Theorem 3.4 give the first characteri-
zation (namely, γ(C)) of the worst-case POA in congestion
games with cost functions in an arbitrary set C. Of course,
precisely computing the value of γ(C) is not trivial, even for
simple sets C. Arguments in [1, 26] imply a (complex) closed-
form expression for γ(C) when C is a set of polynomials with
nonnegative coefficients. Similar computations should be



possible for some other simple sets C. Also, numerical work
should produce good bounds on γ(C) for many sets C of in-
terest. In particular, computing the exact value of γ(C, n)
reduces to computing the upper envelope of O(n2|C|) lines.

Remark 3.7 (Worst-Case Congestion Games) The
proof of Theorem 3.4 shows that congestion games compris-
ing two parallel cycles are universal worst-case examples for
the POA, no matter what the allowable set of cost functions.
Such games can be realized as an atomic selfish routing (i.e.,
network congestion) game using a bidirected cycle (cf. [17,
Figure 5.2]). This corollary is an analog of a simpler such
sufficient condition for nonatomic congestion games where,
under modest assumptions on C, the worst-case POA is al-
ways achieved in two-node two-link networks [30].

Informally speaking, the tightness of congestion games im-
plies that structural complexity comparable to this double-
cycle structure is generally necessary to attain the worst-case
POA among all congestion games with cost functions in a
given set C. (For very special sets C, as in the last para-
graph of the proof of Theorem 3.4, a single cycle suffices.)
The reason is that, in light of Theorem 3.1, a congestion
game is a worst-case example only if all of the inequalities
in the derivation (2) hold with equality. This generally re-
quires using two different types of cost function/equilibrium
load/optimal load combinations (cf., Lemma 3.3).
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