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Abstract

Understanding the average-case complexity of natural problems on natural distributions is an
important challenge for computational complexity. In this paper, we consider the average-case
monotone complexity of the k-clique problem (for constant k) on Erdős-Rényi random graphs
G(n, p). Our main result is a lower bound of ω(nk/4) on the size of monotone circuits which solve
the k-clique problem asymptotically almost surely on G(n, p) for all functions p : N −→ [0, 1] (or
even just for two sufficiently far-apart threshold functions, such as n−2/(k−1) and 2n−2/(k−1)).
While stronger lower bounds of Ω̃(nk) are known [17] for the worst-case monotone complexity
of k-clique, our result is the first average-case monotone lower bound. This lower bound also
supports the intuition that random graphs at the threshold are a source of hard instances for
the k-clique problem.

A further result of this paper is a nearly matching upper bound of nk/4+O(1), obtained by
monotonizing a construction of constant-depth circuits due to Amano [3]. This upper bound
points out a gap between the worst-case and average-case monotone complexity of the k-clique
problem.

Similar bounds on the average-case complexity of k-clique for non-monotone constant-depth
(AC0) circuits were previously obtained by the author [18] (ω(nk/4) lower bound) and Amano [3]
(nk/4+O(1) upper bound). We remark that the monotone lower bound of the present paper uses
entirely different techniques from the AC0 lower bound of [18]. In particular, we introduce a new
variant of sunflowers and prove an analogue of the sunflower lemma that may be of independent
interest.
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1 Introduction

This paper considers the average-case complexity of the k-clique problem (for constant k) on mono-
tone circuits (composed of AND and OR gates only, that is, without NOT gates). The k-clique
problem asks whether a simple graph contains a k-clique, that is, a set of k vertices with an edge
between every pair. This is one of the most fundamental problems studied in complexity theory. A
worst-case lower bound of Ω(nf(k)) for the k-clique problem on general boolean circuits where f is
any increasing function would imply P 6= NP (in fact, NP * P/Poly). This fact motivates studying
the k-clique problem on restricted classes of circuits, such as AC0 and monotone circuits, where
techniques for unconditional lower bounds have been developed.

In a seminal work, Razborov [17] proved a lower bound of Ω̃(nk) on the size of monotone circuits
which solve k-clique in the worst-case. (In the setting of super-constant k = k(n), this lower bound
was improved by Alon and Boppana [1] and Amano [5].) More generally, Razborov’s result applies
to monotone circuits which have value 1 almost surely on a k-clique uniformly planted among a set
of n vertices (with no other edges) and value 0 almost surely on a uniform random (k − 1)-partite
graph.

Of course, distinguishing isolated k-cliques from (k − 1)-partite graphs is an easy task for non-
monotone circuits (even for relatively simple constant-depth circuits). The unviability of “isolated
k-cliques vs. (k − 1)-partite graphs” as a premise for non-monotone circuit lower bounds is one
good reason to investigate monotone lower bounds for natural distributions of graphs, where it is
reasonable to conjecture that even non-monotone circuits cannot solve k-clique efficiently. One very
natural class of distributions in this context are Erdős-Rényi random graphs G(n, p), defined as
n-vertex graphs in which each potential edge is independently included with probability p (where
p = p(n) is a function of n). For every monotone graph property (like the existence of a k-clique),
there is a threshold function p(n) such that the property holds on G(n, p) with probability bounded
away from 0 and 1, while for functions q(n) which are o(p(n)) or ω(p(n)), the property respectively
holds or does not hold almost surely on G(n, q). In particular, Θ(n−2/(k−1)) is precisely the class
of threshold functions for the existence a k-clique.

The present paper is based on the intuition that random graphs G(n, p) for threshold functions
p(n) ∈ Θ(n−2/(k−1)) are a source of hard instances for the k-clique problem. (Similar beliefs about
random sat at the threshold are common in the research in statistical physics.) For monotone
circuits, we show that this intuition is valid. Specifically, we prove that any monotone circuit
which solves the k-clique problem almost surely on G(n, p) for two sufficiently far-apart threshold
functions p(n) (such as, for instance, n−2/(k−1) and 2n−2/(k−1)) has size ω(nk/4). Moreover, we
prove a nearly matching upper bound by exhibiting monotone circuits of size nk/4+O(1) which solve
the k-clique problem almost surely on G(n, p) for every threshold function p(n). (These results are
formally stated in §3.) We remark that while our lower bound does not improve the worst-case
lower bound Ω̃(nk), it is the first average-case monotone lower bound for the k-clique problem,
while our upper bound points out a gap between the worst-case and average-case complexity.

The intuition that k-clique is hard on random graphs at the threshold has a precedent in previous
work of the author [18], which proves a lower bound of ω(nk/4) on the size of non-monotone constant-
depth (AC0) circuits that solve the k-clique problem almost surely on G(n, p) for a single threshold
function p(n). (This result in fact improved the best-known worst-case lower bound of ω(nk/89d2

)
for depth-d circuits due to Beame [6], in particular by shifting dependence on d from the exponent
of n to a lower-order term.) The exponent k/4 in this result was shown to be optimal (up to a
constant) by Amano [3], whose construction of constant-depth circuits (which solve k-clique almost
surely at a threshold) is “monotonized” for the upper bound in the present paper.

Although the AC0 lower bound of [18] and the monotone lower bound of the present paper
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proceed from the same intuition, the two proofs are significantly different as far as their technical
details. For one thing, the AC0 result relies on H̊astad’s Switching Lemma [12], which is no help
in the setting of unbounded-depth monotone circuits. While the present monotone lower bound
fits the general “approximation method” framework of Razborov [17], it makes essential use of a
combinatorial lemma concerning a novel variant of sunflowers called (p, q)-sunflowers (defined in
§4). This notion, which generalizes an essential property of sunflowers, may be of independent
interest.

2 Definitions

Let k be a fixed constant > 5. Let N = {0, 1, 2, . . . }. For n ∈ N, let [n] = {1, . . . , n}. For a set X
and j ∈ N, let

(
X
j

)
= {j-element subsets of X} and

(
X
<j

)
=
⋃j−1
i=0

(
X
i

)
.

“a.a.s.” abbreviates “asymptotically almost surely” and means “with probability that tends to
1 as n→∞”.

Graphs: Graphs are simple graphs, that is, G = (VG, EG) where VG is a set and EG ⊆
(
VG
2

)
. By

default, VG = [n] (where n is an arbitrary integer).
We say that H is a subgraph of G and write H ⊆ G if VH ⊆ VG and EH ⊆ EG; we say that H

is a proper subgraph and write H ⊂ G if H ⊆ G and H 6= G.
For a graph G, let supp(G) denote the number of non-isolated vertices in G (i.e., the size of the

support of G), and let S(G) denote the set of subgraphs of G.

Cliques: For A ⊆ [n], (by mild abuse of notation) let KA (= KA([n])) denote the graph with
vertex set [n] and edge set

(
A
2

)
; (by mild abuse of terminology) we refer to graphs KA as |A|-cliques.

The random k-clique is the random graph KA where A is uniformly distributed in
([n]
k

)
.

For a graph G with vertex set [n], let ωk(G) denote the number of k-cliques in G, that is,
ωk(G) = |{A ∈

([n]
k

)
: KA ⊆ G}|.

Monotone Graph Functions: A monotone graph function is a function f from {n-vertex graphs}
to {0, 1} (or a sequence f = (fn) of functions) satisfying H ⊆ G =⇒ f(H) 6 f(G).

A graph H is a minterm of f if f(H) = 1 and f(H0) = 0 for all H0 ⊂ H. The set of minterms
of f is denoted M(f).

For a graph H, the H-indicator is the monotone graph function IndH defined by IndH(G) = 1
iff H ⊆ G (so M(IndH) = {H}).

Monotone Circuits on Graphs: A monotone circuit on graphs is a directed acyclic graph C
with a unique sink (“output”) in which sources (“inputs”) are labeled by elements of

(
[n]
2

)
∪ {0, 1}

(i.e., potential edges or constants 0 or 1) and all other nodes (“gates”) are labeled either ∧ or ∨.
For nodes ν ∈ C , the value of (the monotone function computed at) ν on a graph G is denoted
ν(G), while the value of C on G is denoted C (G). The fan-in of G is the maximum in-degree of
a gate. (In §5–7 we consider monotone circuits with fan-in 2, while for our upper bound in §8, we
consider constant-depth monotone circuits with unbounded fan-in.)

Erdős-Rényi Random Graphs: For a function p : N −→ [0, 1], G(n, p) denotes the Erdős-
Rényi random graph with vertex set [n] where potential edges in

(
[n]
2

)
are independently included

with probability p(n). Classes o(n−2/(k−1)), ω(n−2/(k−1)) and Θ(n−2/(k−1)) are respectively the
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classes of subcritical, supercritical and threshold functions for the existence of a k-clique in G(n, p).
In particular, the random variable E[ωk(G(n, p))] is asymptotically 0 in the subcritical regime, ∞
in the supercritical regime, and Poisson with constant mean in the threshold regime [7] (see also
Ch. 4 of [8]).

A boolean function f on graphs is said to solve k-clique on (Erdős-Rényi) random graphs if
f(G) = 1 ⇐⇒ ωk(G) > 1 a.a.s. for G = G(n, p) for all functions p : N −→ [0, 1]. (Note that all
the “action” in this definition is for threshold functions p(n), since constant functions 0 and 1 solve
k-clique a.a.s. in the subcritical and supercritical regimes.)

3 Results

Fix sufficiently small δ > 0 (to be determined later, though δ = k−3 suffices) and let

p−(n) = n−
2

k−1
(1+δ), pθ(n) = n−

2
k−1 , p+(n) = n−

2
k−1

(1−δ).

Throughout this paper, G− = G(n, p−), Gθ = G(n, pθ) and G+ = G(n, p+) are (independent)
subcritical, threshold and supercritical random graphs.

We first prove a lower bound on the size of monotone circuits which distinguish random k-cliques
from subcritical random graphs G−.

Theorem 1. Let C be a monotone circuit of size O(nk/4) such that E[C (random k-clique)] > Ω(1).
Then E[C (G−)] > 1− exp(−nΩ(1)).

We remark that every monotone graph function f satisfying E[f(random k-clique)] > Ω(1) also
satisfies E[f(G+)] > 1− exp(−nΩ(1)). (This can be shown using Janson’s inequality (Lemma 22).)
Theorem 1 thus implies that monotone circuits of size O(nk/4) can either recognize a positive frac-
tion of k-cliques, or distinguish subcritical G− from supercritical G+, but not both simultaneously.

One key ingredients in the proof is a combinatorial lemma concerning a new variant of sunflowers
(described in §4), leading to an approximation of the nodes of a monotone circuit by a special class
of functions (a common theme in monotone circuit lower bounds ever since Razborov[17]). Another
key concept in the proof (inspired by a similar idea in the AC0 lower bound of [18]) is that a circuit
on graphs which computes a minterm in the form of some k-clique KA (where A ∈

([n]
k

)
) must, for

some node, produce minterms which are in some “intermediate” class of subgraphs of KA. In §5 we
identify a special class J of such “intermediate” subgraphs of k-cliques, which plays an important
role in the ω(nk/4) lower bounds of the present paper as well as [18].

Using Theorem 1, we derive the lower bound mentioned in the introduction.

Theorem 2. Monotone circuits solving k-clique on random graphs have size ω(nk/4).

In fact, the proof gives a lower bound for every ε > 0 of Ω
(
n
k+1

4
+ 9

4(k−1)
−ε) for even k and

Ω
(
n
k+1

4
+ 2
k−1
−ε) for odd k. This already gives a non-trivial lower bound of Ω(n11/5−ε) for k =

6. Moreover, to state Theorem 2 in the strongest form that the proof entails, we can replace
“solves k-clique on random graphs” with “solves k-clique a.a.s. on G(n, p) and G(n, 2p) where
p ∈ Θ(n−2/(k−1))”; further, we can even replace 2p with p+ p1+ε for sufficiently small ε > 0.

We also show that k/4 is essentially optimal in Theorem 2 by constructing a monotone version
of AC0 circuits due to Amano [3].

Theorem 3. There exist constant-depth monotone circuits of size nk/4+O(1) which solve k-clique
on random graphs.

After presenting some technical preliminaries in §4 and §5, Theorems 1, 2, 3 are proved in §6,
§7, §8 respectively.
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4 (1/N, exp(−N ε))-Sunflower Lemma

A hypergraph on a set X is a family F ⊆ ℘(X) of subsets of X. F is s-uniform if |f | = s for all
f ∈ F . We say that F is a sunflower with core Y if f ∩ g = Y for all distinct f, g ∈ F ; sets f \ Y
where f ∈ F are called petals of F . Let N be any positive integer (unrelated to |X|).

Lemma 4 (Erdős-Rado Sunflower Lemma [9]). Every s-uniform hypergraph F of cardinality >
s!(N − 1)s contains a sunflower of size N .

A p-biased random subset W of X is a random W ⊆ X such that events x ∈ W are mutually
independent with probability p. The following definition of (p, q)-sunflowers relaxes the notion of
sunflower by allowing petals to overlap (but not too much on average). Other variants of sunflowers
have been studied in extremal combinatorics (see Ch. 7 of [15]), but this notion appears to be new.

Definition 5 ((p, q)-Sunflower). For p, q ∈ [0, 1], we say that F is a (p, q)-sunflower over Y if
Y ⊆

⋂
F and Prp-biased W⊆X(W ∪ Y does not contain a hyperedge of F) 6 q.

Note that every s-uniform sunflower of cardinality m is a (p, (1−ps)m)-sunflower for all p ∈ [0, 1].
Indeed, for many applications of sunflowers in circuit complexity [1, 5, 17], it would be good enough
to work with the notion of (p, (1 − ps)m)-sunflowers instead of sunflowers (that is, Definition 5
captures the essential property of sunflowers for these applications).

It follows immediately from Lemma 4 that every s-uniform hypergraph of cardinality s!N s(s+ε)

contains an (1/N, e−N
ε
)-sunflower of size N . Our combinatorial main lemma improves this to

Ω(s! ln(3/2)−sN s(1+ε)). The proof uses an inductive argument tailored to an application of Janson’s
inequality (stated as Lemma 22 in Appendix A).

Lemma 6 (Main Lemma). Every s-uniform hypergraph F of cardinality Ω(s! ln(3/2)−sN s(1+ε))
contains an (1/N, exp(−N ε))-sunflower of size N .

Proof. Define sequence `0, `1, `2, . . . as follows: `0 = 1 and `j = 2
∑j−1

i=0

(
j
i

)
`i for all j > 1. By an

elementary calculation (omitted), we have `s > Ω(s! ln(3/2)−s). Arguing by induction on s, we will
show F that contains an (1/N, exp(−N ε))-sunflower of size N whenever |F| > `sN

s(1+ε). Note that
the lemma is vacuously true in the base case when s = 0 (since in this case |F| 6 1 = `0N

0(1+ε)).
For the induction step, let s > 1 and assume |F| > `sN

s(1+ε). For all A ⊆ X, let FA = {f \A :
A ⊆ f ∈ F} and note that FA is an (s− |A|)-uniform hypergraph on X. We consider two cases.

First Case: Suppose there exist i ∈ {1, . . . , s} and A ∈
(
X
i

)
such that |FA| > `s−iN

(s−i)(1+ε). By
the induction hypothesis, FA contains a (1/N, e−N

ε
)-sunflower F ′ over some Y ′. Letting Y = A∪Y ′

and F0 = {f ∈ F ′ : A ⊆ f}, we have F0 ⊆ F is a (1/N, e−N
ε
)-sunflower over Y .

Second Case: Suppose |FA| 6 `s−iN
(s−i)(1+ε) for all i ∈ {1, . . . , s} and A ∈

(
X
i

)
. We will show

that F is itself a (1/N, e−N
ε
)-sunflower over core ∅. Let W be a 1/N -biased subset of X and for

every hyperedge f ∈ F , let Λf be the event that f ⊆W . Note that
∧
f∈F Λf is precisely the event

that W contains no hyperedge of F . Define µ and ∆ by

µ =
∑
f∈F

Pr(Λf ), ∆ =
∑

f,g∈F : f∩g 6=∅

Pr(Λf ∧ Λg).

By Janson’s inequality (Lemma 22), we have Pr(
∧
f∈F Λf ) 6 exp(−min(µ/2, µ2/2∆)). Therefore,

it suffices to show µ/2 > N ε and µ2/2∆ > N ε. The first of these inequalities follows from

µ = |F|/N s > `sN
sε > 2N ε.
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We now bound ∆. For all i ∈ {1, . . . , s}, note that
∑

A∈(Xi )
|FA| =

(
s
i

)
|F| since each hyperedge

in F is counted
(
s
i

)
times in this summation. Thus,∑

A∈(Xi )
|FA|2 6

(
s

i

)
|F|`s−iN (s−i)(1+ε) = µ

(
s

i

)
`s−iN

2s−i+(s−i)ε.

For all f, g ∈ F such that |f ∩ g| = i, note that Pr(Λf ∧ Λg) = 1/N2s−i. So we have

∆ =
∑
A⊆X :

16|A|6s

∑
f,g∈F :
f∩g=A

Pr(Λf ∧ Λg) 6
s∑
i=1

1
N2s−i

∑
A∈(Xi )

|FA|2 6 µ
s∑
i=1

(
s

i

)
`s−iN

(s−i)ε 6
µ`sN

(s−1)ε

2
.

It follows that
µ2

2∆
>

µ

`sN (s−1)ε
=
|F|/N s

`sN (s−1)ε
>
`sN

s(1+ε)/N s

`sN (s−1)ε
= N ε.

This completes the proof, as

Pr1/N -biased W⊆X
(
W contains no hyperedge of F

)
= Pr

(∧
f∈F Λf

)
6 exp

(
−min(µ/2, µ2/2∆)

)
6 e−N

ε
.

5 ?-Closure

Define classes I and J of n-vertex graphs by

I = {H : VH = [n], supp(H) < k/2}, J = {H1 ∪H2 : H1, H2 ∈ I} \ I.

That is, I is the class of n-vertex graphs with fewer than k/2 non-isolated vertices, and J is the
class of unions of pairs of graphs in I having at least k/2 non-isolated vertices.

Observation 7. For all monotone graph function f and g, note that

M(f ∨ g) ⊆M(f) ∪M(g), M(f ∧ g) ⊆ {H1 ∪H2 : H1 ∈M(f), H2 ∈M(g)}.

(That is, every minterm of f ∨ g is a minterm of f or a minterm of g, while every minterm of f ∨ g
is the union of a minterm of f and a minterm of g.) Thus, ifM(f),M(g) ⊆ I, thenM(f ∨ g) ⊆ I
and M(f ∧ g) ⊆ I ∪ J .

It follows that if C is a monotone circuit on graphs and H ∈ M(C ) \ I, then there is a node
ν ∈ C such that M(ν) ∩ S(H) ∩ J 6= ∅ (i.e., some subgraph of H is both a minterm of ν and
belongs to the class J ). We will extend this observation later on in Lemma 14.

5.1 ?-Closed Functions

We define a closure operator f 7−→ f? in the lattice of monotone graph functions, that is, an
operator satisfying f 6 f? and (f?)? = f? and (f ∧ g)? = f? ∧ g?. (Recall that G− = G(n, p−)
where p−(n) = n−

2
k−1

(1+δ) and δ > 0 is fixed.)

Definition 8 (?-Closed Monotone Graph Functions). A monotone graph function f is ?-closed if
for every H ∈ I ∪ J ,

E[f(G− ∪H)] > 1− e−nδ =⇒ f(H) = 1.
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Equivalently, f is ?-closed if E[f(G− ∪H)] /∈ [1− e−nδ , 1) for all H ∈ I ∪ J .
Note that conjunctions of ?-closed functions are ?-closed. It follows that for every f , there

exists a unique minimal ?-closed function which is > f . We denote this function by f? and called
it the ?-closure of f .

The key property of ?-closed functions follows from our combinatorial main lemma (Lemma 6).

Lemma 9 (?-Closed Functions Have Few Minterms in I ∪ J ). If f is ?-closed, then for every
H ∈ I ∪ J with |EH | = s, we have |{H ′ ∈M(f) : H ∼= H ′}| < o(ns(

2
k−1

+2δ)).

Proof. Suppose f is ?-closed and let H ∈ I ∪ J with |EH | = s. Assume, for contradiction, that
|{H ′ ∈M(f) : H ∼= H ′}| > Ω(ns(

2
k−1

+2δ)). Let X =
(

[n]
2

)
and define s-uniform hypergraph F ⊆

(
X
s

)
by F = {EH′ : H ′ ∈ M(f), H ∼= H ′}. Let N = n

2
k−1

(1+δ) (= 1/p−) and ε = ( 2
k−1(1 + δ))−1δ,

so that N ε = nδ. Note that |F| > ω(N s(1+ε)) (since 2
k−1 + 2δ > 2

k−1(1 + δ)(1 + ε), by a simple
calculation). By Lemma 6, F contains a (1/N, e−N

ε
)-sunflower over some Y . Letting H0 be the

graph ([n], Y ), this means

E[f(G− ∪H0)] > Pr(∃H ′ ∈M(f) such that H ∼= H ′ and G− ∪H0) > 1− e−Nε
= 1− e−nδ .

Note that |Y | < s and hence H0 is a proper subgraph of some H ′ ∈ M(f) isomorphic to H.
Since f is ?-closed and H0 ∈ I ∪ J (as H0 ⊆ H ′ ∈ I ∪ J ), it follows that that f(H0) = 1. But
since H0 is proper subgraph of H ′, this contradicts the fact that H ′ is a minterm of f .

Lemmas 10, 11 and 12 state some additional properties of ?-closed functions.

Lemma 10 (?-Closure Algorithm). Let f be a monotone graph function and consider the following
algorithm. Let f0 = f . Starting with i = 1, output fi−1 if it is ?-closed; otherwise, choose any
Hi ∈ I ∪ J such that E[fi−1(G−∪Hi)] ∈ [1−e−nδ , 1), let fi = fi−1∨IndHi , increment i and repeat.
This algorithm terminates after t = nO(1) iterations and outputs ft = f?.

Proof. The algorithm clearly terminates after at most |I ∪ J | 6 nO(1) iterations, since each graph
in I ∪ J can occur as Hi only once. Correctness of the algorithm follows from the fact that
ft = f ∨ (IndH1 ∨ · · · ∨ IndHt) and f?(Hi) = 1 for i = 1, . . . , t (by induction).

The next lemma says that f? approximates f extremely well on G− ∪H for every graph H.

Lemma 11. For every monotone graph function f and graph H (not necessarily in I ∪ J ), we
have Pr

(
f(G− ∪H) 6= f?(G− ∪H)

)
6 nO(1)e−n

δ
.

Proof. Let t and H1, . . . ,Ht and f0, . . . , ft be as in Lemma 10.

Pr
(
f(G− ∪H) 6= f?(G− ∪H)

)
6 tPr

(
fi−1(G− ∪H) 6= fi(G− ∪H)

)
= tPr

(
fi−1(G− ∪H) = 0 and Hi ⊆ G− ∪H

)
6 tPr

(
fi−1(G− ∪H ∪Hi) = 0

)
6 tPr

(
fi−1(G− ∪Hi) = 0

)
(by monotonicity)

6 nO(1)e−n
δ
.

Lemma 12. For every monotone graph function f , we have M(f?) ⊆M(f) ∪ I ∪ J .

Proof. Recall thatM(f1∨f2) ⊆M(f1)∪M(f2) for all monotone graph functions f1 and f2. Thus,
M(f?) =M(f ∨ (IndH1 ∨ · · · ∨ IndHt)) ⊆M(f) ∪ {H1, . . . ,Ht}. Since all Hi belong to I ∪ J , we
have M(f?) ⊆M(f) ∪ I ∪ J .
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5.2 ?-Closed Approximation

We now extend the notion of ?-closure to monotone circuits with fan-in 2. Define an operation ∨
on monotone graph functions by f ∨ g = (f ∨ g)?. If C is a monotone circuit on graphs with fan-in
2, let C denote the {∧,∨}-circuit obtained from C simply by replacing ∨-gates with ∨-gates. Note
that nodes of C compute a ?-closed functions. We call C the ?-closed approximation of C . For
every node ν ∈ C , let ν denote the function computed at the corresponding node in C . Note that
ν is possibly a different from ν?, although ν(G) 6 ν?(G) 6 ν(G) for all graphs G.

The next lemma says that C approximates C extremely well on G− ∪H for all graphs H (so
long as |C | 6 nO(1)).

Lemma 13. For every graph H, we have Pr
(
C (G− ∪H) 6= C (G− ∪H)

)
6 |C |nO(1)e−n

δ
.

Proof. Note that if ν(G− ∪H) = ν?(G− ∪H) for all ν ∈ C , then C (G− ∪H) = C (G− ∪H). Thus,

Pr
(
C (G− ∪H) 6= C (G− ∪H)

)
6 Pr

(
∃ν ∈ C , ν(G− ∪H) 6= ν?(G− ∪H)

)
6
∑

ν∈C Pr
(
ν(G− ∪H) 6= ν?(G− ∪H)

)
6 |C |nO(1)e−n

δ
(by Lemma 11).

We now state a key property of minterms of nodes in C along the lines of Observation 7.

Lemma 14. For every H ∈M(C ) \ I, there is a node ν ∈ C such that M(ν) ∩ S(H) ∩ J 6= ∅.

Proof. Assume that M(ν) ∩ S(H) ∩ J = ∅ for all ν ∈ C . We will show, by induction, that
M(ν) ∩ S(H) ⊆ I for all ν ∈ C . This establishes the lemma, since it implies M(C ) ∩ S(H) ⊆ I
(taking ν to be the output node of C ).

In the base case where ν is an input node (corresponding to a potential edge e), note that ν and
ν compute the same function (testing whether a graph contains the edge e). Clearly, M(ν) ⊆ I
since the unique minterm (the graph whose only edge is e) has only 2 non-isolated vertices (and
2 < k/2 as k > 5). Therefore M(ν) ∩ S(H) ⊆ I.

For the induction step, first consider the case that ν = ν1 ∧ ν2 where (by the induction hypoth-
esis) M(νi) ∩ S(H) ⊆ I for i = 1, 2. Suppose that F ∈ M(ν) ∩ S(H). We will show that F ∈ I
(and thus M(ν) ∩ S(H) ⊆ I). By Lemma 12,

M(ν) =M(ν1 ∨ ν2) =M((ν1 ∨ ν2)?) ⊆M(ν1 ∨ ν2) ∪ I ∪ J ⊆M(ν1) ∪M(ν2) ∪ I ∪ J .

We now consider four cases depending whether F belongs toM(ν1),M(ν2), I or J . If F ∈ I, there
is nothing to prove. Note that F /∈ J since F ∈ S(H) and we assumed thatM(ν)∩S(H)∩J = ∅.
If F ∈ M(νi) for some i ∈ {1, 2}, then since M(νi) ∩ S(H) ⊆ I, we have F ∈ I. Therefore
M(ν) ∩ S(H) ⊆ I.

Finally, suppose ν = ν1∧ν2 where (by the induction hypothesis)M(νi)∩S(H) ⊆ I for i = 1, 2.
Again consider F ∈ M(ν) ∩ S(H). Since ν = ν1 ∧ ν2, there exist F1 ∈ M(ν1) ∩ S(H) and
F2 ∈ M(ν2) ∩ S(H) such that F = F1 ∪ F2. We have F1, F2 ∈ I and hence F ∈ I ∪ J . Since
M(ν) ∩ S(H) ∩ J = ∅, it follows that F ∈ I. Therefore M(ν) ∩ S(H) ⊆ I.

6 Theorem 1: Random k-Cliques Versus Subcritical G−

Let C be a polynomial-size monotone circuit on n-vertex graphs and assume that E[C (random k-
clique)] > Ω(1) and E[C (G−)] < 1−e−no(1)

. To prove Theorem 1, we will show that |C | > ω(nk/4).
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Lemma 15. |{A ∈
([n]
k

)
: KA ∈M(C )}| 6 Ω(nk).

Proof. Since C > C , we have E[C (random k-clique)] > Ω(1). To prove the lemma, it clearly
suffices to show that E[C (Q)] < o(1) where Q is uniformly distributed among n-vertex graphs
whose non-isolated part is isomorphic to an k-clique minus an edge.

For contradiction, assume that E[C (Q)] > Ω(1). For sufficiently small δ (precisely: for any
small enough δ so that p−(n) is supercritical for the existence of k-cliques minus an edge), we have

E[C (G− ∪Q)] > 1− e−nΩ(1)

by a standard application of Janson’s inequality (using only that fact that C is a monotone func-
tion). But by Lemma 13,

E[C (G− ∪Q)] 6 E[C (G− ∪Q)] +O(|C |n`e−nδ) < 1− e−no(1)
+ nO(1)e−n

δ
< 1− e−no(1)

.

This implies that 1 − e−nΩ(1)
< 1 − e−no(1)

and hence Ω(1) < o(1), which is absurd. Therefore,
E[C (Q)] < o(1).

Lemma 16. There exist ν ∈ C and H ∈ J such that |{H ′ ∈M(ν) : H ∼= H ′}| > Ω(nsupp(H))/|C |.
Proof. For contradiction, assume |{H ′ ∈ M(ν) : H ∼= H ′}| < o(nsupp(H))/|C | for all ν ∈ C and
H ∈ J . By Lemma 14, for all A ∈

([n]
k

)
such that KA ∈ M(C ), we can fix choices of ν(A) ∈ C

such that H(A) ∈M(ν(A))∩S(KA)∩J . Choose representatives F1, . . . , F` from each isomorphism
class of graphs in J . Note that each graph isomorphic to Fi belongs to S(KA) for O(nk−supp(Fi))
different A ∈

([n]
k

)
. It follows that for every ν ∈ C ,∣∣{A ∈ ([n]

k

)
: KA ∈M(C ), ν(A) = ν

}∣∣ =
∑

i∈{1,...,`}

∣∣{A ∈ ([n]
k

)
: KA ∈M(C ), ν(A) = ν, H(A) ∼= Fj

}∣∣
6

∑
i∈{1,...,`}

∣∣{(A,H) : A ∈
([n]
k

)
, H ∈M(ν) ∩ S(KA), H ∼= Fj

}∣∣
<

∑
i∈{1,...,`}

O(nk−supp(Fi))o(nsupp(Fi))/|C |

6 o(nk)/|C | (since ` = O(1)).

Summing over all ν ∈ C , we have |{A ∈
([n]
k

)
: KA ∈ M(C )}| < o(nk). But this contradicts

Lemma 15. Therefore, there exist ν and H as in the statement of the lemma.

We now show that |C | > ω(nk/4). By Lemma 16, there exist ν ∈ C and H ∈ J such that
|{H ′ ∈ M(C ν) : H ∼= H ′}| > Ω(nsupp(H))/|C |. On the other hand, since C ν is ?-closed, Lemma 9
implies |{H ′ ∈M(C ν) : H ∼= H ′}| 6 O(n|EH |(

2
k−1

+2δ)). Therefore,

logn |C | > supp(H)− |EH |( 2
k−1 + 2δ)− o(1).

Since δ can be chosen arbitrarily small,

lim sup
n→∞

logn |C | > min
H∈J

supp(H)− 2
k−1 |EH |.

Among all graphs H ∈ J , this quantity turns out to be minimal when H is isomorphic to an
dk2e-clique minus an edge (by a straightforward argument). Thus, we have

lim sup
n→∞

logn |C | >
⌈
k
2

⌉
− 2

k−1

((dk/2e
2

)
− 1
)

=

{
k+1

4 + 9
4(k−1) if k even,

k+1
4 + 2

k−1 if k odd.

Therefore |C | > ω(nk/4), concluding the proof of Theorem 1.
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7 Theorem 2: ω(nk/4) Lower Bound

We now prove Theorem 2, the ω(nk/4) lower bound on the size of monotone circuits solving k-
clique on random graphs. Theorem 2 follows from Theorem 1 via the following lemma. (Recall
that Gθ = G(n, n−2/(k−1)) is a random graph at the k-clique threshold.)

Lemma 17. Suppose f is a boolean function which solves k-clique on random graphs. Then

E
[
f(Gθ ∪G−)

∣∣ωk(Gθ) = 0
]
< o(1), E

[
f(Gθ ∪KA)

∣∣ωk(Gθ) = 0
]
> 1− o(1).

The proof, which involves showing the statistical indistinguishability of two random graph
distributions, is given in Appendix B.

Proof of Theorem 2. Suppose C is a monotone circuit which solves the k-clique problem on random
graphs. For any graph H, form a new monotone circuit CH simply by relabeling input nodes in C
corresponding to edges in H by the constant 1. Note that CH(G) = C (G ∪H) for all graphs G.

Because C solves k-clique on random graphs, Lemma 17 directly implies

E
[
CGθ(G−)

∣∣ωk(Gθ) = 0
]
< o(1), E

[
CGθ(KA)

∣∣ωk(Gθ) = 0
]
> 1− o(1).

Therefore, there exists a graph H such that E[CH(KA)] > 1/2 and E[CH(G−)] < 1/2. Theorem 1
applied to the circuit CH implies (|C | =) |CH | > ω(nk/4), completing the proof of Theorem 2.

8 Theorem 3: nk/4+O(1) Upper Bound

The monotone circuits described in this section are adapted from the AC0 circuits of Amano [3]. As
opposed to previous sections, here we consider constant-depth monotone circuits with unbounded
fan-in.

Fix a large constant c and small ε > 0 (to be determined). For j ∈ {1, . . . , k}, let tj =
min{1, (j − 1)(α− ε)} and fix any Sj of [n] into sets of size ntj (i.e., bntjc or bntjc+ 1).

Following Amano [3], we say that a graph G is good if for all j ∈ {2, . . . , k} and every (j − 1)-
clique A in G, it holds that

∣∣{b ∈ X : A ∪ {b} is a clique in G
}∣∣ 6 c for all sets X in the partition

Sj . Note that every k-clique (i.e., KA for every A ∈
([n]
k

)
) is good.

Lemma 18 (Amano [3]). For sufficiently small ε and large c, the random graph G(n, p) is almost
surely good for every function p : N −→ [0, 1] such that p(n) < o(p+(n)).

We now define a monotone circuit C that solves k-clique on all good graphs. As a first step,
we fix a set F of (hash) functions from [n] to [log n] (i.e., {1, . . . , dlog ne}) such that |F| = O(log n)
and

(†) ∀A ∈
(

[n]
6c

)
∃f ∈ F |f(A)| = |A|.

(Such F exists by a probabilistic argument: simply pick O(log n) functions [n] −→ [log n] uniformly
at random.)

For all j ∈ {1, . . . , k} and (S1, . . . , Sj) ∈ S1×· · ·×Sj and f1, . . . , fj ∈ F and w1, . . . , wj ∈ [log n]
and aj ∈ Sj such that fj(aj) = wj , we (inductively) define monotone circuits

C
S1,...,Sj ;f1,...,fj ;w1,...,wj
aj =

∧
i∈{1,...,j−1}

∨
ai∈Si : fi(ai)=wi

edge{ai,aj} ∧ C S1,...,Si;f1,...,fi;w1,...,wi
ai .
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Here edge{ai,aj} is the input node (variable) corresponding to the potential edge between vertices

ai and aj . Note that for j = 1, the circuit C S1;f1;w1
a1 computes the constant function 1 (since

∧
i∈∅

is vacuously 1). We now define C by

C =
∨

S1∈S1

∧
f1∈F

∨
w1∈[logn]

· · ·
∨

Sk∈Sk

∧
fk∈F

∨
wk∈[logn]

∨
ak∈Sk : fk(ak)=wk

C S1,...,Sk;f1,...,fk;w1,...,wk
ak

.

The next two lemmas are proved in Appendix C.

Lemma 19. If G contains a k-clique, then C (G) = 1.

Lemma 20. If G is good and C (G) = 1, then G contains a k-clique.

Lemma 21. C has size O(n(k/4)+2) for sufficiently small ε.

Proof. Note that |C | 6 O
(
|S1| · · · |Sk||F|k(log n)kn

)
6 O

(
n(log n)2kn

Pk
j=1 1−tj). We have

∑k
j=1 1− tj =

∑k
j=1 1−min(1, (j − 1)(α− ε)) <

(
k
2

)
ε+

∑d k−1
2
e

j=1 1− 2(j−1)
(k−1)

=
(
k
2

)
ε+

{
k
4 + 1

2 + 1
2(k−1) if k even

k
4 + 1

4 if k odd

< k
4 + 2

3 (for sufficiently small ε).

Hence, (for sufficiently small ε) we have |C | 6 O
(
n(log n)2kn(k2)ε+ k

4
+ 2

3
)

6 O(n(k/4)+2).

Proof of Theorem 3. By Lemmas 18, 19 and 20, the circuit C solves k-clique a.a.s. on G(n, p) for
every function p(n) which is o(p+(n)). On the other hand, the constant function 1 solves k-clique
a.a.s. on G(n, p) for every function p(n) which is ω(pθ(n)). Thus, for an appropriate function
m(n) (for example, m(n) = n2

√
p+pθ), C ∨ Thresholdm(n) is a constant-depth monotone of size

nk/4+O(1) solving k-clique on random graphs, where Thresholdm(n) is an O(n log n)-size constant-
depth monotone circuit which has value 1 on graphs with at least m(n) edges.

9 Future Directions

One question raised by this work is whether the ω(nk/4) average-case monotone lower bound of
Theorem 2 can be sharpened to hold for circuits solving the k-clique problem a.a.s. on G(n, p) for a
single threshold function p(n). (This sharper average-case lower bound was shown for AC0 circuits
in [18].)

Although the AC0 lower bound of [18] and the monotone lower bound of the present paper use
very different tools, it would be interesting to find a common underlying principal explaining the
similar ω(nk/4) result (perhaps a single proof that neatly generalizes both the AC0 and monotone
results).

On a deeper level, it is tempting to speculate that nk/4+Θ(1) might be the average-case com-
plexity of the k-clique problem for general boolean circuits. Of course, this would imply P 6= NP.
(We point out that the worst-case complexity of k-clique is known to be n(kw/3)+O(1), currently
≈ n0.792k+O(1), where w is the exponent of matrix multiplication [16].)
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[8] Béla Bollobás. Random Graphs (2nd Edition). Cambridge University Press, 2001.
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A Janson’s Inequality

Lemma 22 (Janson’s Inequality [13], see also Ch. 8 of [2]). Let X be a finite set and let {Ui}i∈I
be a family of subsets of X. Let W be a random subset of X such that events {x ∈ W}x∈X are
mutually independent. Let Λi be the event that Ui ⊆W . Define µ and ∆ by

µ =
∑

i∈I Pr(Λi), ∆ =
∑

i,j∈I:Ui∩Uj 6=∅ Pr(Λi ∧ Λj).

Then
Pr(
∧
i∈I Λi) 6 exp(−µ+ (∆/2)).

If ∆ > µ, then moreover
Pr(
∧
i∈I Λi) 6 exp(−µ2/2∆).

So in particular
Pr(
∧
i∈I Λi) 6 exp(−min(µ/2, µ2/2∆)).

B Proof of Lemma 17

We need one preliminary lemma.

Lemma 23. For p(n) ∈ Θ(n−2/(k−1)) and G = G(n, p) and uniform random A ∈
([n]
k

)
, distributions

(i) G conditioned on ωk(G) = 1

(ii) G ∪KA conditioned on ωk(G) = 0

have total variation distance o(1). That is,∑
n-vertex graphs H

∣∣Pr
(
G = H

∣∣ωk(G) = 1
)
− Pr

(
G ∪KA = H

∣∣ωk(G) = 0
)∣∣ < o(1).

Proof. The total variation distance between distributions (i) and (ii) is easily seen to equal

Pr
(
ωk(G ∪KA) > 2

∣∣ωk(G) = 0
)

+∑
H :ωk(H)=1

∣∣∣Pr
(
G = H

∣∣ωk(G) = 1
)
− Pr

(
G ∪KA = H

∣∣ωk(G) = 0
)∣∣∣

This is at most

Pr
(
ωk(G ∪KA) > 2

∣∣ωk(G) = 0
)

+ max
H :ωk(H)=1

∣∣∣∣∣1− Pr
(
G ∪KA = H

∣∣ωk(G) = 0
)

Pr
(
G = H

∣∣ωk(G) = 1
) ∣∣∣∣∣ .

Note that, for every graph H satisfying ωk(H) = 1, we have

Pr
(
G ∪KA = H

∣∣ωk(G) = 0
)

Pr
(
G = H

∣∣ωk(G) = 1
) =

Pr
(
ωk(G ∪KA) = 1

)
Pr
(
ωk(G) = 0

) Pr
(
ωk(G) = 0

∣∣G ∪KA = H
)
.

(To see this, first notice that Pr
(
G = H

∣∣ωk(G) = 1
)

= Pr
(
G ∪KA = H

∣∣ωk(G ∪KA) = 1
)
. The

rest is just Bayes’ Theorem and cancellation.) Therefore, it suffices to show

(a) Pr
(
ωk(G ∪KA) > 2

∣∣ωk(G) = 0
)
< o(1),
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(b)
Pr
(
ωk(G ∪KA) = 1

)
Pr
(
ωk(G) = 0

) = Θ(1),

(c) Pr
(
ωk(G) = 0

∣∣G∪KA = H
)
> 1−o(1) where H is an arbitrary graph satisfying ωk(H) = 1.

Having thus broken up the problem, we briefly argue each of (a), (b), (c). For (a), we have

Pr
(
ωk(G ∪KA) > 2

∣∣ωk(G) = 0
)

6
∑

B∈([n]
k ) : |A∩B|>2

Pr
(
KB \KA ⊆ G

∣∣ωk(G) = 0
)

6
∑

B∈([n]
k ) : |A∩B|>2

Pr
(
KB \KA ⊆ G

)
(by Harris’ Theorem)

=
k−1∑
j=2

(
n− k
k − j

)
p(
k
2)−(j2) 6

k−1∑
j=2

O
(
nk−j−

2
k−1

((k2)−(j2))) 6 O(n−1).

For (b), note that

Pr
(
ωk(G ∪KA) = 1

)
Pr
(
ωk(G) = 0

) = Pr
(
ωk(G ∪KA) = 1

∣∣ωk(G) = 0
)

+
Pr
(
ωk(G ∪KA) = 1 and ωk(G) = 1

)
Pr
(
ωk(G) = 0

) .

Using the fact that Pr
(
ωk(G) = 0

)
> Ω(1) (since p is a threshold function), it suffices to show

Pr
(
ωk(G ∪KA) = 1

∣∣ωk(G) = 0
)
> 1− o(1),

Pr
(
ωk(G ∪KA) = 1 and ωk(G) = 1

)
< o(1).

The first inequality follows immediately from (a); the second inequality follows from similar calcu-
lation to (a).

Finally, for (c), letting H be an arbitrary graph with a unique k-clique (call it B), we have

Pr
(
ωk(G) = 0

∣∣G ∪KA = H
)

= Pr
(
ωk(G) = 0

∣∣G ∪KB = H
)

= Pr
(
ωk(G) = 0

∣∣G \KB = H \KB

)
= Pr

(
KB * G

∣∣G \KB = H \KB

)
= Pr

(
KB * G

)
(by independence)

= p(
k
2) = O(n−k).

Proof of Lemma 17. To prove the first inequality of Lemma 17, we note that Gθ ∪G− has distribu-
tion G(n, pθ + p− − pθp−) and pθ(n) + p−(n)− pθ(n)p−(n) is a threshold function in Θ(n−2/(k−1)).
In particular, the event that ωk(Gθ ∪G−) = 0 holds with probability > Ω(1). Therefore,

E
[
f(Gθ ∪G−)

∣∣ωk(Gθ ∪G−) = 0
]
< o(1).

It now suffices to show that ωk(Gθ) = 0 ⇐⇒ ωk(Gθ ∪ G−) = 0 holds a.a.s. This follows from
the fact that Pr

(
ωk(Gθ) = 0

)
∼ Pr

(
ωk(Gθ ∪ G−) = 0

)
, which is a consequence of pθ(n) ∼

pθ(n) + p−(n)− pθ(n)p−(n) (by the well-known asymptotics of E
[
ωk(G(n, p))

]
, see e.g. [8]).

For the second inequality of Lemma 17, we note that because pθ(n) is a threshold function,
random graphs

• Gθ ∪KA conditioned on ωk(Gθ) = 0

• Gθ conditioned on ωk(Gθ) = 1

have total variation distance o(1) by Lemma 23. It follows that

E
[
f(Gθ ∪KA)

∣∣ωk(Gθ) = 0
]
> E

[
f(Gθ)

∣∣ωk(Gθ) = 1
]
− o(1) > 1− o(1).
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C Proofs of Lemmas 19 and 20

Proof of Lemma 19. Suppose {a1, . . . , ak} is a k-clique in G. We will show, even stronger than
Lemma 19, that C ′(G) = 1 for the circuit C ′ 6 C defined by

C ′ =
∨

S1∈S1

· · ·
∨

Sk∈Sk

∧
f1∈F

∨
w1∈[logn]

· · ·
∧
fk∈F

∨
wk∈[logn]

∨
ak∈Sk:fk(ak)=wk

C S1,...,Sk;f1,...,fk;w1,...,wk
ak

.

For all j ∈ [k], let Sj ∈ Sj be such that aj ∈ Sj . Let f1 be any element of F (adversarily chosen). We
select w1 = f1(a1) (in order to satisfy C ′). Now let f2 be any element of F (again adversarily cho-
sen). We select w2 = f2(a2), and so on. After k rounds, it is clear that C

S1,...,Sj ;f1,...,fj ;w1,...,wj
aj (G) = 1

for all j ∈ [k]. Hence C ′(G) = 1.

Proof of Lemma 20. Suppose G is good and C (G) = 1. Fix a witness S1 = {a1} (for the first∨
S1∈S1

, viewed as an existential quantifier). Let f1 be any function in F (adversarily chosen,
corresponding to the universal quantifier

∧
f1∈F ). We then fix a witness w1 with respect to S1

and f1. Note that f1(a1) = w1 has to hold. In particular, note that a1 is the unique element of
S1 ∩ f−1

1 (w1) such that C S1;f1;w1
a1 = 1.

Next fix a witness S2 with respect to S1, f1, w1. Since G is good, there are at most c different
b2 ∈ S2 such that {a1, b2} is an edge in G. By definition of F , there is a function f2 ∈ F which
takes different values on all elements of the set {b2 ∈ S2 : {a1, b2} is an edge in G}. Fix a witness
w2 with respect to S1, S2, f1, f2, w1. Note that there exists unique a2 ∈ S2 ∩ f−1

2 (w2) such that
C S1,S2;f1,f2;w1,w2
a2 (G) = 1.

We continue in this manner. Assume we have chosen S1, . . . , Sj , f1, . . . , fj , w1, . . . , wj such that
there exist unique ai ∈ Si ∩ f−1

i (wi) satisfying C S1,...,Si;f1,...,fi;w1,...,wi
ai (G) = 1 for i ∈ {1, . . . , j}. Fix

a witness Sj+1 with respect to S1, . . . , Sj , f1, . . . , fj , w1, . . . , wj . Since G is good and {a1, . . . , aj}
is a clique in G, there are at most c different bj+1 ∈ Sj+1 such that {a1, . . . , aj , bj+1} is a clique in
G. By definition of F , there is a function fj+1 ∈ F which takes different values on all elements of
the set {bj+1 ∈ Sj+1 : {a1, . . . , aj , bj+1} is a clique in G}. Let wj+1 be a witness with respect to
S1, . . . , Sj+1, f1, . . . , fj+1, w1, . . . , wj . Once again there is a unique aj+1 ∈ Sj+1 ∩ f−1

j+1(wj+1) such

that C
S1,...,Sj+1;f1,...,fj+1;w1,...,wj+1
aj+1 (G) = 1.

Now consider the sequence of vertices a1, . . . , ak produced by this argument. To conclude the
proof, note that {a1, . . . , ak} must be a k-clique in G.
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