
Tight Bounds for Clock Synchronization

[Extended Abstract]
∗

Christoph Lenzen
Computer Engineering and
Networks Laboratory (TIK)
ETH Zurich, 8092 Zurich,

Switzerland
lenzen@tik.ee.ethz.ch

Thomas Locher
Computer Engineering and
Networks Laboratory (TIK)
ETH Zurich, 8092 Zurich,

Switzerland
lochert@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and
Networks Laboratory (TIK)
ETH Zurich, 8092 Zurich,

Switzerland
wattenhofer@tik.ee.ethz.ch

ABSTRACT
We present a novel clock synchronization algorithm and pro-
ve tight upper and lower bounds on the worst-case clock
skew that may occur between any two participants in any
given distributed system. More importantly, the worst-case
clock skew between neighboring nodes is (asymptotically)
at most a factor of two larger than the best possible bound.
While previous results solely focused on the dependency of
the skew bounds on the network diameter, we prove that
our techniques are optimal also with respect to the maxi-
mum clock drift, the uncertainty in message delays, and the
imposed bounds on the clock rates. The presented results
all hold in a general model where both the clock drifts and
the message delays may vary arbitrarily within pre-specified
bounds.

Furthermore, our algorithm exhibits a number of other
highly desirable properties. First, the algorithm ensures
that the clock values remain in an affine linear envelope of
real time. A better bound on the accuracy with respect to
real time cannot be achieved in the absence of an external
timer. Second, the algorithm minimizes the number and size
of messages that need to be exchanged in a given time pe-
riod. Moreover, only a small number of bits must be stored
locally for each neighbor. Finally, our algorithm can easily
be adapted for a variety of other prominent synchronization
models.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems; F.2.2 [An-
alysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Computations on Dis-
crete Structures

∗All proofs are omitted and can be found in [10, 11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’09, August 10–12, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-396-9/09/08 ...$10.00.

General Terms
Algorithms, Theory

1. INTRODUCTION
There is a wide range of tasks in distributed systems re-

quiring its participants to maintain a common notion of
time, which necessitates the use of a synchronization al-
gorithm. In distributed systems, the participants synchro-
nize by perpetually sending messages containing information
about their current state and by applying a clock synchro-
nization algorithm to update their clocks.

We model a distributed system as a graph G = (V,E),
where the nodes in V denote the participants in the system
and each edge {v, w} ∈ E represents a bidirectional com-
munication link between v and w. Each node is equipped
with a hardware clock with a bounded but variable drift. A
logical clock value is computed according to the local hard-
ware clock value and the messages received from neighboring
nodes. Since it is reasonable to expect that events occuring
at different real times also happen at different logical times,
we demand that nodes increase the value of their logical
clocks at least at a certain minimum rate. The goal is to
minimize the skew between the logical clocks. The main
difficulty lies in the fact that the nodes know neither the
potentially variable hardware clock rates nor the message
delays, which can also vary arbitrarily. Moreover, there is
no external clock that could inform the nodes about the real
time once in a while.

Naturally, one objective is to minimize the skew between
any two nodes in the graph, regardless of the distance in G
between them. We call the maximum worst-case skew be-
tween any two nodes in the graph the global skew. Apart
from minimizing the global skew, it is essential for several
distributed applications that the clock skew between neigh-
boring nodes is as small as possible. One could even think of
applications where the global skew is not of great concern,
but any node only needs to be well synchronized with nodes
in its vicinity. This is the case if occurrences of events are
only of local importance and do not bear any (immediate)
significance for nodes that are not close-by.1 The so-called
gradient property, which has been introduced in [4], captures
this optimization criterion. It requires that the clock skew
between any two nodes v, w is bounded by a monotonically
increasing function of their distance d(v, w). Thus, neigh-

1A prominent example is TDMA in wireless networks where
nodes depend on locally well synchronized time slots.

boring nodes should always be well synchronized, whereas
the logical clock values of distant nodes are allowed to de-
viate more. We will refer to the maximum worst-case clock
skew between neighboring nodes as the local skew.

Ideally, an algorithm guarantees good bounds on both the
global and the local skew. It has been shown that the small-
est possible global skew that any algorithm can achieve is
D/2 [2], where D denotes the diameter of the graph.2 As
far as the local skew is concerned, it has been proven in
the surprising work by Fan and Lynch [4] that a skew of
Ω(logD/ log logD) between neighboring nodes cannot be
prevented. While it is fairly easy to come up with an al-
gorithm guaranteeing a bound of Θ(D) on the global skew,
finding an algorithm with a strong gradient property is more
challenging. At the time when Fan and Lynch presented
their lower bound, no algorithm guaranteeing a local skew
sublinear in the diameter was known. In the meantime,
the upper bound on the local skew has been improved to
O(
√
D) [13] and subsequently to O(logD) [9]. However,

both the upper and the lower bounds so far neglected the
influence of other parameters such as the maximum clock
drift rate, leaving room for improvements not visible when
considering only the network diameter.

The objective of this work is to provide tight bounds on
the degree of synchronization that can be achieved, taking
many parameters such as the delay uncertainty and the max-
imum clock drift rate into account. In other words, we show
how the bounds on the worst-case skews depend on all these
parameters. Another aspect of clock synchronization, which
so far has not received much attention, is that a practical
clock synchronization algorithm must ensure that the rates
of progress of all logical clock values are always within spe-
cific bounds, i.e., the clock values are not allowed to change
substantially in a short time.3 However, bounding the clock
rates inhibits the ability of an algorithm to react to clock
skews, which have to be kept as small as possible. Apart
from bounding the logical clock rates in order to ensure that
the clock values do not change abruptly, it may further be
desirable to keep the logical clock values as close to real time
as possible, i.e., an algorithm should guarantee the best pos-
sible real-time approximation in the absence of an external
timer.

We propose a simple algorithm that bounds the minimum
and maximum progress of the logical clocks and ensures that
the logical clock values always remain within an affine linear
envelope of real time. We prove matching bounds on both
the global and the local skew of this algorithm. Given the
discrete nature of clocked computational devices, we allow
the algorithm to act only at certain clock pulses, which are
periodically triggered by the system clock. What is more,
we show that the message frequency can be kept quite low
without increasing the worst-case clock differences signifi-
cantly, which implies that techniques such as piggybacking
can be employed. This is a viable option especially consider-
ing that we only require a few bits to be sent in each message,
which can be included in (or appended to) any message sent
by another application. To round off our analysis, we dis-

2For ease of presentation, we normalize the uncertainty in
message delays to one in this introduction and the related
work section as all bounds depend linearly on it.
3For instance, if velocities are to be determined with the
help of local clocks, clock jumps would severely deteriorate
the accuracy of the measurements.

cuss how to adapt our algorithm to other synchronization
models, such as external synchronization where a source of
real time is available to some of the network participants,
or (non-Byzantine) failures. These results imply that the
techniques in this work offer asymptotically optimal solu-
tions to the synchronization problem with respect to several
optimization criteria for a wide range of models.

2. RELATED WORK
There is a large body of work on the fundamental prob-

lem of synchronizing clocks in distributed systems. Most
work mainly focuses on bounding the skew that may oc-
cur between any two clocks and also the communication
costs that are required in order to guarantee a certain de-
gree of synchronization (see, e.g., [14, 19, 21, 23]). It has
been shown that a skew of D/2 cannot be avoided on any
graph G of diameter D [2]. We will prove a stronger lower
bound of roughly D for clock synchronization algorithms
that strive to keep all clock values within a linear envelope of
real time. The clock synchronization algorithm by Srikanth
and Toueg [23] achieves a bound of O(D) on the skew of any
two clocks at all times and is thus asymptotically optimal.
The authors further show that the accuracy of their algo-
rithm with respect to real time is also optimal as all clocks
are always within a linear envelope of real time. However,
their algorithm incurs a skew of Θ(D) between neighboring
nodes in the worst case.

In their seminal work [4] that introduced the problem of
synchronizing clocks of close nodes as accurately as possi-
ble, Fan and Lynch showed that no algorithm can avoid a
clock skew of Ω(logbD) between neighboring nodes, where
b ∈ O(logD). The only imposed constraint is that nodes are
required to increase their clock values at a given minimum
progress rate, which is quite natural as otherwise events that
occur at different (real) times may happen at the same log-
ical time if an algorithm could simply halt the clocks. Sub-
sequently, it has been shown that this bound also holds if
all messages arrive instantaneously, but an adversary can
determine when synchronization messages may be sent [16].
However, Fan and Lynch treated the maximum hardware
clock drift ε as a constant; taking it into account as a pa-
rameter reveals that b ∈ O((logD)/ε). We improve their
result to b ∈ Θ(1/ε), i.e., any algorithm may experience a
local skew of Ω(log1/εD). Furthermore, we show that if
clock rates bounded by constants, b depends linearly on the
difference of the maximum and the minimum rate. In par-
ticular, if logical clocks must guarantee an optimal drift of
O(ε), the bound on the local skew becomes Θ(logD).

There has also been a lot of (more practical) work on
clock synchronization for specific computing environments.
For example, the clock synchronization problem in wireless
sensor networks has been extensively studied [3, 6, 15, 20].
Synchronizing clocks is also an important issue for other
forms of distributed systems such as the Internet [17] or
systems-on-a-chip [5]. However, apart from processor de-
sign, where one seeks to control signal delays by means of
placement and wiring (see, e.g., [7] and references therein),
synchronizing close-by devices particularly well has scarcely
been considered as an optimization criterion. In fact, to the
best of our knowledge, the only attempt has been made in
the context of sensor networks [22].

The first algorithm guaranteeing a sublinear bound on the
clock skew between neighboring nodes achieved a bound of

O
“
ε
√
D
”

[12, 13], a result that has recently been gener-

alized to dynamic networks [8]. For static networks, the
upper bound has been improved to O(logD) [9]. However,
the algorithm that guarantees a logarithmic bound has sev-
eral disadvantages: Apart from being quite complicated, the
algorithm has the undesirable property that the clock values
can “jump” by Θ(logD) in a single time step, and thus the
clock values may not change smoothly. Moreover, both the
message frequency and the size of the messages are fairly
large, which prohibits techniques such as piggybacking and
which may imply that the algorithm is not useful in practice.
What is more, the base of the logarithm can hardly be in-
creased if ε becomes small. Since typically ε� 1, a notable
gap to the lower bound remains. The algorithm presented
in this work does not have these shortcomings.

3. MODEL
We model a distributed system as a connected, undirected

graph G = (V,E) of diameter D, where nodes represent
computational devices and egdes represent bidirectional
communication links. Each node v can communicate with
all neighboring nodes by exchanging messages. The set of
v’s neighbors is denoted by Nv := {w ∈ V | {v, w} ∈ E}.
We assume that, for any two nodes u,w ∈ Nv, node v can
distinguish u from w, e.g., by means of a port numbering or
node identifiers, and also that all communication is reliable,
i.e., messages are never lost. However, communication takes
some time, and this delay may vary. In general, a message
delay may consist of two parts, a fixed known delay and an
additional variable delay. Since any fixed fraction of the to-
tal delay can be added to a received clock value, we define it
to be zero (we will discuss the impact of this simplification
in Section 7.3). Thus, the time that passes from the moment
a message is sent until the recipient can act upon it may be
any value in the range [0, T], where T is the delay uncer-
tainty. While the bound T is unknown to the algorithm, we
assume that the nodes know an upper bound T̂ ∈ O(T) on
T .

Each node v is equipped with a hardware clock Hv which
starts running at the time tv when v is initialized. The first
node starts its clock at real time t = 0. An initialization
message is then flooded through the network in order to
start the clocks at the other nodes. We denote the value
of the hardware clock at real time t by Hv(t), i.e., Hv :
R+

0 → R+
0 is a monotonically increasing function. The value

of the hardware clock of v is 0 until time tv and Hv(t) :=R t
tv
hv(τ) dτ afterwards, where hv(τ) is the hardware clock

rate of v at time τ . The clock rates may vary over time, but
we assume that there is a constant 0 < ε < 1 such that the
following condition holds.

∀v ∈ V ∀t ≥ tv : 1− ε ≤ hv(t) ≤ 1 + ε.

While the exact value of ε is unknown, we assume that the
nodes know an upper bound ε̂ that is strictly smaller than
one, i.e., hardware clocks guarantee a strictly positive mini-
mum progress rate.

Since a computational device typically synchronizes its
operations internally based on a clock pulse, we assume that
a node v ∈ V performs computations and sends and receives
messages only at such clock pulses. Each node v has a clock
pulse at time t if Hv(t) is an integer value.4 We call such a

4Of course, only tick events at times t ≥ tv when v has been

time a tick event at node v or simply a tick at v. Note that
this definition implies that

T ≥ 1

1− ε , (1)

as v might have to wait arbitrarily close to 1
1−ε time until it

can process a message that arrived right after the last tick
event.

Additionally, each node v has a logical clock Lv, which is
also a function Lv : R+

0 → R+
0 whose value until time tv

is 0 as well. It is desirable to keep all logical clock values
within an (affine) linear envelope of real time. Therefore, we
require that any algorithm satisfies the following condition,
which takes the different initialization times tv into account.

∀v ∈ V ∀ ticks t at v : (1−ε)(t−tv) ≤ Lv(t) ≤ (1+ε)t. (2)

Moreover, we demand that the logical clocks behave nor-
mally in the sense that the logical clock values may not
change dramatically in a short time. Formally, there are
constants 0 < α ≤ 1− ε and 1 + ε ≤ β such that

∀v ∈ V ∀ ticks t < t′ at v :

α(t′ − t) ≤ Lv(t′)− Lv(t) ≤ β(t′ − t). (3)

The increased (or lowered) clock rates of the logical clocks al-
low the nodes to correct differences between the logical clock
values in the network. The difference between the values of
logical clocks is called clock skew. Ideally, the logical clocks
behave just like the hardware clocks even in the presence
of clock skews, albeit with a slightly worse clock drift, i.e.,
α ∈ 1−O(ε) and β ∈ 1+O(ε). Note that Condition (3) im-
plies that clocks are not allowed to run backwards and thus
the algorithm can only manipulate the logical clock value by
increasing it.

Since the algorithm modifies the value of Lv(·) at discrete
points in time, we have to specify the meaning of Lv(t) at
times where the clock value changes. If Lv is increased at
time t, we define Lv(t) to be the value after the algorithm
changed it.

A clock synchronization algorithm A executed at node v
specifies how the logical clock Lv(t) of node v is adapted
based on its hardware clock and the information received
from its neighbors up to time t in such a way that Condi-
tions (2) and (3) are satisfied. If an algorithm may only
act at certain clock pulses, the algorithm is called a discrete
clock synchronization algorithm. By contrast, an algorithm
that is capable of changing the logical clock value at any
time is referred to as a continuous clock synchronization
algorithm. While such an algorithm is slightly more pow-
erful because it does not have to wait for clock pulses, its
behavior is more restricted as Conditions (2) and (3) are
naturally expected to hold at all times. In this paper, we
mainly consider the discrete clock synchronization problem.
Not surprisingly, basically the same results can be obtained
for continuous clock synchronization (cf. [12]).

Given a clock synchronization algorithm A and a (con-
nected) graph G, an execution E specifies the delays of all
messages and also the hardware clock rates of all nodes at
each point in time when A is executed on G. Thus, the in-
formation contained in an execution completely determines
the state of the network at any time for a run of A on G.
The global and the local skew are formally defined as follows:

initialized are considered.

Definition 3.1 (Global Skew). Given the connected
graph G = (V,E) and the clock synchronization algorithm A,
the global skew is defined as the value

supE,v∈V,w∈V, t {Lv(t)− Lw(t)} ,

where E is any execution of A on G.

Definition 3.2 (Local Skew). Given the connected
graph G = (V,E) and the clock synchronization algorithm
A, the local skew is defined as the value

supE,v∈V,w∈Nv, t
{Lv(t)− Lw(t)} ,

where E is any execution of A on G.

Naturally, the goal of an algorithm A is to ensure the best
possible bounds on both the global and the local skew on
any graph G.

4. ALGORITHM
In this section, we introduce the synchronization algo-

rithm Aopt. Due to lack of space, we confine ourselves to
briefly describing the core aspects. For a more detailed dis-
cussion the reader is referred to [10].

In order to synchronize the logical clocks, any node v
must perpetually send synchronization messages informing
the neighboring nodes about its current clock value Lv. Node
v itself adapts its clock value according to the information re-
ceived from its neighbors. However, the information about
the neighboring clock values is not sufficient to guarantee
an optimal bound on the global skew, because the neighbor-
ing nodes might have similar clock values while the skew to
nodes at greater distances may be large. This problem can
be solved by including an estimate of the maximum clock
value in the network in each message. Hence, whenever a
node v sends a message, it is of the form 〈Lv, Lv + Λmax

v 〉,
where Λmax

v ≥ 0 is the estimated clock skew between v’s
clock value and the currently largest clock value. Similarly,
we define for any w ∈ Nv that Λwv is the estimated difference
between v’s and w’s clock value from v’s perspective. This
variable is updated whenever v receives a new estimate Lwv
of the current clock value of w.

At each tick, any node v ∈ V receives a set M of such
messages. The set M may consist of any number of mes-
sages from each neighbor as messages with different de-
lays may be processed at the same tick. Therefore, we de-
fine the set Lw := {Lw | 〈Lw, Lw + Λmax

w 〉 ∈ M} ∪ {0} of
all clock values received from w since the last tick event
for each neighbor w ∈ Nv.5 Analogously, let Lmax :=
{Lu + Λmax

u | 〈Lu, Lu + Λmax
u 〉 ∈ M} ∪ {0} denote the set

of estimates of the maximum clock value received from all
u ∈ Nv.

The algorithm takes three parameters, H0, µ, and κ. The
first parameter H0 ≥ 1 determines the message frequency :
As we will see, each node v sends a message to all neighbors
at the latest after its hardware clock Hv has advanced by
H0. In order to determine whether the next multiple of H0

is reached, each node v stores a variable H̃v, which holds
v’s estimate of the largest multiple of H0 that any hardware
clock has reached yet. If there are no clock skews, each
node v increases its clock value Lv by exactly 1 at each
tick, but v may increase Lv by more if its clock is behind.

5Zero is merely added to ensure that Lw is not empty.

The parameter µ > 0 bounds the progress rate in that the
algorithm demands that the logical clock value is increased
by at most 1 + µ at each tick. Given the bound ε on the
clock drift and the fact that the algorithm increases by at
least 1 and at most 1 + µ at each tick event, the amortized
logical clock rates are bounded by α = 1 − ε and β = (1 +
ε)(1 + µ). It may be desirable to keep the parameter µ as
small as possible.6 The same is true for the parameter κ,
which can be considered a “base unit” that the algorithm
uses to measure clock skew. It is beneficial to minimize this
parameter because the local skew depends linearly on it.
However, it is necessary to choose κ ∈ Ω(T). The precise
conditions that have to be met are as follows:

µ ≥ 24ε

1− ε (4)

and κ ≥ 2

„
(1 + ε)(1 + µ)

„
T +

1

1− ε

«
+ 4 + µ+ (2ε+ µ)H0

«
. (5)

Thus, for a minimal µ, the precision of the clocks reduces
by slightly more than one order of magnitude while clock
skews are corrected. Naturally, µ can also be set to a larger
value, which results in a smaller local skew. This effect is
limited by Condition (5), which states that we must choose
µ ∈ O(1) as otherwise the necessary increase of κ outweighs
the logarithmic gain from a larger value of µ. Throughout
this paper, we will assume that Inequalities (4) and (5) are
satisfied, and Theorems 5.1 and 5.4 make use of this assump-
tion.

Since all variables and parameters have been introduced,
we can now proceed to describe the algorithm itself. As
mentioned before, some node starts the execution of the al-
gorithm by flooding an initialization message through the
entire network. We simply define that the first received syn-
chronization message is considered the initialization mes-
sage. If a node receives a synchronization message for the
first time, it executes Algorithm 1.

Algorithm 1 Initialization(M)

1: Lv := 0; H̃v := bmaxLmaxc; Λmax
v := maxLmax

2: for w ∈ Nv do
3: Lwv := maxLw
4: Λwv := Lv − Lwv
5: Send 〈Lv, Lv + Λmax

v 〉 to all u ∈ Nv
6: send := false

An initialized node performs three subroutines in the given
order at each tick event:

1. UpdateVariables: Adapt the local variables accord-
ing to the information received since the last tick event.

2. SetClock: Decide by how much the clock value is
increased, set the logical clock and adapt the affected
local variables.

3. SendMessage: Send a message if necessary.

Since the first and third routine (listed in Algorithm 2
and Algorithm 4) just adapt local variables according to the

6Note that if µ ∈ O(ε), the maximum clock rate is bounded
by 1 +O(ε).

Algorithm 2 UpdateVariables(M)

1: Lmax := maxLmax

2: if Lmax ≥ Lv + 1 + Λmax
v then

3: H̃v := bLmaxc
4: Λmax

v := Lmax − (Lv + 1)
5: send := true
6: for w ∈ Nv where maxLw > Lwv do
7: Lwv := maxLw
8: Λwv := Lv + 1− Lwv
9: Λ↓v := maxu∈Nv {Λuv}

10: Λ↑v := maxu∈Nv {−Λuv}

newly received values and decide whether to send a message,
respectively, we restrict our attention to the core of Aopt,
the procedure SetClock. The goal of the subroutine is to
determine if Lv has to be increased by a certain value Rv
in addition to the normal increase of 1. The steps of this
subroutine are summarized in Algorithm 3.

Algorithm 3 SetClock()

1: Rv := sup
n
R ∈ R

˛̨̨ j
Λ↑v−R
κ

k
≥
j

Λ↓v+R

κ

ko
2: Rv := max

˘
min

˘
max

˘
κ− Λ↓v, Rv

¯
, µ,Λmax

v

¯
, 0
¯

3: Lv := Lv + 1 +Rv
4: Λmax

v := Λmax
v −Rv

5: for w ∈ Nv do
6: Λwv := Λwv +Rv

In Line 1, the node computes which value Rv should take
according to the locally observed clock skew. Roughly speak-
ing, the goal of Algorithm 3 is to ensure that the rounded
clock skews to the neighbor whose clock is assumed to be
behind the most (Λ↓v) and the neighbor with the largest es-
timated clock value (Λ↑v) are the same integer multiple of
κ. The variable Rv attains the largest value that satisfies
this constraint. More precisely, if Λ↑v ≤ sκ and Λ↓v ≥ sκ for
some s ∈ N, v does not raise its clock value, i.e., Rv = 0.
If there is no integer s that satisfies this condition, Rv > 0
becomes exactly the increase of the clock value that causes
the condition to hold. Line 1 of Algorithm 3 is a concise
formulation of this rule.

In Line 2, the final value of Rv is determined. Any node
is allowed to raise its clock at least κ above the smallest es-
timate of its neighbors’ clock value. Therefore, Rv is simply
set to the maximum of κ − Λ↓v and the value Rv computed
in Line 1. In other words, algorithm Aopt tolerates a clock
skew of κ, which ensures that the node with the smallest
clock value in the network is able to raise its clock value even
if it may have received delayed messages from its neighbors
containing smaller clock values than its own. However, v
is not allowed to raise its clock by more than µ or to set
its clock to a larger clock value than the (estimate of) the
largest clock value in the network. This condition prevents
nodes from violating Condition (2) and gives slow nodes the
possibility to catch up as the fast nodes can only increase
their clock values at low rates. The outer maximum simply
ensures that Rv ≥ 0. After computing Rv, Lv is set to the
new value and the estimated clock differences are adapted
accordingly in Lines 4-6. Note that Λmax

v and the estimates
Λwv for all w ∈ Nv are only changed by Rv (and not by
1+Rv), which basically means that v assumes that all other

nodes also have a tick event at the same time and increase
their clock values by 1. This assumption ensures that the
accuracy of these estimates deteriotes slowly.

Algorithm 4 SendMessage()

1: if Lv + Λmax
v ≥ H̃v +H0 then

2: send := true
3: H̃v := H̃v +H0

4: if send then
5: Send 〈Lv, Lv + Λmax

v 〉 to all u ∈ Nv
6: send := false

5. SKEW BOUNDS
We proceed by presenting the upper bounds on the global

and local skew that Algorithm Aopt guarantees together
with the matching lower bounds.

5.1 Global Skew
First, we state the bound on the global skew when exe-

cuting Aopt on any graph G.

Theorem 5.1. The global skew of Algorithm Aopt is
bounded by

G := (1 + ε)DT +
2ε

1− ε∂H +
6

1− ε . (6)

The corresponding lower bound slightly depends on how ac-
curate the estimates ε̂ and T̂ on the clock drift and the delay
uncertainty are.

Theorem 5.2. Assume that a clock synchronization al-
gorithm A is equipped with initial parameters ε̂ ∈ (0, 1), and

T̂ ∈ R+ such that c1T̂ ≤ T ≤ T̂ and c2ε̂ ≤ ε ≤ ε̂ for certain
values c1, c2 ∈ (0, 1]. Define % := min {ε, (1− c2ε̂)/c1 − 1} ∈
[−ε, ε]. If algorithm A is bound to satisfy Condition (2), it
cannot avoid a global skew of at least

(1 + %)DT

on any graph G of diameter D.

We can conclude from this theorem that the estimates of
T and ε must be extremely accurate in order to guarantee
a better bound than (1 + ε)DT . However, even if the exact
values are known, a global skew of (1−ε)DT cannot be pre-
vented subject to the condition that the logical clock values
must be within a linear envelope of real time.

Corollary 5.3. Without knowledge of a lower bound on
ε, no clock synchronization algorithm can avoid a global skew
of DT . Moreover, no algorithm without knowledge of bounds

on T stronger than T ∈
h
(1− ε)T̂ /(1 + ε), T̂

i
can achieve

a better bound on the global skew than (1 + ε)DT .

This corollary and Theorem 5.1 imply that Aopt is essen-
tially optimal as far as the global skew is concerned. As
mentioned earlier, it can be shown that a global skew of
DT /2 cannot be prevented even if the restriction that the
algorithm must satisfy Condition (2) is dropped [2]. Thus,
the bound on the global skew of Aopt is roughly a factor of
two worse than the bound on the global skew of any algo-
rithm whose behavior is not constrained by any additional
restrictions.

5.2 Local Skew
The upper bound states that the local skew of Aopt grows

logarithmically with the diameter D of the graph.

Theorem 5.4. In any execution of Algorithm Aopt, the
skew between any two nodes v, w ∈ V at distance d(v, w) is
bounded by

O
„
κd(v, w) logµ/ε

T D
κd(v, w)

«
.

In particular, the local skew of Algorithm Aopt is upper
bounded by

κ

„‰
logσ

2G
κ

ı
+

1

2

«
,

where σ :=
j
µ(1−ε)

8ε

k
− 1 and G is the bound on the global

skew from Theorem 5.1.

Observe that the base of the logarithm σ is in Θ(µ/ε). Thus,
choosing κ ∈ Θ((1 + µ)T + µH0) results in a local skew of

O
“

((1 + µ) T + µH0) logµ/εD
”
.

Recall that we can choose κ ∈ Θ(T) because we know upper

bounds T̂ ∈ O(T) and ε̂ < 1 on T and ε, respectively. If
µ ∈ Θ(ε) and H0 ∈ O(T /µ) = O(T /ε), Theorem 5.4 states
that the local skew is upper bounded by O(T logD). Note
that choosing µ ∈ Θ(ε) entails that the maximum logical
clock rate β is upper bounded by 1+O(ε). If the logical clock
rate is allowed to be larger than the hardware clock rate by
a constant factor, i.e., µ ∈ Θ(1), and we choose H0 ∈ O(T),

the bound on the local skew reduces to O
“
T log1/εD

”
.

Two theorems show that these bounds are asymptotically
optimal. The first one reveals that permitting (amortized)
clock rates of β ∈ ω(1) is of no use when trying to achieve
small local skews.

Theorem 5.5. No continuous clock synchronization al-
gorithm can achieve a better bound on the local skew than

Ω
“
αT

“
1 + log1/εD

””
on any graph of diameter D.

Thus, for µ ∈ Θ(1) and κ ∈ Θ(T), Aopt is asymptotically
optimal also with respect to the local skew. The second
lower bound on the local skew states that the dependency
of the base σ on µ is asymptotically optimal as well.

Theorem 5.6. For any discrete clock synchronization al-
gorithm and any graph of diameter D the local skew is lower
bounded by

Ω
“
αT

“
1 + log (β−α)/(αε) D

””
.

If we demand that the logical clocks run roughly at the same
rates as the hardware clocks, e.g., α ∈ 1 − O(ε) and β ∈
1 + O(ε), we get that b ∈ O(1) and thus a lower bound of
Ω(T logD), which matches the upper bound of algorithm
Aopt when µ ∈ Θ(ε) and H0 ∈ O(T /ε). Similarly, if we
allow a logical clock rate that is a constant times larger
than real time, i.e., β ∈ Θ(1), the lower bound reduces to
Ω(T log1/εD). Algorithm Aopt guarantees an upper bound
on the local skew of O(T log1/εD) when choosing µ ∈ Θ(1)
and H0 ∈ O(T). More generally, we get the following result.

Corollary 5.7. If κ ∈ O(T), Algorithm Aopt achieves

an asymptotically optimal local skew of Θ
“
T logµ/εD

”
.

Furthermore, if D, T → ∞ and ε → 0, the approximation
ratio of Aopt tends to 2T̂ /T .

What is more, it is evident from the proof of Theorem 5.6
that the dependency of the maximum skew between two
nodes v, w ∈ V on their distance d(v, w) given by Theorem
5.4 is asymptotically optimal, i.e., Aopt features an asymp-
totically optimal gradient property as defined by Fan and
Lynch [4].

Corollary 5.8. If β − α ∈ O(1), the best worst-case
guarantee on the clock skew between nodes at distance d that
any algorithm can achieve is

Θ
“
αT d

“
1 + log(β−α)/(αε)(D/d)

””
.

We note that the previous results hold irrespective of α
since Aopt can exploit smaller values of α by simply reduc-
ing the speed of the logical clocks by an appropriate factor
whenever neighbors are behind too much.

Another important point that can be deduced from the
proof of Theorem 5.6 is that clock skews are built up dur-
ing time periods of considerable lengths. This has two pro-
found consequences. First, for any constant c < 1, in some
execution the average clock skew on some path, and thus
also the maximum clock skew among all neighboring nodes,
is Ω((αT log(β−α)/(αε) D)/c) for Θ

`
D1−c T

´
time, i.e., the

phenomenon of large local skews is not short-lived. Second,
this means that the same asymptotic bounds hold if nodes
are allowed to reduce their clock rates arbitrarily, even to or
below zero, as long as the average clock rate in an interval
of length Θ

`
D1−c T

´
, for some c < 1, is at least α. This

observation implies that it is not a severe limitation that
the progress rate of all clocks is always at least α. Note that
if the clocks are allowed to stand still for Θ(DT) time, a
simple synchronizer [1], which trivially guarantees a bound
of Θ(αT) on the local skew, can be used instead of a clock
synchronization protocol.

6. COMPLEXITY
In this section, we discuss the cost of Algorithm Aopt with

regard to several measures. In particular, we analyze how
many messages need to be exchanged and also the (maxi-
mum) size of these messages. Moreover, we upper bound
the number of bits that each node needs to store locally.

6.1 Message Complexity
An essential optimization criterion is the frequency of com-

munication required to sustain a given quality of synchro-
nization. If resource consumption due to communication is
critical, the average of this value over time, i.e., the amor-
tized message frequency, is highly relevant. When execut-
ing Aopt, nodes send at most one message for each integer
multiple of H0 that Lv + Λmax

v passes [10], implying that
Aopt exhibits an amortized message frequency of Θ(1/H0)
at each node. The bound from Theorem 5.4 and Inequality

(5) suggest to choose H0 ∈ Θ
“
T̂ /µ

”
, which for a minimal

µ ∈ Θ(ε̂) entails that the amortized message frequency is

only Θ
“
ε̂/T̂

”
.

In a short time period, however, a node v might receive
Θ (G/H0) messages containing new estimates on the maxi-
mum clock value, each larger by H0 than the previous one,
which cause v to send as many messages. Thus, the algo-
rithm in the presented form does not guarantee a non-trivial
lower bound on the message frequency. The message fre-
quency could be bounded by adding another term in the
order of Θ (µH0) to κ and forcing nodes to wait at least
until the progress of their hardware clocks is H0 since they
last sent a message. The price of this modification is that
the bound on the global skew increases by Θ(εDH0) as the
time it takes to propagate information through the whole
network increases by O(DH0) while nodes increase the esti-
mate Lv + Λmax

v of the maximum logical clock value locally
at their hardware clock rate. This is, up to constant factors,
the best possible trade-off, since in the Θ(DH0) time a pair
of nodes at distance D may have to act without updates
about each other’s state a skew of Θ(εDH0) can be built up
by manipulating the hardware clock rates.

6.2 Bit Complexity
Another important property is the bit complexity, i.e., the

maximum number of bits that must be sent in a message.
Since the same update information is sent to all neighbors
at the same send event, we define that the bit complexity in
our model is simply the maximum size of this message.

It is evident from the analysis of Aopt that κ must be
sufficiently large to account for any inaccuracies of the nodes’
estimates of their neighbors’ clock values. This implies that
κ needs to be in Ω(T). However, this also means that—as
long as we are not interested in minimizing the constant in
the bound on the local skew—we may broadcast rounded
clock values. Moreover the parameter µ ∈ O(1) can be
encoded as a constant times 1/n, for a number n ∈ N. The
other parameters, κ and H0, can then be chosen as integers
since both are in Ω(1) anyway. We will make use of these
basic observations in the following.

In order to bound the bit complexity, we cannot send the
unbounded clock values. Instead, nodes simply communi-
cate the O((1 +µ)H0) progress their clocks made since they
last sent a message, which requires O(logH0) bits. However,
since we have that κ ∈ Ω(µH0), we might as well discretize
the sent values in steps of µH0, reducing the number of bits
to O(log(1/µ)).7

Advantageously, the estimate Lv + Λmax
v is a multiple of

H0, but unfortunately it may increase by Θ(G) in a single
message, which would necessitate Ω(log(T D/H0)) bits. In
order to reduce the number of bits that are required to en-
code Lv + Λmax

v , we may limit the maximum increase of this
value that a node informs its neighbors about in a single
message to d(1 + ε̂)(1 + µ)/(1− ε̂)eH0 ∈ O(H0), which can
be encoded using O(1) bits. If the actual value is larger, v
stores the difference and informs its neighbors about the re-
maining increase in its subsequent messages. The intuition
behind this is that the maximum estimate of the maximum
clock value throughout the network does not increase faster
than at rate 1 + ε, therefore sending an update of at least
(1 + ε)H0/(1− ε) every H0/(1− ε) time is sufficient not to
fall behind. We conclude that Algorithm Aopt can be imple-
mented with a bit complexity of O(log 1/µ) ⊆ O(log 1/ε̂).

Moreover, if we enforce that nodes wait between sending

7We assume that µH0 ∈ Ω(1). Since κ ∈ Ω(1), there is no
gain when sending messages more frequently.

events for H0 local time, we can further reduce this number.
Since now we implicitly know of the progress of the hardware
clock since the last message, we can encode the differences
between the logical clock values more efficiently. To this
end, the progress of the logical clock is described relative to
the progress H0 of the hardware clock, which means that
a difference of at most µH0 has to be conveyed. Since we
may round the progress to multiples of µH0, this requires
merely O(1) bits. From this and the previous observation
that only O(1) bits are needed to update the estimate of the
maximum clock value, we deduce that this variant of Aopt

offers a constant bit complexity.

6.3 Space Complexity
The space complexity of an algorithm is the maximum

amount of memory that it requires to run. Since the logical
clock value Lv grows indefinitely, we disregard it in our anal-
ysis of the space complexity of Aopt. Furthermore, we will
consider the amount of memory that the implementations
of Aopt discussed in the previous section require.8

Each node v must store the estimated clock skew Λwv to
each node w ∈ Nv and the estimated difference Λmax

v to
the maximum clock value. The value of Λwv is bounded by
O(κ logµ/εD) for all neighbors. Assuming that we choose
H0 ∈ Θ(T /µ) and κ ∈ Θ(T), rounding clock values to
multiples of µH0 implies that the memory requirement for
these values is bounded by O(∆ log logµ/εD), where ∆ de-
notes the maximum node degree. As Λmax

v is bounded by
G ∈ O(T D) and Lv + Λmax

v is a multiple of H0, it can be
encoded using O(log(T D/H0)) = O(log(µD)) bits.

Furthermore, in order to properly adapt Λwv , each node
must store the amount of local time that elapsed since the
last message from w ∈ Nv was received because in the
absence of better information v assumes that the neigh-
bors’ clocks run at the same rate as its own hardware clock.
This requires O(log(H0)) memory for each w ∈ Nv. How-
ever, such a high accuracy is not needed. Instead, a lo-
cal counter of size Θ(log(µH0)) = Θ(log T) can be used to
generate events every Θ(T) local time and reduce the res-
olution to Θ(µH0), and the necessary memory requirement
to O(1/µ) bits per neighbor. Thus, these values require
O(∆ log µ+ log T) bits in total.

If the proposed technique to update the estimates of the
maximum clock value only by constant multiples ofH0 is em-
ployed (in order to keep the bit complexity low), we have to
keep track of the updates that have already occurred. Since
nodes send identical messages to all neighbors, a node must
store only another multiple of H0 bounded by O(G), which
requires O(log(µD)) bits. However, nodes may receive dif-
ferent estimates from different neighbors. If messages are
sent every Θ(H0) time, these values may drift apart at an
(amortized) rate of 2ε for O(G) time, until the (local) es-
timates become exact, i.e., reach the current maximum es-
timate. Therefore, if these values are encoded relative to
each other, O(∆ log(εµD)) additional bits are needed. The
same is true if messages are also triggered upon receiving
messages, but nodes control the rate at which they forward
estimates by means of their hardware clocks. Setting the
maximal amortized update rate to a constant factor times
the hardware clock rate (i.e., at least (1+ ε̂)(1+µ)/(1− ε̂) ∈
O(1)) ensures that estimates are forwarded fast enough, but

8Note that by putting more information into the messages,
the space complexity can be reduced.

locally drift apart at a rate of at most O(ε).

Finally, observe that H̃0 does not need to be stored since
it can be computed from the other variables. Hence, adding
all terms up, we see that Aopt needs to allocate at most
O(log T +log(µD)+∆(log(1/µ)+ log(εµD)+ log logµ/εD))

bits of memory.9

7. DIFFERENT MODELS
In this section, we analyze the details of the model as-

sumptions and point out to what extend the results carry
over to other prominent models of clock synchronization.

7.1 Estimates of T and ε

Our model assumes that upper bounds T̂ ∈ O(T) and
ε̂ < 1 on T and ε are known. These assumptions can be
justified as follows.

Assuming that T is completely unknown to the algorithm
is no restriction. In this case, nodes acknowledge every mes-
sage, and perpetually measure the corresponding round trip
times by means of their hardware clocks. Multiplying these
values by 1/(1− ε̂) then yields an estimate of the round trip
times, which are in O(T) and which upper bound the delays
of the messages. Nodes keep track of the largest estimate
they either measured themselves or received in a message. If
a larger (estimated) round trip time is detected, it is flooded
through the network and κ (and possibly H0) is adjusted
accordingly. Note that it is not a problem if the nodes un-
derestimate T because, until the time when larger delays
actually occur, the skew bounds hold with respect to the
smaller delays and thus the smaller κ. In order to keep the
number of messages low, one could initially use an estimate
of Θ(1) and double it in every step, reducing the number of
updates to at most O(log T).

As far as the assumption that ε is bounded by ε̂ < 1 is
concerned, we point out that an ε arbitrarily close to one
means that we do not have clocks in the truest sense of the
word.10 In particular, ε = 0 would allow the hardware clocks
to stand still, a case in which nodes are not able to react to
clock skews at all. In such a setting it would be reasonable to
drop the constraint that the progress rates must be bounded
at all times in favor of sudden clock jumps (i.e., µ =∞ and
therefore still “large enough” to guarantee Inequality (4)).
However, we do not cover this rather extreme scenario in
our discussion.

7.2 Minimum clock rate α

As pointed out in Section 5, the lower bound on the local
skew does not depend on clocks running always at least at
speed α. Requiring an average rate of α merely for intervals
of a certain minimum length does not change the asymptotic
bounds, unless clocks are allowed to stand still (or even run
backwards) for almost DT time. Moreover, the lower bound
on the global skew of roughly DT trivially implies a bound
of T on the local skew, i.e., even if we do not require any
minimum progress rate, any algorithm guaranteeing Con-
dition (3) will suffer a local skew of T in the worst case.
9This notation is somewhat sloppy. To be formally correct,
each summand has to be replaced by the maximum of the
term itself and 1.

10A cheap quartz oscillator exhibits a relative drift of less
than 10−4 and even the clock drift of a ring oscillator under
varying temperature and support voltages is not consider-
ably larger than 0.2.

Considering that typically T log1/εD ∈ O(T) and Aopt at-
tains this bound on the local skew, there is little gain in
choosing α < 1−O(ε).

7.3 Lower Bounded Delays
Throughout this paper, we assumed that delays are always

in the range [0, T]. In many distributed systems, it is more
adequate to assume that all delays lie in a range [T1, T2],
where T2 − T1 � T1. It is evident from the proofs of the
lower bounds that they still hold with T replaced by T2−T1

in this situation. Similarly, the algorithm can be modified
for this scenario by adding T1 to all values received. How-
ever, triggering messages when Lv+Λmax

v reaches a multiple
of H0 in order to bound the (amortized) message frequency
does not work any more. This can either be solved by simply
sending messages every H0 local time (as discussed in Sec-
tion 6), or by enforcing one logical clock to be the fastest by
slowing down all other clocks slightly and performing “ex-
ternal” synchronization where the distinguished node serves
as the reference (cf. Section 7.4).

Another effect, however, might be of more concern: The
skew bounds will degrade because the algorithm needs more
time to react to clock skews. The global skew will increase
by O(εDT1), which is basically asymptotically optimal due
to the fact that distant nodes may not receive messages from
each other for Ω(DT1) time because of the slow information
transport. As far as the local skew is concerned, µ ≥ (T2 −
T1)/T2 will only improve the base σ of the logarithm further
at the expense of increasing κ linearly with σ. In this case,
the result of the (properly adapted) Theorem 5.4 is no longer
matched by the lower bounds. However, if T2 ≤

√
ε(T2 −

T1), for instance, choosing µ ∈ Θ (
√
ε) and κ appropriately

will still result in an asymptotically optimal local skew of
O(κ log1/εD).

7.4 External Clock Synchronization
There is a lot of work on external clock synchronization al-

gorithms [18, 19, 21], where a source of real time is available
and the objective is to synchronize all clocks to this source.
Thus, there is a single node v0 for which logical clock time,
hardware clock time, and real time are identical. In order to
allow for the fact that a distant node v may not be informed
about the real time more accurately than T d(v, v0), Condi-
tion (2) has to be changed to t− d(v, v0)T − τ ≤ Lv(t) ≤ t,
where τ ∈ R+ addresses the issue that nodes should only
send a finite number of messages in constant time.
Aopt can easily be adjusted to handle this modified con-

straint. The node v0 has to propagate its clock value through
the network periodically, at least every Θ (τ/ε̂) time. The
nodes behave the same way as in Aopt, except that they
reduce Λmax

v by 1 − 1/(1 + ε̂) at each tick if Λmax
v is posi-

tive and increase Lv only by 1/(1 + ε̂) whenever Λmax
v = 0.

This technique ensures that the logical clock rates are up-
per bounded by 1 whenever the largest clock value in the
system is attained, implying that Lv(t) ≤ t at all times. On
the other hand, nodes still raise their clocks quickly when
large estimates are received. Apparently, the global skew
is bounded by T D + O(τ), and the worst-case clock skew
between some node v and v0 is linearly bounded in the dis-
tance between the two nodes. The main difference is that
the minimum progress rate is now only bounded by 1−O(ε̂),
which can easily be accounted for when determining µ and
κ. Thus, the algorithm still guarantees roughly the same

skew bounds without significantly increasing µ or κ. The
amortized message frequency is Θ (τ/ε̂+ 1/H0).

7.5 Hardware Clock Envelope Condition
A similar technique is applicable if Condition (2) is re-

placed by

∀v ∈ V ∀ ticks t at v : min
w∈V
{Hw(t)} ≤ Lv(t) ≤ max

w∈V
{Hw(t)},

i.e., the time envelope condition is sharpened to the require-
ment that all logical clock values must always be at least
the smallest and at most the largest hardware clock value
in the network. In this case, a node v ∈ V must reduce
its clock rate when Lv(t) > Hv(t), while still responding to
clock skews. This is accomplished by increasing Lv + Λmax

v

at the reduced (amortized) rate (1 − ε̂)hv/(1 + ε̂) when-
ever it exceeds Hv and again slowing down Lv to avoid
that Λmax

v becomes negative whenever Λmax
v = 0. Thus,

nodes will never have a larger logical clock rate than 1 − ε
if Lv(t) = Lmax

v (t) = maxw∈V {Hw(t)} > Hv(t). As they
also increase their logical clocks at the normal rate when
Lv(t) = Hv(t), the requested constraint is satisfied. Clock
rates change merely by a factor of 1 − O(ε̂), therefore the
bounds on κ and µ, and the impact of H0 remain basically
the same as in Section 7.4.

7.6 Network Dynamics
The distributed system may be dynamic in the sense that

new nodes may join and leave the system. Therefore, a clock
synchronization algorithm must also be able to cope with
node arrivals and departures. While the latter is trivial if
the nodes notify the system before leaving, this task becomes
more complicated if nodes (or links) crash.

Apparently, a joining node, or a newly established link,
may in the worst case lead to skews in the order of G be-
tween nodes, which cannot be reduced faster than in time
Ω (G/β). However, this bound can be achieved by separating
the problem of node integration from the running algorithm:
The skew ∆L on a newly created edge can be distributed
over the network without considering it in the execution of
Aopt, i.e., the nodes do not increase their clocks due to this
clock skew. Thus, the skew will eventually be propagated to
nodes with small clock skews to all neighbors, which act as
“sinks”, ensuring that the separately handled skew will be
removed from the system after O (DT + ∆L/β) time. This
can be achieved by using the simple algorithm that always
increases its clock value as much as possible provided that
no neighbor is more than κ behind [12, 13]. Obviously, this
technique will not affect the asymptotic bounds. However,
since β might be small, waiting for up to Ω (G/β) time to
integrate nodes may not be desirable. The bounds on the
clock rates and the tolerated skew could be relaxed in an
adaptive manner when nodes arrive in order to speed up the
integration process. We dispense with the analysis of such
an adaptive node integration scheme.

Finally, we briefly discuss how the algorithm can be adap-
ted in order to cope with node or edge failures. Since the
algorithm cannot distinguish between node and edge fail-
ures, it suffices to consider edge failures. We assume for the
sake of simplicity that a failed edge does not reappear. The
proposed strategy relies on the observation that the algo-
rithm can dynamically determine an estimate T̂ ∈ O(T) of
the maximum delay. Every node v stores the times when
it last received a message from each of its neighbors. It is

possible that a message from a neighbor w ∈ Nv is “overdue”
according to v’s hardware clock, i.e., more than (1 + ε̂)(T̂ +
H0/(1− ε̂)) time has passed since v received a message from
w. This situation can occur for one of two reasons, either
w crashed or the delay is larger than estimated. In both
cases, v (temporarily) removes w from its set of neighbors
and adjusts its logical clock rate if necessary. If v receives
the next message from w at a later point in time, w is added
to the set Nv again, T̂ and κ are updated, and the logical
clock rate is reevaluated. Subsequently, the new estimate of
the maximum delay is flooded through the network. It is
possible that the exclusion of w mistakenly causes v to in-
crease its logical clock rate because w was the only neighbor
that prevented v from setting its logical clock rate multiplier
to 1 + µ. However, if v considers the edge {v, w} to have
failed for ∆T time, it increases its logical clock by at most
∆L = (1 + ε)(1 + µ)∆T − (1− ε)∆T = 2ε∆T + (1 + ε)µ∆T
more than the minimum progress in this time interval, i.e.,
the clock skew to any neighbor grows by at most ∆L. The
bound on the local skew relies on the fact that the aver-
age clock skew of a path of a given length can only be a
specific multiple of κ. Consider any path containing v with
a certain average clock skew Λ ≥ κ. According to Con-
dition (5), the new estimate of T causes κ to increase by
∆κ > 2(1+µ)∆T > (2ε+(1+ε)µ)∆T = ∆L, which implies
that (Λ + ∆L)/(κ+ ∆κ) < Λ/κ.

Thus, the average clock skew is at most the same multiple
of κ with respect to the new value of κ. The same argu-
ment holds if v no longer increases its logical clock at the
rate 1 + µ because the node u that maximizes Λ↑v does not
respond within the expected amount of time. We conclude
that temporarily excluding nodes from the set of neighbors
because they do not respond in time does not have an im-
pact on the clock skew bounds with respect to the increased
κ, and thus Aopt can also be used in an environment where
edges (or nodes) fail. Apparently, this simple strategy can-
not cope with temporary failures, since a long-term mal-
function of a communication link would cause the nodes to
set T̂ to an exceedingly large value. This problem can be
tackled if the nodes have some means to detect that they, or
the links between them, must have been inoperative so that
their recurrence does not cause the nodes to increase their
estimate of the maximum delay.

8. CONCLUSION
We studied the well-known clock synchronization problem

for arbitrary underlying network topologies. As our main re-
sult, we presented the synchronization algorithm Aopt and
proved matching upper and lower bounds on the worst-case
clock skew between neighboring nodes and between arbi-
trary nodes in the network. Remarkably, these results hold
in a very general model where clock drifts and delays may
vary arbitrarily within unknown bounds. Surprisingly, this
can also be achieved if the logical clock rates must always be
in the range [1−O(ε), 1+O(ε)] and we require that Ω(T /ε)
time elapses between message transmissions at each node,
where ε and T denote the maximum clock drift rate and
the maximum delay, respectively. Moreover, the bound on
the global skew is essentially optimal and, if upper bounds
on both the clock drift and the maximum delay are known
fairly accurately, the asymptotic approximation ratio of the
proposed algorithm with regard to the local skew is 2. The
algorithm Aopt can further be adjusted in order to be appli-

cable to various other models and constraints, which demon-
strates the generality and flexibility of our techniques.

Our results may be relevant for practical applications for
the following reasons. We showed that although the local
skew must grow logarithmically in the diameterD of the net-
work, the base of the logarithm can be bounded by Θ(1/ε).
Thus, if we have that D ∈ O (1/εc) for a constant c, a
worst-case clock skew of O(T) betweeen neighboring nodes
can be guaranteed. Since typical clock drifts are in the or-
der of 10−5 and the diameters of most current networks are
not larger than roughly 20 to 30, the clock skew between
neighboring nodes can be bounded by O(T) in most real-
world systems. Furthermore, it is clearly desirable that the
clocks run smoothly and progress at reasonable rates at all
times. It is possible to achieve such a strong bound even
if we impose tight restrictions on the rates of the clocks,
i.e., the clocks are never allowed to change abruptly in or-
der to correct the observed clock skews. In particular, rates
of 1 ± O (

√
ε) are sufficient to guarantee an optimal global

skew and a roughly 4-competitive local skew even is T is ini-
tially unknown. Given that Aopt is further computationally
efficient and that it requires a low message frequency, we
believe that pratical protocols can be designed that guaran-
tee not only small global skews at low communication costs,
but also small local skews and smoothly progressing logical
clocks. We hope that some of the ideas introduced in this
work might lead to advances in the field of applied synchro-
nization protocols.

Acknowledgments
We would like to thank Fabian Kuhn for valuable comments.

9. REFERENCES
[1] B. Awerbuch. Complexity of Network Synchronization.

Journal of the ACM, 32(4):804–823, 1985.

[2] S. Biaz and J. Lundelius Welch. Closed Form Bounds
for Clock Synchronization Under Simple Uncertainty
Assumptions. Information Processing Letters,
80(3):151–157, 2001.

[3] J. Elson, L. Girod, and D. Estrin. Fine-Grained
Network Time Synchronization Using Reference
Broadcasts. ACM SIGOPS Operating Systems Review,
36:147–163, 2002.

[4] R. Fan and N. Lynch. Gradient Clock
Synchronization. In Proc. 23rd Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 320–327, 2004.

[5] M. Fuegger, U. Schmid, G. Fuchs, and G. Kempf.
Fault-Tolerant Distributed Clock Generation in VLSI
Systems-on-Chip. In Proceedings of the Sixth European
Dependable Computing Conference (EDCC-6), pages
87–96, 2006.

[6] S. Ganeriwal, R. Kumar, and M. B. Srivastava.
Timing-Sync Protocol for Sensor Networks. In Proc.
1st international Conference on Embedded Networked
Sensor Systems, pages 138–149, 2003.

[7] B. Korte, D. Rautenbach, and J. Vygen. BonnTools:
Mathematical Innovation for Layout and Timing
Closure of Systems on a Chip. In Proceedings of the
IEEE 95, pages 555–572, 2007.

[8] F. Kuhn, T. Locher, and R. Oshman. Gradient Clock
Synchronization in Dynamic Networks. In Proc. 21st

ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2009.

[9] C. Lenzen, T. Locher, and R. Wattenhofer. Clock
Synchronization with Bounded Global and Local
Skew. In Proc. 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages
500–510, 2008.

[10] C. Lenzen, T. Locher, and R. Wattenhofer. Optimal
Clock Synchronization with Bounded Rates. Technical
Report 301, ETH Zurich, 2009. ftp.tik.ee.ethz.ch/
pub/publications/TIK-Report-301.pdf.

[11] C. Lenzen, T. Locher, and R. Wattenhofer. Tight
Lower Bounds for Clock Synchronization. Technical
Report 299, ETH Zurich, 2009. ftp.tik.ee.ethz.ch/
pub/publications/TIK-Report-299.pdf.

[12] T. Locher. Foundations of Aggregation and
Synchronization in Distributed Systems. PhD thesis,
ETH Zurich, 2009.

[13] T. Locher and R. Wattenhofer. Oblivious Gradient
Clock Synchronization. In Proc. 20th International
Symposium on Distributed Computing (DISC), pages
520–533, 2006.

[14] J. Lundelius Welch and N. Lynch. An Upper and
Lower Bound for Clock Synchronization. Information
and Control, 62(2/3):190–204, 1984.

[15] M. Maróti, B. K. G. Simon, and Á. Lédeczi. The
Flooding Time Synchronization Protocol. In Proc. 2nd
International Conference on Embedded Networked
Sensor Systems, pages 39–49, 2004.

[16] L. Meier and L. Thiele. Brief Announcement:
Gradient Clock Synchronization in Sensor Networks.
In Proc. 24th Annual ACM Symposium on Principles
of Distributed Computing (PODC), page 238, 2005.

[17] D. Mills. Internet Time Synchronization: the Network
Time Protocol. IEEE Transactions on
Communications, 39:1482–1493, 1991.

[18] Y. Moses and B. Bloom. Knowledge, Timed
Precedence and Clocks. In Proc. 13th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 294–303, 1994.

[19] R. Ostrovsky and B. Patt-Shamir. Optimal and
Efficient Clock Synchronization under Drifting Clocks.
In Proc. 18th Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 400–414,
1999.

[20] S. PalChaudhuri, A. K. Saha, and D. B. Johnson.
Adaptive Clock Synchronization in Sensor Networks.
In Proc. 3rd International Symposium on Information
Processing in Sensor Networks, pages 340–348, 2004.

[21] B. Patt-Shamir and S. Rajsbaum. A Theory of Clock
Synchronization. In Proc. 26th Annual ACM
Symposium on Theory of Computing (STOC), pages
810–819, 1994.

[22] P. Sommer and R. Wattenhofer. Gradient Clock
Synchronization in Wireless Sensor Networks. In Proc.
8th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN),
San Francisco, USA, April 2009.

[23] T. K. Srikanth and S. Toueg. Optimal Clock
Synchronization. J. ACM, 34(3):626–645, 1987.

