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Abstract

Locally Decodable Codes (LDC) allow one to decode any particular symbol of the
input message by making a constant number of queries to a codeword, even if a constant
fraction of the codeword is damaged. In a recent work [Yek08] Yekhanin constructs a
3-query LDC with sub-exponential length of size exp(exp(O( lognlog log n ))). However, this
construction requires a conjecture that there are infinitely many Mersenne primes. In
this paper we give an unconditional 3-query LDC construction with a shorter code-
word length of exp(exp(O(

√
log n log log n))). We also give a 2r-query LDC with length

of exp(exp(O( r
√
log n log logr−1 n))). The main ingredient in our construction is the

existence of super-polynomial size set-systems with restricted intersections by [Gro00]
which hold only over composite numbers.

1 Introduction

Locally decodable codes (LDCs) are codes that allow to retrieve any symbol of the original
message by reading only a constant number of symbols from the codeword. Formally a code
C is said to be locally decodable with parameters (q, δ, ε) if it is possible to recover any bit
xi of message x by making at most q queries to C(x). Such that if up to a δ fraction of C(x)
is corrupted then the decoding algorithm will return the correct answer with probability at
least 1− ε.

Locally decodable codes have many applications in cryptography and complexity theory,
see surveys in [Tre04] and [Gas04]. The first formal definition of locally decodable codes
was given by Katz and Trevisan in [KT00]. The Hadamard code is the most famous 2-
query locally decodable code of length 2n. For a two-query LDC tight lower bounds of
2θ(n) were given for linear codes in [GKST02] and [KdW03] proved tight lower bounds
for two queries for arbitrary codes. For an arbitrary number of queries Katz and Tre-
visan [KT00] established super-linear lower bounds of Ω(nq/(q−1)) for LDCs with q queries.

This lower bound was later improved in [KdW03] to Ω
(
( nlogn)

1+1/(dq/2e−1)
)
and in [Woo07]

to Ω
(
n1+1/(dq/2e−1)

logn

)
.
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For many years it was conjectured that LDCs should have an exponential dependence on n
for any constant number of queries, until Yekhanin’s recent breakthrough [Yek08]. Yekhanin
obtained 3-query LDCs with sub-exponential length of exp(exp(O( lognlog log n))) under a highly
believable conjecture that there are infinitely many Mersenne primes. Using the known
Mersenne primes, Yekhanin also obtained unconditional results which significantly improved
the previous results on LDCs(i.e. length of exp(n10

−7
)). In [KY08] Kedlaya and Yekhanin

proved that infinitely many Mersenne numbers with large prime factors are essential for
Yekhanin’s construction.

Our Results In this paper we give an unconditional construction of 3-query LDC with
sub-exponential codeword length. The length that we achieve for 3 queries is:

exp exp(O(
√
log n log log n)).

We also give a 2r-query LDC with a codeword length exp exp(O( r
√
log n log logr−1 n)).

Our construction is a kind of a generalization and simplification of [Yek08]. We extend
Yekhanin’s construction to work not only with primes but also with composite numbers.
Raghavendra in [Rag07] gives a nice presentation of Yekhanin’s construction using homo-
morphisms, and we will follow this approach. The main ingredient in our construction is the
existence of super-polynomial size set-systems with restricted intersections [Gro00], which
hold only over composite numbers.

Private Information Retrieval schemes: The notion of locally decodabale codes is
closely related to the notion of private information retrieval(PIR) schemes. PIR schemes
with k servers is a protocol which allows for a user to access a database distributed between
k servers without yielding any information on the identity of the accessed place to any
individual server (we assume that there is no communication between servers). The main
parameter of interest in PIR schemes is the total communication complexity between the
user and the servers. PIR schemes were first introduced by [CGKS95]. After that there were
many works written on this topic, see [CGKS95, Amb97, Man98, Ito99, BIK05, GKST06,
KdW03, RY07, WdW05, Yek08]. The best upper bound for 2-server PIR is O(n1/3) due to

[CGKS95]. The best upper bound of 3 and more server PIR schemes is exp
(
O
(

logn
log1−ε logn

))

due to [Yek08] which is based on the construction of LDCs.

Let us define formally perfect PIR schemes:

Definition 1.1. A one-round perfect private information retrieval scheme is a randomized
algorithm U (for the user), and k deterministic algorithms S1, . . .Sk (for the servers), s.t.

1. (a) On input i ∈ [n] the user U produces k random queries q1 . . . qk and sends them
to respective servers.

(b) Each server based on his query qj and database D produces a response rj =
Si(D, qj) and sends it back to the user.

(c) The user based on i, r1, . . . , rk and his randomness calculates D[i].

2. The distribution of each query qj is independent of the input i.
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The communication complexity of this protocol is a total number of bits exchanged between
user and servers.

It is well known that LDCs with perfectly smooth decoder imply PIR schemes. In par-
ticular, as in [Yek08], our LDC yields a PIR schemes with communication complexity

exp(O(
√
log n log log n)) for 3-servers and exp(O( r

√
log n logr−1 log n)) for 2r-servers.

2 Definitions and Basic Facts

We will use the following standard mathematical notation:

• [s] = {1, . . . s};

• Fq = GF (q) is a finite field of q elements;

• F∗ is a multiplicative group of the field;

• Zm = Z/mZ, the integers modulo m;

• dH(x, y) denotes the Hamming distance between vectors x, y ∈ Σn, i.e. number of
indices where xi 6= yi .

Definition 2.1. A code C over a field F, C : Fn 7→ FN is said to be (q, δ, ε) locally
decodable if there exist randomized decoding algorithms di for i = 1, 2, . . . n such that for
all i = 1, 2, . . . n the following holds:

1. For every message ~x = (x1, x2, . . . xn) ∈ Fn and for every ~y ∈ FN such that dH(C(~x), ~y) ≤
δN it holds that Pr(di(~y) = xi) ≥ 1−ε; i.e. the decoding algorithm succeeds to recover
the relevant symbol even if up to δ fraction of the codeword is damaged.

2. The algorithm di makes at most q queries to y.

A code C is called linear if C is a linear transformation over F. A locally decodable code is
called nonadaptive if di makes all its queries simultaneously. Our constructions of locally
decodable codes are linear and nonadaptive.

Definition 2.2. A code C is said to have a perfectly smooth decoder if di(C(~x)) = xi for
every ~x and each query of di is uniformly distributed over [N ].

Fact 2.3 (from [Tre04]). Any code with a perfectly smooth decoder which makes q queries
is also (q, δ, qδ) locally decodable.

We will use the following fact:

Fact 2.4. For every odd m there exists a finite field F = GF (2t), where t ≤ m, and an
element γ ∈ F that is a generator of a multiplicative group of size m, i.e. γm = 1 and γi 6= 1
for i = 1, 2, . . .m− 1.
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Proof. Since m is odd 2 ∈ Z∗m. Therefore, there exists t < m such that 2
t ≡ 1 mod m.

Let us set F = GF (2t). The size of the multiplicative group F∗ is 2t − 1 and therefore it is

divisible by m. Let g be a generator of F∗. Then γ = g
2t−1
m is a generator of a multiplicative

group of size m.

In Appendix A for simple construction of S-matching vectors we will need the following
definition and fact about tensor product:

Definition 2.5 (Tensor Product). Let R be a ring and let ~x, ~y ∈ Rn. The tensor product
of ~x, ~y denoted by ~x ⊗ ~y ∈ Rn

2
, is defined by ~x ⊗ ~y(i, j) , xi ∙ yj , (where we identify [n2]

with [n]⊕ [n].) In the same way we define the `’th tensor power ~x⊗` ∈ Rn
`
by

~x⊗`(i1, i2, . . . i`) ,
∏̀

j=1

xij . (1)

We will use only the following fact about tensor products:

Fact 2.6.
〈u⊗`, v⊗`〉 = 〈u, v〉`

Proof.

〈u⊗`, v⊗`〉 =
∑

1≤i1,i2,...il≤m




∏̀

j=1

uij

∏̀

j=1

vij



 =




∑

1≤i1≤m

ui1vi1



 . . .




∑

1≤i`≤m

ui`vi`



 = 〈u, v〉`.

(2)

3 Locally Decodable Codes

In this construction we follow Yekhanin’s general framework. Our construction consists
of two parts. The first part is a construction of matching sets of vectors that correspond
to “combinatorially nice” sets used in [Yek08]. The second part is a construction of an S-
decoding polynomial with a small number of monomials, which correspond to “algebraically
nice” sets used in [Yek08]. Let us fix some composite number m for our construction. We
wiil give a general scheme for construction of LDCs followed by a concrete example of a
3-query LDC.

3.1 Matching sets of vectors

All inner products 〈x, y〉 in this section are done mod m.
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Definition 3.1. The family of vectors {ui}ni=1, ui ∈ (Zm)
h is said to be S-matching if the

following conditions hold:

1. 〈ui, ui〉 = 0 for every i ∈ [n].

2. 〈ui, uj〉 ∈ S for every i 6= j.

The goal of this subsection is to construct large S-matching family over a small domain.
The main advantage of working with composite numbers comes from the following lemma
from [Gro00], which holds only for composite numbers.

Lemma 3.2 (Theorems 1.2 and 1.4 from [Gro00]). Let m = p1p2 . . . pr be a product of r
distinct primes pi. Then there exists c = c(m) > 0, such that for every integer h > 0, there
exists an explicitly constructible set-system H over a universe of h elements (i.e H is a set
of subsets of [h]) and there is a set S ⊂ Zm such that:

1. |H| ≥ exp(c (log h)r

log logr−1 h
),

2. Size of every set H in set-system H is divisible by m i.e. |H| ≡ 0 mod m,

3. Let G,H be any two different sets in set system H. Then the size of intersection of
G,H modulo m is restricted to be in S. i.e. ∀G,H ∈ H such that G 6= H. Ut holds
that |G ∩H| ∈ S mod m

4. S is a set of size 2r − 1 and 0 /∈ S.

5. ∀s ∈ S for all i = 1, 2, . . . r it holds that s mod pi is 0 or 1.

For our construction we will only need the following simple corollary:

Corollary 3.3. For every h, r and integer m = p1p2 . . . pr there exists a set S of size 2
r−1

and a family of S-matching vectors {ui}ni=1, ui ∈ (Zm)
h such that n ≥ exp(c (log h)r

log logr−1 h
).

Proof. Let us take set-system H as in Lemma 3.2. For each set H ∈ H we will have one
vector uH ∈ (Zm)h which is the indicator vector of H. Then it holds that 〈uH , uH〉 = |H| ≡
0 mod m and 〈uH , uG〉 = |H ∩G| ∈ S mod m.

The construction of [Gro00] is complicated; therefore, we will not give it here. We will give
a simple construction of S-matching set in Appendix A which is less strong but it is more
simple.

3.2 S-decoding polynomials

Let us fix any odd number m. Recall from Fact 2.4 that there exists t, F = GF (2t) and an
element γ ∈ F such that γ is a generator of a multiplicative group of size m. We will first
construct a linear code over the field F. In the next section we will show how to reduce the
alphabet size to 2.
We will need the following definition:
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Definition 3.4. A polynomial P ∈ F[x] is called an S-decoding polynomial if the following
conditions hold:

• ∀s ∈ S P (γs) = 0,

• P (γ0) = P (1) = 1.

Claim 3.1. For any S such that 0 /∈ S there exists an S-decoding polynomial P with at
most |S|+ 1 monomials.

Proof. Let us take P̃ =
∏
s∈S(x−γ

s). Then P (x) = P̃ (x)/P̃ (1) is an S decoding polynomial.
The degree of P is |S|. Thus P has at most |S|+ 1 monomials.

3.3 The code and its decoding algorithms

Now we are ready to present the construction of our locally decodable codes.
In order to construct our code we will fix some set S and construct S-matching vectors
{ui}ni=1, ui ∈ (Zm)

h and an S-decoding polynomial P . We define a code C : Fn 7→ Fm
h

where we think of a codeword as a function from (Zm)h to F. Let ei ∈ Fn be the i’th unit
vector. We define C by defining C(ei) for all i. The general definition will follow by the
linearity of C, i.e. C(

∑
ciei) ,

∑
ciC(ei). The encoding of ei is

C(ei) , (γ
<ui,x>)x∈(Zm)h . (3)

One can think of C(ei) as a homomorphism from the additive group (Zm)h to the multi-
plicative group F∗. Equivalently, we can write

C((c1, c2, . . . cn)) ,
n∑

i=1

cifi, (4)

where fi(x) , γ<ui,x>.

We will now describe how to retrieve the i’th coordinate of the message.

Since P is an S-decoding polynomial and {ui} are S-matching vectors, 〈uj , ui〉 ∈ S for i 6= j,
and therefore it follows that P (γ<ui,ui>) = 1 and P (γ<uj ,ui>) = 0 for all i, j ∈ [n], i 6= j.
Write P (x) = a0 + a1x

b1 + a2x
b2 . . . aq−1x

bq−1 .
Let us now define the decoding algorithm di(w), where w is a codeword with up to δ fraction
damaged coordinates.

• Choose v ∈ (Zm)h at random.

• Query w(v), w(v + b1ui), . . . w(v + bq−1ui).

• Output

ci = γ
−<ui,v> (a0w(v) + a1w(v + b1ui) . . . aq−1w(v + bq−1ui)) . (5)

Algorithm 1: The Decoding Algorithm
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Lemma 3.5. The decoding algorithm di is a Perfectly Smooth Decoder.

Proof. The algorithm di chooses v uniformly at random. Each of the queries v, v+b1ui, . . . v+
bq−1ui is uniformly distributed. Therefore, in order to prove that di is a Perfectly Smooth
Decoder it is enough to prove that di(C(x)) = xi. Note that di is a linear mapping so it is
enough to prove that di(C(ei)) = 1 and di(C(ej)) = 0 for j 6= i.

di(C(ei)) = (γ
−<ui,v>)(a0γ

<ui,v> + a1γ
<ui,v+b1ui> + . . .+ aq−1γ

<ui,v+bq−1ui>).

But 〈ui, v + cui〉 = 〈ui, v〉+ c〈ui, ui〉 = 〈ui, v〉. So we have,

di(C(ei)) = γ
−<ui,v>(a0γ

<ui,v> + a1γ
<ui,v> + . . .+ aq−1γ

<ui,v>) =

= a0 + a1 . . .+ aq−1 = P (1) = 1.

Now let us prove that
∀i 6= j di(C(ej)) = 0.

We need to show that

a0γ
<ui,v> + a1γ

<ui,v+b1uj> + . . .+ aq−1γ
<ui,v+bq−1uj> = 0.

Recall that P (γ<ui,uj>) = 0. Therefore,

γ<ui,v>(a0 + a1γ
b1<ui,uj> + . . .+ aq−1γ

bq−1<ui,uj>) = γ<ui,v>P (γ<ui,uj>) = 0.

The dimension of the code is n-the number of S-matching vectors. The codeword length
is
∣
∣(Zm)h

∣
∣ = mh and the number of queries is equal to the number of monomials of

P . An immediate corollary from Corollary 3.3 and Claim 3.1 is that we can choose
n ≥ exp(c (log h)r

log logr−1 h
) and an S-decoding polynomial with less than 2r monomials. Thus

we have the following theorem.

Theorem 3.6. For any r there exists a (q, δ, qδ) locally decodable code C : Fn 7→ FN , with
codeword length N = exp(exp(O( r

√
log n log logr−1 n))) and q ≤ 2r. Furthermore, q is the

minimal number of monomials of S-decoding polynomial.

Proof. Letm = p1 . . . pr be the product of r primes. Fix h = exp
((
O( r
√
log n log logr−1 n)

))
.

From Corollary 3.3 there exists a set S of size 2r − 1 and n = exp(c (log h)r

log logr−1 h
) S-matching

vectors. Using the construction above we get a code C with codeword length mh and
message length n. Fix m to be a constant. Then mh = exp(O(h)). Therefore,

mh = exp(O(h)) = exp

(

exp

(

O

(
r

√
log n log logr−1 n

)))

.

From Claim 3.1 there exists an S-decoding polynomial with q ≤ 2r monomials. Using
this polynomial for our decoding algorithm we get from Lemma 3.5 that C has a Perfectly
Smooth Decoder which makes q queries. Thus from Fact 2.3 we have that the code C is a
(q, δ, qδ)-LDC.
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The Claim 3.1 gives a trivial polynomial with 2r monomials. The natural question is: ”Do
polynomials exist with less monomials?” The answer is Yes. Let us give a concrete example
of an S-decoding polynomial with 3 monomials. We found this example by an exhaustive
search.

Example 3.7. Let m = 511 = 7 ∙ 73 and let S = {1, 365, 147}. By Corollary 3.3 there

exists S-matching vectors {ui}ni=1, ui ∈ (Zm)
h, where n ≥ exp(c (log h)

2

log log h). Set

F = GF (29) = F2[γ]/(γ
9 + γ4 + 1).

It can be verified that γ is a generator of F∗ and that the polynomial P (x) := γ423 ∙ x65 +
γ257 ∙ x12 + γ342 is an S decoding polynomial with 3 monomials.

An interesting question is what is the best S-decoding polynomial we can choose for r > 2?
An immediate corollary from this example and Theorem 3.6 is 3-query LDC.

Theorem 3.8. There exists a (3, δ, 3δ) locally decodable code of length exp(exp(O(
√
log n log log n))).

4 Binary Locally Decodable Codes

In this section we will think of F2t as a vector space F
t
2 over F2. We will view multiplication

as a linear transformation i.e. for every a ∈ F2t there exists an n by n matrix Ma over F2
such that Max = ax.

Assume now that we have message (c1, c2, . . . , cn) ∈ Fn2 . First we will view it as a message
in (F2t)

n. Now let w = C(c1, c2, . . . cn), w ∈ (F2t)
mh be an encoding of the message as in

the previous section. Next let us extend our codeword to be a concatenation of q identical
codewords w0 ◦ w1 ◦ wq−1 = w ◦ w ◦ . . . ◦ w. Now we will ask the first query from w0, the
second query from w1 and so on. Note that this does not harm the probability of correct
decoding; it only decreases the rate by a factor q (which is negligible in our parameters).
The decoding algorithm from the previous section uses some linear combination over F2t .
We can make this combination to be over F2. Let P (x) = a0 + a1xb1 + a2xb2 . . . aq−1xbq−1

be an S-decoding polynomial. Next let us now set our codeword to be

w̃0 ◦ w̃1 ◦ . . . ◦ w̃q−1 , a0w ◦ a1w . . . ◦ aq−1w,

where w = C(x) and aiw is a coordinate wise scalar multiplication. Recall that from
Equation 5 we can decode the i-th symbol ci using the identity:

ciγ
<ui,v> = w̃0(v) + w̃1(v + b1ui) + . . . w̃q−1(v + bq−1ui).

Now let us take some linear functional L : F2t 7→ F2 and apply it on every coordinate of our
codeword. Then

L(ciγ
<ui,v>) = L(w̃0(v)) + L(w̃1(v + b1ui)) + . . . L(w̃q−1(v + bq−1ui)).

We want that L(ciγ
<ui,v>) = ci. If ci = 0 then always L(ciγ

<ui,v>) = L(0) = 0 but the
problem is that if ci = 1 then it may happen that L(ciγ

<ui,v>) = L(γ<ui,v>) = 0. In order
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to solve this problem we will not choose v completely at random; we will choose v at random
conditioned on L(γ<ui,v>) = 1, but this will hurt the smoothness of the code which in turn
affects the probability of correct decoding. In order that it will not hurt this probability
too much we need to choose L such that for every i = 1 . . . n Prv(L(γ

<ui,v>) = 1) ≥ 1/2.

Lemma 4.1. There exists a linear functional L : F2t 7→ F2 such that

∀i ∈ [n] Pr
v∈(Zm)h

(L(γ<ui,v>) = 1) ≥ 1/2.

Proof. Observe that for random v, 〈ui, v〉 is a random number in Zm,since the gcd of ui’s
coordinates is 1. Thus it is enough to find L such that

Pr
j∈Zm

(L(γj) = 1) ≥ 1/2.

For a constant j and a random L, Pr(L(γj) = 1) = 1/2 thus, the expectation of Prj∈Zm(L(γ
j) =

1) is 1/2 i.e.
EL( Pr

j∈Zm
(L(γj) = 1)) = 1/2.

Therefore, there exists an L such that

Pr
j∈Zm

(L(γj) = 1) ≥ 1/2.

Let us describe the reduction formally.
Choose L such that Prj∈Zm(L(γ

j) = 1) ≥ 1/2. Since m is constant we can find it by
exhaustive search in constant time.

1. Given a message (c1, c2, . . . cn) encode it , by code from previous section w = C(c1, c2, . . . , cn).

2. Extend it to
w̃ , w̃0 ◦ w̃1 ◦ . . . ◦ w̃q−1 , a0w ◦ a1w . . . ◦ aq−1w.

3. Reduce the alphabet by applying L on every symbol of w̃ and return

w0 ◦ w1 ◦ . . . ◦ wq−1 , L(w̃0) ◦ L(w̃1) ◦ . . . ◦ L(w̃q−1).

Let us define the decoding algorithm di(w):

• Choose v ∈ (Zm)h at random conditioned on L(γ<ui,v>) = 1.

• Query w0(v), w1(v + b1ui), . . . , wq−1(v + bq−1ui).

• Output ci = w0(v)⊕ w1(v + b1ui) . . .⊕ wq−1(v + bq−1ui).

Algorithm 2: Decoding Algorithm

Theorem 4.2. The binary code C defined above is (q, δ, 2qδ) locally decodable.

9



Proof. We will prove it in two steps.

First let us prove that if at most δ fraction of the codeword w = w0 ◦ w1 . . . ◦ wq−1 is
damaged then we query a damaged place with probability at most 2qδ. Let δi be a fraction
of damaged bits in wi so

1
q

∑
δi = δ. We chose L such that v is distributed uniformly among

half of all possible values. Therefore, the probability that query i will be damaged is at
most 2δi. So the probability that one of the queries will be damaged is at most

∑
2δi = 2qδ.

Next let us prove that if we query only non-damaged places then we will return a correct
answer. As before, by linearity it is enough to prove that di(C(ei)) = 1 and di(C(ej)) = 0
for i 6= j.

di(C(ei)) = L(a0γ
<ui,v>)⊕ L(a1γ<ui,v+b1ui>) . . .⊕ L(aq−1γ<ui,v+bq−1ui>) =

= L
(∑q−1

j=0 ajγ
<ui,v+bjui>

)
= L

(∑q−1
j=0 ajγ

<ui,v>
)
=

L(P (1)γ<ui,v>) = L(γ<ui,v>)

But we choose v such that L(γ<ui,v>) = 1. In the same way we can prove that if C = C(ej)
then ci = 0.

ci = L(a0γ
<uj ,v>)⊕ L(a1γ<uj ,v+b1ui>) . . .⊕ L(aq−1γ<uj ,v+bq−1ui>) =

L
(
γ<uj ,v>

∑q−1
t=0 atγ

bt<uj ,ui>
)
= L (P (γ<ui,uj>)γ<ui,v>) =

L(0) = 0.

We want to mention here that using techniques from [Woo08] Section 5 we can reduce the
probability of error to (q, δ, qδ + ε) for any constant ε > 0.

5 Future work

In this paper we give a general construction of LDCs for any S-matching sets and S-decoding
polynomials. Any improvement in size of a set-system with restricted intersections will
immediately yield improvement in the rate of LDCs. We hope that this paper will give
a motivation for future work on set-systems with restricted intersections. We also believe
that it is possible to choose an S-decoding polynomial with less monomials as in Example
3.7.
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A A simple construction of S-matching vectors

Lemma A.1. Let p1 < p2 . . . < pr be any r primes and m = p1 ∙ p2 . . . pr. Then for every
t, there exists a set S of size 2r − 1 and a family of S-matching vectors {ui}ni=1, ui ∈ (Zm)

h

such that n =
(
t
m−1

)
and h = O(tpr−1).

Proof. Let us first construct a family of vectors {u′i}
n
i=1, u

′
i ∈ (Zm)

t+1 such that:

1. 〈u′i, u
′
i〉 = 0 for i ∈ [n].

2. 〈u′i, u
′
j〉 6= 0 for i 6= j.

Identify the subsets of [t] = {1, 2, . . . t} of size m− 1 with {1, . . . ,
(
t
m−1

)
}. For every subset

A ⊆ [t] of size m− 1, let u′i ∈ Z
t
m be the indicator vector of the set, i.e., u

′
i = (a1, a2, . . . at),

where ai = 1 if i ∈ A and ai = 0 otherwise. In order to simplify the construction let us add
an additional coordinate which is always one i.e., u′i = (a1, a2, . . . at, 1). Clearly 〈u

′
i, u
′
i〉 = 0

since u′i has exactly m ones and 〈u
′
i, u
′
j〉 = 1 + |Ai ∩Aj | 6= 0. Since intersection of two

different subsets of size m− 1 is always less than m− 1.

Now we want to change these vectors such that the inner product of two such vectors will be
in some small set S. By the chinese reminder theorem Zm ≈ Zp1 ⊕Zp2 . . .⊕Zpr . Thus any
number x in Zm we can view as (x mod p1, x mod p2, . . . , x mod pr). The set S is the set
{0, 1}r\(0, 0, . . . 0) i.e. a ∈ S iff a 6= 0 and for every k = 1, . . . r holds (a mod pk) ∈ {0, 1}.

By the chinese reminder theorem there exist constants c1, c2 . . . cr ∈ Zm such that:

1. ci ≡ 1 mod pi

2. ci ≡ 0 mod pj for i 6= j
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Let us define ui by:
ui = (c1u

′⊗p1−1
i , c2u

′⊗p2−1
i , . . . , cru

′⊗pr−1
r ).

Now we need to prove that: 〈ui, ui〉 ≡ 0:

〈ui, ui〉 = 〈(c1u
′⊗p1−1
i , c2u

′⊗p2−1
i , . . . cru

′⊗pr−1
r ), (c1u

′⊗p1−1
i , c2u

′⊗p2−1
i , . . . cru

′⊗pr−1
r )〉 =

∑r
j=1 c

2
j 〈u
′⊗pj−1
i , u

′⊗pj−1
i 〉 =

∑r
j=1 c

2
j 〈u
′
i, u
′
i〉
pj−1,

where the last equation follows from Fact 2.6. Since 〈u′i, u
′
i〉 = 0 it follows that 〈ui, ui〉 = 0.

Now let us prove that 〈ui, uj〉 ∈ S for any i 6= j. In order to prove that 〈ui, uj〉 ∈ S we will
prove that 〈ui, uj〉 mod pk ∈ {0, 1} and 〈ui, uj〉 6= 0. Observe that

ui mod pk ≡ (0, 0, . . . , u
′⊗(pk−1)
i , 0, . . . , 0).

Thus it follows that:

〈ui, uj〉 mod pk ≡ 〈u
′⊗pk−1
i , u

′⊗pk−1
j 〉 ≡ 〈u′i, u

′
j〉
pk−1

By Fermat’s Little Theorem xpk−1 ≡ 0 or 1 mod pk for every k. Since 〈u′i, u
′
j〉 6= 0 mod m

for some k 〈u′i, u
′
j〉 6= 0 mod pk. Therefore 〈ui, uj〉 = 〈u

′
i, u
′
j〉
pk−1 6= 0 mod pk. Therefore

〈ui, uj〉 6= 0 mod m.

As a corollary we get:

Corollary A.2. For every h, r there exists integer m = p1p2 . . . pr and a set S ⊂ Zm of size
2r−1 and a family of S-matching vectors {ui}ni=1, ui ∈ (Zm)

h such that n ≥ exp(c (log h)r

log logr−1 h
).

Note that the only difference between Corollary A.2 and Corollary 3.3 is in order of quan-
tifiers i.e. Corollary 3.3 holds for every m while Corollary A.2 holds for some specific m.

Proof of Corollary A.2. Let us take all primes of the same size (i.e. pi = pj + o(pi)) and

t = m2 then in Lemma A.1 we will get that n ≥
(
m2

m−1

)
≥ mm = O(mp

r
) and h = O(m2pr).

Thus it follows that:

n ≥ exp(c
(log h)r

log logr−1 h
).
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