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Abstract

LetΦ be a uniformly distributed randomk-SAT formula withn variables andm clauses. We present
a polynomial time algorithm that finds a satisfying assignment of Φ with high probability for constraint
densitiesm/n < (1 − εk)2k ln(k)/k, whereεk → 0. Previously no efficient algorithm was known
to find solutions with non-vanishing probability beyondm/n = 1.817 · 2k/k [Frieze and Suen, J. of
Algorithms 1996].
Key words:random structures, efficient algorithms, phase transitions,k-SAT.

1 Introduction

1.1 Solving random k-SAT

Thek-SAT problem is well known to be NP-hard fork ≥ 3, and in fact no algorithm with a sub-exponential
worst-case running time is known to decide whether a givenk-SAT formula has a satisfying assignment.
Nevertheless, thatk-SAT is NP-hard merely indicates that no algorithm can solveall possible inputs effi-
ciently. Therefore, there has been a significant amount of research onheuristicsfor k-SAT, i.e., algorithms
that solve “most” inputs efficiently, where the meaning of “most” depends on the scope of the respective
paper. While some heuristics fork-SAT are very sophisticated, virtually all of them are basedon (at least)
one of the following basic paradigms.

Pure literal rule. If a variablex occurs only positively (resp. negatively) in the formula, set it to true (resp.
false). Simplify the formula by substituting the newly assigned value forx and repeat.

Unit clause propagation. If the formula contains a clause that contains only a single literal (“unit clause”),
then set the underlying variable so as to satisfy this clause. Then simplify the formula and repeat.

Walksat. Initially pick a random assignment. Then repeat the following. While there is an unsatisfied
clause, pick one at random, pick a variable occurring in the chosen clause randomly, and flip its
value.

Backtracking. Assign a variablex, simplify the formula, and recurse. If the recursion fails to find a
satisfying assignment, assignx the opposite value and recurse.

Heuristics based on these paradigms can be surprisingly successful (given thatk-SAT is NP-hard) on
certain types of inputs (e.g., [10, 16]). However, it remains remarkably simple to generate formulas that
elude all known algorithms/heuristics. Indeed, the simplest conceivable type ofrandominstances does the
trick: let Φ denote ak-SAT formula over the variable setV = {x1, . . . , xn} that is obtained by choosing
m clauses uniformly at random and independently from the set of all (2n)k possible clauses. Then for a
large regime of constraint densitiesm/n satisfying assignments are known to exist due to non-constructive
arguments, but no algorithm is known to find one in sub-exponential time with a non-vanishing probability.
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To be precise, keepingk fixed and lettingm = ⌈rn⌉ for a fixedr > 0, we say thatΦ has some property
with high probability(“w.h.p.”) if the probability that the property holds tendsto one asn → ∞. Via the
(highly non-algorithmic) second moment method and the sharp threshold theorem [3, 4, 14] it can be shown
thatΦ has a satisfying assignment w.h.p. ifm/n < (1 − εk)2

k ln 2. Hereεk tends to0 for largek. On the
other hand, a first moment argument shows that no satisfying assignment exists w.h.p. ifm/n > 2k ln 2.
In summary, the threshold forΦ being satisfiable is asymptotically2k ln 2.

But for densitiesm/n beyondO(2k/k) no algorithm has been known to find a satisfying assignment
in polynomial time with probabilityΩ(1) – neither on the basis of a rigorous analysis, nor on the basis
of experimental or other evidence. In fact, many algorithms, including Pure Literal, Unit Clause, and
DPLL-type algorithms, are known to fail or exhibit an exponential running time beyondO(2k/k). There
is experimental evidence that the same is true of Walksat. Indeed, devising an algorithm to solve random
formulas with a non-vanishing probability for densitiesm/n up to2kω(k)/k for anyω(k) → ∞ has been
a well-known open problem [3, 4, 8, 21], which the following theorem resolves.

Theorem 1.1 There are a sequenceεk → 0 and a polynomial time algorithmFix such thatFix applied
to a random formulaΦ withm/n ≤ (1 − εk)2

k ln(k)/k outputs a satisfying assignment w.h.p.

Fix is a combinatorial, local-search type algorithm. It can be implemented to run in timeO(n+m)3/2.
The recent paper [2] provides evidence that beyond densitym/n = 2k ln(k)/k the problem of finding

a satisfying assignment becomes conceptually significantly more difficult (to say the least). To explain this,
we need to discuss a concept that originates from statistical physics.

1.2 A digression: replica symmetry breaking

For the last decade randomk-SAT has been studied by statistical physicists using sophisticated, insightful,
but mathematically highly non-rigorous techniques from the theory of spin glasses. Their results suggest
that below the threshold density2k ln 2 for the existence of satisfying assignments various other phase
transitions take place that affect the performance of algorithms.

To us the most important one is thedynamic replica symmetry breaking(dRSB) transition. LetS(Φ) ⊂
{0, 1}V be the set of all satisfying assignments of the random formulaΦ. We turnS(Φ) into a graph by
consideringσ, τ ∈ S(Φ) adjacent if their Hamming distance equals one. Very roughlyspeaking, according
to the dRSB hypothesis there is a densityrRSB such that form/n < rRSB the correlations that shape the
setS(Φ) are purely local, whereas for densitiesm/n > rRSB long range correlations occur. Furthermore,
rRSB ∼ 2k ln(k)/k.

Confirming and elaborating on this hypothesis, we recently established a good part of the dRSB
phenomenon rigorously [2]. In particular, we proved that there is a sequenceεk → 0 such that for
m/n > (1 + εk)2

k ln(k)/k the values that the solutionsσ ∈ S(Φ) assign to the variables are mutu-
ally heavily correlated in the following sense. Let us call avariablex frozenin a satisfying assignment
σ if any satisfying assignmentτ such thatσ(x) 6= τ(x) is at Hamming distanceΩ(n) from σ. Then for
m/n > (1 + εk)2

k ln(k)/k in all but ao(1)-fraction of all solutionsσ ∈ S(Φ) all but anεk-fraction of the
variables are frozen w.h.p., whereεk → 0.

This suggests that on random formulas with densitym/n > (1+εk)2
k ln(k)/k local search algorithms

are unlikely to succeed. For think of thefactor graph, whose vertices are the variables and the clauses, and
where a variable is adjacent to all clauses in which it occurs. Then a local search algorithm assigns a value
to a variablex on the basis of the values of the variables that have distanceO(1) fromx in the factor graph.
But in the random formulaΦ with m/n > (1 + εk)2

k ln(k)/k assigning one variablex is likely to impose
constraints on the values that can be assigned to variables at distanceΩ(lnn) from x in the factor graph.

The above discussion applies to “large” values ofk (say,k ≥ 10). In fact, non-rigorous arguments as
well as experimental evidence [5] suggest that the picture is quite different and rather more complicated
for “small” k (say,k = 3, 4, 5). In this case the various phenomena that occur at (or very near) the point
2k ln(k)/k for k ≥ 10 appear to happen at vastly different points in the satisfiable regime. To keep matters
as simple as possible we focus on “large”k in this paper. In particular, no attempt has been made to derive
explicit bounds on the numbersεk in Theorem 1.1 for “small” values ofk.
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Algorithm Densitym/n < · · · Success probability Ref., year
Pure Literal (“PL”) o(1) ask → ∞ w.h.p. [19], 2006
Walksat, rigorous 1

6 · 2k/k2 w.h.p. [9], 2009
Walksat, non-rigorous 2k/k w.h.p. [22], 2003

Unit Clause (“UC”) 1
2

(

k−1
k−2

)k−2

· 2k

k Ω(1) [7], 1990

Shortest Clause (“SC”) 1
8

(

k−1
k−3

)k−3
k−1
k−2 · 2k

k w.h.p. [8], 1992

SC+backtracking (“SCB”) ∼ 1.817 · 2k

k w.h.p. [15], 1996
BP+decimation (“BPdec”) e · 2k/k w.h.p. [21], 2007

(non-rigorous)

Table 1: Algorithms for randomk-SAT

1.3 Related work

Quite a few papers deal with efficient algorithms for randomk-SAT, contributing either rigorous results,
non-rigorous evidence based on physics arguments, or experimental evidence. Table 1 summarizes the
part of this work that is most relevant to us. The best rigorous result (prior to this work) is due to Frieze
and Suen [15], who proved that “SCB” succeeds for densitiesηk2

k/k, whereηk is increasing to1.817
ask → ∞. SCB can be considered a (restricted) DPLL-algorithm. Moreprecisely, SCB combines the
shortest clause rule, which is a generalization of Unit Clause, with (very limited) backtracking. Conversely,
it is known that DPLL-type algorithms require an exponential running time w.h.p. for densities beyond
O(2k/k) [1].

Montanari, Ricci-Tersenghi, and Semerjian [21] provide evidence that Belief Propagation guided dec-
imation may succeed up to densitye · 2k/k. This algorithm is based on a very different paradigm than
the others mentioned in Table 1. The basic idea is to run a message passing algorithm (“Belief Propaga-
tion”) to compute for each variable the marginal probability that this variable takes the value true/false in a
uniformly random satisfying assignment. Then, the decimation step selects a variable, assigns it the value
true/false with the corresponding marginal probability, and simplifies the formula. Ideally, repeating this
procedure will yield a satisfying assignment, provided that Belief Propagation keeps yielding the correct
marginals. Proving (or disproving) this remains a major open problem.

Survey Propagation is a modification of Belief Propagation that aims to approximate the marginal
probabilities induced by a particular (non-uniform) probability distribution on the set of satisfying assign-
ments [6]. It can be combined with a decimation procedure as well to obtain a heuristic forfinding a
satisfying assignment. There is (non-rigorous) evidence that for most of the satisfiable regime (actually
m/n < 2k ln 2 − O(1)) Belief and Survey Propagation are essentially equivalent[20]. Hence, there is no
evidence that Survey Propagation finds satisfying assignments beyondO(2k/k) for generalk.

In summary, various algorithms are known/appear to succeedfor densitiesc · 2k/k, where the constant
c depends on the particulars of the algorithm. But I am not aware of prior evidence (either rigorous results,
non-rigorous arguments, or experiments) that some algorithm succeeds for densitiesm/n = 2kω(k)/k
with ω(k) → ∞.

The discussion so far concerns the case of generalk. In addition, a large number of papers deal with the
casek = 3. Flaxman [13] provides a survey. Currently the best rigorously analyzed algorithm for random
3-SAT is known to succeed up tom/n = 3.52 [17]. This is also the best known lower bound on the 3-SAT
threshold. The best current upper bound is4.506 [11], and non-rigorous arguments suggest the threshold
to be≈ 4.267 [6]. As mentioned in Section 1.2, there is non-rigorous evidence that the structure of the
set of all satisfying assignment evolves differently in random 3-SAT than in randomk-SAT for “large” k.
This may be why experiments suggest that Survey Propagationguided decimation for 3-SAT succeeds for
densitiesm/n up to4.2 [6].

1.4 Techniques and outline

The algorithms for randomk-SAT from [7, 8, 15] all follow a very simple scheme:
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Initially all variables are unassigned. In each step apply some rule (referring to the previously
assigned variables/values only) to select a currently unassigned variable. Assign the selected
variable for good, simplify the formula, and proceed.

The Unit Clause algorithm is the prototypical example: the underlying rule is to check if there is a clause
that hask − 1 false literals due previous decisions; if so, the algorithmsets the last unassigned variable
so as to satisfy the clause. Otherwise the algorithm picks anunassigned variable randomly and assigns it
a random value. (The algorithm SCB from [15] deviates from this pattern slightly as it may backtrack to
revise previous assignments, but this happens at mostO(ln2 n) times w.h.p.)

The analysis of such algorithms is based on the “method of deferred decisions”. Suppose we apply
the algorithm to a random formula and condition on the occurrences of the variables assigned in the first
t steps. Assume that these are precisely the variablesx1, . . . , xt. Then all the literals whose underlying
variable is none ofx1, . . . , xt remain stochastically independent and uniformly distributed over set of the
remaining2(n − t) literals. This fact makes it possible to either model the execution of the algorithm by
differential equations [7, 8], or by a Markov chain [15]. Of course, this type of analysis crucially exploits
the fact that the algorithm (almost) never revises previousdecisions.

Instead of assigning one variable at a time, the Walksat algorithm starts from a complete (e.g., randomly
chosen) assignment of truth values to all the variables. Of course, this initial assignment is very unlikely to
be satisfying. Hence, while there is an unsatisfied clause, the algorithm picks one of them at random and
flips the value of a randomly chosen variable occurring in that clause. Since Walksat actually starts from
a complete assignment and may flip the value of the same variable several times, the method of deferred
decisions does not apply. In fact, although experimental (and non-rigorous) evidence suggests that Walksat
finds a satisfying assignment in linear time w.h.p. form/n < 2k/k, the best current rigorous analysis only
shows this form/n < 2k/(6k2) [9]. (The proof is based on relating Walksat to a branching process.)

The algorithmFix for Theorem 1.1 is similar to Walksat in that it starts with a complete assignment –
say, for the sake of concreteness, the one that sets all variables to true. The number of unsatisfied clauses is
(1 + o(1))2−km w.h.p. To reach a satisfying assignment,Fix will have to flip (at least) one variable from
each of these clauses. But in contrast to Walksat,Fix does not choose this variable randomly. Instead
Fix applies a greedy rule: whenever possible choose a variablex so that flippingx does not generate
new unsatisfied clauses. Thus, one could considerFix a greedy version of Walksat. We will describe the
algorithm precisely in Section 3.

The analysis ofFix is based on a blend of probabilistic methods (e.g., martingales) and combinatorial
arguments. We can employ the method of deferred decisions toa certain extent: the analysis “pretends” that
the algorithm exposes the literal occurrences of the randominput formula only when it becomes strictly
necessary, so that the unexposed ones remain “random”. However, the picture is not as clean as in the
analysis of, say, Unit Clause. The reason is that we will haveto track certain rather non-trivial random
variables throughout the process, for which we will resort to a direct combinatorial analysis. Section 3
contains an outline of the analysis, the details of which arecarried out in Section 4–6. Before we come to
this, we need a few preliminaries.

2 Preliminaries and notation

In this section we introduce some notation and present a few basic facts. Although most of them (or closely
related ones) are well known, we present some of the proofs for the sake of completeness.

2.1 Balls and bins

Consider a balls and bins experiment whereµ distinguishable balls are thrown independently and uniformly
at random inton bins. Thus, the probability of each distribution of balls into bins equalsn−µ.

Lemma 2.1 LetZ(µ, n) be the number of empty bins. Letλ = n exp(−µ/n). ThenP [Z(µ, n) ≤ λ/2] ≤
O(

√
µ) · exp(−λ/8) asn→ ∞.
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The proof is based on the followingChernoff boundon the tails of a binomially distributed random variable
X with meanλ (see [18, pages 26–28]): for anyt > 0

P(X ≥ λ+ t) ≤ exp

(

− t2

2(λ+ t/3)

)

and P(X ≤ λ− t) ≤ exp

(

− t2

2λ

)

. (1)

Proof of Lemma 2.1.Let Xi be the number of balls in bini. In addition, let(Yi)1≤i≤n be a family of
mutually independent Poisson variables with meanµ/n, and letY =

∑n
i=1 Yi. ThenY has a Poisson

distribution with meanµ. Therefore, Stirling’s formula showsP [Y = µ] = Θ(µ−1/2). Furthermore,
theconditionaljoint distribution ofY1, . . . , Yn given thatY = µ coincides with the joint distribution of
X1, . . . , Xn (see, e.g., [12, Section 2.6]). As a consequence,

P [Z(µ, n) ≤ λ/2] = P [|{i ∈ [n] : Yi = 0}| < λ/2|Y = µ]

≤ P [|{i ∈ [n] : Yi = 0}| < λ/2]

P [Y = µ]
= O(

√
µ) · P [|{i ∈ [n] : Yi = 0}| < λ/2] .(2)

Finally, sinceY1, . . . , Yn are mutually independent andP [Yi = 0] = λ/n for all 1 ≤ i ≤ n, the number of
indicesi ∈ [n] such thatYi = 0 is binomially distributed with meanλ. Thus, the assertion follows from (2)
and the Chernoff bound (1). 2

2.2 Random k-SAT formulas

Throughout the paper we letV = Vn = {x1, . . . , xn} be a set of propositional variables. IfZ ⊂ V , then
Z̄ = {x̄ : x ∈ Z} contains the corresponding set of negative literals. Moreover, if l is a literal, then|l|
signifies the underlying propositional variable. Ifµ is an integer, let[µ] = {1, 2, . . . , µ}.

We letΩk(n,m) be the set of allk-SAT formulas with variables fromV = {x1, . . . , xn} that contain
preciselym clauses. More precisely, we consider the formula an orderedm-tuple of clauses and each
clause an orderedk-tuples of literals, allowing both literals to occur repeatedly in one clause and clauses
to occur repeatedly in the formula. LetΣk(n,m) be the power set ofΩk(n,m), and letP = Pk(n,m)
be the uniform probability measure (which assigns probability (2n)−km to each formula). We obtain a
probability space(Ωk(n,m),Σk(n,m),P).

Throughout the paper we denote a random element ofΩk(n,m) by Φ. Unless otherwise specified,Φ

is uniformly distributed. In addition, we useΦ to denote specific (i.e., non-random) elements ofΩk(n,m).
If Φ ∈ Ωk(n,m), thenΦi denotes theith clause ofΦ, andΦij denotes thejth literal ofΦi.

Lemma 2.2 For any δ > 0 and anyk ≥ 3 there isn0 > 0 such that for alln > n0 the following is
true. Suppose thatm ≥ δn and thatXi : Ωk(n,m) → {0, 1} is a random variable for eachi ∈ [m]. Let
µ =

⌈

ln2 n
⌉

. If there is a numberλ ≥ δ such that for any setM ⊂ [m] of sizeµ we have

E

[

∏

i∈M
Xi

]

≤ λµ, then P

[

m
∑

i=1

Xi ≥ (1 + δ)λm

]

< n−10.

Proof. Let M be the number of setsM ⊂ [m] of sizeµ such that
∏

i∈M Xi = 1. ThenE [M] ≤
(

m
µ

)

λµ.

If X =
∑m

i=1Xi ≥ L = ⌈(1 + δ)λm⌉, thenM ≥
(

L
µ

)

. Consequently, by Markov’s inequality

P [X ≥ L] ≤ P

[

M ≥
(

L

µ

)]

≤ E [M]
(

L
µ

) ≤
(

m
µ

)

λµ
(

L
µ

) ≤
(

λm

L− µ

)µ

≤
(

λm

(1 + δ)λm− µ

)µ

.

Sinceλm ≥ δ2n we see that(1+ δ)λm−µ ≥ (1+ δ/2)λm for sufficiently largen. Hence,P [X ≥ L] ≤
(1 + δ/2)−µ < n−10 for large enoughn. 2

Although we allow variables to appear repeatedly in the sameclause, the following lemma shows that
this occurs very rarely w.h.p.
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Lemma 2.3 Suppose thatm = O(n). Then w.h.p. there are at mostlnn indicesi ∈ [m] such that one of
the following is true.

1. There are1 ≤ j1 < j2 ≤ k such that|Φij1 | = |Φij2 |.

2. There isi′ 6= i and indicesj1 6= j2, j′1 6= j′2 such that|Φij1 | = |Φi′j′
1
| and|Φij2 | = |Φi′j′

2
|.

Furthermore, w.h.p. no variable occurs in more thanln2 n clauses.

Proof. LetX be the number of such indicesi for which 1. holds. For eachi ∈ [m] and any pair1 ≤ j1 <
j2 ≤ k the probability that|Φij1 | = |Φij2 | is 1/n, because each of the two variables is chosen uniformly
at random. Hence, by the union bound the probability that there arej1, j2 such that|Φij1 | = |Φij2 | is at
most

(

k
2

)

/n. Consequently,E [X ] ≤ m
(

k
2

)

/n = O(1), and thusX ≤ 1
2 lnn w.h.p. by Markov’s inequality.

Let Y be the number ofi ∈ [m] for which 2. is true. For any giveni, i′, j1, j′1, j2, j
′
2 the probability

that|Φij1 | = |Φi′j′
1
| and|Φij2 | = |Φi′j′

2
| is 1/n2. Furthermore, there arem2 ways to choosei, i′ and then

(k(k − 1))2 ways to choosej1, j′1, j2, j
′
2. Hence,E [Y ] ≤ m2k4n−2 = O(1). Thus,X ≤ 1

2 lnn w.h.p. by
Markov’s inequality.

Finally, for any variablex the number of indicesi ∈ [m] such thatx occurs inΦi has a binomial
distributionBin(m, 1− (1− 1/n)k). Since the meanm · (1− (1− 1/n)k) isO(1), the Chernoff bound (1)
implies that the probability thatx occurs in more thanln2 n clauses iso(1/n). Hence, by the union bound
there is no variable with this property w.h.p. 2

Recall that afiltration is a sequence(Ft)0≤t≤τ of σ-algebrasFt ⊂ Σk(n,m) such thatFt ⊂ Ft+1 for
all 0 ≤ t < τ . For a random variableX we letE [X |Ft] denote theconditional expectation(which is a
random variable). Remember thatP [·|Ft] assigns a probability measureP [·|Ft] (Φ) to anyΦ ∈ Ωk(n,m),
namely

P [·|Ft] (Φ) : A ∈ Σk(n,m) 7→ E [1A|Ft] (Φ),

where1A(ϕ) = 1 if ϕ ∈ A and1A(ϕ) = 0 otherwise.

Lemma 2.4 Let (Ft)0≤t≤τ be a filtration and let(Xt)1≤t≤τ be a sequence of random variables such that
eachXt is Ft-measurable. Assume that there are numbersξt ≥ 0 such thatE [Xt|Ft−1] ≤ ξt for all t.
ThenE[

∏

1≤t≤τ Xt|F0] ≤
∏

1≤t≤τ ξt.

Proof. For1 ≤ s ≤ τ we letYs =
∏s
t=1Xt. Let s > 1. SinceYs−1 isFs−1-measurable, we obtain

E [Ys|F0] = E [Ys−1Xs|F0] = E [E [Ys−1Xs|Fs−1] |F0] = E [Ys−1E [Xs|Fs−1] |F0] ≤ ξsE [Ys−1|F0] ,

whence the assertion follows by induction.2 We also need the following tail bound (“Azuma-Hoeffding”,

e.g. [18, p. 37]).

Lemma 2.5 Let (Mt)0≤t≤τ be a martingale such thatM0 = E [Mτ ]. Suppose that|Mt−Mt−1| ≤ ct for
all 1 ≤ t ≤ τ . Then for anyλ > 0 P [|Mτ −M0| > λ] ≤ exp

[

−λ2/(2
∑τ
t=1 c

2
t )
]

.

Finally, we need the following bound on the number of clausesthat have “few” positive literals in total
but contain at least one positive variable from a “small” set.

Lemma 2.6 There is a constantα > 0 such that for allk ≥ 3 andm/n ≤ 2kk−1 ln k the following
is true. Let1 ≤ l ≤

√
k and setδ = αk−4l. For a setZ ⊂ V let XZ be the number of indices

i ∈ [m] such thatΦi is a clause with preciselyl positive literals that contains a variable fromZ. Then
max {XZ : |Z| ≤ δn} ≤

√
δn w.h.p.

Proof. Let µ = ⌈
√
δn⌉. We use a first moment argument. Clearly we just need to consider setsZ of size

⌊δn⌋. Thus, there are at most
(

n
δn

)

ways to chooseZ. OnceZ is fixed, there are at most
(

m
µ

)

ways to
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choose a setI ⊂ [m] of sizeµ. For eachi ∈ I the probability thatΦi contains a variable fromZ and has
preciselyl positive literals is at most21−kk

(

k
l

)

δ Hence, by the union bound

P [max {XZ : |Z| ≤ δn} ≥ µ] ≤
(

n

δn

)(

m

µ

)[

21−kk

(

k

l

)

δ

]µ

≤
( e

δ

)δn
(

2ekm
(

k
l

)

δ

2kµ

)µ

≤
( e

δ

)δn
(

2e ln(k)
(

k
l

)

δn

µ

)µ

[asm ≤ 2kk−1 ln k]

≤
( e

δ

)δn (

4e ln(k) · kl ·
√
δ
)µ

[becauseµ = ⌈
√
δn⌉]

≤
( e

δ

)δn

δµ/8 [asδ = αk−4l for a smallα > 0]

= exp

[

n
√
δ

(√
δ(1 − ln δ) +

1

8
ln δ

)]

.

The last expression iso(1), because
√
δ(1 − ln δ) + 1

8 ln δ is negative for sufficiently smallδ. 2

3 The algorithm Fix

In this section we present the algorithmFix. To establish Theorem 1.1 we will prove the following: for
any0 < ε < 0.1 there isk0 = k0(ε) > 3 such that for allk ≥ k0 the algorithmFix outputs a satisfying
assignment w.h.p. when applied toΦ with m = ⌊(1 − ε)2kk−1 ln k⌋. Thus, we assume thatk exceeds
some large enough numberk0 depending onε only. In addition, we assume throughout thatn > n0 for
some large enoughn0 = n0(ε, k). We set

ω = (1 − ε) ln k andk1 = ⌈k/2⌉.

Let Φ ∈ Ωk(n,m) be ak-SAT instance. When applied toΦ the algorithm basically tries to “fix” the
all-true assignment by setting “a few” variablesZ ⊂ V to false so as to satisfy all clauses. Obviously,
the setZ will have to contain one variable from each clause consisting of negative literals only. The key
issue is to pick “the right” variables. To this end, the algorithm goes over the all-negative clauses in the
natural order. If the present all-negative clauseΦi does not contain a variable fromZ yet,Fix (tries to)
identify a “safe” variable inΦi, which it then adds toZ. Here “safe” means that setting the variable to false
does not create new unsatisfied clauses. More precisely, we say that a clauseΦi isZ-uniqueif Φi contains
exactly one positive literal fromV \Z and no negative literal whose underlying variable is inZ. Moreover,
x ∈ V \ Z is Z-unsafeif it occurs positively in aZ-unique clause, andZ-safeif this is not the case. Then
in order to fix an all-negative clauseΦi we preferZ-safe variables.

To implement this idea,Fix proceeds in three phases. Phase 1 performs the operation described in the
previous paragraph: try to identify aZ-safe variable in each all-negative clause. Of course, it will happen
that an all-negative clause does not contain aZ-safe variable. In this caseFix just picks the variable
in positionk1. Consequently, the assignment constructed in the first phase will not satisfyall clauses.
However, we will prove that the number of unsatisfied clausesis very small, and the purpose of Phases 2
and 3 is to deal with them. Before we come to this, let us describe Phase 1 precisely.

Algorithm 3.1 Fix(Φ)
Input: A k-SAT formulaΦ. Output:Either a satisfying assignment or “fail”.

1a. Let Z = ∅.
1b. For i = 1, . . . , m do
1c. If Φi is all-negative and contains no variable from Z

1d. If there is 1 ≤ j < k1 such that |Φij | is Z-safe, then pick the least such j and add |Φij | to Z.
1e. Otherwise add |Φi k1

| to Z.
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The following proposition, which we will prove in Section 4,summarizes the analysis of Phase 1. LetσZ
be the assignment that sets all variables inV \ Z to true and all variables inZ to false.

Proposition 3.2 At the end of the first phase ofFix(Φ) the following statements are true w.h.p.

1. We have|Z| ≤ 4nk−1 lnω.

2. At most(1 + ε/3)ωn clauses areZ-unique.

3. At mostexp(−kε/8)n clauses are unsatisfied underσZ .

Since the probability that a random clause is all-negative is 2−k, under the all-true assignment(1 +
o(1))2−km ∼ ωn/k clauses are unsatisfied w.h.p. Hence, the outcomeσZ of Phase 1 is already a lot
better than the all-true assignment w.h.p.

Step 1d only considers indices1 ≤ j ≤ k1. This is just for technical reasons, namely to maintain a
certain degree of stochastic independence to facilitate (the analysis of) Phase 2.

Phase 2 deals with the clauses that are unsatisfied underσZ . The general plan is similar to Phase 1: we
(try to) identify a setZ ′ of “safe” variables that can be used to satisfy theσZ -unsatisfied clauses without
“endangering” further clauses. More precisely, we say thata clauseΦi is (Z,Z ′)-endangeredif there is no
1 ≤ j ≤ k such that the literalΦij is true underσZ and|Φij | ∈ V \Z ′. In words,Φi is (Z,Z ′)-endangered
if it relies on one of the variables inZ ′ to be satisfied. CallΦi (Z,Z ′)-secureif it is not (Z,Z ′)-endangered.
Phase 2 will construct a setZ ′ such that for all1 ≤ i ≤ m one of the following is true:

• Φi is (Z,Z ′)-secure.

• There are at least three indices1 ≤ j ≤ k such that|Φij | ∈ Z ′.

To achieve this, we say that a variablex is (Z,Z ′)-unsafeif x ∈ Z∪Z ′ or there are indices(i, l) ∈ [m]×[k]
such that the following two conditions hold:

a. For allj 6= l we haveΦij ∈ Z ∪ Z ′ ∪ V \ Z.

b. Φil = x.

(In words,x occurs positively inΦi, and all other literals ofΦi are either positive but inZ ∪Z ′ or negative
but not inZ.) Otherwise we callx (Z,Z ′)-safe. In the course of the process,Fix greedily tries to add as
few (Z,Z ′)-unsafe variables toZ ′ as possible.

2a. Let Q consist of all i ∈ [m] such that Φi is unsatisfied under σZ . Let Z′ = ∅.
2b. While Q 6= ∅

2c. Let i = min Q.
2d. If there are indices k1 < j1 < j2 < j3 ≤ k − 5 such that |Φijl

| is (Z, Z′)-safe for l = 1, 2, 3,
pick the lexicographically first such sequence and add |Φij1 |, |Φij2 |, |Φij3 | to Z′.

2e. else
let k − 5 < j1 < j2 < j3 ≤ k be the lexicographically first sequence such that |Φijl

| 6∈ Z′

and add |Φijl
| to Z′ (l = 1, 2, 3).

2f. Let Q be the set of all (Z, Z′)-endangered clauses that contain less than 3 variables from Z′.

Note that the While-loop gets executed at mostn/3 times, becauseZ ′ gains three new elements in each
iteration. Actually we prove in Section 5 below that the finalsetZ ′ is fairly small w.h.p.

Proposition 3.3 The setZ ′ obtained in Phase 2 ofFix(Φ) has size|Z ′| ≤ nk−12 w.h.p.

After completing Phase 2,Fix is going to set the variables inV \ (Z ∪ Z ′) to true and the variables
in Z \ Z ′ to false. This will satisfy all(Z,Z ′)-secure clauses. In order to satisfy the(Z,Z ′)-endangered
clauses as well,Fix needs to set the variables inZ ′ appropriately. Since each(Z,Z ′)-endangered clauses
contains three variables fromZ ′, this is essentially equivalent to solving a3-SAT problem, in whichZ ′

is the set of variables. As we shall see, w.h.p. the resulting3-SAT instance is sufficiently sparse for the
following “matching heuristic” to succeed: set up a bipartite graphG(Φ, Z, Z ′) whose vertex set consists of



4 PROOF OF PROPOSITION?? 9

the(Z,Z ′)-endangered clauses and the setZ ′. Each(Z,Z ′)-endangered clause is adjacent to the variables
fromZ ′ that occur in it. If there is a matchingM inG(Φ, Z, Z ′) that covers all(Z,Z ′)-endangered clauses,
we construct an assignmentσZ,Z′,M as follows: for each variablex ∈ V we define

σZ,Z′,M (x) =







false ifx ∈ Z \ Z ′

false if{Φi, x} ∈M for some1 ≤ i ≤ m andx occurs negatively inΦi,
true otherwise.

To be precise, Phase 3 proceeds as follows.

3. If G(Φ, Z, Z′) has a matching that covers all (Z, Z′)-endangered clauses, then compute an (arbitrary)
such matching M and output σZ,Z′,M . If not, output “fail”.

The (bipartite) matching computation can be performed inO((n + m)3/2) time via the Hopcroft-Karp
algorithm. In Section 6 we will show that the matching existsw.h.p.

Proposition 3.4 W.h.p.G(Φ, Z, Z ′) has a matching that covers all(Z,Z ′)-endangered clauses.

Proof of Theorem 1.1.Fix is clearly a deterministic polynomial time algorithm. It remains to show
thatFix(Φ) outputs a satisfying assignment w.h.p. By Proposition 3.4 Phase 3 will find a matchingM
that covers all(Z,Z ′)-endangered clauses w.h.p., and thus the output will be the assignmentσ = σZ,Z′,M

w.h.p. Assume that this is the case. Thenσ sets all variables inZ\Z ′ to false and all variables inV \(Z∪Z ′)
to true, thereby satisfying all(Z,Z ′)-secure clauses. Furthermore, for each(Z,Z ′)-endangered clauseΦi

there is an edge{Φi, |Φij |} in M . If Φij is negative, thenσ(|Φij |) = false, and if ifΦij is positive, then
σ(Φij) = true. In either caseσ satisfiesΦi. 2

4 Proof of Proposition 3.2

Throughout this section we let0 < ε < 0.1 and assume thatk ≥ k0 for a sufficiently largek0 = k0(ε).
Moreover, we assume thatm = ⌊(1−ε)2kk−1 ln k⌋ and thatn > n0 for some large enoughn0 = n0(ε, k).
Letω = (1 − ε) ln k andk1 = ⌈k/2⌉.

4.1 Outline

Before we proceed to the analysis, it is worthwhile giving a brief intuitive explanation as to why Phase 1
“works”. Namely, let us just consider thefirst all-negative clauseΦi of the random input formula. Without
loss of generality we may assume thati = 1. Given thatΦ1 is all-negative, thek-tuple of variables
(|Φ1j |)1≤j≤k ∈ V k is uniformly distributed. Furthermore, at this pointZ = ∅. Hence, a variablex is
Z-unsafe iff it occurs as the unique positive literal in some clause. The expected number of clauses with
exactly one positive literal isk2−km ∼ ωn. Thus, for each variablex the expected number of clauses in
whichx is the only positive literal isk2−km/n ∼ ω. In fact, for each variable the number of such clauses
is asymptotically Poisson. Consequently, the probabilitythatx is notZ-supporting is(1 + o(1)) exp(−ω).
Returning to the clauseΦ1, we conclude that theexpectednumber of indices1 ≤ j ≤ k1 such that|Φ1j |
isZ-safe is(1 + o(1))k1 exp(−ω). Sinceω = (1 − ε) ln k, we have

(1 + o(1))k1 exp(−ω) ≥ kε/3.

Indeed, the number of indices1 ≤ j ≤ k1 so that|Φ1j | is Z-safe is binomially distributed, and hence the
probability that there is noZ-safe|Φ1j | is at most(1+o(1)) exp(−kε/3). Thus, it is “quite likely” thatΦ1

can be satisfied by setting some variable to false without creating any new unsatisfied clauses. Of course,
this argument only applies to the first all-negative clause (i.e.,Z = ∅), and the challenge lies in dealing
with the stochastic dependencies that arise in the course ofthe execution.

To this end, we need to investigate how the setZ computed in Steps 1 evolves over time. Thus, we
will analyze the execution of Phase 1 as a stochastic process, in which the setZ corresponds to a sequence
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(Zt)t≥0 of sets. The time parametert is the number of all-negative clauses for which either Step 1d or 1e
has been executed. We will represent the execution of Phase 1on inputΦ by a sequence of (random) maps

πt : [m] × [k] → {−1, 1} ∪ V ∪ V̄ .

The mapπt is meant to capture the information that has determined the first t steps of the process. If
πt(i, j) = 1 (resp.πt(i, j) = −1), thenFix has only taken into account thatΦij is a positive (negative)
literal, but not what the underlying variable is. Ifπt(i, j) ∈ V ∪ V̄ , thenFix has revealed the actual literal
Φij .

Let us define the sequenceπt(i, j) precisely. LetZ0 = ∅. Moreover, letU0 be the set of alli such that
there is exactly onej such thatΦij is positive. Further, defineπ0(i, j) for (i, j) ∈ [m] × [k] as follows. If
i ∈ U0 andΦij is positive, then letπ0(i, j) = Φij . Otherwise, letπ0(i, j) be1 if Φij is a positive literal
and−1 if Φij is a negative literal. In addition, forx ∈ V let

U0(x) = |{i ∈ U0 : ∃j ∈ [k] : π0(i, j) = x}|

be the number of clauses in whichx is the unique positive literal. Fort ≥ 1 we defineπt as follows.

PI1 If there is no indexi ∈ [m] such thatΦi is all-negative but contains no variable fromZt−1, the
process stops. Otherwise letφt be the smallest such index.

PI2 If there is1 ≤ j < k1 such thatUt−1(|Φφtj |) = 0, then choose the smallest such index; otherwise
let j = k1. Let zt = Φφtjt andZt = Zt−1 ∪ {zt}.

PI3 Let Ut be the set of alli ∈ [m] such thatΦi is Zt-unique. Forx ∈ V let Ut(x) be the number of
indicesi ∈ Ut such thatx occurs positively inΦi.

PI4 For any(i, j) ∈ [m] × [k] let

πt(i, j) =

{

Φij if (i = φt ∧ j ≤ k1) ∨ |Φij | ∈ Zt ∨ (i ∈ Ut ∧ π0(i, j) = 1),
πt−1(i, j) otherwise.

Let T be the total number of iterations of this process before it stops and defineπt = πT , Zt = ZT ,
Ut = UT , Ut(x) = UT (x), φt = zt = 0 for all t > T .

Let us discuss briefly how the above process mirrors Phase 1 ofFix. StepPI1 selects the least index
φt such that clauseΦφt

is all-negative but contains no variable from theZt−1 of variables that have been
selected to be set to false so far. In terms of the descriptionof Fix, this corresponds to jumping forward to
the next execution of Steps 1d–e. SinceUt−1(x) is the number ofZt−1-unique clauses in which variablex
occurs positively, StepPI2 applies the same rule as 1d–e ofFix to select the new elementzt to be included
in the setZt. StepPI3 then “updates” the numbersUt(x). Finally, stepPI4 sets up the mapπt to represent
the information that has guided the process so far: we revealthe firstk1 literals of the current clauseΦφt

,
all occurrences of the variablezt, and all positive literals ofZt-unique clauses.

Observe that at each timet ≤ T the processPI1–PI4 adds precisely one variablezt to Zt. Thus,
|Zt| = t for anyt ≤ T . Furthermore, for1 ≤ t ≤ T the mapπt is obtained fromπt−1 by replacing some
±1s by literals, but no changes of the opposite type are made. Finally, for anyi ∈ [m] there is either noj
such thatπt(i, j) = 1, or there are at least two such indicesj. This is because stepPI4 ensures that for any
i such thatΦi isZt-uniqueπt(i, j) equals the literalΦij if it is positive.

Of course, the processPI1–PI4 can be applied to any concretek-SAT formulaΦ (rather than the
randomΦ). It then yields a sequenceπt [Φ] of maps, variableszt [Φ], etc.

For each integert ≥ 0 we define an equivalence relation≡t on the setΩk(n,m) of k-SAT formulas by
lettingΦ ≡t Ψ iff πs [Φ] = πs [Ψ] for all 0 ≤ s ≤ t. LetFt be theσ-algebra generated by the equivalence
classes of≡t. The family(Ft)t≥0 is a filtration, and the following is immediate from the construction.

Fact 4.1 For anyt ≥ 0 the random mapπt, the random variablesφt+1 andzt, the random setsUt andZt,
and the random variablesUt(x) for x ∈ V areFt-measurable.

Intuitively, that a random variableX is Ft-measurable means that its value is determined by timet. The
following is the key fact about the sequenceπt(i, j).
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Proposition 4.2 Let Et be the set of all pairs(i, j) such thatπt(i, j) ∈ {−1, 1}. The conditional joint
distribution of the variables(|Φij |)(i,j)∈Et

givenFt is uniform over(V \ Zt)Et . That is, for any formula
Φ and for any mapf fromEt [Φ] to V \ Zt [Φ] we have

P [∀(i, j) ∈ Et [Φ] : |Φij | = f(i, j)|Ft] (Φ) = |V \ Zt [Φ] |−|Et[Φ]|.

Proof. Let [Φ]t signify the≡t-equivalence class ofΦ. LetPΦ denote the conditional probability distribution
P [·|Ft] (Φ). Then for any eventX we have

PΦ [X ] = P [X | [Φ]t] = |[Φ]t ∩X| / |[Φ]t| . (3)

That is, the conditional distributionPΦ is uniform over[Φ]t. Hence, we just need to determine|[Φ]t|.
Given a mapf : Et [Φ] → V \ Zt [Φ], we define a formulaΦf by letting

(Φf )ij =







f(i, j) if (i, j) ∈ Et [Φ] andπ0(i, j) = −1,
f(i, j) if (i, j) ∈ Et [Φ] andπ0(i, j) = 1,
Φij otherwise

(i ∈ [m] , j ∈ [k]).

ThenΦf ≡t Φ. Hence, we obtain a bijection(V \ Zt [Φ])Et[Φ] → [Φ]t , f 7→ Φf , and thus the assertion
follows from (3). 2

In each step of the processPI1–PI4 one variablezt is added toZt. There is a chance that this variable
occurs in several other all-negative clauses, and therefore the stopping timeT should be smaller than the
total number of all-negative clauses. To prove this, we needthe following lemma.

Lemma 4.3 W.h.p. the following is true for all1 ≤ t ≤ min{T, n}: the number of indicesi ∈ [m] such
thatπt(i, j) = −1 for all 1 ≤ j ≤ k is at most2nω exp(−kt/n)/k.

Proof. We consider the random variables

Ntij =

{

1 if πt(i, j) = −1 andt ≤ T ,
0 otherwise

(i ∈ [m] , j ∈ [k] , t ≥ 0).

Let t ≤ n, µ = ⌈ln2 n⌉, and letI ⊂ [m] be a set of sizeµ. Let Yi = 1 if t ≤ T andπt(i, j) = −1 for all
j ∈ [k], and letYi = 0 otherwise. SetJ = [t] × I × [k] . If Yi = 1 for all i ∈ I, thenN0ij = 1 for all
(i, j) ∈ I × [k] andNsij = 1 for all (s, i, j) ∈ J , and we will prove below that

E





∏

(i,j)∈I×[k]

N0ij ·
∏

(t,i,j)∈J
Ntij



 ≤ 2−k|I|(1 − 1/n)|J |. (4)

Hence,

E

[

∏

i∈I
Yi

]

≤
[

2−k(1 − 1/n)kt
]µ ≤ λµ, whereλ = 2−k exp(−kt/n). (5)

Combining the bound (5) with Lemma 2.2, we see that with probability at least1 − n−10 there are no
more than2λm indicesi ∈ [m] such thatπt(i, j) = −1 for all j ∈ [k]. Hence, by the union bound the
probability that this holds for allt ≤ min{T, n} is at least1 − n−9. As 2λm ≤ 2nω exp(−kt/n)/k, this
implies the assertion.

To complete the proof, we need to establish (4). Let

X0 =
∏

(i,j)∈I×[k]

N0ij , Jt = {(i, j) : (t, i, j) ∈ J }, andXt =
∏

(i,j)∈Jt

Ntij .

Since the signs of the literalsΦij are mutually independent, we have

E [X0] = 2−k|I|. (6)
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Furthermore, we claim that

E [Xt|Ft−1] ≤ (1 − 1/n)|Jt|; (7)

then (4) follows by plugging (6) and (7) into Lemma 2.4.
To prove (7), lett ≥ 1. If T < t or πt−1(i, j) 6= −1 for some(i, j) ∈ Jt, then clearlyXt = Ntij = 0.

Hence, suppose thatT ≥ t andπt−1(i, j) = −1 for all (i, j) ∈ Jt. Then at timet PI2 selects some
variablezt ∈ V \ Zt−1, andNtij = 1 only if |Φij | 6= zt. As πt−1(i, j) = −1 for all (i, j) ∈ Jt, given
Ft−1 the variables(|Φij |)(i,j)∈Jt

are mutually independent and uniformly distributed overV \ Zt−1 by
Proposition 4.2. Therefore, for each(i, j) ∈ Jt independently we have|Φij | = zt with probability at least
1/n, whence (7) follows. 2

Corollary 4.4 W.h.p. we haveT < 4nk−1 lnω.

Proof. Let t0 = 2nk−1 lnω and letIt be the number of indicesi such thatπt(i, j) = −1 for all 1 ≤ j ≤ k.
ThenPI2 ensures thatIt ≤ It−1 − 1 for all t ≤ T . Consequently, ifT ≥ 2t0, then0 ≤ IT ≤ It0 − t0, and
thusIt0 ≥ t0. Since2nk−1 lnω > 3nω exp(−kt0/n)/k for sufficiently largek, Lemma 4.3 entails that

P [T ≥ 2t0] ≤ P [It0 ≥ t0] = P
[

It0 ≥ 2nk−1 lnω
]

≤ P [It0 > 3nω exp(−kt0/n)/k] = o(1).

Hence,T < 2t0 w.h.p. 2 For the rest of this section we let

θ = ⌊4nk−1 lnω⌋.

The next goal is to estimate the number ofZt-unique clauses, i.e., the size of the setUt. For technical
reasons we will consider a slightly bigger set: letUt be the set of alli ∈ [m] such that there is an indexj
such thatπ0(i, j) 6= −1 but there exists noj such thatπt(i, j) ∈ {1} ∪ Z̄t. That is, clauseΦi contains a
positive literal, but by timet there is at most one positive literalΦij left that does not belong toZt, andΦi

has no negative literal whose underlying variable lies inZt. In Section 4.2 we will establish the following
bound.

Lemma 4.5 W.h.p. we havemax0≤t≤T |Ut| ≤ (1 + ε/3)ωn.

Let us think of the variablesx ∈ V \ Zt as “bins” and of the clausesΦi with i ∈ Ut as “balls”. If we
place each balli into the (unique) binx such thatx occurs positively inΦi, then by Lemma 4.5 the average
number of balls in a bin is at most

(1 + ε/3)ωn

|V \ Zt|
=

(1 + ε/3)ω

1 − t/n
w.h.p.

As ω ≤ (1 − ε) ln k and t ≤ T ≤ 4nk−1 lnω w.h.p. by Corollary 4.4, for large enoughk we have
(1+ ε/3)(1− t/n)−1ω ≤ (1−0.6ε) lnk. Hence, if the “balls” were uniformly distributed over the “bins”,
we would expect

|V \ Zt| exp(−|Ut|/|V \ Zt|) ≥ (n− t)k0.6ε−1 ≥ nkε/2−1

“bins” to be empty. The next corollary shows that this is actually true. We defer the proof to Section 4.3.

Corollary 4.6 LetQt = |{x ∈ V \ Zt : Ut(x) = 0}|. Thenmint≤T Qt ≥ nkε/2−1 w.h.p.

Now that we know that there are “a lot” of variablesx ∈ V \ Zt−1 such thatUt(x) = 0 w.h.p., we can
prove that it is quite likely that clauseΦφt

contains one. More precisely, we have the following.

Corollary 4.7 Let

Bt =

{

1 if min1≤j<k1 Ut−1(|Φφtj |) > 0, Qt−1 ≥ nkε/2−1, |Ut| ≤ (1 + ε/3)ωn, andT ≥ t,
0 otherwise.

ThenBt isFt-measurable andE [Bt|Ft−1] ≤ exp(−kε/6) for all 1 ≤ t ≤ θ.
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Proof. Since the eventT < t and the random variableQt−1 areFt−1-measurable and asUt−1(|Φφtj |) is
Ft-measurable for anyj < k1 by Fact 4.1,Bt isFt-measurable. LetΦ be such thatT [Φ] ≥ t, Qt−1 [Φ] ≥
nkα−1, and|Ut−1 [Φ] | ≤ (1 + ε/3)ωn. We condition on the eventΦ ≡t−1 Φ. Then at timet the process
PI1–PI4 selectsφt such thatπt−1(φt, j) = −1 for all j ∈ [k]. Hence, by Proposition 4.2 the variables
|Φφtj | are uniformly distributed and mutually independent elements ofV \ Zt−1. Consequently, for each
j < k1 the eventUt−1(|Φφtj |) = 0 occurs with probability|Qt−1|/|V \ Zt−1| ≥ kε/2−1 independently.
Thus, the probability thatUt−1(|Φφtj |) > 0 for all j < k1 is at most(1 − kε/2−1)k1−1 ≤ exp(−kε/6). 2

Proof of Proposition 3.2.The definition of the processPI1–PI4 mirrors the execution of the algorithm, i.e.,
the setZ obtained after Steps 1a–1d ofFix equals the setZT . Therefore, the first item of Proposition 3.2
is an immediate consequence of Corollary 4.4 and the fact that |Zt| = t for all t ≤ T . Furthermore, the
second assertion follows directly from Lemma 4.5.

To prove the third claim, we need to bound the number of clauses that are unsatisfied under the as-
signmentσZT

that sets all variables inV \ ZT to true and all variables inZT to false. By construction
any all-negative clause contains a variable fromZT and is thus satisfied underσZT

. We claim that for any
i ∈ [m] such thatΦi is unsatisfied underσZT

one of the following is true.

a. There ist ≤ T such thati ∈ Ut−1 andzt occurs positively inΦi.

b. There are1 ≤ j1 < j2 ≤ k such thatΦij1 = Φij2 .

To see this, assume that b. does not occur. Let us assume without loss of generality thatΦi1, . . . ,Φil are
positive andΦil+1, . . . ,Φik are negative for somel ≥ 1. SinceΦi is unsatisfied underσZT

, we have
Φi1, . . . ,Φil ∈ ZT . Hence, for each1 ≤ j ≤ l there istj ≤ T such thatΦij = ztj . As Φi1, . . . ,Φik

are distinct, the indicest1, . . . , tl are mutually distinct, too. Assume thatt1 < · · · < tl, and lett0 = 0.
ThenΦi contains precisely one positive literal fromV \ Ztl−1

. Hence,i ∈ Utl−1
. SinceΦi is unsatisfied

underσZT
no variable fromZT occurs negatively inΦi and thusi ∈ Us for all tl−1 ≤ s < tl. Therefore,

i ∈ Utl−1 andztl = Φil, i.e., a. occurs.
LetX be the number of indicesi ∈ [m] such that a. occurs. We claim that

X ≤ n exp(−kε/7) w.h.p. (8)

Since the number ofi ∈ [m] for which b. occurs isO(lnn) w.h.p. by Lemma 2.3, (8) implies the third
assertion.

To establish (8), letBt be as in Corollary 4.7 and set

Dt =

{

Ut−1(zt) if Bt = 1 andUt−1(zt) ≤ ln2 n,
0 otherwise.

Then by the definition of the random variablesBt,Dt either

X ≤
∑

1≤t≤θ
Dt (9)

or one of the following events occurs:

i. T > θ.

ii. Qt < nkε/2−1 for some0 ≤ t ≤ T .

iii. |Ut| > (1 + ε/3)ωn for some1 ≤ t ≤ T .

iv. |Ut−1(zt)| > ln2 n for some1 ≤ t ≤ θ.

The probability of i. iso(1) by Corollary 4.4. Moreover, ii. does not occur w.h.p. by Corollary 4.6, and the
probability of iii. is o(1) by Lemma 4.5. If iv. occurs, then the variablezt occurs in at leastln2 n clauses
for some1 ≤ t ≤ θ, which has probabilityo(1) by Lemma 2.3. Hence, (9) is true w.h.p.

Thus, we need to bound
∑

1≤t≤θ Dt. The random variableDt is Ft-measurable andDt = 0 for all

t > θ. Let D̄t = E [Dt|Ft−1] andMt =
∑t
s=1 Ds − D̄s. Then(Mt)1≤t≤θ is a martingale. As all
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incrementsDs − D̄s are less thanln2 n in absolute value by the definition ofDt, Lemma 2.5 (Azuma-
Hoeffding) entails thatMθ = o(n) w.h.p. Hence, w.h.p. we have

∑

1≤t≤θ
Dt = o(n) +

∑

1≤t≤θ
D̄t. (10)

We claim that
D̄t ≤ 2ω exp(−kε/6) for all 1 ≤ t ≤ θ. (11)

For by Corollary 4.7 we have
E [Bt|Ft−1] ≤ exp(−kε/6). (12)

Moreover, givenFt−1 we haveπt−1(φt, k1) = −1, whencezt is uniformly distributed overV \ Zt−1 by
Proposition 4.2. SinceBt = 1 implies |Ut−1| ≤ (1 + ε/3)ωn, this means that the conditional expectation
of Ut−1(zt) is at most

|Ut−1|/|V \ Zt−1| ≤
(1 + ε/3)ωn

n− t
≤ 2ω. (13)

Combining (12) and (13), we obtain (11). Further, plugging (11) into (10), we get
∑

1≤t≤θ
Dt = 2ω exp(−kε/2/3)θ + o(n) ≤ 3ω exp(−kε/6)θ ≤ n exp(−kε/7) w.h.p.

Thus, (8) follows from (9). 2

4.2 Proof of Lemma 4.5

For integerst ≥ 1, i ∈ [m], j ∈ [k] let

Htij =

{

1 if πt−1(i, j) = 1 andπt(i, j) = zt
0 otherwise,

Stij =

{

1 if T ≥ t andπt(i, j) ∈ {1,−1}
0 otherwise.

(14)

Lemma 4.8 For any two setsI,J ⊂ [θ] × [m] × [k] we have

E





∏

(t,i,j)∈I
Htij ·

∏

(t,i,j)∈J
Stij |F0



 ≤ (n− θ)
−|I|

(1 − 1/n)
|J |

.

Proof. Let It = {(i, j) : (t, i, j) ∈ I}, Jt = {(i, j) : (t, i, j) ∈ J }, Xt =
∏

(i,j)∈It
Htij

∏

(i,j)∈Jt
Stij .

If Xt = 1, thent ≤ T (as otherwiseStij = 0 by definition andHtij = 0 becauseπt = πt−1). Furthermore,
Xt = 1 implies that

πt−1(i, j) = 1 for all (i, j) ∈ It andπt−1(i, j) ∈ {−1, 1} for all (i, j) ∈ Jt. (15)

Thus, letΦ be ak-SAT formula such thatT [Φ] ≥ t andπt−1 [Φ] satisfies (15). We claim that

E [Xt|Ft−1] (Φ) ≤ (n− θ)−|It|(1 − 1/n)|Jt|. (16)

To show this, we condition on the eventΦ ≡t Φ. Then at timet stepsPI1–PI2 select a variablezt from
the the all-negative clauseΦφt

. As for each(i, j) ∈ It clauseΦi contains a positive literal, we have
φt 6= i. Furthermore, we may assume that if(φt, j) ∈ Jt thenj > k1, because otherwiseXt = Stφtj = 0
(cf. PI4). Hence, due to (15) and Proposition 4.2 in the conditional distributionP [·|Ft−1] (Φ) the variables
(|Φij |)(i,j)∈It∪Jt

are uniformly distributed overV \Zt−1 and mutually independent. Therefore, the events
|Φij | = zt occur independently with probability1/|V \ Zt−1| = 1/(n− t+ 1), whence

E [Xt|Ft−1] (Φ) ≤ (n− t+ 1)−|It|(1 − 1/(n− t+ 1))|Jt| ≤ (n− θ)−|It|(1 − 1/n)|Jt|.

This shows (16). Finally, the assertion follows from Lemma 2.4 and (16). 2 Armed with Lemma 4.8, we

can now bound the number of indicesi ∈ Ut such thatΦi has “few” positive literals.
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Lemma 4.9 With probability1 − o(1/n) the following is true for all1 ≤ l <
√
k and all 1 ≤ t ≤

min{T, θ}. Let

Λl(t) = ω

(

k − 1

l − 1

)(

t

n

)l−1

(1 − t/n)k−l.

There are at most(1 + ε/9)Λl(t)n indicesi ∈ Ut such thatΦi has preciselyl positive literals.

Proof. Let M ⊂ [m] be a set of sizeµ =
⌈

ln2 n
⌉

and letPi ⊂ [k] be a set of sizel − 1 for eachi ∈ M.
Let P = (Pi)i∈M be the family of all setsPi. Furthermore, letti : Pi → [t] for all i ∈ M, and let
T = (ti)i∈M comprise all mapsti. Let EM(P , T ) be the event that the following statements are true:

a. Φi has exactlyl positive literals for alli ∈ M.

b. Φij = zti(j) for all i ∈ M andj ∈ Pi.

c. t ≤ T and no variable fromZt occurs negatively inΦi.

Moreover, let

I = IM(P , T ) = {(s, i, j) : i ∈ M, j ∈ Pi, s = ti(j)} ,
J = JM(P , T ) = {(s, i, j) : i ∈ M, j ∈ [k] \ Pi}

Let Yi = 1 if clauseΦi has exactlyl positive literals, including the literalsΦij for j ∈ Pi (i ∈ M). Then
P [Yi = 1] = (k − l + 1)2−k for eachi ∈ M. Moreover, the eventsYi = 1 are mutually independent and
F0-measurable. Therefore, by Lemma 4.8

P [EM(P , T )] ≤ E

[

∏

i∈M
Yi

]

· E





∏

(t,i,j)∈I
Htij ·

∏

(t,i,j)∈J
Stij |F0





≤
[

k − l + 1

2k
· (n− t)1−l (1 − 1/n)(k−l+1)t

]µ

. (17)

Let EM be the event thatt ≤ T andΦi has exactlyl positive literals andi ∈ Ut for all i ∈ M. If EM
occurs, then there existP , T such thatEM(P , T ) occurs. Furthermore, for eachi ∈ M there are

(

k
l−1

)

ways to choose a setPi and thentl−1 ways to choose the mapti. Therefore, the union bound and (17)
yield

P [EM] ≤
∑

P,T
P [EM(P , T )] ≤ λµ where

λ =

(

k

l − 1

)

tl−1 × k − l+ 1

2k
· (n− t)

1−l
(1 − 1/n)

(k−l+1)t
.

Hence, by Lemma 2.2 with probability1 − o(1/n) there are at most(1 + o(1))λm indicesi ∈ [m] such
thatΦi has preciselyl positive literals andi ∈ Ut. Thus, the remaining task is to show that

λm ≤ (1 + ε/10)Λln. (18)

To show (18), we estimate

λ ≤ k2−k ·
(

k − 1

l − 1

)(

t

n− t

)l−1

(1 − 1/n)t(k−1−(l−1))

≤ k2−k ·
(

k − 1

l − 1

)(

t

n

)l−1

(1 − t/n)k−1−(l−1)η, whereη =

(

n

n− t

)l−1

·
(

(1 − 1/n)t

1 − t/n

)k−l
.(19)

We can boundη as follows:

η ≤ (1 + t/(n− t))
l

(

exp(−t/n)

exp(−t/n− (t/n)2)

)k−l
≤ (1 + 2t/n)

l
exp(k(t/n)2)

≤ exp(2lθ/n+ k(θ/n)2) ≤ exp(8lk−1 lnω + 16k−1 ln2 ω).
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Sincel ≤
√
k andω ≤ ln k, the last expression is less than1 + ε/10 for sufficiently largek. Hence,

η ≤ 1 + ε/10, and thus (18) follows from (19). 2 The following lemma deals withi ∈ Ut such thatΦi

contains “a lot” of positive literals.

Lemma 4.10 W.h.p. the following is true for alll ≥ ln k. There are at mostn exp(−l) indicesi ∈ [m]
such thatΦi has exactlyl positive literals among which at leastl − 1 are inZθ.

Proof. Let M ⊂ [m] be a set of sizeµ =
⌈

ln2 n
⌉

and letPi ⊂ [k] be a set of sizel − 1 for eachi ∈ M.
Furthermore, letti : Pi → [θ] for all i ∈ M, and setT = (ti)i∈M. Let EM(P , T ) be the event that the
following two statements are true for alli ∈ M:

a. Φi has exactlyl positive literals.

b. For allj ∈ Pi we haveΦij = zti(j).

Let EM be the event that for alli ∈ M clauseΦi has exactlyl positive literals among whichl − 1 are in
Zθ. If EM occurs, then there areP , T such that the eventEM(P , T ) occurs.

Fori ∈ M we letYi = 1 if clauseΦi has exactlyl positive literals, including the literalsΦij for j ∈ Pi.
SetI = {(s, i, j) : i ∈ M, j ∈ Pi, s = ti(j)}. If EM(P , T ) occurs, then

∏

(s,i,j)∈I Hsij ·
∏

i∈M Yi = 1.

BoundingE
[
∏

i∈M Yi
]

as in the proof of Lemma 4.9 and applying Lemma 4.8, we obtain

P [EM(P , T )] ≤ E

[

∏

i∈M
Yi

]

· E





∏

(s,i,j)∈I
Hsij |F0



 ≤
[

k − l + 1

2k
· (n− θ)1−l

]µ

.

Hence, by the union bound

P [EM] ≤ P [∃P , T : EM(P , T ) occurs] ≤
∑

P,T
P [EM(P , T )] ≤ λµ, where

λ =

(

k

l − 1

)

θl−1 × k − l + 1

2k
· (n− θ)1−l. (20)

Lemma 2.2 implies that w.h.p. there are at most2λm indicesi ∈ [m] such thatΦi has exactlyl positive
literals of whichl − 1 lie in Zθ. Thus, the estimate

2λm ≤ 2k+1ωn

k
×
(

k

l − 1

)

· k − l + 1

2k
·
(

θ

n− θ

)l−1

≤ 2ωn ·
(

ekθ

(l − 1)(n− θ)

)l−1

≤ 2ωn

(

12 lnω

l

)l−1

[asθ = 4nk−1 lnω]

≤ n exp(−l) [becausel ≥ ln k]

completes the proof. 2

Proof of Lemma 4.5.SinceT ≤ θ w.h.p. by Corollary 4.4, it suffices to show that w.h.p. for all 0 ≤ t ≤
min{T, θ} the bound|Ut| ≤ (1 + ε/3)ωn holds. LetUtl be the number of indicesi ∈ Ut such thatΦi has
preciselyl positive literals. Then by Lemmas 4.10 and 4.9 w.h.p. for allt ≤ min{T, θ} and all1 ≤ l ≤ k
simultaneously

Utl ≤
{

n exp(−k) if l ≥
√
k,

(1 + ε/9)Λl(t) otherwise.

Therefore, w.h.p.

max
0≤t≤min{T,θ}

|Ut| ≤ max
0≤t≤min{T,θ}

k
∑

l=1

Utl ≤ nk exp(−k) + max
0≤t≤min{T,θ}

k
∑

1≤l≤
√
k

(1 + ε/9)Λl(t)

≤ n+ (1 + ε/9)ωn ≤ (1 + ε/3)ωn,

as desired. 2
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4.3 Proof of Corollary 4.6

Define a mapψt : Ut → V as follows. Fori ∈ Ut let s be the least index suchi ∈ Us; if there isj such
thatΦij ∈ V \ Zs, letψt(i) = Φij , and otherwise letψt(i) = zs. Thus, ifi ∈ Us thenψs(i) is the unique
positive literal ofΦi that does not belong toZs. The following lemma shows that the (random) mapψt is
not too far from being “uniformly distributed”.

Lemma 4.11 Let t ≥ 0, Ût ⊂ [m], andψ̂t : Ût → V . ThenP
[

ψt = ψ̂t|Ut = Ût
]

≤ (n− t)−|Ût|.

Proof. SetZ−1 = ∅. Moreover, define random variables

γt(i, j) =

{

πt(i, j) if πt(i, j) ∈ {−1, 1}
0 otherwise

for (i, j) ∈ [m] × [k] .

Thus,γt is obtained by “forgetting” the literalsπt(i, j) ∈ V ∪ V̄ that the processPI1–PI4 has revealed up
to timet. Observe that for anyi ∈ [m]

i ∈ Ut ⇔ max
j∈[k]

γ0(i, j) ≥ 0 ∧ (∀j ∈ [k] : γt(i, j) = min{γ0(i, j), 0}) . (21)

Fix a setÛt ⊂ [m], let Φ be any formula such thatUt [Φ] = Ût, and letγ̂t = γt [Φ]. Fors ≤ t let Γs be
the event thatγu = γ̂u for all u ≤ s. The goal is to prove that

P
[

ψt = ψ̂t|Γt
]

≤ (n− t)−|Ût|. (22)

Let τ : Ût → [0, t] assign to eachi ∈ Ût the leasts such thati ∈ Ûs. We claim that

P
[

∀i ∈ Ût : ψt(i) = ψ̂t(i)|Γt
]

≤
∏

i∈Ût

(n− τ(i))−1. (23)

Sinceτ(i) ≤ t for all i ∈ Ût, (23) implies (22).
Let τs be the event thatψu(i) = ψ̂t(i) for all 0 ≤ u ≤ s and alli ∈ τ−1(u), and letτ−1 = Ωk(n,m).

In order to prove (23), we will show that for all0 ≤ s ≤ t

P [τs|τs−1 ∩ Γs] ≤ (n− s)−|τ−1(s)| and (24)

P [τs|τs−1 ∩ Γs] = P [τs|τs−1 ∩ Γt] . (25)

Combining (24) and (25) yields

P
[

∀i ∈ Ût : ψt(i) = ψ̂t(i)|Γt
]

= P [τt|Γt] =
∏

0≤s≤t
P [τs|τs−1 ∩ Γt]

=
∏

0≤s≤t
P [τs|τs−1 ∩ Γs] ≤

∏

0≤s≤t
(n− s)−|τ−1(s)|,

which shows (23). Thus, the remaining task is to establish (24) and (25).
To prove (24) it suffices to show that

P [τs ∩ Γs|Fs−1] (ϕ)

P [τs−1 ∩ Γs|Fs−1] (ϕ)
≤ (n− s)−|τ−1(s)| for all ϕ ∈ τs−1 ∩ Γs. (26)

Note that the l.h.s. is just the conditional probability ofτs givenτs−1 ∩ Γs with respect to the probability
measureP [·|Fs−1] (ϕ). Thus, let us condition on the eventΦ ≡s−1 ϕ ∈ τs−1 ∩ Γs. ThenΦ ∈ Γs, and
thereforeγ0 = γ̂0 andγs = γ̂s. Hence, (21) entailsUs = Us [ϕ] = Us [Φ], and thusτ−1(s) ⊂ Us. Let
i ∈ τ−1(s), and letJi be the set of indicesj ∈ [k] such thatγs−1(i, j) = 1. Recall thatψs(i) is defined
as follows: ifΦij = zs for all j ∈ Ji, thenψs(i) = zs; otherwiseψs(i) = Φij for the (unique)j ∈ Ji
such thatΦij 6= zs. By Proposition 4.2 in the measureP [·|Fs−1] (ϕ) the variables(Φij)i∈τ−1(s),j∈Ji

are
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independently uniformly distributed overV \ Zs−1 (becauseπs−1(i, j) = γs−1(i, j) = 1). Hence, the
eventsψs(i) = ψ̂t(i) occur independently for alli ∈ τ−1(s). Thus, letting

pi = P [ψs(i) = ψt(i) ∧ ∀j ∈ Ji : γs(i, j) = 0|Fs−1] (ϕ),

qi = P [∀j ∈ Ji : γs(i, j) = 0|Fs−1] (ϕ)

for i ∈ τ−1(s), we have
P [τs ∩ Γs|Fs−1] (ϕ)

P [τs−1 ∩ Γs|Fs−1] (ϕ)
=

∏

i∈τ−1(s)

pi
qi
. (27)

Observe that the event∀j ∈ Ji : γs(i, j) = 0 occurs iffΦij = zs for at least|Ji| − 1 elementsj ∈ Ji
(cf. PI4). Therefore,

qi = |Ji| · |V \ Zs−1|−(|Ji|−1)(1 − |V \ Zs−1|−1) + |V \ Zs−1|−|Ji|

To boundpi for i ∈ τ−1(s) we consider three cases.

Case 1: ψ̂t(i) ∈ V \ Zs−1. As Φij ∈ V \ Zs−1 for all j ∈ Ji the eventψs(i) = ψ̂t(i) has probability0.

Case 2: ψ̂t(i) = zs. The eventψs(i) = ψ̂t(i) occurs iff Φij = zs for all j ∈ Ji, which happens with
probability|V \ Zs−1|−|Ji| in the measureP [·|Fs−1] (ϕ). Hence,pi = (n− s+ 1)−|Ji|.

Case 3: ψ̂t(i) ∈ V \ Zs. If ψs(i) = ψ̂t(i), then there isj ∈ Ji such thatΦij = ψ̂t(i) andΦij′ = zs for
all j′ ∈ Js \ {j}. Hence,pi = |Ji| · |V \ Zs−1|−|Ji| = |Ji|(n− s+ 1)−|Ji|.

In all three cases we have

qi
pi

≥ |Ji|(n− s+ 1)1−|Ji|(1 − 1/(n− s+ 1))

|Ji|(n− s+ 1)−|Ji| = n− s.

Thus, (26) follows from (27).
In order to prove (25) we will show that

P [Γa|τb ∩ Γc] = P [Γa|Γc] (28)

for any0 ≤ b ≤ c < a. This implies (25) as follows:

P [τs|τs−1 ∩ Γt] =
P [τs ∩ Γt]

P [τs−1 ∩ Γt]
=

P [Γt|τs ∩ Γs] P [τs ∩ Γs]

P [Γt|τs−1 ∩ Γs] P [τs−1 ∩ Γs]

(28)
=

P [τs ∩ Γs]

P [τs−1 ∩ Γs]
= P [τs|τs−1 ∩ Γs] .

To show (28) it suffices to consider the casea = c+ 1, because fora > c+ 1 we have

P [Γa|τb ∩ Γc] = P [Γa|τb ∩ Γc+1] P [τb ∩ Γc+1|τb ∩ Γc]

= P [Γa|τb ∩ Γc+1] P [Γc+1|τb ∩ Γc] .

Thus, suppose thata = c + 1. At time a = c + 1 PI1 selects an indexφa ∈ [m]. This is the least index
i such thatγc(i, j) = −1 for all j; thus,φa is determined once we condition onΓc. Then,PI2 selects a
variableza = |Φφaja | with ja ≤ k1. Now,γa is obtained fromγc by setting the entries for some(i, j) such
thatγc(i, j) ∈ {−1, 1} to 0 (cf. PI4). More precisely, we haveγa(φa, j) = 0 for all j ≤ k1. Furthermore,
for i ∈ [m] \ {φa} let Ji be the set of allj ∈ [k] such thatπa(i, j) = γa(i, j) ∈ {−1, 1}, and fori = φa
let Ji be the set of allk1 < j ≤ k such thatπa(i, j) = γa(i, j) ∈ {−1, 1}. Then for anyi ∈ [m] and
anyj ∈ Ji the eventγc(i, j) = 0 only depends on the events|Φij′ | = za for j′ ∈ Ji. By Proposition 4.2
the variables(|Φij′ |)i∈[m],j∈Ji

are independently uniformly distributed overV \Zc. Therefore, the events
|Φij′ | = za for j′ ∈ Ji are independent of the choice ofza and of the eventτb. 2
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Proof of Corollary 4.6.Let µ ≤ (1 + ε/3)ωn be a positive integer and let̂Ut ⊂ [m] be a set of sizeµ.
Suppose thatt ≤ θ. Let ν = nk−ε/2, and letB be the set of all mapsψ : Ût → [n] such that there are less
thanν + t numbersx ∈ [n] such thatψ−1(x) = ∅. Furthermore, letBt be the event that there are less than
ν variablesx ∈ V \ Zt such thatUt(x) = 0. Since|Zt| = t, we have

P
[

Bt|Ut = Ût
]

≤
∑

ψ∈B
P
[

ψt = ψ|Ut = Ût
]

≤ |B|(n− t)−µ [by Lemma 4.11]

=
|B|
nµ

·
(

1 +
t

n− t

)µ

≤ |B|
nµ

· exp(2θµ/n) ≤ |B|
nµ

· exp(9nk−1 ln2 k). (29)

Furthermore,|B|/nµ is just the probability that there are less thanν empty bins ifµ balls are thrown
uniformly and independently inton bins. Hence, we can use Lemma 2.1 to bound|B|n−µ. To this end,
observe that because we are assumingε < 0.1 the bound

exp(−µ/n) ≥ exp(−(1 + ε/3)ω) = kα−1 holds, whereα =
2ε

3
− ε2

3
≥ 0.6ε.

Therefore, Lemma 2.1 entails that

|B|n−µ ≤ P [Z(µ, n) ≤ exp(−µ/n)n/2]

≤ O(
√
n) exp [− exp(−µ/n)n/8] ≤ exp

[

−kα−1n/9
]

. (30)

Combining (29) and (30), we see that

Pt = P
[

Bt|Ut = Ût : Ût ⊂ [m] , |Ût| = µ
]

≤ exp
[

nk−1
(

9 ln2 k − kα/9
)]

= o(1/n).

Thus, Corollary 4.4 and Lemma 4.5 imply that

P [∃t ≤ T : |{x ∈ V \ Zt : Ut(x) = 0} < ν|]

≤ P [T > θ] + P

[

max
0≤t≤T

|Ut| > (1 + ε/3)ωn

]

+
∑

0≤t≤θ
Pt = o(1),

as desired. 2

5 Proof of Proposition 3.3

Let 0 < ε < 0.1. Throughout this section we assume thatk ≥ k0 for a large enoughk0 = k0(ε), and
thatn > n0 for some large enoughn0 = n0(ε, k). Letm = ⌊(1 − ε)2kk−1 ln k⌋, ω = (1 − ε) ln k, and
k1 = ⌈k/2⌉. In addition, we keep the notation introduced in Section 4.1.

5.1 Outline

Similarly as in Section 4, we will describe the execution of Phase 2 ofFix(Φ) via a stochastic process.
Recall thatT denotes the time when the processPI1–PI4 from Section 4 (i.e., Phase 1) stops. LetZ ′

0 = ∅
andπ′

0 = πT . LetU ′
0 = UT , and letU ′

0(x) be the number of indicesi ∈ U ′
0 such thatx occurs positively

in Φi. Moreover, letQ′
0 be the set of indicesi ∈ [m] such thatΦi is unsatisfied underσZT

. For t ≥ 1 we
proceed as follows.

PI1’ If Q′
t−1 = ∅, the process stops. Otherwise letψt = minQ′

t−1.
PI2’ If there are three indicesk1 < j ≤ k − 5 such thatπ′

t−1(ψt, j) ∈ {1,−1} andU ′
t−1(|Φψtj |) = 0,

then letk1 < j1 < j2 < j3 ≤ k−5 be the lexicographically first sequence of such indices. Otherwise
let k − 5 < j1 < j2 < j3 ≤ k be the lexicographically first sequence of indicesk − 5 < j ≤ k such
thatΦψtj 6∈ Z ′

t−1. LetZ ′
t = Z ′

t−1 ∪ {|Φψtjl | : l = 1, 2, 3}.
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PI3’ LetU ′
t be the set of alli ∈ [m] that satisfy the following condition. There is exactly onel ∈ [k] such

thatΦil ∈ V \ (Z ′
t ∪ ZT ) and for allj 6= l we haveΦij ∈ ZT ∪ Z ′

t ∪ V \ ZT . LetU ′
t(x) be the

number of indicesi ∈ U ′
t such thatx occurs positively inΦi (x ∈ V ).

PI4’ Let

π′
t(i, j) =

{

Φij if (i = ψt ∧ j > k1) ∨ |Φij | ∈ Z ′
t ∪ ZT ∨ (i ∈ U ′

t ∧ π0(i, j) = 1),
π′
t−1(i, j) otherwise.

LetQ′
t be the set of all(ZT , Z ′

t)-endangered clauses that contain less than three variablesfromZ ′
t.

Let T ′ be the stopping time of this process. Fort > T ′ andx ∈ V let π′
t = π′

T ′ , U ′
t = U ′

T ′ , Z ′
t = Z ′

T ′ , and
U ′
t(x) = UT ′(x) .

We define an equivalence relation≡′
t by lettingΦ ≡′

t Ψ iff Φ ≡s Ψ for all s ≥ 0, andπ′
s [Φ] = π′

s [Ψ]
for all 0 ≤ s ≤ t. LetF ′

t be theσ-algebra generated by the equivalence classes of≡′
t. Then(F ′

t)t≥0 is a
filtration.

Fact 5.1 For anyt ≥ 0 the mapπ′
t, the random variableψ′

t+1, the random setsU ′
t andZ ′

t, and the random
variablesU ′

t(x) for x ∈ V areF ′
t-measurable.

The same argument that we used to prove Proposition 4.2 in Section 4.1 shows the following.

Proposition 5.2 Let E ′
t be the set of all pairs(i, j) such thatπt(i, j) ∈ {±1}. The conditional joint

distribution of the variables(|Φij |)(i,j)∈Et
givenF ′

t is uniform over(V \ Z ′
t)

E′

t .

Let
θ′ = ⌊exp(−kε/16)n⌋, and recall thatθ = ⌊4nk−1 lnω⌋.

To prove Proposition 3.3 it is sufficient to show thatT ′ ≤ θ′ w.h.p., because|Z ′
t| = 3t for all t ≤ T ′. To

this end, we follow a similar program as in Section 4.1: we will show that|U ′
t| is “small” w.h.p. for all

t ≤ θ′, and that therefore fort ≤ θ′ there are plenty of variablesx such thatU ′
t(x) = 0. This implies

that fort ≤ θ′ the process will only “generate” very few(ZT , Z ′
t)-endangered clauses. This then entails a

bound onT ′, because each step of the process removes (at least) one(ZT , Z
′
t)-endangered clause from the

setQ′
t. In Section 5.2 we will infer the following bound on|U ′

t |.

Lemma 5.3 W.h.p. for allt ≤ θ′ we have|U ′
t \ UT | ≤ n/k.

Corollary 5.4 W.h.p. the following is true for allt ≤ θ′: there are at leastnkε/3−1 variablesx ∈ V \
(Z ′

t ∪ ZT ) such thatU ′
t(x) = 0.

Proof. By Corollary 4.6 there are at leastnkε/2−1 variablesx ∈ V \ ZT such thatUT (x) = 0 w.h.p.
Furthermore, by Lemma 5.3 we have|U ′

t \ UT | ≤ n/k w.h.p. Moreover,|Z ′
t| ≤ 3t. Hence, w.h.p. the

number ofx ∈ V \ (Z ′
t ∪ ZT ) such thatU ′

t(x) = 0 is at leastnkε/2−1 − n/k − 3θ′ ≥ nkε/3−1. 2

Corollary 5.5 LetY be the set of allt ≤ θ′ such that there are less than3 indicesk1 < j ≤ k − 5 such
thatπ′

t−1(ψt, j) ∈ {−1, 1} andU ′
t−1(|Φψtj |) = 0. Then|Y| ≤ 3θ′ exp(−kε/4) w.h.p.

We defer the proof of Corollary 5.5 to Section 5.3. Furthermore, in Section 5.4 we will prove the following.

Corollary 5.6 W.h.p. the total number of(ZT , Z ′
θ′)-endangered clauses is at mostθ′.

Proof of Proposition 3.3.We claim thatT ′ ≤ θ′ w.h.p.; this implies the proposition because|ZT ′ | = 3T ′.
To see thatT ′ ≤ θ′ w.h.p., letX0 be the total number of(ZT , Z ′

θ′)-endangered clauses, and letXt be the
number of(ZT , Z ′

θ′)-endangered clauses that contain less than 3 variables fromZ ′
t. Then the construction

PI1’–PI4’ ensures that0 ≤ Xt ≤ X0 − t for all t ≤ T ′. Hence,T ′ ≤ X0, and thus the assertion follows
from Corollary 5.6. 2
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5.2 Proof of Lemma 5.3

LetHtij , Stij be as in (14) and let in addition

H′
tij =

{

1 if π′
t−1(i, j) = 1, π′

t(i, j) ∈ Z ′
t, andT ≤ θ,

0 otherwise.

Lemma 5.7 For anyI ′ ⊂ [θ′] × [m] × [k] we haveE
[

∏

(t,i,j)∈I′ H′
tij |F ′

0

]

≤ (3/(n− θ − 3θ′))|I
′|
.

Proof. Let I ′
t = {(i, j) : (t, i, j) ∈ I′} andXt =

∏

(i,j)∈I′

t
H′
tij . Due to Lemma 2.4 it suffices to show

E
[

Xt|F ′
t−1

]

≤ (3/(n− θ − 3θ′))
|I′

t| for all t ≤ θ′. (31)

To see this, let1 ≤ t ≤ θ′ and consider a formulaΦ such thatT [Φ] ≤ θ, t ≤ T ′ [Φ], andπ′
t−1(i, j) [Φ] = 1

for all (i, j) ∈ I′
t. We condition on the eventΦ ≡′

t−1 Φ. Then at timet stepsPI1’–PI2’ obtainZ ′
t by

adding three variables that occur in clauseΦψt
, which is(ZT , Z

′
t−1)-endangered. Let(i, j) ∈ I′

t. Since
Φ ≡t−1 Φ andπt−1(i, j) [Φ] = 1, the literalΦij 6∈ ZT ∪ Z ′

t−1 is positive, and thusΦi is not(ZT , Z ′
t−1)-

endangered. Hence,ψt 6= i. Furthermore, by Proposition 5.2 in the conditional distributionP
[

·|F ′
t−1

]

(Φ)
the variables(Φij)(i,j)∈I′

t
are independently uniformly distributed over the setV \ (ZT ∪ Z ′

t−1). Hence,

P
[

Φij ∈ Z ′
t|F ′

t−1

]

[Φ] = 3/|V \ (ZT ∪ Z ′
t−1)| for any(i, j) ∈ I′

t, (32)

and these events are mutually independent. Since|ZT | = n−T andT ≤ θ, and because|Z ′
t−1| = 3(t−1),

(32) implies (31). 2

Lemma 5.8 Let 2 ≤ l ≤
√
k, 1 ≤ l′ ≤ l − 1, 1 ≤ t ≤ θ, and1 ≤ t′ ≤ θ′. For eachi ∈ [m] letXi = 1 if

T ≥ t, T ′ ≥ t′, and the following four events occur:

a. Φi has exactlyl positive literals.

b. l′ of the positive literals ofΦi lie in Z ′
t′ \ Zt.

c. l− l′ − 1 of the positive literals ofΦi lie in Zt.

d. No variable fromZt occurs inΦi negatively.

Let

B(l, l′, t) = 4ωn ·
(

6θ′k

n

)l′

·
(

k − l′ − 1

l − l′ − 1

)(

t

n

)l−l′−1

(1 − t/n)k−l.

ThenP [
∑m

i=1Xi > B(l, l′, t)] = o(n−3).

Proof. We are going to apply Lemma 2.2. Setµ = ⌈ln2 n⌉ and letM ⊂ [m] be a set of sizeµ. Let EM be
the event thatXi = 1 for all i ∈ M. LetPi ⊂ [k] be a set of sizel, and letHi, H

′
i ⊂ Pi be disjoint sets

such that|Hi ∪H ′
i| = l − 1 and|H ′

i| = l′ for eachi ∈ M. LetP = (Pi, Hi, H
′
i)i∈M. Furthermore, let

ti : Hi → [t] andt′i : H ′
i → [t′] for all i ∈ M, and setT = (ti, t

′
i)i∈M. Let EM(P , T ) be the event that

T ≥ t, T ′ ≥ t′, and the following statements are true for alli ∈ M:

a’. The literalΦij is positive for allj ∈ Pi and negative for allj ∈ [k] \ Pi.

b’. Φij ∈ Z ′
t′
i
(j) \ Z ′

t′
i
(j)−1 for all i ∈ M andj ∈ H ′

i.

c’. Φij = zti(j) for all i ∈ M andj ∈ Hi.

d’. No variable fromZt occurs negatively inΦi.
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If EM occurs, then there exist(P , T ) such thatEM(P , T ) occurs. Hence, we are going to use the union
bound. For eachi ∈ [M ] there are

(

k

1, l′, l − l′ − 1

)

ways to choose the setsPi,Hi,H ′
i.

Once these are chosen, there are

t′
l′ ways to choose the mapt′i, andtl−l

′−1 ways to choose the mapti.

Thus,

P [EM] ≤
∑

P,T
P [EM(P , T )] ≤

[(

k

1, l′, l − l′ − 1

)

t′
l′
tl−l

′−1

]µ

max
P,T

P [EM(P , T )] . (33)

Hence, we need to boundP [EM(P , T )] for any givenP , T . To this end, let

I = I(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ Pi, s = ti(j)} ,
I ′ = I ′(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ P ′

i , s = t′i(j)} ,
J = J (M,P , T ) = {(s, i, j) : i ∈ M, j ∈ [k] \ (Pi ∪ P ′

i ), s ≤ t} .

If EM(P , T ) occurs, then the positive literals of each clauseΦi, i ∈ M, are preciselyΦij with j ∈ Pi,
which occurs with probability2−k independently. In addition, we haveHsij = 1 for all (s, i, j) ∈ I,
H′
sij = 1 for all (s, i, j) ∈ I′, andSsij = 1 for all (s, i, j) ∈ J . Hence, by Lemmas 4.8 and 5.7

P [EM(P , T )] ≤ 2−kµ · E





∏

(t,i,j)∈I′

H′
tij ·

∏

(t,i,j)∈I
Htij ·

∏

(t,i,j)∈J
Stij |F0





≤ 2−kµ ·
(

3

n− θ − 3θ′

)l′µ

(n− θ)
−(l−l′−1)µ

(1 − 1/n)
(k−l)tµ

. (34)

Combining (33) and (34), we see thatP [EM] ≤ λµ, where

λ = 2−k
(

k

1, l′, l − l′ − 1

)(

3t′

n− θ − 3θ′

)l′ (
t

n− θ

)l−l′−1

(1 − 1/n)(k−l)t,

whence Lemma 2.2 yieldsP [
∑m
i=1Xi > 2λm] = o(n−3). Thus, the remaining task is to estimateλm:

λm = mk2−k
(

k − 1

l′

)(

3t′

n− θ − 3θ′

)l′

·
(

k − l′ − 1

l − l′ − 1

)(

t

n− θ

)l−l′−1

(1 − 1/n)(k−l)t

≤ ωn ·
(

6θ′k

n

)l′

·
(

k − l′ − 1

l− l′ − 1

)(

t

n

)l−l′−1

(1 − t/n)k−l · η, where (35)

η =

(

n

n− θ

)l−l′−1

·
(

(1 − 1/n)t

1 − t/n

)k−l

≤
(

1 +
θ

n− θ

)l−l′−1

exp(kt2/n2) ≤ exp(2θl/n+ kθ2/n2).

Sinceθ ≤ 4k−1n lnk andl ≤
√
k, we haveη ≤ 2 for largek. Thus, the assertion follows from (35). 2

Lemma 5.9 Let ln k ≤ l ≤ k, 1 ≤ l′ ≤ l, 1 ≤ t ≤ θ, and1 ≤ t′ ≤ θ′. For eachi ∈ [m] let Yi = 1 if
T ≥ t, T ′ ≥ t′, and the following three events occur:

a. Φi has exactlyl positive literals.
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b. l′ of the positive literals ofΦi lie in Z ′
t′ \ Zt.

c. l− l′ − 1 of the positive literals ofΦi lie in Zt.

ThenP [
∑m

i=1 Yi > n exp(−l)] = o(n−3).

Proof. The proof is similar to (and less involved than) the proof of Lemma 5.9. Setµ = ⌈ln2 n⌉ and let
M ⊂ [m] be a set of sizeµ. Let EM be the event thatYi = 1 for all i ∈ [M ]. Let Pi ⊂ [k] be a set of
sizel, and letHi, H

′
i ⊂ Pi be disjoint sets such that|Hi ∪ H ′

i| = l − 1 and|H ′
i| = l′ for eachi ∈ M.

Let P = (Pi, Hi, H
′
i)i∈M. Furthermore, letti : Hi → [t] andt′i : H ′

i → [t′] for all i ∈ M, and set
T = (ti, t

′
i)i∈M. LetEM(P , T ) be the event thatT ≥ t, T ′ ≥ t′, and the following statements are true for

all i ∈ M:

a’. Φij is positive for allj ∈ Pi and negative for allj 6∈ Pi.

b’. Φij ∈ Z ′
t′
i
(j) \ Z ′

t′
i
(j)−1 for all i ∈ M andj ∈ H ′

i.

c’. Φij = zti(j) for all i ∈ M andj ∈ Hi.

If EM occurs, then there are(P , T ) such thatEM(P , T ) occurs. Using the union bound as in (33), we get

P [EM] ≤
∑

P,T
P [EM(P , T )] ≤

[(

k

1, l′, l − l′ − 1

)

t′
l′
tl−l

′−1

]µ

max
P,T

P [EM(P , T )] . (36)

Hence, we need to boundP [EM(P , T )] for any givenP , T . To this end, let

I = I(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ Pi, s = ti(j)} ,
I ′ = I ′(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ P ′

i , s = ti(j)
′} .

If EM(P , T ) occurs, then the positive literals of each clauseΦi are preciselyΦij with j ∈ Pi (i ∈ M). In
addition,H′

sij = 1 for all (s, i, j) ∈ I andH′
sij = 1 for all (s, i, j) ∈ I′. Hence, by Lemmas 4.8 and 5.7

P [EM(P , T )] ≤ 2−kµE





∏

(t,i,j)∈I′

H′
tij

∏

(t,i,j)∈I
Htij |F0



 ≤
[

2−k
(

3

n− θ − 3θ′

)l′(
1

n− θ

)l−l′−1
]µ

.(37)

Combining (36) and (37), we see thatP [EM] ≤ λµ, where

λ = 2−k
(

k

1, l′, l− l′ − 1

)(

3t′

n− θ − 3θ′

)l′ (
t

n− θ

)l−l′−1

≤ k2−k
(

k − 1

l′

)(

3t′

n− θ − 3θ′

)l′

·
(

k − l′ − 1

l − l′ − 1

)(

t

n− θ

)l−l′−1

≤ k2−k ·
(

6kθ′

n

)l′ (
e(k − l′ − 1)θ

(l − l′ − 1)n

)l−l′−1

. (38)

Invoking Lemma 2.2, we obtainP [
∑m
i=1 Yi > 2λm] = o(n−3). Thus, we just need to show that2λm <

exp(−l)n. Sinceθ/n ≤ 4k−1 lnω andθ′/n < k−2, in the casel′ ≥ l/2, (38) yields

λm ≤ ωn (4e lnω · θ′/n)
l′/2 ≤ exp(−l)n/2.

Furthermore, ifl′ < l/2, then we obtain from (38)

λm ≤ ωn exp(−2l′) (10e lnω/l)l−l
′−1 ≤ exp(−l)n/2.

Hence, in either case we obtain the desired bound. 2
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Proof of Lemma 5.3.LetX(l, l′, t, t′) be the number of indicesi ∈ [m] such thatΦi satisfies a.–d. from
Lemma 5.8 ift ≤ T andt′ ≤ T ′, and setX(l, l′, t, t′) = 0 if t > T or t′ > T ′. Let E be the event that
T ≤ θ andX(l, l′, t, t′) ≤ B(l, l′, t) for all 2 ≤ l ≤

√
k, 1 ≤ l′ ≤ l − 1, t ≤ θ, andt′ ≤ θ′. Then by

Corollary 4.4 and Lemma 5.8

P [¬E ] ≤ P [T > θ] + kθθ′ · o(n−3) = o(1). (39)

Let Il be the number of indicesi ∈ Ut′ \ UT andΦi has preciselyl ≤
√
k positive literals. Ifi has these

properties, theni satisfies the condition a.–d. from Lemma 5.8 fort = T and some1 ≤ l′ < l. Therefore,

|Ut′ \ UT | ≤
k
∑

l=1

Il. (40)

If the eventE occurs, we have

∑

1≤l≤
√
k

Il ≤
∑

1≤l≤
√
k

l−1
∑

l′=1

X(l, l′, T, t′) ≤
k
∑

l=1

l−1
∑

l′=1

B(l, l′, T )

≤ 4ωn

k
∑

l′=1

(

6θ′k

n

)l′ k−l′−1
∑

j=0

(

k − l′ − 1

j

)(

T

n

)j

(1 − T/n)
k−l′−1−j

= 4ωn

k
∑

l′=1

(

6θ′k

n

)l′

≤ 5ωn · 6θ′k

n
≤ n/k2 [becauseθ′ < n/k4]. (41)

Furthermore, by Corollary 4.4 and Lemma 5.9 we have

∑

√
k<l≤k

Il ≤
∑

√
k<l≤k

exp(−l)n ≤ n/k2 w.h.p. (42)

Thus, the assertion follows from (39)–(42). 2

5.3 Proof of Corollary 5.5

As a preparation we need to estimate the number of clauses that have contain a huge number of literals
fromZt for somet ≤ θ.

Lemma 5.10 Let t ≤ θ. With probability at least1 − o(1/n) there are no more thann exp(−k) indices
i ∈ [m] such that|{j : k1 < j ≤ k, |Φij | ∈ Zt}| ≥ k/4.

Proof. For anyi ∈ [m], j ∈ [k], and1 ≤ s ≤ θ let

Zsij =

{

1 if |Φij | = zs, πs−1(i, j) ∈ {−1, 1}, ands ≤ T ,
0 otherwise.

Then for any setI ⊂ [t] × [m] × ([k] \ [k1]) we have

E





∏

(s,i,j)∈I
Zsij



 ≤ (n− θ)−|I|. (43)

To see this, letIs = {(i, j) : (s, i, j) ∈ I} and setZs =
∏

(i,j)∈Is
Zsij . Then for alls ≤ θ the random

variableZs isFs-measurable by Fact 4.1. Moreover, we claim that

E [Zs|Fs−1] ≤ (n− θ)−|Is| (44)
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for anys ≤ θ. To prove this, consider any formulaΦ such thats ≤ T [Φ] andπs−1(i, j) [Φ] ∈ {−1, 1}
for all (i, j) ∈ Is. Then by Proposition 4.2 in the probability distributionP [·|Fs−1] (Φ) the variables
(Φij)(i,j)∈Is

are mutually independent and uniformly distributed overV \Zs−1. They are also independent
of the variablezs, becausej > k1 for all (i, j) ∈ Is and the variablezs is determined by the firstk1 literals
of some clauseφs (cf. PI2). Therefore, for all(i, j) ∈ Is the eventΦij = zs occurs with probability
1/|V \ Zs−1| independently. As|Zs−1| = s − 1, this shows (44), and (43) follows from Lemma 2.4
and (44).

LetXi = 1 if t ≤ T and there are at leastκ = ⌈k/4⌉ indicesj ∈ [k] \ [k1] such that|Φij | ∈ Zt, and
setXi = 0 otherwise. LetM ⊂ [m] be a set of sizeµ = ⌈ln2 n⌉ and letEM be the event thatXi = 1 for
all i ∈ M. Furthermore, letPi ⊂ [k] \ [k1] be a set of sizeκ− 1 for eachi ∈ M, and letti : Pi → [t] be a
map. LetP = (Pi)i∈M andT = (ti)i∈M, and letEM(P , T ) be the event thatt ≤ T andZti(j)ij = 1 for
all i ∈ M and allj ∈ Pi. Let

I = IM(P , T ) = {(ti(j), i, j) : i ∈ M, j ∈ Pi}.

Then (43) entails that for anyP , T

P [EM(P , T )] ≤ E





∏

(s,i,j)∈I
Zsij



 ≤ (n− θ)−|I| ≤ (n− θ)−µ(κ−1). (45)

Moreover, ifEM occurs, then there existP , T such thatEM(P , T ) occurs. Hence, by the union bound

P [EM] ≤
∑

P,T
P [EM(P , T )] ≤ λµ where

λ =

(

k − k1

κ− 1

)

tκ−1(n− θ)1−κ ≤
(

ekt

(κ− 1)(n− θ)

)κ−1

≤ (12θ/n)κ−1.

Finally, Lemma 2.2 implies that with probability1 − o(n−1) we have

m
∑

i=1

Xi ≤ 2mλ ≤ n · 2k(12θ/n)κ−1 ≤ n exp(−k),

as desired. 2

Proof of Corollary 5.5.We use a similar argument as in the proof of Corollary 4.7. Let

U ′
t = |{x ∈ V \ (ZT ∪ Z ′

t) : U ′
t(x) = 0}| ,

setα = ε/3, and define0/1 random variablesB′
t for t ≥ 1 by lettingB′

t = 1 iff the following statements
hold:

a. T ′ ≥ t.

b. U ′
t−1 ≥ nkα−1.

c. There are less thank/4 indicesk1 < j ≤ k such that|Φψtj | ∈ ZT .

d. There isz ∈ Z ′
t \ Z ′

t−1 such thatU ′
t−1(z) > 0.

This random variable isF ′
t-measurable by Fact 5.1. Letδ = exp(−kα/6). We claim

E [B′
t|Ft−1] ≤ δ for anyt ≥ 1. (46)

To see this, letΦ be a formula for which a.–c. hold. We condition on the eventΦ ≡′
t−1 Φ. Then at time

t the processPI1’–PI4’ choosesψt such thatΦψt
contains less than three variables fromZ ′

t−1. Since
Φ satisfies c., there are less thank/4 indicesj > k1 such that|Φψtj | ∈ ZT . Further, sinceΦψt

is
(ZT , Z

′
t−1)-endangered, there is noj such thatπ′

t−1(ψt, j) = 1. Consequently, there are at least3
4k −
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k1 − 6 ≥ k/5 indicesk1 < j ≤ k − 5 such thatπ′
t−1(ψt, j) = −1. LetJ be the set of all these indices.

Then Proposition 5.2 entails that in the distributionP
[

·|F ′
t−1

]

(Φ) the variables(|Φψtj |)j∈J are mutually
independent and uniformly distributed overV \ (ZT ∪Z ′

t−1). Therefore, the number of indicesj ∈ J such
thatU ′

t−1(|Φψtj |) = 0 has a binomial distributionBin(|J |, |U ′
t−1|/|V \ (ZT ∪ Z ′

t−1)|). If d. occurs, then
there are less than three indicesj ∈ J such thatU ′

t−1(|Φψtj |) = 0. Since|J | ≥ k/5, b. and the Chernoff
bound (1) yield

E
[

B′
t|F ′

t−1

]

(Φ) ≤ P
[

Bin(|J |, |U ′
t−1|/|V \ (ZT ∪ Z ′

t−1)|) < 3
]

≤ P
[

Bin
(

⌈k/5⌉, kα−1
)

< 3
]

≤ δ

(provided thatk is sufficiently large). Thus, we have established (46).
LetY ′ = |{t ∈ [θ′] : B′

t = 1}|. We are going to show that

Y ′ ≤ 2θ′δ w.h.p. (47)

To this end, lettingµ = ⌈lnn⌉, we will show that

E [(Y ′)µ] ≤ (θ′δ)µ where(Y ′)µ =

µ−1
∏

j=0

Y ′ − j. (48)

This implies (47). For ifY ′ > 2θ′δ, then for largen we have(X ′′)µ > (2θ′δ−µ)µ ≥ (1.9 · θ′δ)µ, whence
Markov’s inequality entailsP [Y ′ > 2θ′δ] ≤ P [(Y ′)µ > (1.9θ′δ)µ] ≤ 1.9−µ = o(1).

In order to establish (48), we define a random variableY ′
T for any tupleT = (t1, . . . , tµ) of mutually

distinct integerst1, . . . , tµ ∈ [θ]′ by lettingY ′
T =

∏µ
i=1 B′

ti . Since(Y ′)µ equals the number ofµ-tuplesT
such thatY ′

T = 1, we obtain

E [(Y ′)µ] ≤
∑

T
E [Y ′

T ] ≤ θ′
µ

max
T

E [Y ′
T ] . (49)

To bound the last expression, we may assume thatT is such thatt1 < · · · < tµ. AsB′
t is F ′

t-measurable,
we have for alll ≤ µ

E

[

l
∏

i=1

B′
ti

]

≤ E

[

E

[

l
∏

i=1

B′
ti |F ′

tl−1

]]

= E

[

l−1
∏

i=1

B′
ti · E

[

B′
tl
|F ′
tl−1

]

]

(46)
≤ δ · E

[

l−1
∏

i=1

B′
ti

]

.

Proceeding inductively froml = µ down tol = 1, we obtainE [Y ′
T ] ≤ δµ, and thus (48) follows from (49).

To complete the proof, letY ′′ be the number of indicesi ∈ [m] such that|Φij | ∈ ZT for at leastk/4
indicesk1 < j ≤ k. Combining Corollary 4.4 (which shows that|ZT | = T ≤ θ w.h.p.) with Lemma 5.10,
we see thatY ′′ ≤ n exp(−k) ≤ θδ w.h.p. As|Y| ≤ Y ′ + Y ′′, the assertion thus follows from (47). 2

5.4 Proof of Corollary 5.6

Recall that a clauseΦi is (ZT , Z
′
t)-endangered if for anyj such that the literalΦij is true underσZT

the
underlying variable|Φij | lies inZ ′

t. Let Y be the set from Corollary 5.5, and letZ =
⋃

s∈Y Zs \ Zs−1.
We claim that ifΦi is (ZT , Z

′
t)-endangered, then one of the following statements is true:

a. There are two indices1 ≤ j1 < j2 ≤ k such that|Φij1 | = |Φij2 |.

b. There are indicesi′ 6= i, j1 6= j2, j′1 6= j′2 such that|Φij1 | = |Φi′j′
1
| and|Φij2 | = |Φi′j′

2
|.

c. Φi is unsatisfied underσZT
.

d. Φi contains more thanκ = ⌊
√
k⌋ positive literals, all of which lie inZ ′

t ∪ ZT .

e. Φi has at mostκ positive literals, is satisfied underσZT
, and contains a variable fromZ.
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To see this, assume thatΦi is (ZT , Z
′
t)-endangered for somet ≤ T ′ and a.–d. do not hold. Also observe

thatZ ⊃ ZT ∩ Z ′
t by construction (cf.PI2’); hence, if there is an indexj such thatΦij = x̄ for some

x ∈ ZT , thenx ∈ Z, and thus e. holds. Thus, assume that no variable fromZT occurs negatively inΦi.
ThenΦi containsl ≥ 1 positive literals fromV \ ZT , and we may assume without loss of generality that
these are just the firstl literalsΦi1, . . . ,Φil. Furthermore,Φi1, . . . ,Φil ∈ Z ′

t. Hence, for each1 ≤ j ≤ l
there is1 ≤ tj ≤ t such thatΦij ∈ Z ′

tj \Z ′
tj−1. SinceΦi satisfies neither a. nor b., the numberst1, . . . , tl

are mutually distinct. (For if, say,t1 = t2, then eitherΦi1 = Φi2, or Φi andΦψt1
have at least two

variables in common.) Thus, we may assume without loss of generality thatt1 < · · · < tl. Theni ∈ U ′
tl−1

by the construction in stepPI3’, and thusΦil ∈ Z. Hence, e. holds.
Let Xa, . . . , Xe be the numbers of indicesi ∈ [m] for which a.,. . . ,e. above hold. W.h.p.Xa +

Xb = O(lnn) by Lemma 2.3. Furthermore,Xc ≤ exp(−kε/8)n w.h.p. by Proposition 3.2. Moreover,
Lemmas 4.10 and 5.9 yieldXd ≤ 2 exp(−κ/2)n w.h.p. Finally, sinceY ≤ 3θ′ exp(−kε/4) w.h.p. by
Corollary 5.5 and as|Z| = 3|Y|, Lemma 2.6 shows that w.h.p.

Xe ≤
√

θ′ · 9 exp(−kε/4)n < θ′/2.

Combining these estimates, we obtainXa + · · · +Xe ≤ θ′ w.h.p.

6 Proof of Proposition 3.4

As before, we let0 < ε < 0.1, and we assume thatk ≥ k0 for a large enoughk0 = k0(ε), and that
n > n0 for some large enoughn0 = n0(ε, k). Furthermore, we letm = ⌊(1 − ε)2kk−1 ln k⌋, ω =
(1 − ε) ln k andk1 = ⌈k/2⌉. We keep the notation introduced in Section 4.1. In particular, recall that
θ = ⌊4nk−1 lnω⌋.

In order to prove that the graphG(Φ, Z, Z ′) has a matching that covers all(Z,Z ′)-endangered clauses,
we are going to apply the marriage theorem. Basically we are going to argue as follows. LetY ⊂ Z ′ be
a set of variables. SinceZ ′ is “small” by Proposition 3.3,Y is small, too. Furthermore, Phase 2 ensures
that any(Z,Z ′)-endangered clause contains three variables fromZ ′. To apply the marriage theorem, we
thus need to show that w.h.p. for anyY ⊂ Z ′ the number of(Z,Z ′)-endangered clauses that contain
only variables fromY ∪ (V \ Z ′) (i.e., the set of all(Z,Z ′)-endangered clauses whose neighborhood in
G(Φ, Z, Z ′) is a subset ofY ) is at most|Y |.

To establish this, we will use a first moment argument (over sets Y ). This argument does actually not
take into account thatY ⊂ Z ′, but it works for any “small” setY ⊂ V . Thus, letY ⊂ V be a set of size
yn. We define a family(yij)i∈[m],j∈[k] of random variables by letting

yij =

{

1 if |Φij | ∈ Y,
0 otherwise.

Moreover, define for each integert ≥ 0 an equivalence relation≡Yt on Ωk(n,m) by lettingΦ ≡Yt Φ′ iff
πs [Φ] = πs [Φ′] for all 0 ≤ s ≤ t andyij [Φ] = yij [Φ′] for all (i, j) ∈ [m]×[k]. This is a refinement of the
equivalence relation≡t from Section 4.1. LetFY

t be theσ-algebra generated by the equivalence classes
of ≡Yt . Then the family(FY

t )t≥0 is a filtration. SinceFY
t contains theσ-algebraFt from Section 4.1, all

random variables that areFt-measurable areFY
t -measurable as well.

Proposition 6.1 Let EYt be the set of all pairs(i, j) such thatπt(i, j) ∈ {1,−1} and yij = 0. The

conditional joint distribution of the variables(|Φij |)(i,j)∈EY
t

givenFY
t is uniform over(V \ (Zt ∪ Y ))E

Y
t .

Proof. Let [Φ]
Y
t be the≡Yt -class of a formulaΦ. ThenPΦ = P

[

·|FY
t

]

(Φ) is just the uniform distribution

over [Φ]Yt . Let DY
t (Φ) be the set of all pairs(i, j) ∈ [m] × k such that|Φij | ∈ Y andπt(i, j) [Φ] ∈

{−1, 1}. We will actually prove the following stronger statement: with respect to the measurePΦ the joint
distribution of the variables(|Φij |)(i,j)∈EY

t ∪DY
t

is uniform over(V \ (Zt ∪ Y ))E
Y
t × (Y \ Zt)Dt .
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To show this, we use a similar argument as in the proof of Proposition 4.2. For any two mapsf :
EYt (Φ) → V \ (Y ∪ Zt(Φ)) andg : DY

t (Φ) → Y \ Zt(Φ) we define a formula

(Φf,g)ij =























f(i, j) if (i, j) ∈ Et(Φ) andπ0(i, j) = −1,
f(i, j) if (i, j) ∈ Et(Φ) andπ0(i, j) = 1,

g(i, j) if (i, j) ∈ Dt(Φ) andπ0(i, j) = −1,
g(i, j) if (i, j) ∈ Dt(Φ) andπ0(i, j) = 1,
Φij otherwise.

ThenΦf,g ≡Yt Φ. Therefore, the map

(V \ (Zt ∪ Y ))E
Y
t × (Y \ Zt)D

Y
t → [Φ]t , (f, g) 7→ Φf,g

is bijection. 2

For anyt ≥ 1, i ∈ [m], j ∈ [k] we define a0/1 random variableHY
tij by lettingHY

tij = 1 if yij = 0,
t ≤ T , πt−1(i, j) = 1 andπt(i, j) = zt.

Lemma 6.2 For any setI ⊂ [θ] × [m] × [k] we haveE
[

∏

(t,i,j)∈I HY
tij |FY

0

]

≤ (n− θ)−|I|.

Proof. Due to Proposition 6.1 the proof of Lemma 4.8 carries over directly. 2

For a given setY we would like to bound the number ofi ∈ [m] such thatΦi contains at least three
variables fromY andΦi has no positive literal inV \ (Y ∪ ZT ). If for any “small” setY the number of
such clauses is less than|Y |, then we can apply this result toY = Z ′ and use the marriage theorem to show
thatG(Φ, Z, Z ′) has the desired matching. We proceed in several steps.

Lemma 6.3 Let t ≤ θ, letM ⊂ [m] be a set of sizeµ, and letL, Λ be maps that assign a subset of[k] to
eachi ∈ M such that

L(i) ∩ Λ(i) = ∅ and|Λ(i)| ≥ 3 for all i ∈ M. (50)

LetE(Y, t,M, L,Λ) be the event that the following statements are true for alli ∈ M:

a. |Φij | ∈ Y for all j ∈ Λ(i).

b. Φij is a negative literal for allj ∈ [k] \ (L(i) ∪ Λ(i)).

c. Φij ∈ Zt \ Y for all j ∈ L(i).

Let l =
∑

i∈M |L(i)| andλ =
∑

i∈M |Λ(i)|. ThenP [E(Y, t,M, L,Λ)] ≤ 2−kµ(2t/n)l(2y)λ.

Proof. Let E = E(Y, t,M, L,Λ). Let ti be a mapL(i) → [t] for eachi ∈ M, let T = (ti)i∈M, and let
E(T ) be the event that a. and b. hold andΦij = zti(j) for all i ∈ M andj ∈ L(i). If E occurs, then there
is T such thatE(T ) occurs. Hence, by the union bound

P [E ] ≤
∑

T
P [E(T )] ≤ tl max

T
P [E(T )] . (51)

To bound the last term fix anyT . Let I = {(s, i, j) : i ∈ M, j ∈ L(i), s = ti(j)}. If E(T ) occurs, then
HY
sij = 1 for all (s, i, j) ∈ I. Therefore, by Lemma 6.2

P
[

E(T )|FY
0

]

≤ E





∏

(s,i,j)∈I
HY
sij |FY

0



 ≤ (n− θ)−|I| = (n− θ)−l (52)

Furthermore, the event that a. and b. hold for alli ∈ M is FY
0 -measurable. Since the literalsΦij are

chosen independently, we have

P [a. and b. hold for alli ∈ M] ≤ yλ2λ−kµ = (2y)λ 2−kµ (53)
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Combining (52) and (53), we obtainP [E(T )] ≤ 2−kµ(n − θ)−l (2y)λ . Finally, plugging this bound
into (51), we get

P [E ] ≤ 2−kµ
(

t

n− θ

)l

(2y)λ ≤ 2−kµ
(

2t

n

)l

(2y)λ ,

as desired. 2

Corollary 6.4 Let t ≤ θ, and letM ⊂ V have size|M| = µ. Let l, λ be integers such thatλ ≥ 3µ.
Let E(Y, t,M, l, λ) be the event that there exist mapsL,Λ that satisfy (50) such thatl =

∑

i∈M |L(i)|,
λ =

∑

i∈M |Λ(i)|, and the eventE(Y, t,M, L,Λ) occurs. Then

P [E(Y, t,M, l, λ)] ≤ 2−l−kµ(2k2y)λ.

Proof. Given l, λ there are at most
(

kµ
l,λ

)

ways to choose the mapsL,Λ (because the clauses inM contain
a total number ofkµ literals). Therefore, by Lemma 6.3 and the union bound

2kµP [E(Y, t,M, l, λ)] ≤
(

kµ

l, λ

)

(2t/n)l(2y)λ ≤ 2−l
(

4eθkµ

ln

)l(
2ekµy

λ

)λ

≤ 2−l
(

50µ lnω

l

)l

(2ky)λ

= 2−l(2ky)λ · ω−50µ·α lnα, whereα =
l

50µ lnω
. (54)

Since−α lnα ≤ 1/2, we obtainω−50µ·α lnα ≤ ω−25µ ≤ (ln k)25µ ≤ kλ. Plugging this last estimate
into (54) yields the desired bound. 2

Corollary 6.5 Let t ≤ θ and letE(t) be the event that there are setsY ⊂ V , M ⊂ [m] of size3 ≤
|Y | = |M| = µ ≤ nk−12 and integersl ≥ 0, λ ≥ 3µ such that the eventE(Y, t,M, l, λ) occurs. Then
P [E(t)] = o(1/n).

Proof. Let us fix an integer1 ≤ µ ≤ nk−12 and letE(t, µ) be the event that there exist setsY,M of
the given sizeµ = yn and numbersl, λ such thatE(Y, t,M, l, λ) occurs. Then the union bound and
Corollary 6.4 yield

P [E(t, µ)] ≤
∑

λ≥3µ

∑

Y,M:|Y |=|M|=µ

∑

l≥0

P [E(Y, t,M, l, λ)] ≤
(

n

µ

)(

m

µ

)

22−kµ(2k2y)3µ

≤
(

e22k lnω

ky2

)µ

· 22−kµ(2k2y)3µ ≤ 4
[

yk6
]µ ≤ y−µ/2.

Summing over3 ≤ µ ≤ nk−12, we obtainP [E(t)] ≤∑µ P [E(t, µ)] = O(n−3/2). 2

Proof of Proposition 3.4.Assume that the graphG(Φ, Z, Z ′) does not have a matching that covers all
(Z,Z ′)-endangered clauses. Then by the marriage theorem there area setY ⊂ Z ′ and a setM of (Z,Z ′)-
endangered clauses such that|M| = |Y | > 0 and all neighbors of indicesi ∈ M in the graphG(Φ, Z, Z ′)
lie in Y . Indeed, as each(Z,Z ′)-endangered clause contains at least three variables fromZ ′, we have
|Y | ≥ 3. Therefore, for each clausei ∈ M the following three statements are true:

a. There is a setΛ(i) ⊂ [k] of size at least3 such that|Φij | ∈ Y for all j ∈ Λ(i).

b. There is a (possibly empty) setL(i) ⊂ [k] \ Λ(i) such thatΦij ∈ Z for all j ∈ L(i).

c. For allj ∈ [k] \ (L(i) ∪ Λ(i)) the literalΦij is negative.

As a consequence, at least one of the following events occurs:

1. T > θ = ⌊4k−1 lnω⌋.
2. |Z ′| > nk−12.

3. There ist ≤ θ such thatE(t) occurs.

The probability of the first event iso(1) by Proposition 3.2, the second event has probabilityo(1) by
Proposition 3.3, and the probability of the third event isθ · o(n−1) = o(1) by Corollary 6.5. 2
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