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Abstract

We bound the time it takes for a group of birds to reach steady state in
a standard flocking model. We prove that (i) within single exponential time
fragmentation ceases and each bird settles on a fixed flying direction; (ii) the
flocking network converges only after a number of steps that is an iterated
exponential of height logarithmic in the number of birds. We also prove
the highly surprising result that this bound is optimal. The model directs
the birds to adjust their velocities repeatedly by averaging them with their
neighbors within a fixed radius. The model is deterministic, but we show that
it can tolerate a reasonable amount of stochastic or even adversarial noise.
Our methods are highly general and we speculate that the results extend
to a wider class of models based on undirected flocking networks, whether
defined metrically or topologically. This work introduces new techniques of
broader interest, including the flight net, the iterated spectral shift, and a
certain residue-clearing argument in circuit complexity.

1 Introduction

What do migrating geese, flocking cranes, bait balls of fish, prey-predator systems,
and synchronously flashing fireflies have in common? All of them are instances
of natural algorithms, ie, algorithms designed by evolution over millions of years.
By and large, their study has been the purview of dynamical systems theory
within the fields of zoology, ecology, evolutionary biology, etc. The main purpose
of this work is to show how combinatorial and algorithmic tools from computer
science might be of benefit to the study of natural algorithms—in particular, in the
context of collective animal behavior [20]. We consider a classical open question
in bird flocking: bounding the convergence time in a standard neighbor-based
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model. We give a tight bound on the number of discrete steps required for a
group of n birds to reach steady state. We prove that, within time exponential
in n, fragmentation ceases and each bird settles on a fixed flying direction. We
also show that the flocking network converges after a number of steps that never
exceeds an iterated exponential of height logarithmic in n. Furthermore, we show
that this exotic bound is in fact optimal. If we view the set of birds as a distributed
computing system, our work establishes a tight bound on the maximum execution
time. Holding for a large family of flocking mechanisms, it should be thought of
as a busy beaver type result—or perhaps busy goose.

The bound is obtained by investigating an intriguing “spectral shift” process,
which could be of independent interest. In the model, birds forever adjust their
velocities at discrete time steps by averaging them with their neighbors flying
within a fixed distance. The model is deterministic but we show that it tolerates a
reasonable amount of stochastic or even adversarial noise. While, for concreteness,
we settle on a specific geometric model, our methods are quite general and we
suspect the results can be extended to a large class of flocking models, including
topological networks [1]. The only serious limitation is that the flocking network
must be undirected: this rules out models where one bird can process information
from another one while flying in its “blind spot.”

Bird flocking has received considerable attention in the scientific and engineer-
ing literature, including the now-classical Boids model of Reynolds [21, 26–28].
Close scrutiny has been given to leaderless models where birds update their ve-
locities by averaging them out over their nearest neighbors. Two other rules are
often added: one to prevent birds from colliding; the other to keep them together.
Velocity averaging is the most general and fundamental rule and, understandably,
has received the most attention. Computer simulations support the intuitive be-
lief that, by repeated averaging, each bird should eventually converge to a fixed
speed and heading. This has been proven theoretically, but how long it takes for
the system to converge had remained an open problem. The existential question
(does the system converge?) has been settled in many different ways, and it is
useful to review the history briefly.

A “recurrent connectivity” assumption stipulates that, over any time interval
of a fixed length, every pair of birds should be able to communicate with each
other, directly or indirectly via other birds. Jadbabaie, Lin, and Morse [9] proved
the first of several convergence results under that assumption (or related ones [16,
17, 23, 27]). Several authors extended these results to variable-length intervals [8,
13, 15]. They established that the bird group always ends up as a collection of
separate flocks (perhaps only one), each one converging toward its own speed and
heading. Some authors have shown how to do away with the recurrent connectivity
assumption by changing the model suitably. Tahbaz-Salehi and Jadbabaie [24], for
example, assume that the birds fly on the surface of a torus. Cucker and Smale [7]
use a broadcast model that extends a bird’s influence to the entire group while
scaling it down as a function of distance. In a similar vein, Ji and Egerstedt [10]
introduce a hysteresis rule to ensure that connectivity increases over time. Tang
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and Guo [25] prove convergence in a high-density probabilistic model. Recent
work [1] suggests a “topological” rule for linking birds: a bird is influenced by
a fixed number of its neighbors instead of all neighbors within a fixed distance.
Whether the criteria are metric or topological, the bulk of work on leaderless
flocking has assumed neighbor-based consensus rules. We are not aware of any
bounds on the convergence time.

Our model is a variant of the one proposed by Cucker and Smale [7], which
is itself a holonomic variant of the classical Vicsek model [29]. Given n birds
B1, . . . ,Bn, represented at time t by points x1(t), . . . , xn(t) in E3, the flocking
network Gt has a vertex for each bird and an edge between any two of them within
distance 1 of each other. By convention, Gt has no self-loops. The connected
components of Gt are the flocks of the system. If di(t) denotes the number of
birds adjacent to Bi at time t, the total number of birds within the closed unit
disk centered at Bi is precisely di(t) + 1.

Figure 1: Each bird updates its velocity by averaging it with those of its neighbors within
a unit-radius circle.

The Model. The input consists of the initial position x(0) and velocity v(1).
Both vectors belong to Rdn, for any fixed d ≥ 1. For t ≥ 1 and 1 ≤ i ≤ n,

xi(t) = xi(t− 1) + vi(t),

where1

vi(t+ 1)− vi(t) = ci(t)
∑

(i,j)∈Gt

(vj(t)− vi(t)).

1 We denote the coordinates of a vector x(t) by xi(t) and the elements of a matrix X(t) (resp.
Xt) by xij(t) (resp. (Xt)ij).
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The self-confidence coefficients ci(t), so named because they tell us how much a
bird is influenced by its neighbors, are normalized so that 0 < ci(t)di(t) < 1. (See
“Discussion” section below for an intriguing interpretation of these constraints.)
We assume that ci(t) may vary only when Gt does; in other words, while all
neighborly relations remain the same, so do the self-confidence coefficients. A
natural choice of coefficients is the one used in the classical Vicsek model [29]:
ci(t) = (di(t) + 1)−1, but we do not make this restrictive assumption here.

The model captures the simple intuition that, in an effort to reach consensus
by local means, each bird should adjust its velocity at each step so as to be a
weighted average of those of its neighbors. A mechanical interpretation sees in the
difference vi(t+ 1)− vi(t) the discrete analogue of the bird’s acceleration, so that,
by Newton’s Law, F = ma, a bird is subject to a force that grows in proportion to
the differences with its neighbors. A more useful take on the model is to view it
as a diffusion process: more precisely, as the discrete version of the heat equation

∂v

∂t
= −CtLtv,

where the Laplacian Lt of the flocking network Gt is defined by:

(Lt)ij =


di(t) if i = j;
−1 if (i, j) ∈ Gt;

0 else.

and Ct = diag c(t) is the self-confidence matrix. Thus we express the dynamics of
the system as

v(t+ 1)− v(t) = −CtLtv(t) .

This is correct in one dimension. To deal with birds in d-space, we use a standard
tensor lift. Here is how we do it. We form the velocity vector v(t) by stacking
v1(t), . . . , vn(t) together into one big column vector of dimension dn. Given a
matrixA, the product2 (A⊗Id)v(t) interlaces into one vector the d vectors obtained
by multiplying A by the vector formed by the k-th coordinate of each vi(t), for
k = 1, . . . , d. The heat equation would now be written as

v(t+ 1) = (P (t)⊗ Id)v(t) .

where P (t) = In − CtLt. One can check directly that the transition matrix P (t)
is row-stochastic. In the case of a 3-node path, for example, P (t) has the form:1− c1(t) c1(t) 0

c2(t) 1− 2c2(t) c2(t)
0 c3(t) 1− c3(t)

 .

2 The Kronecker A ⊗ B,product of two matrices A and B is the matrix we get if we replace
each aij by the block aijB. Formally, if A is m-by-n and B is p-by-q, then the product A ⊗ B
is the mp-by-nq matrix C such that cip+j,kq+l = ai,kbj,l. We will often use, with no further
mention, the tensor identity (A⊗B)(C ⊗D) = AC ⊗BD.
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1− 2c2(t)

c2(t)c2(t)

Figure 2: A 3-node flock with the transitions of the middle node indicated
by curved arrows.

The dynamics of flocking is captured by the two equations of motion: For any
t ≥ 1, {

x(t) = x(t− 1) + v(t);
v(t+ 1) = (P (t)⊗ Id)v(t).

(1)

For tie-breaking purposes, we inject a tiny amount of hysteresis into the sys-
tem. As we discuss below, this is necessary for convergence. Intuitively, the
rule prevents edges of the flocking network from breaking because of microscopic
changes. Formally, an edge (i, j) of Gt remains in Gt+1 if the distance between Bi
and Bj changes by less than εh > 0 between times t and t+ 1. We choose εh to be
exponentially small for illustrative purposes only; in fact, virtually any hysteresis
rule would work.

The Results. To express our main result, we need to define the fourth level of
the Ackermann hierarchy, the so-called “tower-of-twos” function: 2 ↑↑ 1 = 2 and,
for n > 1, 2 ↑↑ n = 22↑↑(n−1). The bird group is said to have reached steady state
when its flocking network no longer changes. All the results below hold in any
fixed dimension d ≥ 1.

• A group of n birds reaches steady state in fewer than 2 ↑↑ (4 log n) steps. The
maximum number of switches in the flocking network of n birds is at most
nO(n3). The limit configuration of each bird Bi is of the form ai + bit, where
ai, bi are d-dimensional rational vectors. After the fragmentation breakpoint
tf = nO(n3), network edges can only appear and never vanish.

• There exists an initial configuration of n birds that requires more than 2 ↑↑
log n

2 steps before reaching steady state. The lower bound holds both with and
without hysteresis.

Past the fragmentation breakpoint, the direction of each bird is essentially
fixed, so nO(n3) is effectively the bound for physical convergence. (Of course,
damped local oscillations typically go on forever.) Combinatorial convergence
is another matter altogether. It might take an extraordinarily long time before
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the network stops switching. The tower-of-twos’ true height is actually less than
4 log n, ie, a little better than stated above: specifically, the factor 4 can be re-
placed by (log x0)−1, where x0 is the unique real root of x5−x2−1, which is about
3.912.

fragmentation steady statemerge phase

0
22

22
22

4 log n
tf = n

O(n3)

Figure 3: Flocks cease to lose edges after the fragmentation breakpoint tf
and can only gain new ones. The network reaches steady state after a tower-
of-twos of height logarithmic in the number of birds.

• How many bits? The self-confidence matrices Ct are rational with O(log n) bits
per entry. The bound on the maximum number of network switches holds even
if the inputs are arbitrary real numbers. Obviously, there is no hope of bounding
the convergence time if two birds can be initialized to fly almost parallel to each
other; therefore bounding the representation size of the input is necessary. The
initial position and velocity of each bird are encoded as rationals over p bits. Our
results hold for virtually any value of p. The dependency on p begins to show
only for p ≥ n3, so this is what we shall assume when proving the upper bound
on the convergence time. Keep in mind that p is only an upper bound and the
actual number of bits does not need to be this long. In fact, the lower bound
requires only log n bits per bird. All computation is exact. The upper bound3 of
2 ↑↑ (4 log n) is extremely robust, and holds for essentially any conceivable input
bit-size and hysteresis rule.

• Is the lower bound pathological? Suprisingly, the answer is no. As we mentioned,
initial conditions require only p = O(log n) bits per bird. Our construction ensures
that the hysteresis rule never kicks in, so the lower bound holds whether the model
includes hysteresis or not. The flocks used for the construction are single paths,

3 Logarithms to the base 2 are written as log while the natural variety is denoted by ln. For
convenience we assume throughout this paper that n, the number of birds, is large enough. To
handle small bird groups, of course, we can always add fictitious birds that never interact with
anyone.
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and the matrix P (t) corresponds to a lazy random walk with probability 1
3 of

staying in place. The lower bound holds in any dimension d > 0. Here are the
initial positions and velocities for d = 1:

x(0) =
(

0, 2
3 , 2,

8
3 , . . . , 2l, 2l + 2

3 , . . . , n− 2, n− 4
3

)T
;

v(1) =
(
n−11, 0,−n−11, 0, n−11, 0, . . . , n−11, 0,−n−11, 0︸ ︷︷ ︸

n

)T
.

Flocking obeys two symmetries: one translational; the other kinetic (or “relativis-
tic,” as a physicist might say). The absolute positioning of the birds is irrelevant
and adding a fixed vector to each bird’s velocity has no effect on flocking. In
other words, one cannot infer velocity from observing the evolution of the flocks.
Indeed, only differences between velocities are meaningful. This invariance under
translation in velocity space implies that slow convergence cannnot be caused by
forcing birds to slow down. In fact, one can trivially ensure that no bird speed falls
below any desired threshold. The lower bound relies on creating small angles, not
low speeds. (Thus, in particular, the issue of stalling does not arise.) To simplify
the lower bound proof, we allow a small amount of noise into the system. Within
the next nO(1) steps following any network switch, the velocity of an m-bird flock
may be multiplied by Im⊗α̂, where α̂ is the diagonal matrix with α = (α1, . . . , αd)
along the diagonal and rational |αi| ≤ 1 encoded over O(log n)-bits. The noise-free
case corresponds to αi = 1. The perturbed velocity at time t should not differ
from the original one by more than δt = log t

t eO(n3) but we allow a number of
perturbations as large as eO(n3). This noise model could be enriched considerably
without affecting the convergence bounds, but our choice was guided by simplicity.
Note that some restrictions are necessary for convergence; trivially, noise must be
bounded past the last switch since two flocks flying parallel to each other could
otherwise be forced to merge arbitrarily far into the future. Switching to a noisy
model has two benefits: one is a more general result, since the same upper bound
on the convergence time holds whether the noise is turned on or off; the other is
a simpler lower bound proof. It allows us to keep the initial conditions extremely
simple. We use only log n perturbations and δt ≈ 1/t, so noise is not germane to
the tower-of-twos growth.

• Why hysteresis? Network convergence easily implies velocity convergence, but
the converse is not true: velocities might reach steady state while the network does
not. Indeed, in §3.2, we specify a group of birds that alternates forever between
one and two flocks without ever converging. This is an interesting but somewhat
peripheral issue that it is best to bypass, as is done in [10], by injecting a minute
amount of hysteresis into the system. Whatever one’s rule—and, as we mentioned
earlier, almost any rule would work—it must be sound, meaning that any two birds
at distance ever so slightly away from 1 should have the correct pairing status.
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Note that soundness does not follow immediately from our definition of hysteresis.
This will need to be verified. By construction, we know that any two birds within
unit distance of each other at time t are always joined by an edge of the flocking
network Gt. We will show that, if we set εh = n−bn

3
for a large enough constant

b, then no two birds at distance greater than 1 +
√
εh are ever adjacent in Gt.

• How robust are the bounds? The tower-of-twos bound continues to hold regard-
less (almost) of which hysteresis rule we adopt and how many input bits we allow.
The assumption εh = n−bn

3
is introduced for notational convenience; for example,

they allow allow us to express soundness very simply by saying that no birds at
distance greater than 1 +

√
εh should ever be joined by an edge of the network.

Without the assumptions above, the bounds are more complicated. For the inter-
ested reader, here is what happens to the number N(n) of network switches and
the fragmentation breakpoint tf , ie, the time after which flocks can only merge:

N(n) = nO(n3)(p + log 1
εh

)n−1;

tf = 1
εh
nO(n3)2O(p)(p + log 1

εh
)n.

Discussion. How relevant are this paper’s results? Why are they technically
difficult? We address these two points briefly. Our bounds obviously say nothing
about physical birds in the real world. They merely highlight the exotic behavior
of the mathematical models. Although we focus on a Cucker-Smale variant, we
believe that the bounds hold for a much wider variety of neighbor-based models.
We introduce new techniques that are likely to be of further interest. The most
promising seems to be the notion of a “virtual bird” flying back in time. We design
a structure, the flight net, that combines both kinetic and positional information
in a way that allows us to use both the geometry and the algebra of the problem at
the same time. Perhaps the most intriguing part of this work is the identification
of a curious phenomenon, which we call the (iterated) spectral shift.

Self-confidence leads to an interesting phenomenon. Too much of it prevents
consensus but so does too little. Harmony in a group seems to be helped by a min-
imum amount of self-confidence among its members. Both extreme selfishness and
excessive altruism get in the way of reaching cohesion in the group. Self-confidence
provides a retention mechanism necessary for reaching agreement. The coefficient
ci(t)di(t) represents how much a bird lets itself influenced by its neighbors. By
requiring that it be less than 1, we enforce a certain amount of self-confidence for
each bird. This idea is not new and can be found in [8, 14,15].

Besides noise and hysteresis, our model differs from Cucker-Smale [7] in two
other ways. One is that our flocking networks are not complete graphs: they un-
dergo noncontinuous transitions, which create the piecewise linearity of the system.
Another difference is that the transition matrices of our model are not symmetric.
This greatly limits the usefulness of linear algebra. The reason why might not be
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obvious, so here is some quick intuition. Cucker and Smale diagonalize the Lapla-
cian and note that, since only differences are of interest, the vectors might as well
be assumed to lie in the space 1⊥. Not only is that space invariant under the
Laplacian but it contracts at an exponential rate set by the Fiedler number (the
second eigenvalue). From this, a quadratic Lyapunov function quickly emerges,
namely the energy vTLtv of the system. When the graph is connected, the Fiedler
number is bounded away from 0 by an inverse polynomial, so differences between
velocities decay to 0 at a rate of 2tn

−c
for some constant c > 0.

In the nonsymmetric case (ours), this approach is doomed. If, by chance, all
the transition matrices had the same left eigenvectors, then the variance of the
time-dependent Markov chain sampled at the (common) stationary distribution
would in fact be a valid Lyapunov function, but that assumption is completely
unrealistic. In fact, it has been proven [9, 19] that the dynamical systems under
consideration do not admit of any suitable quadratic Lyapunov function for n ≥ 8.
Worse, as was shown by Olshevsky and Tsitsiklis [19], there is not even any hope
of finding something weaker, such as a nonzero positive semidefinite matrix Λ
satisfying, for any allowable transition v(t)→ v(t+ 1),{

Λ1 = 0;
v(t+ 1)TΛv(t+ 1) ≤ v(t)TΛv(t).

Our transition matrices are diagonalizable, but the right eigenspace for the sub-
dominant eigenvalues is not orthogonal to 1 and the maps might not even be
globally nonexpansive: for example, the stochastic matrix

1
15

(
12 3
10 5

)
has the two eigenvalues 1 and 0.133; yet it stretches the unit vector (1, 0) to one of
length 1.041. Linear algebra alone seems unable to prove convergence. The ratio-
nality of limit configurations is not entirely obvious. In fact, the iterated spectral
shift is reminiscent of lacunary-series constructions of transcendental numbers,
which is not the most auspicious setting for proving rationality. This work draws
from many areas of mathematics and computer science, including Markov chains,
nonnegative matrices, algebraic graph theory, elimination theory, combinatorics,
harmonic analysis, circuit complexity, computational geometry, and of course lin-
ear algebra.

2 A Bird’s Eye View of the Proof

To establish a tight bound on the convergence time, we break down the proof
into four parts, each one using a distinct set of ideas. We briefly discuss each
one in turn. The first step is to bound the number of network switches while
ignoring all time considerations. This decoupling allows us to treat the problem
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as purely one of information transfer. In one step a bird influences each one of
its neighbors by forcing its velocity into the computation of these neighbors’ new
velocities. This influence propagates to other birds in subsequent steps in a manner
we can easily trace by following the appropriate edges along the time-dependent
flocking network. Because of self-confidence, each bird influences itself constantly.
It follows that once a bird influences another one (directly or indirectly via other
birds) it does so forever, even if the two birds find themselves forever confined to
distinct connected components. For this reason, influence alone is a concept of
limited usefulness. We need another analytical tool: refreshed influence. Suppose
that, at time t0, B1 claims influence on B2. As we just observed, this claim will
hold for all t > t0. But suppose that we “reboot” the system at time t0 + 1 and
declare all influences void. We may now ask if B1 will again claim influence on
B2 at some time t > t0 in the future: in other words, whether a chain of edges
will over time transfer information again from B1 to B2 after t0. If yes, we then
speak of refreshed influence. Suppose now that B1 exerts refreshed influence on
B2 infinitely often: we call such influence recurrent. Although influence is not a
symmetric relation, it is an easy exercise to prove that recurrent influence is.

Figure 4: Each bird is influenced by the one pointing to it. If this chain of
influence occurs repeatedly (not necessarily with the same set of intermediate
birds), a backward sphere of influence centered at the end of the chain will
begin to propagate backwards and eventually reach the first bird in the chain.

This appears to be a principle of general interest. If political conversations
consist of many two-way communications between pairs of people, with the pairs
changing over time, then the only way A can influence B repeatedly is if it is
itself influenced by B repeatedly. What makes this fact interesting is that it holds
even if A and B never exchange opinions directly with each other and only a
single pairwise communication occurs at any given time. Self-confidence plays
an important role in this phenomenon. It provides information retention that
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prevents agents from being influenced by their own opinions in periodic fashion.
In fixed networks, this avoids the classical oscillation issue for random walks in
bipartite graphs.

In time-dependent networks, the role of self-confidence is more subtle. To
understand it, one must first remember one fundamental difference between fixed
directed and undirected consensus networks (ie, where at each step, the opinion
at each node v is averaged over the opinions linked to by the edges from v). In
a fixed directed network, the fraction of an agent’s opinion that is measurable at
some other node of the network might be exponentially small in the time elapsed
since that opinion was expressed. This cannot happen in undirected networks: any
fraction of an opinion is either 0 or bounded from below independently of time.
Time-dependent undirected networks, on the other hand, are expressive enough
to (essentially) simulate fixed directed ones: time, indeed, can be used to break
edge symmetry. The benefits of undirectedness are thus lost, and time-dependent
undirected consensus networks can behave much like fixed directed ones—see [5,6]
for an application of this principle to interactive proof systems; in particular,
they can witness exponential opinion propagation decay. Adding self-confidence
magically prevents such decay. The idea would appear to warrant special scrutiny
outside of its native habitat of computer science and control theory.

• How many switches? Suppose that B1 exerts recurrent influence on B2. We
show that, at some point, both birds will join a connected component of the
flocking network and remain there forever. How many switches can occur before
that event? Let V1 be the set of birds influenced by B1. As soon as everyone in
V1 has been influenced by B1, let’s “reboot” the system and define V2 to be the
new set of birds with refreshed influence from B1. Obviously V1 ⊇ V2. Repeating
this process leads to an infinite nested sequence

V1 ⊇ V2 ⊇ V3 ⊇ · · · ⊇ V∞,

where V∞ contains at least the two birds B1 and B2. Let Tk be the formation time
of Vk and let δk be the difference in velocity between the two birds at time Tk.
We wish we could claim a uniform bound, ‖δk‖2 < (1− ε)‖δk−1‖2, for some fixed
ε > 0 independent of the time difference Tk−Tk−1. Indeed, this would show that,
for k large enough, the two velocities are close enough for the hysteresis rule to
kick in and keep the two birds together in the same flock forever. Of course, since
the two birds need not be adjacent, this argument should be extended to all pairs
of birds in V∞. While the inequality ‖δk‖2 < (1 − ε)‖δk−1‖2 is too much to ask
for, we show that ‖δk‖2 ≤ ζk, where ζk < (1− ε)ζk−1. In other words, the velocity
difference between B1 and B2 may not shrink monotonically, but it is bounded by
a function that does. The uniformity of the shrinking, which is crucial, depends
critically on self-confidence and the retention mechanism it implies. Technically,
this translates into a uniform lower bound on the nonzero entries of products of
stochastic matrices. This allows us to rescue the previous argument and bound
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the value of k such that Vk = V∞. To bound the number of switches before time
Tk, we need to find how many of them can take place between a reboot at Tj−1

and the formation of Vj . The key observation is that Vj is formed by a growth
process of smaller flocks (ie, all of them of size less than n): we can therefore set
up a recurrence relation and bound the number of switches inductively.

• How much time between switches? Flock behavior between switches is linear,
so spectral analysis provides most of the tools we need to bound the inter-switch
time. At time t, the number of bits needed to encode the velocity is (roughly)
O(t). This means that, in the worst case, two birds can fly either parallel to
each or at an angle at least e−O(t). From this we can infer that, should the
birds want to be joined together in the flocking network after time t, this union
must happen within a period of eO(t). Things are more complex if the stationary
velocities of the two flocks are parallel. We need to use root separation bounds for
various extension fields formed by adjoining to the rationals all the relevant eigen-
information. Intuitively, the question we must answer is how long one must wait
for a system of damped oscillators to cross a given real semi-algebraic set with
known parameters. All of these techniques alone can only yield a convergence
time bound in the form of a tower-of-twos of height exponential in n. To bring
the height down to logarithmic requires two distinct ideas from computational
geometry and circuit complexity.

• How to bring the height down to linear? So far, we have only used combinatorics,
algebraic graph theory, linear algebra, and elimination theory. We use algorithmic
ideas from convex geometry to reduce the height to linear. We lift the birds into
4 dimensions (or d+ 1 in general) by making time into one of the dimensions. We
then prove that, after exponential time, birds can only fly almost radially (ie, along
a line passing through the origin). This implies that, after a certain time threshold,
flocks can only merge and never fragment again. From that point on, reducing
the height of the tower-of-twos to linear is easy. Our geometric investigation
introduces the key idea of a virtual bird. The stochastic transitions have a simple
geometric interpretation in terms of new velocities lying in the convex hulls of
previous ones. This allows us to build an exponential-size flight net consisting of
convex structures through which all bird trajectories can be monitored. A useful
device is to picture the birds flying back in time with exactly one of them carrying
a baton. When a bird is adjacent to another one in a flock, it may choose to pass its
baton. The trajectory of the baton is identified as that of a virtual bird. Because
of the inherent nondeterminism of the process, we may then ask the question:
is there always a virtual bird trajectory that follows a near-straight line? The
answer, obviously negative in the case of actual birds, turns out to be yes. This is
the benefit of virtuality. This fact has numerous geometric consequences bearing
on the angular flight motion of the real birds.

• How to bring the height down to logarithmic? It is not so easy to build intuition

12



for the logarithmic height of the tower-of-twos.4 A circuit complexity framework
helps to explain the residue clearing phenomenon behind it. To get a tower-of-
twos requires an iterated spectral shift. When two flocks meet, energy must be
transferred from the high-frequency range down to the lowest mode in the power
spectrum. This process builds a residue: informally, think of it, for the purpose
of intuition, as residual heat generated by the transfer. This heat needs to be
evacuated to make room for further spectral shifts. The required cooling requires
free energy in the form of previously created spectral shifts. This leads to an
inductive process that limits any causal chain of spectral shifts to logarithmic
length. The details are technical, and the best way to build one’s intuition is to
digest the lower bound first.

• How to prove the optimality of the logarithmic height? The starting configu-
ration is surprisingly simple. The n birds stand on a wire and fly off together at
various angles. The initial conditions require only O(log n) bits per bird. The n
birds meet in groups of 2, 4, 8, etc, forming a balanced binary tree. Every “colli-
sion” witnesses a spectral shift that creates flying directions that are increasingly
parallel; hence the longer waits between collisions. To simplify the calculations,
we use the noisy model to flip flocks occasionally in order to reverse their flying
directions along the X-axis. This occurs only log n times and can be fully ac-
counted for by the model we use for the upper bound. Because the flocks are
simple paths, we can use harmonic analysis for cyclic groups to help us resolve all
questions about their power spectra.

3 The Upper Bound

We begin with a few opening observations in §3.1. We explore both the algebraic
and geometric aspects of flocking in §3.2. We establish a crude convergence bound
in §3.3, which gives us a glimpse of the spectral shift. An in-depth study of its
combinatorial aspects is undertaken in §3.4, from which a tight upper bound
follows. We shall always assume that p ≥ n3. To highlight the robustness of the
bounds, we leave both p and εh as parameters throughout much of our discussion,
thus making it easier to calculate convergence times for arbitrary settings. For
convenience and clarity, we adopt the default settings below in §3.4 (but not
before). One should keep in mind that virtually any assignment of parameters
would still produce a tower-of-twos. Let b denote a large enough constant:

Default Settings

{
p = n3;
εh = n−bn

3
.

(2)

4As a personal aside, let me say that I acquired that intuition only after I had established the
matching lower bound. For this reason, I recommend reading the lower bound section before the
final part of the upper bound proof.
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Recall that p and εh denote, respectively, the input bit-size and the hysteresis
parameter. With these settings, the fragmentation breakpoint and the maximum
switch count are both nO(n3).

3.1 Preliminaries

We establish a few useful facts about the growth of the coordinates over time. It
is useful to treat coordinates as integers, which we can do by expressing them as
fractions sharing the same denominator. For example, the initial positions and
velocities can be expressed either as p-bit rationals or, more usefully, as O(pn)-
bit CD-rationals, ie, rationals of the form pi/q, with the common denominator
q. We mention some important properties of such representations. We will also
introduce some of the combinatorial tools needed to measure ergodicity. The
objective is to predict how fast backward products of stochastic matrices tend to
rank-one matrices. We treat the general case in this section and investigate the
time-invariant case in the next.

Numerical Complexity. The footprint of a matrix A is the matrix A derived
from A by replacing each nonzero entry by 1. For t ≥ s, we use P (t, s) as shorthand
for P (t)P (t − 1) · · ·P (s). Note that, in the absence of noise, the fundamental
equation (1) can be rewritten as

v(t+ 1) = (P (t, 1)⊗ Id)v(1).

A bird may influence another one over a period of time without the converse being
true; in other words, the matrices P (t, s) and P (t, s) are in general not symmetric;
the exception is P (t), which not only is symmetric but has its diagonal full of ones.
Because of this last property, P (t, s) can never lose any 1 as t grows, or to put it
differently the corresponding graph can never lose an edge. Before we get to the
structural properties of P (t, s), we need to answer two basic questions: how small
can the nonzero entries be and how many bits do we need to represent them?
As was shown in [8, 14], nonzero elements of P (t, s) can be bounded uniformly,
ie, independently of t. Note that this relies critically on the positivity of the
diagonals. Indeed, without the condition ci(t)di(t) < 1, we could choose P (t) = A
for even t and P (t) = B for odd t, where

A =

0 1 0
1 0 0
0 0 1

 B = 1
2

0 2 0
1 0 1
0 2 0

 .

For even t > 0,

P (t, 1) = (AB)t/2 =

2−t/2 1− 21−t/2 2−t/2

0 1 0
0 1 0

 .
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To understand this process, think of a triangle with a distinguished vertex called
the halver. Each vertex holds an amount of money. At odd steps, the halver
splits its amount in half and passes on each half to its neighbor; the other ver-
tices, meanwhile, pass on their full amount to the halver. The total amount of
money in the system remains the same. At the following (even) step, the role of
halver is handed to another vertex (which one does not matter); and the process
repeats itself. This alternate sequence of halving and relabeling steps produces an
exponential decay. If each vertex is prohibited to pass its full amount, however,
then money travels while leaving a “trace” behind. As we prove below, exponen-
tial decay becomes impossible. This prohibition is the equivalent of the positive
self-confidence built into bird flocking.

Lemma 3.1. For any 1 ≤ s ≤ t, the elements of P (t, s) are CD-rationals over
O((t− s+ 1)n log n) bits. The nonzero elements are in n−O(n2).

Proof. Each row of P (t) contains rationals with the same O(log n)-bit denomi-
nator, so the matrix P (t) can be written as N−1 times an integer matrix, where
both N and the matrix elements are encoded over O(n log n) bits. Each ele-
ment of P (t, s) is a product of t − s + 1 such matrices; hence a matrix with
O((t−s+1)n log n)-bit integer elements divided by a common O((t−s+1)n log n)-
bit integer. For the second part of the lemma, we use arguments from [8,14]. Recall
that P (t) = In−CtLt, where Ct is a diagonal matrix of positive rationals encoded
over O(log n) bits, so the case t = s is obvious. Let ρ(t, s) be the smallest positive
element of P (t, s) and suppose that t > s.

We begin with a few words of intuition. Because P (s, t) = P (t)P (t − 1, s), a
nonzero entry pij(t, s) is the expected value of pkj(t−1, s), for a random k adjacent
to i in P (t), or, to be more precise, in the graph induced by the nonzero elements
of that matrix. If, for all such k, pkj(t− 1, s) > 0, then pij(t, s), being an average
of positive numbers, is at least ρ(t − 1, s), and we are done. On the other hand,
having some pkj(t − 1, s) equal to 0 means that the edge (k, j) is missing from
the “graph” P (t − 1, s). If we now consider the 2-edge path formed by (k, i) in
P (t) and (i, j) in P (t − 1, s), we conclude that at least one of (i, j) or (k, j) is a
brand-new edge in P (t, s). We then use the fact that such events happen rarely.

• Suppose that pkj(t − 1, s) > 0 for each i, j, k such that pij(t, s)pik(t) > 0.
Then, for any pij(t, s) > 0, by stochasticity,

pij(t, s) =
∑
k

pik(t)pkj(t− 1, s) ≥
(∑

k

pik(t)
)
ρ(t− 1, s) = ρ(t− 1, s).

It follows that ρ(t, s) ≥ ρ(t− 1, s).

• Assume now that pij(t, s)pik(t) > 0 and pkj(t − 1, s) = 0 for some i, j, k.
Since pij(t, s) is positive, so is pil(t)plj(t− 1, s) for some l; hence pij(t, s) ≥
pil(t)plj(t− 1, s) ≥ ρ(t− 1, s)n−O(1). We show that this drop coincides with
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the gain of an 1 in P (t, s). The footprint of P (t) is symmetric, so pki(t) > 0
and hence

pkj(t, s) =
∑
l

pkl(t)plj(t− 1, s) ≥ pki(t)pij(t− 1, s) ≥ n−O(1)pij(t− 1, s).

We distinguish between two cases. If pij(t − 1, s) is positive, then so is
pkj(t, s). Since pkj(t − 1, s) = 0, the matrix P (t, s) has at least one more
positive entry than P (t − 1, s); recall that no entry can become null as we
go from P (t − 1, s) to P (t, s). On the other hand, if pij(t − 1, s) = 0, our
assumption that pij(t, s) > 0 leads us to the same conclusion. In both cases,
P (t, s) differs from P (t−1, s) in at least one place: this cannot happen more
than n2 times.

If we fix s then ρ(t, s) ≥ ρ(t−1, s) for all but at most n2 values of t. For the others,
as we saw earlier, pij(t, s) ≥ ρ(t− 1, s)n−O(1); hence ρ(t, s) ≥ ρ(t− 1, s)n−O(1). 2

The coordinates of v(1) and x(0) can be expressed as CD-rationals over O(pn)
bits. By the previous lemma, this implies that, in the noise-free case, for t >
1, v(t) = (P (t − 1, 1) ⊗ Id)v(1) is a vector with CD-rational coordinates over
O(tn log n+ pn) bits. The equation of motion (1) yields

x(t) = x(0) +
(

(P (t− 1, 1) + · · ·+ P (1, 1) + In)⊗ Id
)
v(1).

Note that P (t − 1, 1) = N−1Q, where Q is an integer matrix with O(tn log n)-
bit integer elements and N is an O(tn log n)-bit integer. The other matrices are
subproducts of P (t − 1, 1) = P (t − 1) · · ·P (1), so we can also express them in
this fashion for the same value of N . It follows that v(t) and x(t) have CD-
rational coordinates over O(tn log n+ pn) bits. Adding noise makes no difference
asymptotically. Indeed, bringing all the coordinates of the scaling vectors α in
CD-rational form adds only O(n log n) bits to the velocities at each step.

Lemma 3.2. For any t ≥ 1, the vectors v(t) and x(t) have CD-rational coordinates
over O(tn log n+ pn) bits.

The `∞ norm of the velocity vector never grows, as transition matrices only
average them out and the noise factors are bounded by 1: since p ≥ n3, it follows
that, for any t ≥ 1,

‖v(t)‖2 = 2O(p). (3)

Ergodicity. Ignoring noise, the fundamental motion equation (1) gives the po-
sition of the birds at time t > 1 as x(t) = x(0) + (P ∗(t− 1)⊗ Id)v(1), where

P ∗(t) = P (1) + P (2)P (1) + P (3)P (2)P (1) + · · ·+ P (t) · · ·P (2)P (1).
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Products of the form P (t) · · ·P (1) appear in many applications [22], including the
use of colored random walks in space-bounded interactive proof systems [5,6]. One
important difference is that random walks correspond to products that grow by
multiplication from the right while the dynamics of bird flocking is associated with
backward products: the transition matrices evolve by multiplication from the left.
This changes the nature of ergodicity. Intuitively, one would expect (if all goes
well) that these products should look increasingly like rank-1 matrices. But can
the rows continue to vary widely forever though all in lockstep (weak ergodicity),
or do they converge to a fixed vector (strong ergodicity)? The two notions are
equivalent for backward products but not for the forward kind [22]. Here is an
intuitive explanation. Backward products keep averaging the rows, so their entries
themselves tend to converge: geometrically, the convex hull of the points formed
by the row keeps shrinking. Forward products lack this notion of averaging. For
a simple illustration of the difference, consider the three stochastic matrices:

A =
1
2

(
1 1
1 1

)
B =

1
2

(
2 0
1 1

)
C =

1
4

(
3 1
3 1

)
.

Backward products are given by the simple formula,

· · ·ABABABAB︸ ︷︷ ︸
n

= C ,

for all n > 1. On the other hand, the forward product tends to a rank-one matrix
but never converges:

ABABABAB · · ·︸ ︷︷ ︸
n

=

{
C even n > 1;
A odd n > 0,

P (t)× =

Figure 5: Premultiplying a matrix, whose rows are shown as points, by a
stochastic matrix P (t) shrinks its convex hull.

As we just mentioned, the key to ergodicity for backward products resides
in the convex hull of the rows. We introduce a family of metrics to measure its
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“shrinkage.” For any p > 1, let τp(A), the ergodicity coefficient of A, denote the
`p-diameter of the convex hull formed by the rows of a matrix A, ie,

τp(A) = max
i,j
‖Ai∗ −Aj∗‖p,

where Ai∗ denotes the i-th row of A. From the fact that `p is a metric space for
p > 1, it follows by convexity that the diameter is always achieved at vertices of
the convex hull. We extend the definition to p = 1 but, for reasons soon to be
apparent, it is important to keep the coefficients between 0 and 1, so we divide
the diameter by two, ie,

τ1(A) =
1
2

max
i,j

∑
k

|aik − ajk|.

To understand why τp(A) relates to ergodicity, assume that A is row-stochastic.
We observe then that

0 ≤ τ1(A) = 1−min
i,j

∑
k

min {aik , ajk} ≤ 1.

This follows from the fact that the distance |a − b| between two numbers a, b is
twice the difference between their average and the smaller one. There are many
fascinating relations between these diameters [22]. For our purposes, the following
submultiplicativity result will suffice [14].5

Lemma 3.3. Given two row-stochastic matrices A,B that can be multiplied,

τ2(AB) ≤ τ1(A)τ2(B).

Proof. Fix the two rows i, j that define τ2(AB), and let α = 1−
∑

k min{aik, ajk}.
Note that 0 ≤ α ≤ τ1(A). If α = 0, then Ai∗ = Aj∗ and τ2(AB) = 0, so the lemma
holds trivially. Assuming, therefore, that α > 0, we derive

τ2(AB) =
∥∥∥∑

k

aikBk∗ −
∑
k

ajkBk∗

∥∥∥
2

=
∥∥∥∑

k

(aik −min{aik, ajk})Bk∗ −
∑
k

(ajk −min{aik, ajk})Bk∗
∥∥∥

2

≤ τ1(A)
∥∥∥ 1
α

∑
k

(aik −min{aik, ajk})Bk∗ − 1
α

∑
k

(ajk −min{aik, ajk})Bk∗
∥∥∥

2
.

Observe now that the coefficients α−1(aik − min{aik, ajk}) are nonnegative and
sum up to 1, so the corresponding sum is a convex combination of the rows of B.
The same is true of the other sum; so, by convexity, the distance between any two
of them cannot exceed τ2(B). 2

5 Submultiplicativity is not true for τ2 in general. First, to make the notion meaningful,
we would need to normalize it and use bτ2 = τ2/

√
2 instead, to ensure that bτ2(A) ≤ 1 for any

stochastic A. Unfortunately, bτ2 is not submultiplicative, as we easily check by considering a
regular random walk A on K2,2 and checking that bτ2(A2) > bτ2(A)2.
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Figure 6: τp(A) is the `p-diameter of the convex hull of the rows of A.

Displacement. For future use, we mention an elementary relation between bird
distance and velocity. The relative displacement between two birds Bi and Bj is
defined as ∆ij(t) = |distt(Bi,Bj)− distt−1(Bi,Bj) |, where the distance between
two birds is denoted by distt(Bi,Bj) = ‖xi(t)− xj(t)‖2.

Lemma 3.4. For t ≥ 1, ∆ij(t) ≤ ‖vi(t)− vj(t)‖2.

Proof. By the triangle inequality,

‖xi(t)−xj(t)‖2 ≤ ‖xi(t−1)−xj(t−1)‖2 +‖xi(t)−xi(t−1)−(xj(t)−xj(t−1))‖2 .

Reversing the roles of t and t− 1 gives us a similar inequality, from which we find
that

|distt(Bi,Bj)− distt−1(Bi,Bj) | ≤ ‖xi(t)− xi(t− 1)− (xj(t)− xj(t− 1))‖2 .

2

3.2 The Algebra and Geometry of Flocking

To separate the investigation of network switches from the time analysis is one of
the key ideas of our method. Our first task, therefore, is to bound the number
of times the flocking network can change, while ignoring how long it takes. Next,
we investigate the special case of time-invariant networks. In the worst case, the
pre-convergence flying time vastly exceeds the number of network switches, so
it is quite intuitive that a time-invariant analysis should be critical. Our next
task is then to prove the rationality of the limit configuration. We also show
why the hysteresis rule is sound. We follow this with an in-depth study of the
convex geometry of flocking. We define the flight net, and with it derive what
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is arguably our most versatile analytical tool: a mathematical statement that
captures the intuition that flocks that hope to meet in the future must match
their velocities more and more closely over time. To do this we introduce the
key concept of a virtual bird, which is a bird that can switch identities with its
neighbors nondeterministically.

Counting Network Switches. Let N(n) be the maximum number of switches
in the flocking network, ie, the number of times t such that P (t) 6= P (t + 1).
Obviously, N(1) = 0; note that, by our requirement that Ct may vary only when
Gt does, we could use footprints equivalently in the definition. For the sake of our
inductive argument, we need a uniform bound on N(n) over all initial conditions.
Specifically, we define N(n) as the largest number of switches of an n-bird flocking
network, given arbitrary initial conditions: for the purpose of bounding N(n),
x(0) and v(1) are any real vectors, with ‖v(1)‖2 = 2O(p). This involves building
a quantitative framework around the existential analyses of [8, 13–15]. We now
prove the network switching bound claimed in the “Results” section of §1.

Lemma 3.5. The maximum number N(n) of switches in the flocking network is
bounded by nO(n3)(p + log 1

εh
)n−1.

Corollary 3.6. Under the default settings (2), N(n) = nO(n3).

Proof of Lemma 3.5. We begin with the noise-free model. Fix s > 0 once and
for all. For t > s, let N(t, s) be the number of network changes between times
s and t, ie, the number of integers u (s < u ≤ t) such that P (u) 6= P (u − 1).
Since the diagonal of each P (t) is positive, P (t, s) can never lose a 1 as t grows,
so there exists a smallest T1 such that P (t, s) = P (T1, s) for all t > T1. Consider
the first column and let n0 < · · · < nl1 ≤ n be its successive Hamming weights
(ie, number of ones); because p11(s) 6= 0, n0 ≥ 1. We define tk as the smallest
t ≥ s such that the first column of P (t, s) acquires weight nk. Note that t0 = s
and tl1 ≤ T1. How large can N(tk+1, tk) be, for 0 ≤ k < l1? Let F denote the
subgraph of Gtk+1 consisting of the connected components (ie, flocks) that include
the nk birds indexed by the first column of P (tk, s). Intuitively, at time tk + 1,
bird B1 can claim it has had influence over the nk birds since time t0. At time
tk + 2, this influence will spread further to the neighbors of these nk birds in F .
Note that having been influenced by B1 in the past does not imply connectivity
among the nk birds.

• If F contains more than nk birds then, at time tk + 1, at least one of these
extra birds, Bi, is adjacent in Gtk+1

to one of the nk birds, say, Bj . Then,
pij(tk+1) > 0 and pj1(tk, s) > 0; hence pi1(tk+1, s) ≥ pij(tk+1)pj1(tk, s) >
0. Since Bi is not one of the nk birds, pi1(tk, s) = 0 and the first column of
P (t, s) acquires a new 1 between tk and tk+1. This implies that tk+1 = tk+1
and N(tk+1, tk) ≤ 1.
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• Assume now that F has exactly nk vertices. The flocking network Gtk+1

consists of a set of flocks totalling nk birds and a separate set of flocks
including the n − nk others. The next N(nk) + N(n − nk) + 1 network
switches must include one between the two sets, since by then we must run
out of allowable “intra-switches.” It follows by monotonicity of N(n) that

N(tk+1, tk) ≤ 1 +N(nk) +N(n− nk) ≤ 2N(n− 1) + 1.

Figure 7: The white birds have all been influenced by B1: on the left, they
propagate that influence at the next step; on the right, they have to wait for
flocks to join together before the influence of B1 can expand further.

In both cases, N(tk+1, tk) ≤ 2N(n− 1) + 1, so summing over all 0 ≤ k < l1,

N(tl1 , s) =
l1−1∑
k=0

N(tk+1, tk) ≤ 2nN(n− 1) + n.

Of course, there is nothing special about bird B1. We can apply the same argument
for each column and conclude that the time T1 when the matrix P (t, s) has finally
stabilized satisfies

N(T1, s) ≤ 2nN(n− 1) + n. (4)

The index set V1 corresponding to the ones in the first column of P (T1, s) is called
the first stabilizer. For t > T1, no edge of Gt can join V1 to its complement, since
this would immediately add more ones to the first column of P (t, s). This means
that B1 can no longer hope to influence any bird outside of V1 past time T1.

Relabel the rows and columns so that all the ones in P (T1, s)’s first column
appear on top. Then, for any t > T1, P (t) is a 2-block diagonal matrix with the
top left block, indexed by V1 × V1, providing the transitions among the vertices
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of V1 at time t. This is a restatement of our observation regarding Gt and V1.
Here is why. Since the footprint of P (t) is symmetric, it suffices to consider the
consequence of a nonzero, nondiagonal entry in P (t), ie, pij(t) > 0, with i 6∈ V1

and j ∈ V1. This would imply that

pi1(t, s) ≥ pij(t)pj1(t− 1, s) > 0,

and hence that i ∈ V1, a contradiction. Being 2-block diagonal is invariant under
composition, so P (t, T1 + 1) is also a matrix of that type. Let A|V×W denote
the submatrix of A with rows indexed by V and columns by W . Writing V0 =
{1, . . . , n}, for t > T1,

P|V1×V0
(t, s) = P|V1×V1

(t, T1 + 1)P|V1×V0
(T1, s).

By setting s to T1 + 1 we can repeat the same argument, the only difference being
that the transition matrices are now |V1|-by-|V1|. This leads to the second stabilizer
V2 ⊆ V1, which, by relabeling, can be assumed to index the top of the subsequent
matrices. We define T2 as the smallest integer such that P |V1×V1

(t, T1 + 1) =
P |V1×V1

(T2, T1 + 1) for all t > T2. The set V2 indexes the ones in the first column
of P |V1×V1

(T2, T1 + 1). Iterating in this fashion leads to an infinite sequence of
times T1 < T2 < · · · and stabilizers V1 ⊇ V2 ⊇ · · · such that, for any t > Tk,

P|Vk×V0
(t, s) = P|Vk×Vk

(t, Tk + 1)P|Vk×Vk−1
(Tk, Tk−1 + 1)

· · ·P|V2×V1
(T2, T1 + 1)P|V1×V0

(T1, T0 + 1),

where P|Vi×Vi−1
(Ti, Ti−1 +1) is a |Vi|-by-|Vi−1| matrix and T0 = s−1. The stabiliz-

ers are the sets under refreshed influence from B1. We illustrate this decomposition
below:

A = 1
2

2 0 0
0 1 1
0 1 1

 B = 1
2

1 1 0
1 1 0
0 0 2

 C =

1 0 0
0 1 0
0 0 1

 .

Consider the word M = CB3CABABA. The matrix M|V6×V0
is factored as

C|V6×V5
B|V5×V4

B|V4×V3
(BC)|V3×V2

(AB)|V2×V1
(ABA)|V1×V0

,

where V0 = V1 = V2 = {1, 2, 3}, V3 = V4 = V5 = {1, 2} and V6 = {1}. The
factorization looks like this:

M|V6×V0
=
(
1 0

)
· 12

(
1 1
1 1

)
· 12

(
1 1
1 1

)
· 12

(
1 1 0
1 1 0

)
· 14

2 2 0
1 1 2
1 1 2

· 18
4 2 2

2 3 3
2 3 3

 ,

with the infinite nested sequence

V1 = {1, 2, 3} ⊇ {1, 2, 3} ⊇ {1, 2} ⊇ {1, 2} ⊇ {1, 2} ⊇ {1} ⊇ {1} ⊇ {1} · · ·
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What is the benefit of rewriting the top rows of P (t, s) in such a complicated
manner? The first column of each P|Vi×Vi−1

(Ti, Ti−1 + 1) consists entirely of pos-
itive entries, so the submultiplicativity of the ergodicity coefficients implies rapid
convergence of the products toward a rank-one matrix. This has bearing on the
relative displacement of birds and groupings into flocks. By Lemma 3.1, each en-
try in the first column of each P|Vi×Vi−1

(Ti, Ti−1 +1) is at least n−O(n2), so half the

`1-distance between any two rows is at most 1− n−O(n2) ≤ e−n−O(n2)
; therefore

τ1(P|Vi×Vi−1
(Ti, Ti−1 + 1)) ≤ e−n−O(n2)

.

Lemma 3.3 implies that τ2(A) ≤ τ1(A)τ2(I) ≤
√

2 τ1(A), and

τ2(P|Vk×V0
(t, s)) ≤

√
2 τ1(P|Vk×Vk

(t, Tk + 1))
k∏
i=1

τ1(P|Vi×Vi−1
(Ti, Ti−1 + 1))

≤
√

2 e−kn
−O(n2)

.

(5)

Let χ(i, j) denote the n-dimensional vector with all coordinates equal to 0, except
for χ(i, j)i = 1 and χ(i, j)j = −1. Note that

vi(t)− vj(t) = ((χ(i, j)P (t− 1, 1))⊗ Id)v(1);

therefore, by Cauchy-Schwarz and (3),

‖vi(t)− vj(t)‖2 ≤
√
d τ2(P (t− 1, 1))‖v(1)‖2 ≤ τ2(P (t− 1, 1))2O(p). (6)

If we restrict i, j to Vk, we can replace P (t− 1, 1) by P|Vk×V0
(t− 1, 1) and write

‖vi(t)− vj(t)‖2 ≤ τ2(P|Vk×V0
(t− 1, 1))2O(p).

Setting k = nb0n
2dp + log 1

εh
e for a large enough integer constant b0 > 0, we derive

from (5) that, for any t > Tk + 1,

max
i,j∈Vk

‖vi(t)− vj(t)‖2 ≤ e−kn
−O(n2)+O(p) < εh . (7)

By Lemma 3.4, it then follows that ∆ij(t) < εh. By the hysteresis rule, this means
that if birds Bi and Bj are joined after time Tk+1, they will always remain so. This
leaves at most

(|Vk|
2

)
extra network changes (final pairings), so the total number

is conservatively bounded by

N(Tk, Tk−1) + · · ·+N(T1, 1) +
(
|Vk|
2

)
.

But (4) holds for any pair (Ti, Ti−1 + 1), so

N(n) < k(2nN(n− 1) + n) + n2.
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Since N(1) = 0, for all n > 1,

N(n) = nO(n3)(p + log 1
εh

)n−1.

There is a technical subtlety we need to address. In the inductive step defining
N(n− 1), and more generally N(n′) for n′ < n, the initial conditions and element
sizes of the transition matrices should be treated as global parameters: they de-
pend on n, not n′. In fact, it is safe to treat n as a fixed parameter everywhere,
except in the recurrence (4). The key observation is that, as n′ decreases, the
bounds provided by (5) and in the setting of k = nb0n

2
(p + log 1

εh
) still provide

valid—in fact, increasingly conservative—estimates as n′ decreases. The noise is
handled by reapplying the bound after each of the eO(n3) perturbations. 2

Figure 8: The arborescence of birds separating into groups.

Remark 2.1. The rationality of positions and velocities was never used in the
proof. The only requirement is that the initial velocities of the birds should have
Euclidean norm in 2O(p).

Remark 2.2. The nested sequence V1 ⊇ V2 ⊇ · · · is infinite but the number
of different subsets obviously is not. The smallest stabilizer Vi, denoted Vk1 to
indicate its relation to B1, cannot be empty since a bird influences itself for ever;
hence {1} ∈ Vk1 . If |Vk1 | > 1, then B1 influences all the birds in Vk1 recurrently,
ie, infinitely often. In fact, this is true not just of B1 but of all Vk1 , all of whose
birds influence all others in that set recurrently. The sets Vk1 , . . . , Vkn are therefore
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pairwise disjoint or equal. This implies a partition of the bird set into recurrently
self-influencing classes. One can model the process leading to it as an arborescence
whose root corresponds to the first time the set of n birds is split into two subsets
that will no longer influence each other. Iterating in this fashion produces a tree
whose leaves are associated with the disjoint Vkj

’s. Note that the stabilizers V1, V2,
etc, are specific to B1 and their counterparts for B2 might partly overlap with them
(except for the last one); therefore, the path in the tree toward the leaf labeled
Vk1 cannot be inferred directly from the stabilizers.

Time-Invariant Flocking. Birds are expected to spend most of their time
flying in fixed flocks. We investigate this case separately. The benefit is to derive
a convergence time that is exponentially faster than in the general case. In this
section, Gt = G is time-invariant; for notational convenience, we assume there is
a single flock, ie, Gt is connected. The flocking is noise-free. We can express the
stochastic matrix P as In−CL. The corresponding Markov chain is reversible and,
because of connectivity, irreducible. The diagonal being nonzero, it is aperiodic,
hence ergodic. The transition matrix P has the simple dominant eigenvalue 1 with
right and left eigenvectors 1 and

π =
1

trC−1
C−1 1,

respectively. Lack of symmetry does not keep P from being diagonalizable, though
it denies us eigenvector orthogonality. Define

M = C−1/2PC1/2 = C−1/2(In − CL)C1/2 = In − C1/2LC1/2. (8)

Being symmetric, M can be diagonalized as
∑n

k=1 λkuku
T
k , where the uk’s are

orthonormal eigenvectors and the eigenvalues are real. It follows that P can
be diagonalized as well, with the same eigenvalues. By Perron-Frobenius and
standard properties of ergodic walks [4, 22], 1 = λ1 > λ2 ≥ · · · ≥ λn > −1 and
u1 = (

√
π1, . . . ,

√
πn )T . Since

∑
k uku

T
k = In, the following identity holds for all

nonnegative s, including s = 0 (for which we must assume that 00 = 1):

P s = C1/2M sC−1/2 = 1πT +
n∑
k=2

λskC
1/2uku

T
kC
−1/2. (9)

The left and right eigenvectors of P for λk are given (in column form) by C−1/2uk
and C1/2uk and, together, form inverse matrices; in general, neither group forms
an orthogonal basis. We can bound the second largest eigenvalue by using standard
algebraic graph theory. We include a proof for completeness.

Lemma 3.7. If µ def= max k>1 |λk|, then µ ≤ 1− n−O(1).
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Proof. By the O(log n)-bit encoding of C, each diagonal of P is at least n−b, for
some constant.6 The matrix (1 − 1

2n
−b)−1(P − 1

2n
−b In) is stochastic and all of

its eigenvalues all lie in [−1, 1]. It follows that λn−1 ≥ n−O(1) − 1, for any k > 1.
Observe now that 1 − λ2 is the smallest positive eigenvalue of the normalized
Laplacian C1/2LC1/2. The simplicity of the eigenvalue 0 (by connectivity) im-
plies that any eigenvector of the normalized Laplacian corresponding to a nonzero
eigenvalue is normal to C−1/21; therefore, by Courant-Fischer,

1− λ2 = min
{
xTC1/2LC1/2x : 1TC−1/2x = 0 and ‖x‖2 = 1

}
.

Write y = C1/2x and express the system in the equivalent form: 1−λ2 = min yTLy,
subject to (i) 1TC−1y = 0 and (ii) ‖C−1/2y‖2 = 1. By using ideas from [4, 12],
we argue that, for some m and M , by (i), ym ≤ 0, for some m, and from (ii)
yM ≥ (trC−1)−1/2. Since G is connected, there exists a pathM of length at most
n joining nodes m and M . Thus, by Cauchy-Schwarz, the solution y of the system
satisfies:

1− λ2 = yTLy =
∑

(i,j)∈G

(yi − yj)2 ≥
∑

(i,j)∈M

(yi − yj)2 ≥ 1
n

( ∑
(i,j)∈M

|yi − yj |
)2

≥ 1
n
|yM − ym|2 ≥

1
n(trC−1)

= n−O(1) .

2

By (9), for all i, j, s > 0, (P s)ij ≥ πj−
∑

k>1 |λk|s
√
ci/cj |(uk)i(uk)j | ≥ πj−nO(1)µs.

A similar derivation gives us the corresponding upper bound; so,7 by Lemma 3.7,

‖P s − 1πT ‖F ≤ e−sn
−O(1)+O(logn). (10)

Similarly, for s > nc0 , for a constant c0 large enough,

τ1(P s) = 1−min
i,j

n∑
k=1

min {(P s)ik , (P s)jk}

≤ 1−
n∑
k=1

(πk − nO(1)e−sn
−O(1)

) = nO(1)e−sn
−O(1)

< 1
2 .

(11)

Given a vector ξ in Rn, consider the random variable X formed by picking
the i-coordinate of x with probability πi. As claimed in the introduction, the
variance of X is a quadratic Lyapunov function. This is both well known and
intuitively obvious since we are sampling from the stationary distribution of an

6 To simplify the notation, constants such as b and c are reused frequently in the text, with
their values depending on the context.

7 The Frobenius norm ‖M‖F of a matrix is the Euclidean norm of the vector formed by
its elements. The property we will use most often is a direct consequence of Cauchy-Schwarz,
‖Mu‖2 ≤ ‖M‖F ‖u‖2, and more generally the submultiplicativity of the norm.
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ergodic Markov chain and then taking one “mixing” step: the standard deviation
decreases at a rate given by the Fiedler value. As was observed in [19], because
the random variable involves only π and not P , any flock switching that keeps the
graph connected with the same stationary distribution admits a common quadratic
Lyapunov function. If ξ = 1, then obviously, varX = 0. We now show that the
variance decays exponentially fast.

Lemma 3.8. var(PX) ≤ µ2(varX).

Proof. For any ξ, the vector y = (In− 1πT )ξ is such that C−1/2y is orthogonal to
u1 = (

√
π1, . . . ,

√
πn )T . Therefore the latter lies in the contractive eigenspace of

M and
‖M(C−1/2y)‖2 ≤ µ‖C−1/2y‖2 ;

hence, by (8),

(Py)TC−1(Py) = (yTC−1/2)(C1/2P TC−1/2)(C−1/2PC1/2)(C−1/2y)

= ‖MC−1/2y‖22 ≤ µ2‖C−1/2y‖22 .

As a result,
(Py)TC−1(Py) ≤ µ2yTC−1y.

Since π = (trC−1)−1C−1 1,

varX =
n∑
i=1

πi

(
ξi −

∑
i

πξi

)2
= ξT (In − π1T )

C−1

trC−1
(In − 1πT )ξ = yT

C−1

trC−1
y .

Because P commutes with In − 1πT ,

var(PX) = (Py)T
C−1

trC−1
(Py) ≤ µ2(varX),

and varX is the desired Lyapunov function. 2

What both (11) and Lemma 3.8 indicate is that convergence for a time-
invariant flock evolves as e−tn

−O(1)
, whereas in general the best we can do is

invoke (5) and hope for a convergence speed of the form e−tn
−O(n2)

, which is
exponentially slower.

The Rationality of Limit Configurations. The locations of the birds remain
rational at all times. Does this mean that in the limit their configurations remain
so? We prove that this is, indeed, the case. We do not do this simply out of
curiosity. This will be needed for the analysis of convergence. We cover the case
of a time-invariant connected network here and postpone the general case for later.
For t > 0, we define
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Γt = −1πT t+
t−1∑
s=0

P s. (12)

It is immediate that Γt converges to some matrix Γ, as t goes to infinity. Indeed,
by (9),

Γ =
∑
s≥0

(P s − 1πT ) =
∑
k>1

1
1−λk

C1/2uku
T
kC
−1/2.

What is perhaps less obvious is why the limit is rational. We begin with a simple
characterization of Γ, which we derive by classical arguments about fundamental
matrices for Markov chains [11]. We also provide a more ad hoc characterization
(Lemma 3.10) that will make later bound estimations somewhat easier.

Lemma 3.9. As t→∞, Γt converges to Γ = −1πT + (In − P + 1πT )−1.

Proof. Because 1 and π are respectively right and left eigenvectors of P for the
eigenvalue 1, for any integer s > 0,

(P − 1πT )s = P s − 1πT . (13)

This follows from the identity

(P − 1πT )s = P s +
s−1∑
k=0

(−1)s−k
(
s

k

)
P k(1πT )s−k

= P s + (1πT )
s−1∑
k=0

(−1)s−k
(
s

k

)
= P s − 1πT .

And so, for t > 1,

Γt + 1πT = In +
t−1∑
s=1

(P s − 1πT ) =
t−1∑
s=0

(P − 1πT )s .

Pre-multiplying this identity by the “denominator” that we expect from the geo-
metric sum, ie, In − P + 1πT , we simplify the telescoping sum, using (13) again,

(In − P + 1πT )(Γt + 1πT ) = (In − P + 1πT )
t−1∑
s=0

(P − 1πT )s

= In − (P − 1πT )t = In − (P t − 1πT )

By (9), P t converges to 1πT as t goes to infinity, so (In − P + 1πT )(Γt + 1πT )
converges to the identity. This implies that, for t large enough, the matrix cannot
be singular and, hence, neither can In − P + 1πT . This allows us to write:

Γ + 1πT = (In − P + 1πT )−1.
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2

There is another characterization of Γ without π in the inverse matrix. We
use the notation (Y | y) to refer to the n-by-n matrix derived from Y by replacing
its last column with the vector y.

Lemma 3.10. Γ = (In − 1πT |0) (In − P |1 )−1.

Proof. Since π is a left eigenvector of P for 1, 1πT (In − P ) = 0; hence, for t > 0,

In − P t = (In + P + · · ·+ P t−1)(In − P ) = ( Γt + 1πT t)(In − P ) = Γt (In − P ).

As t→∞, P t → 1πT ; therefore Γ (In − P ) = In − 1πT . Since 1 lies in the kernel
of Γt, and hence of Γ, the latter matrix satisfies the relation

Γ (In − P |1) = (In − 1πT |0). (14)

The simplicity of P ’s dominant eigenvalue 1 implies that In − P is of rank n− 1.
Since 1 ∈ ker (In−P ), the last column of In−P is the negative sum of the others;
so to get the correct rank the first n− 1 columns of In − P must be independent.
Note that the vector 1 is not in the space they span: if, indeed, it were, we would
have 1 = (In−P )y, for some y ∈ Rn. Since πT (In−P ) = 0, this would imply that
1 = πT1 = πT (In − P )y = 0, a contradiction. This is evidence that (In − P |1) is
of full rank, which, by (14), completes the proof. 2

The motion equation (1) becomes, for t ≥ 1,

x(t) = x(0) +
( t−1∑
s=0

P s ⊗ Id
)
v(1) (15)

or, equivalently, by (12),

x(t) = x(0) + t((1πT )⊗ Id)v(1) + ( Γt ⊗ Id)v(1). (16)

We call mπ[x(t)] = (πT ⊗ Id)x(t) the mass center of the flock and the vector
mπ[v(1)] its stationary velocity. The latter is the first spectral (vector) coefficient
of the velocity. In our lower bound, we will make it the first Fourier coefficient of
the dynamical system. The mass center drifts in space at constant speed along a
fixed line in d-space: Indeed, πTΓt = 0, so by (16),

mπ[x(t)] = mπ[x(0)] + tmπ[v(1)]

and
x(t) = x(0)︸︷︷︸

start

+ t(1⊗ Id)mπ[v(1)]︸ ︷︷ ︸
linear drift

+ ( Γt ⊗ Id)v(1)︸ ︷︷ ︸
damped oscillator

. (17)

The oscillations are damped at a rate of e−tn
−O(1)

. (We use the term not in the
“harmonic” sense but by reference to the negative eigenvalues that might cause
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actual oscillations.) Moving the origin to the mass center of the birds, we express
x(t), relative to this moving frame, as

xr(t) = x(t)− (1⊗ Id)mπ[x(t)];

therefore, by simple tensor manipulation,

x(t) = xr(t) + ((1πT )⊗ Id)x(0) + t((1πT )⊗ Id)v(1); (18)

and, by (16),

xr(t) = x(t)− ((1πT )⊗ Id)x(t) = ((In − 1πT )⊗ Id)x(0) + ( Γt ⊗ Id)v(1)

and, by Lemma 3.9,

Lemma 3.11. If G is connected, the relative flocking configuration xr(t) converges
to the limit

xr = ((In − 1πT )⊗ Id)x(0) + (Γ⊗ Id)v(1).

The mass center of the configuration moves in Rd at constant speed in a fixed
direction.

Lemma 3.12. The elements of Γ and the coordinates of the limit configuration xr

are CD-rationals over O(n log n) and O(n log n+ pn) bits, respectively.

Proof. Let Cb denote the O(n log n)-bit long product of all the denominators in
the diagonal matrix C. The determinant of (CL |1) can be expressed as C−1

b times
the determinant N of an n-by-n matrix with O(log n)-bit integer elements. By the
Hadamard bound [30], N is an O(n log n)-bit integer. For the same reason, each
element of adj (CL |1) is also the product of C−1

b with an O(n log n)-bit integer;
therefore,

(In − P |1)−1 = (CL |1)−1 =
adj (CL |1)
det (CL |1)

is of the form N−1 times an O(n log n)-bit integer matrix (since the two appear-
ances of C−1

b cancel out). The same is true of (In − 1πT |0): this is because,
trivially, πT = (0, . . . , 0, 1)(In − P |1)−1. Therefore, both (In − 1πT |0) and
(In − P |1)−1 are matrices with CD-rational coordinates over O(n log n) bits.
Lemma 3.11, with the formulation of Lemma 3.10 for Γ, completes the proof.
2

This implies that x(t) tends toward a+bt, where a, b are rational vectors. Since
the number of switches and perturbations is finite, this proves the rationality claim
made in §1. 2
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Soundness of the Hysteresis Rule. We begin with a proof that hysteresis
is required to ensure convergence. We build a 4-bird flock in one dimension,
whose network cannot converge without a hysteresis rule. The construction can
be trivially lifted to any dimension. The speed of the birds will decay exponentially.
In real life, of course, the birds would stall. But, as we mentioned earlier, we can
add a large fixed velocity to all the birds without altering the flocking process.
Stalling, therefore, is a nonissue, here and throughout this work. These are the
initial conditions: {

x(0) = 1
16(0, 8, 21, 29);

v(1) = 1
8(1,−1, 1,−1).

The flocking network alternates between a pair of 2-bird edges and a single 4-bird
path, whose respective transition matrices are:

1
3


1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1

 and
1
3


1 2 0 0
1 1 1 0
0 1 1 1
0 0 2 1

 .

The beauty of the initial velocity v(1) is that it is a right eigenvector for both flock-
ing networks for the same eigenvalue −1

3 ; therefore, for t > 0, v(t) = (−3)1−tv(1)
and, by (1),

x(t) = x(0) +
t∑

s=1

v(s) = x(0) + 3
4

(
1− (−1

3)t
)
v(1). (19)

It follows that

xi+1(t)− xi(t) =

{
1
16(5− (−1

3)t−1) if i = 1, 3;
1 + 1

16(−1
3)t−1 if i = 2.

The distance between the first and second birds stays comfortably between 1
4

and 1
2 ; same with birds B3 and B4. The distance between the middle birds B2

and B3 oscillates around 1, so the network forever alternates between one and
two connected components. The pairs (B1,B3) and (B2,B4) form fixed inter-bird
distances of 21

16 , so the flocks are always simple paths. This proves the necessity
of hysteresis. As we said earlier, virtually any hysteresis rule would work. Ours is
chosen out of convenience.

Lemma 3.13. The hysteresis rule is sound: (i) any two birds within unit distance
of each other at time t share an edge of Gt; (ii) no two birds at distance greater
than 1 + γεh are ever adjacent in Gt, where

γ = (p + log 1
εh

)n nO(n3).
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Figure 9: The flocking network alternates between two configurations forever
and never converges.

Corollary 3.14. Under the default settings (2), any two birds within unit dis-
tance of each other at time t share an edge of Gt; on the other hand, no two birds
at distance greater than 1 +

√
εh are ever adjacent in Gt.

Proof of Lemma 3.13. Part (i) is true by definition. To prove part (ii), assume
by contradiction that, at time t0, two birds Bi and Bj are within unit distance of
each other but further than 1 apart at time t0 + 1. Write

δ = εh(p + log 1
εh

)nnb0n
3
, (20)

for some large enough constant b0. Assume also that the distance is greater than
1 + δ at time t1 > t0 and that, between t0 and t1, the distance always remains in
the interval (1, 1+δ ] and that the two birds are joined in Gt for all t ∈ [t0, t1]. Such
conditions would violate soundness, so we show they cannot happen. Obviously,
they imply that the distance between the two birds never jumps (up or down) by
εh or more, since otherwise the hysteresis rule would cease to apply and the edge
(i, j) would break. This means that ∆ij(t) < εh, for t0 < t ≤ t1.

Consider the t1−t0 relative displacements in the time interval [t0, t1]. Together
they create a displacement in excess of δ. Let κ = eO(n3) be the number of steps
witnessing noise. Mark the unit-time intervals within [t0, t1] that are associated
with relative displacements witnessing a perturbation or a network switch: there
are at most N(n) + κ of those, each one associated with a displacement less than
εh, so this leaves us with a total displacement greater than δ− εhN(n)− εhκ. This
is contributed by no more than N(n) + κ+ 1 runs of consecutive unmarked unit-
time intervals. By the pigeonhole principle, one of these runs contributes a total
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Figure 10: The distance between two adjacent birds cannot exceed 1 by
more than δ before the edge breaks.

displacement of at least (δ− εhN(n)− εhκ)/(N(n) + κ+ 1). If [s0, s1] denotes the
corresponding time interval (t0 ≤ s0 ≤ s1 ≤ t1), then Gt remains invariant for all
s0 ≤ t ≤ s1 and, by Lemma 3.5,

s1∑
t=s0+1

∆ij(t) ≥
δ − εhN(n)− εhκ
N(n) + κ+ 1

≥ δn−O(n3)(p + log 1
εh

)1−n. (21)

We now show that this displacement is too large for two birds in the same time-
invariant flock for so long. The edge (i, j) is in the network Gt for all t ∈ [s0, s1], so
the two birds Bi and Bj are in the same flock during that time period. We already
observed that τ2(A) ≤

√
2 τ1(A). By (6, 11) and Lemmas 3.3, 3.4, it follows that,

for s0 < t ≤ s1,

∆ij(t) ≤ ‖vi(t)− vj(t)‖2 ≤ τ2(P (t− 1, s0))2O(p) ≤ τ1(Pn
c0 (s0))b(t−s0)n−c0c2O(p)

≤ 2−b(t−s0)n−c0c+O(p).

(22)

Technically, the way we phrased it, our derivation assumes that the flock that
contains the birds Bi and Bj at times s0 through s1 includes all the birds. This is
only done for notational convenience, however, and the case of smaller flocks can
be handled in exactly the same way. By (21, 22) and the hysteresis rule,

δn−O(n3)(p + log 1
εh

)1−n ≤
s1∑

t=s0+1

∆ij(t) ≤
s1∑

t=s0+1

min
{
εh, 2−b(t−s0)n−O(1)c+O(p)

}
≤ min

T>0
{Tεh + 2−bTn

−O(1)c+O(p) }.
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Setting T = 2ndp + log 1
εh
e leads to

δ ≤ εh(p + log 1
εh

)nnb1n
3
,

for some positive constant b1 independent of the constant b0 used in the defini-
tion (20) of δ. Choosing b0 large enough thus contradicts our choice of δ. The two
birds therefore cannot be both joined and apart by more than 1 + δ. 2

The Geometry of Flocking: The Virtual Bird. Can birds fly in giant loops
and come back to their point of origin? Are there constraints on their trajectories?
We show that, after enough time has elapsed, two birds can be newly joined only
if they fly almost parallel to each other. We also prove that they cannot can
stray too far from each other if they want to get together again in the future. We
investigate the geometric structure of flocking and, to help us do so, we introduce
a useful device, the flight net.

Figure 11: The flight net is formed by joining together the convex polytopes
associated with birds’ new velocities.

It is convenient to lift the birds into Rd+1 by adding time as an extra dimen-
sion:8 x(t) 7→ (x1(t), . . . , xd(t), t)T ; v(t) 7→ (v1(t), . . . , vd(t), 1)T . Since 1 is a right
eigenvector, this lifting still satisfies the equation of motion. The hysteresis rule
kicks in at the same time and in the same manner as before; in fact, the lift-
ing has no bearing whatsoever on the behavior of the birds. The angular offset
∠(xi(t), vi(t)), denoted by ωi(t), plays an important role in the analysis.9 It repre-
sents (roughly) how the trajectory of bird Bi deviates at time t from what it would

8This is not a projectivization.
9 We use xi(t) as both a point and a vector, trusting the context to make it obvious which is

which.

34



have been had the bird reached its current position by flying along a straight line.
We will show that the angular offset decreases roughly as (log t)/t. This fact has
many important consequences.

Instead of following a given bird over time and investigating its trajectory
locally, we track an imaginary bird that has the ability to switch identities with its
neighbors: this virtual bird could be Bi for a while and then decide, at any time, to
become any Bj adjacent to it in the flock. Or, for a rather implausible but helpful
image, think of a bird passing the baton to any of its neighbors: whoever holds
the baton is the virtual bird. Its trajectory is highly nondeterministic, as it is
allowed to follow any path in the flight net. Although in the end we seek answers
that relate to physical birds, virtuality will prove to be a very powerful analytical
device. It allows us to answer questions such as: Can a virtual bird fly (almost)
along a straight line? How far apart can two birds get if they are to meet again
later? Another key idea is to trace the flight path of virtual birds backwards in
time. This is how we are able to translate stochasticity into convexity and thus
bring in the full power of geometry into the picture. The translation emanates
from this simple consequence of the velocity equation, v(t) = (P (t−1)⊗Id)v(t−1):

vi(t) ∈ Conv { vj(t− 1) | (i, j) ∈ Gt−1 }.

By iterating in this fashion, we create the flight net Ni(t) of bird Bi at time t > 0.
It is a connected collection of line segments (ie, a 1-skeleton): Ni(t) = Ni(t,Kt),
where Kt is a large integer parameter. Specifically, we set

Kt = dnb0(p + log t)e (23)

for a big enough constant b0. The power of the flight net comes from its ability
to deliver both kinetic and positional information about the “genealogy” of a
bird’s current state. Let K be an arbitrary positive integer; we define Ni(t,K)
inductively as follows. The case t = 1 is straightforward: Ni(t,K) consists of the
single line segment xi(0)xi(1). Suppose that t > 1. We say that time s is critical
if s ≤ K or if, during the time interval [s − K, s], there is a perturbation or a
network switch, ie, the velocity of at least one flock is multiplied by by Im ⊗ α̂ or
Gu 6= Gu+1 for some u (s−K ≤ u ≤ s).

• If t is critical, then Ni(t,K) consists of the segment xi(t− 1)xi(t), together
with the translates Nj(t− 1,K) + xi(t− 1)− xj(t− 1), for all (i, j) ∈ Gt−1

and j = i.

• If t is noncritical, thenNi(t,K) consists of the segment xi(t−1)xi(t), together
with Ni(t− 1,K).

Every flight net has an antenna sitting on top, which is a line segment extend-
ing from Xd+1 = t− 1 to Xd+1 = t in the case of Ni(t,K). In the noncritical case,
the antenna is connected on top of the previous one, ie, the one for Ni(t− 1,K).
Otherwise, we slide the time-(t− 1) flight nets of the adjacent birds so that their
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antenna

xi(t)

xj(t− 1)

xj(t− 2)

xi(t− 1)

Figure 12: In the critical case, the virtual net is translated from bird Bj to
bird Bi by the baton-passing drift.

antennas join with the bottom vertex of the new antenna: this shift is called the
baton-passing drift.

Here is the intuition. Flying down the top antenna of the net, the virtual
bird hits upon another antenna: either there is only one to choose from, in which
case it is almost collinear (because of noncriticality, the corresponding random
walk is thoroughly mixed) or else the virtual bird discovers a whole bouquet of
antennas and picks one of them. Because the old antenna is a convex combination
of the new ones, the virtual bird can continue its backward flight by choosing
from a convex cone of directions: this freedom is the true benefit of convexity and,
hence, stochasticity. This is when the baton is passed: the virtual bird changes its
correspondence with an actual bird as it chooses one of these directions. Because of
the translation by xi(t−1)−xj(t−1), this change of correspondence is accompanied
by a shift of length at most one, what we dub the baton-passing drift.

Viewed from a suitable perspective, the flight net provides a quasi-convex
structure from which all sorts of metric information can be inferred. Most im-
portant, it yields the crucial Escape Lemma, which implies that, as time goes by,
it becomes increasingly easy to predict the velocity of a bird from its location,
and vice versa. The lemma asserts that the bird flies in a direction that points
increasingly away from its original position. We begin with a simple observation.
For any time t > 0, the (d+ 1)-dimensional vector

wi(t) = 1
txi(t) (24)

represents the constant velocity that bird Bi would need to have if it were to
leave the origin at time 0 and be at position xi(t) at time t while flying in a fixed
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direction. Recall that that the angular offset ωi(t) is ∠(xi(t), vi(t)); we show that
it cannot deviate too much from the velocity offset ‖vi(t)− wi(t)‖2.

A

C

wi(t)

B

vi(t)

γ β

α

Figure 13: Proving that angular and velocity offsets are closely aligned.

Lemma 3.15. For any t > 0,

2−O(p)‖vi(t)− wi(t)‖2 ≤ ωi(t) ≤ O(‖vi(t)− wi(t)‖2).

Proof. Consider the triangle ABC formed by identifying
−−→
AB with vi(t) and

−→
AC

with wi(t), and let α, β, γ be the angles opposite BC,CA,AB, respectively. Note
that α = ωi(t) and ‖vi(t) − wi(t)‖2 = |BC|. Assume that β ≤ γ; we omit the
other case, which is virtually identical. By (3), AB and AC have length between
1 and 2O(p); therefore, if α 6= 0 then 2−O(p) ≤ β < π/2. The proof follows from
the law of sines, |BC|−1 sinα = |AC|−1 sinβ. 2

Lemma 3.16. (Escape Lemma) For any bird Bi, at any time t > 0,

ωi(t) ≤
log t
t

nO(n3)(p + log 1
εh

)n−1 +
1
t

(
2O(p) + pnO(n3)(p + log 1

εh
)n−1

)
.

Corollary 3.17. Under the default settings (2), at any time t > 1,

ωi(t) ≤
log t
t

nO(n3).
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wi(t)

Xd+1 = t

O

Figure 14: Birds fly increasingly in “escape” mode.

Unlike the other factors in the upper bound, the presence of log t is an artifact
of the proof and might not be necessary. Our approach is to exploit the “convexity”
of single-bird transitions. One should be careful not to treat flocks as macro-birds
and expect convexity from stationary velocities. In premixing states, all sorts of
“nonconvex” behavior can happen. For example, consider two flocks in dimension
1, both with positive stationary velocities. Say the one on the left has higher
speed and catches up with the one on the right to merge into one happy flock. It
could be the case that the stationary velocity of the combined flock is negative, ie,
the joint flock moves left even though each one of the two flocks was collectively
moving right prior to merging. Of course, this a premixing aberration that we
would not expect in the long run.

Proof of Lemma 3.16. From the initial conditions, we derive a trivial upper bound
of 2O(p) for constant t, so we may assume that t is large enough and ωi(t) > 0.
The line passing through xi(t) in the direction of vi(t) intersects the hyperplane
Xd+1 = 0 in a point p at distance from the origin, ‖p‖2 = Ω(tωi(t)). Recall that
the bird Bi started its journey at distance 2O(p) from the origin. If it had flown
in a straight line, then we would have p = xi(0), hence ωi(t) = 1

t 2
O(p), and we

would be done. Chances are the bird did not fly straight, however. If not, then
we exhibit a virtual bird that (almost) does, at least in the sense that it does not
get much closer to the origin at time 0 that a straightline flight would. The idea is
to use the flight net to follow the trajectory of a virtual bird that closely mimics
a straight flight from p to xi(t).

Some words of intuition. If all times were critical and no perturbation ever
took place, then it would be easy to prove by backward induction that, for all
0 ≤ s < t, the segment pxi(t) intersects each hyperplane Xd+1 = s in a point
that lies within the convex hull of Ni(t) ∩ {Xd+1 = s}. This would imply that p
lies in the convex hull of the birds at time 0, which again would give us the same

38



lower bound on ωi(t) as above (modulo the baton-passing drift). In fact, it would
be possible to trace a shadow path from xi(t) down the flight net that leads to a
virtual bird at time 0 that is even further away from the origin than p. (We use
here a fundamental property of convexity, that no point can be further to a point
in a convex polytope than to all of its vertices.) Unfortunately, this convexity
argument breaks down because of the net’s jagged paths over noncritical time
periods. The jaggedness is so small, however, that it provides us enough “quasi-
convexity” to rescue the argument.

xi(t)

p

Figure 15: The shadow path attempts to follow the segment pxi(t) closely.

First we describe the shadow path; then we show why it works. Instead of
handling convexity in Rd+1, we will find it easier to do this in projection. By
Lemma 3.15, there exists a coordinate axis, say X1, such that

0 < ωi(t) = O(vi(t)1 − wi(t)1). (25)

Note that we may have to reverse the sign of vi(t)1−wi(t)1, but this is immaterial.
The shadow path xvi (t), x

v
i (t− 1), . . . , xvi (0) describes the flight of the virtual bird

B v
i backwards in time. The first two vertices are xvi (t) = xi(t) and xvi (t − 1) =

xi(t− 1). This means the virtual bird flies down the topmost edge of Ni(t), ie, in
the negative Xd+1 direction. Next, the following rule applies for s = t, t−1, . . . , 2:

• If s is noncritical, Ni(t) has a single edge ys−2ys−1, with (ys−2)d+1 = s− 2.
The virtual bird flies down ys−2ys−1 and we set xvi (s−2) = ys−2 accordingly.

• If s is critical, Ni(t) has one or several edges yks−2ys−1, with (yks−2)d+1 = s−2.
The virtual bird follows the edge with maximum X1-extant, ie, the one that
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maximizes (ys−1)1 − (yks−2)1. (Recall that, although neither ys−1 nor yks−2

might be the position of any actual bird, their difference ys−1 − yks−2 is the
velocity vector vj(s− 1) of some Bj .) We set xvi (s− 2) = yks−2.

xi(t)

xi(t− 1)
vi(t)

X
s

Vs

ωi(t)

Op

Figure 16: Following the red shadow path.

The virtual bird thus moves down the flight net back in time until it lands at
Xd+1 = 0. The resulting collection of t+ 1 vertices forms the shadow path of the
virtual bird B v

i at time t. Naturally, we define the velocity of B v
i at time s > 0

as vvi (s) = xvi (s) − xvi (s − 1). Note that vvi (t) = vi(t). To prove that the shadow
path does not stray far from the straightline flight from xi(t) to p, we focus on
the difference

Vs = vvi (s)1 − wi(t)1 , (26)

for s ≥ 1. If we could show that Vs is always nonnegative then, measured in
projection along the X1 axis, the virtual bird would fly back in time even further
away from the origin that it would if it flew straight from xi(t) to the hyperplane
Xd+1 = 0 in the direction of −vi(t). Except for the fact that a virtual bird at
time 0 may not share the location of any actual bird (an issue we will address
later), this would entirely rescue our initial argument. We cannot quite ensure the
nonnegativity of Vs, but we come close enough to serve our purposes.

Consider an interval [r, s] consisting entirely of noncritical times (hence r >
Kt). The flock that contains the virtual bird B v

i is invariant between times r−Kt

and s and undergoes no perturbation during that period; furthermore, B v
i has the

same incarnation as some fixed Bj during the time period [r−1, s]. If χ(j) denotes
the n-dimensional vector with all coordinates equal to 0, except for χ(j)j = 1, then,
for r − 1 ≤ u ≤ s,

vj(u) = ((χ(j)TP u−r+Kt)⊗ Id)v(r −Kt).
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We abuse notation and restrict P and v(r −Kt) to the flock of Bj and not to all
of Gr−Kt = · · · = Gs. By (3, 10), we find that

|vj(u)1 − (mπ[v(r −Kt)])1| ≤ ‖(((χ(j)P u−r+Kt)⊗ Id)− (πT ⊗ Id))v(r −Kt)‖2
≤
√
d ‖P u−r+Kt − 1πT ‖F ‖v(r −Kt)‖2

≤ e−(u−r+Kt)n−O(1)+O(p+logn).

We conclude that

|Vr−1 − Vs| = |vvi (r − 1)1 − vvi (s)1| = |vj(r − 1)1 − vj(s)1|
≤ |vj(r − 1)1 − (mπ[v(r −Kt)])1|+ |vj(s)1 − (mπ[v(r −Kt)])1|;

hence, using p ≥ n3,
|Vr−1 − Vs| ≤ e−Ktn−O(1)+O(p). (27)

As usual, κ = eO(n3) denotes the number of steps witnessing noise. Suppose
now that s > 1 is critical. If no perturbation occurs at time s − 1, then vvi (s)
is a convex combination of the vectors of the flight net joining Xd+1 = s − 2 to
Xd+1 = s− 1. By construction, it follows that

vvi (s− 1)1 ≥ vvi (s)1.

If the vector is perturbed by ζ, then

vvi (s− 1)1 ≥ vvi (s)1 − ζ1 ≥ vvi (s)1 − δs−1,

where δt = log t
t eO(n3) (the perturbation bound). In both cases, therefore, Vs−1 ≥

Vs − δs−1. Let C be the number of critical times. By (27), for all 1 ≤ s ≤ t,

Vs ≥ Vt − Ce−Ktn−O(1)+O(p) −
t−1∑
u=s

δu .

Summing over all s,

t∑
s=1

Vs ≥ tVt − (t− 1)Ce−Ktn−O(1)+O(p) −
t−1∑
s=1

sδs .

Since, by assumption, δs = 0 at all but κ places,

t−1∑
s=1

sδs = κeO(n3) log t.

By (25), Vt = vvi (t)1 − wi(t)1 = Ω(ωi(t)); therefore,

ωi(t) = O(Vt) =
O(1)
t

∣∣∣ t∑
s=1

Vs

∣∣∣+ Ce−Ktn−O(1)+O(p) +
log t
t

κeO(n3). (28)
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By (24, 26),

t∑
s=1

Vs =
t∑

s=1

{
xvi (s)1 − xvi (s− 1)1 − wi(t)1

}
= xvi (t)1 − xvi (0)1 − twi(t)1

= xvi (t)1 − xi(t)1 − xvi (0)1 = −xvi (0)1 .

Since xvi (0)1 is the position of a virtual bird at time 0, it is tempting to infer that
it is also the position of some actual bird at that time; hence |xvi (0)1| = 2O(p).
This is not quite true because adding together the velocity vectors ignores the
baton-passing drift, ie, the displacements caused by switching birds. At critical
times, the virtual bird gets assigned a new physical bird that is adjacent to its
currently assigned feathered creature. Recall how the net Nj(t−1,K) is translated
by xi(t−1)−xj(t−1). Since (i, j) ∈ Gt−1, this causes a displacement of at most 1.
Note that unlike the velocity perturbations, whose effects are multiplied by time,
the drift is additive. This highlights the role of the flight net as both a kinetic and
a positional object. Summing them up, we find that |xvi (0)1| ≤ C + 2O(p); hence

∣∣∣ t∑
s=1

Vs

∣∣∣ ≤ C + 2O(p). (29)

Recall that a time is critical if there exists either a perturbation or a network
switch in the past Kt steps. Recall (23) that Kt = dnb0(p + log t)e for a large
enough constant b0. By Lemma 3.5, this bounds the number of critical times by

C ≤ Kt(N(n) + κ) ≤ (p + log t)nO(n3)(p + log 1
εh

)n−1,

and the lemma follows from (28, 29). 2

We mention a few other corollaries of Lemma 3.16 that rely on the model’s as-
sumptions. Again, recall that the sole purpose of these assumptions is to alleviate
the notation and help one’s intuition.

Corollary 3.18. Under the default settings (2), at any time t > 1, a bird turns
by an angle ∠(vi(t), vi(t+ 1)) that is at most

log t
t

nO(n3).

Proof. By (3) and δt = log t
t eO(n3), no bird can take a step longer than 2O(p),

therefore the angle between the vectors xi(t) and xi(t + 1) is at most 1
t 2
O(p). As

a result,

∠(vi(t), vi(t+ 1)) ≤ ∠(vi(t), xi(t)) + ∠(xi(t), xi(t+ 1)) + ∠(xi(t+ 1), vi(t+ 1))
= ωi(t) + ∠(xi(t), xi(t+ 1)) + ωi(t+ 1),
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and the proof follows from Corollary 3.17. The property we are using here is
the triangle inequality for angles: equivalently, the fact that, among the 3 angles
around a vertex of a tetrahedron in R3, none can exceed the sum of the others.
Even though the birds live in higher dimension, our implicit argument involves
only 3 points at a time and therefore belongs in R3. 2

Corollary 3.19. Under the default settings (2), if two birds are adjacent in the
flocking network at time t > 1, their distance prior to t always remains within
nO(n3) log t.

Proof. For reasons discussed above, any two birds are within distance 2O(p) after
a constant number of steps, so we may assume that t is large enough. Consider
the time s that maximizes the distance Rs, for all s ∈ [0, t−1], between the points
xi(s) and p = (s/t)xi(t) in the hyperplane Xd+1 = s. For the same reason, we
may assume that s > 1. By Corollaries 3.17, 3.18,

∠(xi(s), vi(s+ 1)) ≤ ωi(s) + ∠(vi(s), vi(s+ 1)) ≤ log s
s

nO(n3). (30)

Set up an orthogonal coordinate system in the plane spanned by O, p, xi(s): O is
the origin; the X-axis lies in the hyperplane Xd+1 = 0 and runs in the direction
from p to xi(s); the Y -axis is normal to OX in the O, p, xi(s) plane. By (3), the
Y -coordinate pY of p satisfies

s ≤ pY ≤ s2O(p).

Let Y = X tanα and Y = X tanβ be the two lines through the origin passing
through xi(t) and xi(s), respectively. Setting Y = pY we find that pX = pY / tanα
and xi(s)X = pX/ tanβ; therefore

Rs ≤
∣∣∣ 1
tanβ

− 1
tanα

∣∣∣s2O(p) ≤ sin(α− β)
(sinα)(sinβ)

s 2O(p) .

By construction, the velocity vi(s+1) cannot take the bird Bi outside the elliptical
cylinder that is centered at the line (O, xi(t)) with the point xi(s) on its boundary
and that intersects Xd+1 = 0 in a disk of radius Rs = |pxi(s)|. It follows that the
normal projection w of vi(s+ 1) on the (X,Y )-plane forms an angle γ with xi(s)
at least equal to the angle between the two lines Y = X tanα and Y = X tanβ,
which is α− β. By (30), therefore,

α− β ≤ γ ≤ ∠(xi(s), vi(s+ 1) ≤ log s
s

nO(n3).

Birds are at most 2O(p) away from the origin at time 0 and, by (3), take no step
larger than that bound. It follows that both α and β are at least 2−O(p), therefore

Rs ≤ 2O(p) nO(n3) log t .
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If two birds Bi and Bj share an edge in a flock at time t, then ‖xi(t)−xj(t)‖2 ≤ 1;
so, by the triangle inequality, at any time 1 < s ≤ t,

‖xi(s)− xj(s)‖2 ≤ 2O(p) nO(n3) log t+
s

t
‖xi(t)− xj(t)‖2,

which, by the default settings (2), proves the lemma. 2

p

O

xi(t)

Rs

Y

X
α

β

γ

xi(s)

Figure 17: Two birds can’t stray too far from each other if they’re ever to meet again.

Suppose that birds Bi and Bj are distance at most D at time t > 0. (No
assumption is made whether they belong to the same flock or whether (2) holds.)
By (24) and Lemmas 3.4, 3.15, 3.16,

∆ij(t) ≤ ‖vi(t)− vj(t)‖2
≤ ‖vi(t)− 1

txi(t)‖2 + ‖vj(t)− 1
txj(t)‖2 + 1

t ‖xi(t)− xj(t)‖2
≤ (ωi(t) + ωj(t))2O(p) + D

t .

(31)

Corollary 3.20. Under the default settings (2), at any time t > 1, the difference
in stationary velocities between two distinct flocks joining into a common one at
time t+ 1 has Euclidean norm at most log t

t nO(n3).

Proof. The stationary velocity of a flock is a convex combination of its con-
stituents’ individual velocities, so the difference in stationary velocities cannot
exceed, length-wise, the maximum difference between individual ones. By (3) and
the connectivity of flocks, the distance at time t between any two birds in the
common flock at time t + 1 cannot exceed D = n + 2O(p). The lemma follows
from (31) and Corollary 3.17. 2
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We define the fragmentation breakpoint tf as

tf = 1
εh
cpfn

cfn
3
(p + log 1

εh
)n, (32)

where cf is a large enough constant. Setting D = 1 in (31), we find that, by
hysteresis and the Escape Lemma, the edges of Gt can break only if t < tf . Past
the fragmentation breakpoint, flocks can only merge.

Lemma 3.21. At any time t ≥ tf , the flocking network Gt may gain new edges
but never lose any.

The Escape Lemma tells us that, after the fragmentation breakpoint, birds fly
almost in a straightline and both their positions and velocities can be predicted
with low relative error. From a physical standpoint, they have already converged.
The flocking network may still change, however. It may keep doing so for an
unbelievably long time. This is what we show in the next section. Note that,
under the default settings of (2), the fragmentation breakpoint tf is nO(n3).

3.3 Iterated Exponential Growth

To pinpoint the exact convergence time requires some effort, so it is helpful to
break down the task into two parts. We begin with a proof that the flocking
network reaches steady state after a number of steps equal to a tower-of-twos of
linear height. This allows us to present some of the main ideas and prepare the
grounds for the more difficult proof of the logarithmic height in §3.4. The main
tools we use in this section are the rationality of limit configurations and root
separation bounds from elimination theory. Our investigation focuses on the post-
fragmentation phase, ie, t > tf . We do not yet adopt the assumptions of (2); in
particular, we use the definition of tf given in (32).

Lemma 3.22. Consider two birds adjacent at time t but not t − 1. Assume that
the flocks that contain them remain invariant and noise-free during the period
[t1, t− 1], where tf < t1 < t− 1. If, at time t− 1, the birds are in different flocks
with distinct stationary velocities, then t ≤ nO(t1n); otherwise, t ≤ t12n

O(1)
.

Proof. Assume that the flocking network Gt stays invariant during the period
[t1, t − 1]. Consider two birds Bi and Bj that are adjacent in Gt but not during
[t1, t− 1]. The two birds may or may not be in the same flock at time t− 1. Let
the flock for Bi (resp. Bj) consist of m (resp. m′) birds: m = m′ if the birds are
in the same flock, else m+m′ ≤ n. By abuse of notation, we use the terminology
of (9), ie, P , π, C, uk, λk, as well as v(t), to refer to the flock of m birds, and
we add primes to distinguish it from the flock of Bj . We wish to place an upper
bound on t − t1. Let χ(i) denote the m-dimensional vector with all coordinates
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equal to 0, except for χ(i)i = 1. By (9, 15), for t > t1,

xi(t) = xi(t1) +
( t−t1−1∑

s=0

(χ(i)TP s)⊗ Id
)
v(t1 + 1)

= xi(t1) + (t− t1)y +
m∑
k=2

1− λt−t1k

1− λk
Φk,

where {
y = (πT ⊗ Id)v(t1 + 1) = mπ[v(t1 + 1)] ;
Φk = ((χ(i)TC1/2uku

T
kC
−1/2)⊗ Id)v(t1 + 1).

(33)

Note that, by (9, 12),

m∑
k=2

1
1− λk

Φk = lim
t→∞

t−1∑
s=0

m∑
k=2

λsk((χ(i)TC1/2uku
T
kC
−1/2)⊗ Id)v(t1 + 1)

= lim
t→∞

t−1∑
s=0

((χ(i)T (P s − 1πT ))⊗ Id)v(t1 + 1)

= ((χ(i)TΓ)⊗ Id)v(t1 + 1) ;

therefore,

xi(t) = xi(t1) + ((χ(i)TΓ)⊗ Id)v(t1 + 1) + (t− t1)y −
m∑
k=2

λt−t1k

Φk

1− λk
.

Adding primes to distinguish between the flocks of Bi and Bj (if need be), we find
that

xi(t)− xj(t) = A+B(t− t1)−
m0∑
k=1

Ψk µ
t−t1
k , (34)

where

(i) A = xi(t1)− xj(t1) + ((χ(i)TΓ)⊗ Id)v(t1 + 1)− ((χ′(j)TΓ′)⊗ Id)v′(t1 + 1):
By Lemma 3.2, the vectors v(t1 + 1), v′(t1 + 1), xi(t1), and xj(t1) have CD-
rational coordinates over O(t1n log n + pn) bits, which is also O(t1n log n),
since, by (32), t1 > tf > p. In view of Lemma 3.12, this implies that the
same is true of the vector A.

(ii) B = y−y′: The stationary distribution π = (trC−1)−1C−1 1 is a CD-rational
vector over O(n log n) bits. Together with Lemma 3.2, this implies that B
has CD-rational coordinates over O(t1n log n) bits; hence either B = 0 or
‖B‖2 ≥ n−O(t1n).

(iii) µ1 ≥ · · · ≥ µm0 : Each µk is an eigenvalue λl or λ′l (l, l′ > 1) and |µk| < 1.
Their number m0 is either m − 1 (if the two birds Bi and Bj belong to the
same flock) or m+m′ − 2, otherwise.
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(iv) Each Ψk is a d-dimensional vector of the form Φl/(1− λl) or −Φ′l/(1− λ′l).
Since the eigenvalues are bounded away from 1 by n−O(1) (Lemma 3.7), it
follows from (3), the submultiplicativity of the Frobenius norm, and p ≥ n3

that ‖Ψk‖2 = 2O(p). In the same vein, we note for future reference that

‖
m0∑
k=1

Ψk µ
t−t1
k ‖2 ≤ e−(t−t1)n−O(1)+O(p) = 2O(p). (35)

We distinguish among three cases:

Case I. B 6= 0: The two flocks must be distinct, for having the two birds in
the same flock would imply that π = π′ and v(t1 + 1) = v′(t1 + 1); hence y = y′.
By (i, ii), ‖A‖2 ≤ nO(t1n) and ‖B‖2 ≥ n−O(t1n). If the two birds are to be joined
in Gt, then distt(Bi,Bj) = ‖xi(t) − xj(t)‖2 ≤ 1. By (32), t1 > tf > p; hence
2O(p) = nO(t1n). It follows from (33, 35) that t − t1 ≤ nO(t1n). Note that, for
the lower bound of n−O(t1n) on ‖B‖2 to be tight, the flock would have to be able
to generate numbers almost as small as Lemma 3.2 allows. For this to happen,
energy must shift toward the dominant eigenvalue. This spectral shift occurs only
in a specific context, which we examine in detail in the next section.

Case II. B = 0 and ‖A‖2 6= 1: By (i), ‖A‖2 is bounded away from 1 by n−O(t1n).
It follows from (34, 35) and the triangle inequality that

| ‖xi(t)− xj(t)‖2 − 1 | ≥ |‖A‖2 − 1| − | ‖xi(t)− xj(t)‖2 − ‖A‖2 |
≥ n−O(t1n) − ‖

∑
k Ψk µ

t−t1
k ‖2

≥ n−O(t1n) − e−(t−t1)n−O(1)+O(p).

Since t1 > p, this implies that, for a large enough constant b0, the distance between
the two birds remains bounded away from 1 by n−O(t1n) at any time s ≥ t1n

b0 .
Not only that, but the sign of dists(Bi,Bj) − 1 can no longer change after time
t1n

b0 . Indeed, for any s ≥ t1nb0 , the distance between times s− 1 and s varies by
an increment of ∆ij(s), where, by (35),

∆ij(s) = | ‖xi(s)− xj(s)‖2 − ‖xi(s− 1)− xj(s− 1)‖2|
≤ ‖

∑
k Ψk µ

s−1−t1
k ‖2 + ‖

∑
k Ψk µ

s−t1
k ‖2

≤ e−(s−t1)n−O(1)+O(p) ≤ e−t1n2
.

With n assumed large enough, this ensures that, past time t1nb0 , the distance can
never cross the value 1. Thus, if the two birds have not gotten within distance 1
of each other by time t1nb0 , they never will—at least while their respective flocks
remain invariant. We conclude that t ≤ t1nO(1).

Case III. B = 0 and ‖A‖2 = 1: The distance between the two birds tends
toward 1. The concern is that the two birds might stay safely away from each
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other for a long period of time and then suddenly decide to get close enough to
share an edge. The rationality of the limit configuration is insufficient to prevent
this. Only a local analysis of the convergence can show that a long-delayed pairing
is impossible. We wish to prove that, if dists(Bi,Bj) is to fall below 1 for s > t1,
this must happen relatively soon. Recall that, by (34),

xi(s)− xj(s) = A−
m0∑
k=1

Ψk µ
s−t1
k ,

where A is a unit vector. We investigate the behavior of the birds’ distance locally
around 1.

‖xi(s)− xj(s)‖22 = 1− 2
∑
k

ATΨk µ
s−t1
k +

∑
k,k′

ΨT
k Ψk′ (µkµk′)s−t1 .

Let 1 > ρ1 > · · · > ρN > 0 be the distinct nonzero values among {|µk|, |µkµk′ |}
(N < n2). These absolute values may appear with a plus or minus sign (or both)
in the expression above, so we rewrite it as

‖xi(s)− xj(s)‖22 − 1 =
N∑
k=1

Υk ρ
s−t1
k , (36)

where each
Υk = Υ+

k + (−1)s Υ−k
corresponds to a distinct ρk. We distinguish between odd and even values of s so
as to keep each Υk time-invariant. We assume that s is even and skip the odd case
because it is similar. Of course, we may also assume that each Υk = Υ+

k + Υ−k
is nonzero. We know that

∑
k Υk ρ

s−t1
k tends to 0 as s goes to infinity, but the

issue is how so. To answer this question, we need bounds on eigenvalue gaps
and on |Υk|. Tighter results could be obtained from current spectral technology,
but they would not make any difference for our purposes, so we settle for simple,
conservative estimates.

Lemma 3.23. For all k > 1 and k ≥ 1, respectively,

ρk ≤ (1− 2−n
O(1)

)ρ1 and 2−t12nO(1)

≤ |Υk| = 2O(p).

Proof. We begin with the eigenvalue gap.10 For this we use a conservative version
of Canny’s root separation bound [2, 30]: given a system of m integer-coefficient
polynomials in m variables with a finite set of complex solution points, any nonzero
coordinate has modulus at least

2−`D
O(m)

, (37)
10 For the purpose of this lemma, we again abuse notation by letting P and n pertain to the

flock of either one of the two birds. This will help the reader keep track of the notation while, as
a bonus, releasing m as a variable.
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where D − 1 is the maximum degree of any polynomial and ` is the number of
bits needed to represent any coefficient. Any difference ρk − ρl can expressed by
a quadratic polynomial, z = z1z2 − z3z4, where each zi is either 1 or the root of
the characteristic polynomial det (P − λIn). The elements of P are CD-rationals
over O(n log n) bits, so by the Hadamard bound [30] the roots of det (P − λIn)
are also those a polynomial of degree n with integer coefficients over O(n2 log n)
bits; therefore, m ≤ 5; D = n+ 1; and ` = nO(1). This proves that the minimum
gap between two ρk’s is 2−n

O(1)
. Since ρ1 < 1, we find that, for k > 1,

ρk ≤ (1− 2−n
O(1)

)ρ1,

which proves the first part of the lemma.
By (iv), ‖Ψl‖2 = 2O(p); therefore, by Cauchy-Schwarz and the inequalities

ρk < 1 and p ≥ n3, the same bound of 2O(p) applies to any |Υk|, which proves the
second upper bound of the lemma. We now prove that |Υk| cannot be too small.
Recall that it is the sum/difference of inner products between vectors in {A,Ψh}.
We know from (iv) that Ψh is of the form Φl/(1−λl) or −Φ′l/(1−λ′l). We assume
the former without loss of generality. By (9, 12),

Γ =
n∑
r=2

∑
s≥0

λsrC
1/2uru

T
r C
−1/2.

In view of (iv) and (33), it then follows that

Ψh =
Φl

1− λl
=

1
1− λl

{
(χ(i)TC1/2ulu

T
l C
−1/2)⊗ Id

}
v(t1 + 1)

=
1

1− λl

{
(χ(i)TC1/2ulu

T
l C
−1/2C1/2ulu

T
l C
−1/2)⊗ Id

}
v(t1 + 1)

=
n∑
r=2

1
1− λr

{
(χ(i)TC1/2uru

T
r C
−1/2C1/2ulu

T
l C
−1/2)⊗ Id

}
v(t1 + 1)

=
n∑
r=2

∑
s≥0

{
(χ(i)TλsrC

1/2uru
T
r C
−1/2C1/2ulu

T
l C
−1/2)⊗ Id

}
v(t1 + 1)

= ((χ(i)TΓC1/2ulu
T
l C
−1/2)⊗ Id)v(t1 + 1) = ((χ(i)TΓ)⊗ Id)W,

where W = ((C1/2ulu
T
l C
−1/2)⊗ Id)v(t1 + 1). By Lemma 3.2, v(t1 + 1) is a vector

with CD-rational coordinates over O(t1n log n) bits; remember that t1 > p. By
Lemma 3.12, the elements of Γ are CD-rationals encoded over O(n log n) bits. Any
coordinate of Ψh can thus be written as a sum

∑
i of at most n2 terms of the form

Riαiyizi, where:

• All the Ri’s are products of the form Γ??v?(t1 + 1), hence CD-rationals over
O(t1n log n) bits;
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• αi is the square root of a rational c?/c? over O(log n) bits;

• yi, zi are two coordinates of ul. Recall that, by (8), ul is a unit eigenvector
of C−1/2PC1/2.

By (i), A is a vector with CD-rational coordinates over O(t1n log n) bits. It follows
that Υk is a sum

∑
i of nO(1) terms of the form Siγiyiziy

′
iz
′
i:

• All the Si’s are CD-rationals over O(t1n log n) bits;

• γi is the square root of an O(log n)-bit rational, ie, a number of the form√
(c?/c?)(c?/c?);

• yi, zi, y′i, z′i are coordinates of the eigenvectors (or 1, to account for ATΨh).

It is straightforward (but tedious) to set up an integer-coefficient algebraic system
over m = nO(1) variables that includes Υk as one of the variables. The number of
equations is also m and the maximum degree is n. All the coefficients are integers
over O(t1n log n + nO(1)) bits. Rather than setting up the system in full, let us
briefly review what it needs to contain:

1. Υk is a sum of nO(1) quintic monomials Siγiyiziy′izi; where the Si’s are CD-
rationals over O(t1n log n) bits.

2. Each γi is of the form
√
a/b, where a, b are O(log n)-bit integers. We express

it by the equation bγ2
i = a. (This yields two roots, but any solution set is

fine as long as it is finite and contains those we want.)

3. The yi, zi, y′i, z
′
i are coordinates of the eigenvectors ul of C−1/2PC1/2. We

specify them by first defining the eigenvalues λ1, . . . , λn and
det (P − λiIn) = 0;
C−1/2PC1/2ui = λiui; (1 ≤ i < j ≤ n)
‖ui‖22 = 1, and uTi uj = 0.

The issue of multiplicity arises. If the kernels of the various P − λiIn are
not of dimension 1, we must throw in cutting planes to bring down their
sizes. We add in coordinate hyperplanes to the mix until we get the right
dimension. We then repeat this process for each multiple eigenvalue in turn.
(Of course, we do all this prior to forming the vectors Ψh.) We rewrite each
eigensystem as Pvi = λivi, where vi = C1/2ui, and again we square the
latter set of equations to bring them in polynomial form.

Once we reduce all the rational coefficients to integers, we can use the separation
bound (37), for m = nO(1), D = n + 1, and ` = O(t1n log n + nO(1)), which is
O(t1n log n). This gives us a bound on the modulus of any nonzero coordinate of
the solution set; hence on |Υk|. 2
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By (36), it follows from the lemma that ‖xi(s)−xj(s)‖22− 1 = Υ1 ρ
s−t1
1 (1 + ζ),

where
|ζ| ≤ e−(s−t1)2−nO(1)

+t12nO(1)

= o(1),

for s ≥ t12n
b1 , with b1 being a large enough constant. The same argument for

odd values of s shows that, after t12n
b1 , either ‖xi(s)− xj(s)‖22 stays on one side

of 1 forever or it constantly alternates (at odd and even times). Since the birds
are joined in Gt but not in Gs (t1 ≤ s < t), it must be the case that t ≤ t12n

O(1)
.

This concludes Case III.
Putting all three results together, we find that the bound from Case I is the

most severe, t ≤ nO(t1n), while Case II is the most lenient. When the two birds are
in the same flock at time t−1, however, the bound from Case III takes precedence.
2

Lemmas 3.21 and 3.22 show that all network switches take place within the
first t∞ = 2 ↑↑ O(n) steps. Perturbations occur within nO(1) steps of a switch
and do not affect Lemma 3.2. The previous argument thus still applies and shows
that the same upper bound also holds in the noisy model. After time t∞, the
flocking network remains invariant. By virtue of (18), the limit trajectory of the
birds within a given flock is expressed as

x(t) = xr + ((1πT )⊗ Id)x(t∞) + (t− t∞)((1πT )⊗ Id)v(t∞ + 1),

where the stationary distribution π refers to the bird’s flock (and therefore should
be annotated accordingly).

3.4 Tower of Logarithmic Height

We prove that the tower-of-twos has height less than 4 log n. To simplify the
notation (a decision whose wisdom the reader will soon come to appreciate), we
now adopt the assumptions of (2). As we discussed earlier, this means setting
the fragmentation breakpoint tf = nf0n3

for some large enough constant f0. The
improvement rests on a more careful analysis of the merges subsequent to the
fragmentation breakpoint tf . Note that in the proof of Lemma 3.22 the bottleneck
lies in Case I: specifically, in the lower bound on ‖B‖2 and the upper bound on
‖A‖2. The latter can be improved easily by invoking the Escape Lemma. To get
around ‖B‖2 requires more work. Recall from (17) that the position vector of one
flock is given by

x(t) = a+ bt+ ( Γt ⊗ Id)v,

where the matrix Γt describes a damped oscillator. The stationary velocity b is
formed by the first spectral coordinates, one for each dimension, associated with
the eigenvalue 1. The oscillator involves only the spectral coordinates correspond-
ing to the subdominant eigenvalues (|λk| < 1).
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The Combinatorics of the Spectral Shift. The reason flocks take longer to
merge into larger flocks is that they fly in formations increasingly parallel to one
another. The term bt grows linearly in t, so an iterated exponential growth can
only come from the oscillator. Of course, the angle between the flight directions of
two flocks is given by the stationary velocities. Therefore, for the angles to inherit
an exponentially decaying growth, it is necessary to transfer the fast-decaying
energy of the oscillators to the stationary velocities themselves. In other words, the
collision between two flocks must witness a spectral shift from the “subdominant”
eigenspace to the stationary velocities. Small angles are achieved by getting two
stationary velocities to be very close to each other. Indeed, the spectral shift does
not cause a decay of the velocities themselves but of pairwise differences. Recall
that flocking is invariant under translation in velocity space; so any interesting
phenomenon can be captured only by differences.

Let b be the stationary velocity of the new flock formed by two flocks joining
together after flying on their own during t steps. Let b′ be the stationary velocity
resulting from two other flocks flying in similar conditions. The spectral shift will
ensure that the difference b − b′ has Euclidean norm e−tn

−O(1)
, ie, exponentially

small in the flight time. One should think of it as an energy transfer from the
subdominant eigenspaces to the stationary velocities. The challenge is to show
that this transfer can occur only under certain conditions that greatly restrict its
occurence. This requires a combinatorial investigation of the spectral shift.

Figure 18: Without spectral shift, the difference between stationary veloci-
ties becomes null and the two flocks never meet. The spectral shift resupplies
the stationary velocities with the fast-decaying energy located in the subdom-
inant part of the spectrum. This causes a slight inflection of the trajectory
(black lines).
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We model the sequence of post-fragmentation breakpoint merges by a forest F :
each internal node a corresponds to a flock Fa of na birds formed at time ta > tf .
If a is a leaf of F , then its formation time ta is at most tf . A node with at least
two children is called branching. A nonbranching node represents the addition of
edges within the same flock. Our analysis will focus on branching nodes with no
more than two children. In general, of course, this number can be arbitrarily high,
as several flocks may come together to merge simultaneously. We will see later
how to break down multiple aggregation of this form into pairwise merges.

Let L(t) denote the minimum value of na, the number of birds in Fa, over all
branching nodes a and all initial conditions subject to (2), such that ta ≥ t. Our
previous upper bound shows that L(t) = Ω(log∗ t). We strengthen this:

Lemma 3.24. L(t) ≥ (1.1938)log∗ t−O(log logn), where x0 ≈ 1.1938 is the unique
real root of x5 − x2 − 1.

This implies that the last merge must take place before time t such that L(t) ≤
n; hence t ≤ 2 ↑↑ (3.912 log n). By Lemma 3.22, multiplying this quantity by 2n

O(1)

suffices to account for the network switches following the last merge. As observed
earlier, noise has no effect on this bound. This proves the upper bound claimed
in §1. 2

The Intuition. Think of the group of birds as a big-number engine. How many
bits can n birds encode in their velocities at the last network switch? The previous
argument shows that this number cannot exceed a tower-of-twos of linear height.
We show that in fact the height is only logarithmic. What keeps this number
down is the presence of residues. We begin with a toy problem that has no direct
connection to bird flocking but illustrates the notion of residue. Consider an n-
leaf binary tree whose nodes are associated with polynomials in R[X]. Each leaf
is assigned its own polynomial of degree 1. The polynomial pv at an internal node
v is defined recursively by combining those at the children u,w:

pv = pu ⊕ pw = pu + pw + (pu − pw)x2h(pu−pw)
,

where h(p) is 0 if x = 0 not a root of p and h(p) is its multiplicity otherwise; in
other words, it is the lowest degree among the (nonzero) monomials of p. How
big can the degree of proot be? It is immediate to achieve a degree that is a
tower-of-twos of logarithmic height. Take a complete binary tree and assign the
polynomial (−1)l(v)x to a leaf v, where l(v) is the number of left turns from the
root to the leaf. We verify by induction that the polynomials at level k are of the
form ±ckxdk , where d1 = 1 and, for k > 1,

ckx
dk = ± 2ck−1x

dk−1+2dk−1
.

This shows that dk = dk−1 + 2dk−1 ; hence the stated tower-of-twos of logarithmic
height. Couldn’t we increase the height by choosing a nonbalanced tree? The

53



answer is no, but not for the obvious reason. The “obvious reason” would be that
to go from a node u of degree d to a parent of degree 2d requires not just one but
two children u, v of degree d. Nice idea. Unfortunately, it is not true:

xd ⊕ 0 = xd + xd+2d
. (38)

Note, however, that if we try to repeat this trick we get(
xd + xd+2d

)
⊕ 0 = xd

(
1 + x2d

)2
,

which increases the degree by only a constant factor. The reason for this is that
during the exponential jump in (38) the polynomial inherited a residue, ie, the
“low-degree” monomial xd, which will hamper future growth until it is removed.
But to do so requires another “big-degree” child. This residue-clearing task is
what keeps the tower’s height logarithmic. We prove this below.

Theorem 3.25. A tree of n nodes can produce only polynomials of degree at most
2 ↑↑ O(log n).

Proof. Let L(d) be the minimum number of leaves needed to produce at the root
a polynomial of degree at least d. We prove that

L(d) ≥ 2Ω(log∗ d), (39)

from which the theorem follows. Let v be the root of the smallest n-leaf tree that
achieves dv ≥ d, where dv denotes the degree of pv. Let u,w be the children of v,
with du ≥ dw, and let y, z be the children of u with dy ≥ dz. We assume that d is
large enough, so all these nodes exist. Note that

dv ≤ du + 2du and du ≤ dy + 2dy . (40)

Assume that {
dz, dw < log log log dv;
dy <

√
du < du <

√
dv.

(41)

In view of (40), this shows that du > dw and dy > dz. This first inequality implies
that du + 2h(pu−pw) = d; therefore, by (41), h(pu− pw) > 1

2 log dv. In other words,

pu = pw + xd(log dv)/2equ , (42)

for some polynomial qu 6= 0. Repeating the same line of reasoning at node u, we
derive the identity dy+2h(py−pz) = du from the strict inequality dy > dz. It follows
from (40, 41) that

dz < log log log dv < 1
2 log du < h(py − pz) ≤ log du < 1

2 log dv.
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This implies two things: first, by dz < h(py−pz), the polynomial py has a monomial
q of degree h(py − pz); second, that degree is strictly between log log log dv and
1
2 log dv. A quick look at the formula

pu = py + pz + (py − pz)x2h(py−pz)

shows that pu also contains q: indeed, by dz < h(py − pz), it must be the case
that py + pz contains the monomial q; on the other hand, the minimum degree in
(py − pz)x2h(py−pz)

exceeds h(py − pz). This proves the presence of q in pu, which
contradicts (42). This, in turn, means that (41) cannot hold. The monomial q of
degree h(py − pz) is the residue that the big-number engine must clear before it
can continue exponentiating degrees. Since dy > 1

2 log log d, at least one of these
two conditions applies for any large enough d:

L(d) ≥

{
L(1

2 log log d) + L(log log log d) ;
L(d1/4) + 1 .

We use the monotonicity of L to reduce all the cases to the two above. The lower
bound (39) follows by induction. 2

Clearing Residues. Recall that ta > tf is the time at which the flock Fa is
formed at node a of F after the fragmentation breakpoint tf = nf0n3

. With the
usual notational convention, it follows from (1, 9) that, in the absence of noise,
for t ≥ ta,

va(t) = (P t−ta ⊗ Id)va(ta)

= (1na ⊗ Id)ma +
∑
k>1

λt−tak ((C1/2uku
T
kC
−1/2)⊗ Id)va(ta),

where ma = (πTa ⊗ Id)va(ta) is the stationary velocity of the flock Fa, ie, the
d-dimensional vector of first spectral coordinates. As usual, it is understood that
P,C, λk, uk, etc, are all defined with respect to the specific flock Fa and not the
whole group of n birds. We subscript 1 with the flock size for convenience. By (2),
p = n3; hence, by (3, 10),

‖va(t)− (1na ⊗ Id)ma‖2 ≤ e−(t−ta)n−O(1)+O(n3). (43)

By the general form of the stationary distribution πa as (trC−1)−1C−1 1na , its
coordinates are CD-rationals over O(n log n) bits. So, by Lemma 3.2, each coordi-
nate of ma is an irreducible CD-rational pa/qa, where the number of bits needed
for pa and qa is O(tan log n + pn) = O(tan log n). We denote the maximum bit
length over all d coordinates by `(ma). The following holds even in the noisy
model:
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`(ma) = O(tan log n). (44)

Consider a flock Fc associated with a branching node c of F : let a and b be
the two children of c in F (hence nc = na + nb) and assume that ta ≥ tb and that
no node of the forest F has more than two children, ie, flocks merge only two at a
time.11 By Corollary 3.20, the difference in stationary velocities between Fa and
Fb satisfies

‖ma −mb‖2 ≤ log tc
tc

nO(n3). (45)

If the difference is null, then by Cases II, III of the previous analysis (B = 0),
tc = ta2n

O(1)
. Otherwise, by (44) and the equivalent bound for ‖mb‖2,

‖ma −mb‖2 ≥ n−O(tan). (46)

The two inequalities (45, 46) yield an upper bound on tc. By our treatment of
Cases II, III in the proof of Lemma 3.22, we conclude that, whether ma = mb or
not,

tc ≤ nO(tan). (47)

This leads to our earlier Ω(log∗ t) bound on L(t). It is essentially a new deriva-
tion of our previous result. We now see how to improve it. Let Fo be the forest
derived from F by removing all nonbranching internal nodes and merging the ad-
jacent edges in the obvious way. Our assumption implies that each internal node
of Fo has exactly two children. Let a0, . . . , ak (k > 1) be an ascending path in Fo
and let bi denote the unique sibling of ai. The following lemma assumes the noisy
model. Its proof is postponed.

Lemma 3.26. Assume that 22
tf
< log log log tak

< t4a0
< ta1 < log tak

. Then,
tbi0 ≥

√
log log ta0, for some 0 ≤ i0 < k.

The Recurrence. We set up a recurrence relation on L(t) to prove the lower
bound of Lemma 3.24, ie, L(t) ≥ (1.1938)log∗ t−O(log logn). Let t0 = 2 ↑↑ blog log nc.
It is assumed as usual that n is large enough. For t ≤ t0, we have the trivial lower
bound L(t) ≥ 1 (choose the constant in the big-oh to be larger than 1), so we may
assume that t > t0. The child b of a node c (both defined with respect to Fo) is
called near if tb > (log tc)2/3.

11 The simultaneous merging of more than two flocks can be dealt with by breaking ties
arbitrarily. Since there are fewer than n merges, this means that in our calculations time might
be off by at most an additive term less than n. One can verify that this discrepany has no real
effect on any of the derivations and conclusions presented below.

56



63835273828364839743

6383527382836483974347364899382927
3746473829374829274984729237492993
7836373298292928294309472732982973
3240741029741208743249070374372304 2698124609471928649126491649346912

6498764916291826491346971986287264
2139812649714681745617946973469712
3712974621379461237642179467921346

872

Fa

63835273828364839743473648993829273746473829374829274984729237492993783637322929282943094727329829737824712028743847120947
12974219274024091240749827012370124710247017230470710471047104710471074017212070124701470147107401270174034703476592813701
46913476014701834601947017610247104104701247013470110346014710247102740147014710247104817082410247014701847120471207102471
24017024810210287401270124710470183470183472347u34702934401234324073047340374103072357832623946397649726343264934769346729
34672983469283462943629834609081346834629834629356914693649134693469236479256913492183649273654924194619734617394512749376
41974619469374619746194637946137246347916234971649173461973461397461397461397471364971645797563912374632897419346123946193
46231469721347813249813748913469813461394613269874123641398641398461398461394761397413794613946213794612397461394621347912
36973472304730124978169162497164936491649162491246918264916491826419246914619469146120472072047247128728901287474219804728

Fb

Fc Fd

Figure 19: A big flock Fa may join with a small one, Fb, to form a flock
Fc that produces a much larger number than either one could manufacture
on their own. This, however, cannot be repeated in the next step. To create
a bigger number at the parent flock of Fc, the residual heat in Fc (numbers
in box) must be evacuated, which itself requires free energy that can only
be provided by a flock Fd that roughly matches Fc in size. In this way, an
abundance of spectral shifts forces balance into the forest F .

Lemma 3.27. Any internal node c of Fo such that tc ≥ 22
tf has at least one near

child.

Proof. By (47), we know that c has a child b0 in the original forest F such that
tc = nO(tb0

n). We exhibit a near child b for c. If b0 is branching, set b = b0;
otherwise, set b to the nearest branching descendent of b0. By Lemma 3.22,
the formation times of any node in F and its nonbranching parent differ by at
most a factor of 2n

O(1)
. Perturbations make no difference since they occur within

polynomial time of a switch. Since F has fewer than n2 nodes and tc ≥ 22
tf , with

tf = nf0n3
,

tb ≥ 2−n
O(1)

tb0 ≥ 2−n
O(1)

log tc > (log tc)2/3.

2

Let c0 be an arbitrary node of Fo such that

tc0 ≥ t > t0 = 2 ↑↑ blog log nc. (48)

By the previous lemma, we can follow a descending path in Fo of near children
c0, c1, . . . , cl, where tcl < 22

tf ≤ tcl+1
. Because t0 is so much greater than tcl , the

path has more than a constant number of nodes—in fact, at least on the order of
log logn. For future use, we note that
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22
tf
< log log log tc0 . (49)

Lemma 3.28. There exists k > 1 such that

log log log tc0 < t4ck < tck−1
< log tc0 .

Proof. By (49) and Lemma 3.27, there exists some cj in Fo such that

(log log tc0)2/3 < tcj < log tc0 .

Suppose now that all the nodes ci, for i = j + 1, j + 2, . . . , l, satisfy t4ci ≥ tci−1 .
Since there are most n nodes along the path from c0 to cl in Fo, then, by (49)
again,

22
tf
> tcl ≥ t

4−n

cj > (log log tc0)4−n−1
> 222

tf /2

. (50)

This contradiction proves the existence of some node ck (j < k ≤ l) such that

t4ck < tck−1
< log tc0 .

The argument used in (50) shows that the smallest such k satisfies, via (49),

tck−1
≥ t4−n

cj > (log log tc0)4−n−1
> 22

tf
.

Another application of the inequality above, tck−1
> 22

tf , allows us to invoke
Lemma 3.27. By virtue of tc0 being so big (49) and ck being a near child of ck−1

(by construction),

t4ck > (log tck−1
)8/3 > 4−8n(log log log tc0)8/3 > log log log tc0 .

2

We now prove Lemma 3.24. Setting ai = ck−i for i = 0, . . . , k, together
with (49), the lemma sets the conditions of Lemma 3.26. This shows that ta0 >
(log log log tak

)1/4 and, conservatively,

tbi0 > (log log log log log tak
)1/3.

Nodes a0 and bi0 are roots of disjoint subtrees, so the number of leaves below ak
is at least that of those below a0 added to those below bi0 . Since L is a monotone
function and, by (48), ak is an arbitrary node such that tak

≥ t,

L(t) ≥ L((log log log t)1/4) + L((log log log log log t)1/3),

for t > t0 = 2 ↑↑ blog log nc, and L(t) ≥ 1 for t ≤ t0. We solve the recurrence
without the exponents, and then show that ignoring them makes no asymptotic
difference. Define L∗(t) = 1 for t ≤ t0 and, for any t > t0,

L∗(t) = L∗(log log log t) + L∗(log log log log log t).
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Given the bound we are aiming for, we can round off t down to the next tower-of-
twos. If L∗(t) = M(σ), where σ = log∗ t, we can rewrite the recurrence relation
as

M(σ) = M(σ − 3) +M(σ − 5),

where M(σ) = 1 for σ ≤ log∗ t0. Quite clearly, M(σ) upper-bounds the maximum
number ns of leaves in a binary tree T ∗ where: (i) each left edge is labeled 3
and each right edge 5; and (ii) the sum of the labels along any path is at most
s = log∗ t− log∗ t0. Note that T ∗ is binary: the constraint that each internal node
should have exactly two nodes does not follow from the definition and is therefore
added. We seek a lower bound of the form cxs. This means that xs ≥ xs−3 +xs−5,
for s ≥ 5 and cxs ≤ 1 else. The characteristic equation is

x5 − x2 − 1 = 0.

We choose the unique real root x0 ≈ 1.19385; this leads to c = x−5
0 . This shows

that ns ≥ xs−5
0 ; hence,

L∗(t) ≥ xlog∗ t−log logn−5
0 .

It is obvious that the binary tree T associated with the recurrence for L(t) embeds
in T ∗ with the same root. We claim that it is not much smaller: specifically, no
leaf in T has more than a constant number of descendents in T ∗. This implies
immediately that

L(t) ≥ xlog∗ t−O(log logn)
0 ,

which proves Lemma 3.24. 2

To prove our claim, we show that no path in T ∗ extends past its counterpart
in T by more than a constant number of nodes. We model simultaneous, parallel
walks down the trees as a collaborative game between two players, Bob and Alice,
who take turns. Initially, both of them share the same value

tA = tB = t > t0.

In one round, Bob modifies his current value by taking iterated logs. He is entitled
to up to 5 logarithm iterations; in other words, he can set tB ← log tB or

tB ← log log log log log tB,

or anything in-between. Alice mimics Bob’s move but then completes it by taking
a fractional power; for example, if Bob opts for, say, log log tB, then Alice resets
her value to (log log tA)α, where α is a number between 1

4 and 1. To summarize,
Bob chooses the number of log iterations and Alice chooses α: they can change
these parameters at each round. A player’s score is the number of rounds before
his or her value falls below (or at) t0. Alice’s score cannot be higher than Bob’s,
so the latter is expected to play the last rounds on his own.
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The joint goal of the players is to maximize their score differential. Regardless
of either player’s strategy, we show that Bob’s score never exceeds Alice’s by more
than a constant. This follows directly from the next two lemmas, whose proofs we
postpone.

Lemma 3.29. The score differential is maximized when Bob always selects the
single-iterated log rule and Alice follows suit with α = 1

4 ; in other words, tB ←
log tB and tA ← (log tA)1/4.

With the strategy of the lemma, Bob’s score is log∗ t − log∗ t0. Within an
additive constant, Alice’s score is at least the minimum h such that ch ≥ t, where
ci is defined by c0 = t40 and, for i > 0, ci = 24ci−1 . To see why, note that the
inverse of the function z 7→ (log z)1/4 is z 7→ 2z

4
; taking logarithms on both sides

gives the recurrence on ci.

Lemma 3.30. For t > t0, min{h | ch ≥ t } ≥ log∗ t− log∗ t0 −O(1).

This validates our claim that no path in T ∗ extends past its counterpart in T
by more than a constant number of nodes. This fills in the missing part in the
proof of Lemma 3.24 and establishes the upper bound on the convergence time
claimed in §1.

Proof of Lemma 3.26. We begin with a few technical facts. Recall from the
“Clearing Residues” section that the flock Fc is associated with a branching node
c of F and that a and b are its two children in F ; furthermore, ta ≥ tb and ta > tf ,
where tf = nf0n3

. Assume that the velocity vector of Fa at time ta is of the form

va(ta) = (1na ⊗ Id)m̃a + (ua ⊗ Id)µa + ζa , (51)

where ua ∈ Rna , µa ∈ Rd, and, for some real τ ,

2tf ≤ τ ≤ t1/3a ;
`(m̃a) = O(log log τ);
‖ua‖∞ = 1 & ua ≥ 0;
e−τn

O(1) ≤ ‖µa‖2 ≤ 1
τ ;

‖ζa‖2 ≤ e−τ
2n−O(1)+nO(1)

.

(52)

Note that the d-dimensional rational vector m̃a is not defined as the stationary
velocity ma of Fa, though it plays essentially the same role. The term (ua⊗ Id)µa
creates the residue ‖µa‖2 of Fa. Unless Fb can “destroy” this residue when it joins
with Fa, one should not expect the flock formation time to grow exponentially.
The crux is then to show that only a flock Fb with many birds can perform such
a task. The following result says that, if the flock Fb settles too early, its effect on
the residue of Fa is negligible. The conditions on Fc stated below differ slightly
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from those for Fa to make them closed under composition. The lemma below also
covers the case nb = 0, when the transition from Fa to Fc is involves the addition
of an edge within the same flock. (Here, too, we assume without loss of generality
that these additions occur only one at a time within the same flock.) We postpone
the proof of this result.

Lemma 3.31. Suppose that Fa undergoes no perturbation. If node b is well de-
fined, then assume that tb < log log τ . Whether node b exists or not,

vc(tc) = (1nc ⊗ Id)m̃a + (uc ⊗ Id)µc + ζc ,

where 
‖uc‖∞ = 1 & uc ≥ 0 ;
‖µa‖2 n−O(1) ≤ ‖µc‖2 ≤ ‖µa‖2 ;
‖ζc‖2 ≤ n‖ζa‖2 + e−τ

2
.

Furthermore, if node b is well defined, then mb = m̃a 6= ma.

Remark 2.3. It might be helpful to explain, at an intuitive level, the meaning
of the three terms in the expression for va(ta), or equivalently vc(tc): m̃a is a
low-precision approximation of the stationary velocity ma; the vector (ua ⊗ Id)µa
creates the residue; the remainder ζa is an error term. The term m̃a is a low-
resolution component of the velocity that any other flock Fb has to share if it is
to create small angles with Fa (the key to high flock formation times) Think of it
as a shared velocity caused by, say, wind affecting all flocks in the same way. This
component must be factored out from the analysis since it cannot play any role in
engineering small angles. This is a manifestation of the relativity principle that
only velocity differences matter. To create small angles with Fa, incoming flocks
Fb must attack the residue vector (ua ⊗ Id)µa. Of course, they could potentially
take turns doing so. Informally, one should read the inequalities of the lemma as
a repeat of (52). The lemma states a closure property: unless Fb brings many bits
to the table (via a formation time at least log log τ), conditions (52) will still hold.
These conditions prevent the creation of small angles between flocks, and hence
of huge formation times. In other words, flocks that settle too early cannot hope
to dislodge the residue ‖µa‖2. The reason is that this residue is shielded in three
ways: first, it is too big for the error term ζa to interfere with it—compare e−τn

O(1)

with e−τ
2n−O(1)+nO(1)

; second, it is too small to be affected by m̃a—compare 1
τ with

a rational over O(log log τ) bits; third, all of its coordinates have the same sign
(ua ≥ 0), so taking averages among them cannot cause any cancellations. This
form of “enduring” positivity is the most remarkable aspect of residues.

By (52), the lemma’s bounds imply that

e−τn
O(1) ≤ ‖µc‖2 ≤ 1

τ & ‖ζc‖2 ≤ e−τ
2n−O(1)+nO(1)

,
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which brings us back to (52). If c has a (unperturbed) parent c′ and sibling b′,
then we can apply the lemma again. Note that composition will always be applied
for the same value of τ , ie, one is that is not updated at each iteration. In other
words, the first two lines of (52), unlike the last three, are global inequalities
that do not change with each iteration. This closure property is not foolproof.
First, of course, we need to ensure that tb′ < log log τ . More important, we lose
a polynomial factor at each iteration, which is conveniently hidden in the big-oh
notation. So we may compose the lemma only nO(1) times if we are to avoid any
visible loss in the bounds of (52). Since the forest has fewer than n2 nodes, this
means that, as long as its conditions are met, we can compose the lemma with
ancestors of c to our heart’s content and still get the full benefits of (52).

The provision that bmight not be well defined allows us to handle nonbranching
switch nodes with equal ease. Recall that vc(tc) is the velocity leading to time
tc, ie, before the flock Fb has had a chance to infuence it. The provision in
question might thus appear somewhat vacuous. Its power will come from allowing
us to apply the lemma repeatedly with no concern whether a node has one of two
children. A related observation is that nowhere shall we use the fact that ta is
the actual formation time of Fa. It could be replaced in (51) by any t′a strictly
between ta and tc. We thus trivially derive a “delayed” version of Lemma 3.31. We
summarize its two features: (i) Lemma 3.31 can be composed iteratively as often
as we need to; (ii) node a need not be an actual node of F but one introduced
artificially along an edge of F .

What if Fa undergoes a perturbation between ta and tc? Then the flock
Fa sees its velocity multiplied by Ina ⊗ α̂, where α̂ is the diagonal matrix with
α = (α1, . . . , αd) along the diagonal and rational |αi| ≤ 1 encoded over O(log n)-
bits. Observe that the two matrices Pa ⊗ Id and Ina ⊗ α̂ commute; therefore the
perturbation can be assumed to occur at time ta. This means that, in lieu of (51),
we have, using standard tensor rules,

va(ta) = (Ina ⊗ α̂)(1na ⊗ Id)m̃a + (Ina ⊗ α̂)(ua ⊗ Id)µa + (Ina ⊗ α̂)ζa
= (1na ⊗ α̂)m̃a + (ua ⊗ α̂)µa + (Ina ⊗ α̂)ζa .

Bringing it in the format of (51), we find that

va(ta) = (1na ⊗ Id)m̃a + (ua ⊗ Id)µa + ζa ,

with the new assignments: 
m̃a ← α̂ m̃a ;
ua ← ua ;
µa ← α̂ µa ;
ζa ← (Ina ⊗ α̂)ζa .

It is immediate that the conditions of (52) still hold: the only difference is that

`(m̃c) ≤ `(m̃a) +O(log n).
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By (52), log τ ≥ tf = nf0n3
, so `(m̃c) stays in O(log log τ) as long as the number

of compositions is O(n3), which it is. We summarize these observations:

Lemma 3.32. Let c0, . . . , cl be an ascending path in F and let di be the sibling, if
any, of ci. Assume that c0, possibly an artificial node, satisfies the conditions of
node a in (52) and that tdi

< log log τ for all di. Then,

vci(tci) = (1nci
⊗ Id)m̃ci + (uci ⊗ Id)µci + ζci ,

where 
`(m̃ci) = O(log log τ);
‖uci‖∞ = 1 & uci ≥ 0 ;
e−τn

O(1) ≤ ‖µci‖2 ≤ 1
τ ;

‖ζci‖2 ≤ e−τ
2n−O(1)+nO(1)

.

For all di, mdi
= m̃ci 6= mci.

We are now equipped with the tools we need to prove Lemma 3.26. Recall that
a0, . . . , ak (k > 1) is an ascending path in Fo and bi denotes the unique sibling of
ai. (Note that a0 · · · ak is a path in Fo whereas, in Lemma 3.32, c0 · · · cl is a path
in F .) Also,

22
tf
< log log log tak

< t4a0
< ta1 < log tak

.

Assume, by contradiction, that tbi <
√

log log ta0 for i = 0, . . . , k − 1. As we
observed earlier, Lemma 3.22 ensures that, regardless of noise, the ratio between
the formation times of any node in F and that of its nonbranching parent is
at least 2−n

O(1)
. Since there are fewer than n2 switches, this implies that Fa0

can undergo switches or perturbations only between ta0 and ta02n
O(1)

. Because
ta1 > t4a0

> 22
tf , with tf = nf0n3

, this shows that the entire time interval [1
2 ta1 , ta1)

is free of switches and noise. Let a be the last node in F from a0 to a1 and let c0

be the artificial parent of a corresponding to the flock Fa at time ta1 − 1: we set
nc0 = na0 and tc0 = ta1 − 1. The bound in (43) ensures that the oscillations in the
flock Fc0 are heavily damped. Indeed,

vc0(tc0) = (1nc0
⊗ Id)mc0 + ζc0 , (53)

where, because of the magnitude of ta1 ,

‖ζc0‖2 ≤ e−(ta1/2−1)n−O(1)+O(n3) ≤ e−ta1n
−O(1) ≤ e−τ2

. (54)

where τ = 1
2 t

1/3
a1 . The rest of the sequence {ci} is now entirely specified. In

particular, note that c1 = a1 and d0 = b0. By extension, mc0 = ma; so, by (45),

‖mc0 −mb0‖2 ≤
log ta1
ta1

nO(n3) < 1
τ .
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therefore, mc0 = mb0 + µc0 , where

‖µc0‖2 < 1
τ . (55)

As we shall see, the presence of the square τ2 in the exponent of (54) ensures that
the oscillations of Fc0 are too small to interfere with the residue ‖µc0‖2. Writing
m̃c0 = mb0 , it follows from (53) that

vc0(tc0) = (1nc0
⊗ Id)m̃c0 + (1nc0

⊗ Id)µc0 + ζc0 ,

which matches (51), with uc0 = 1nc0
. Since all the nodes di are of the form bji ,

tdi
<
√

log log ta0 < log log τ.

Thus, we will be able to apply Lemma 3.32 once we verify that all conditions
in (52) are met:

• [ 2tf ≤ τ ≤ t
1/3
c0 ]: This follows from our setting τ = 1

2(tc0 + 1)1/3 and our
assumption that ta1 > 22

tf .

• [ `(m̃c0) = O(log log τ) ]: Because τ > 22
tf−2

,√
log log ta0 n log n < (log log ta0)2/3 = o(log log τ).

The desired bound follows from (44):

`(m̃c0) = `(mb0) = O(tb0n log n) = O(
√

log log ta0 n log n) < log log τ.

• [ e−τn
O(1) ≤ ‖µc0‖2 ≤ 1

τ ]: The upper bound comes from (55). For the lower
bound, note that mc0 = ma, with ta ≤ ta02n

O(1)
. Another application of (44)

shows that
`(mc0) = O(tan log n) < t7/6a0

< τ.

We just saw that `(mb0) < log log τ , so µc0 = mc0 −mb0 is a d-dimensional
vector with rational coordinates over fewer than 2τ bits. The lower bound
follows from the fact that µc0 6= 0. By Lemma 3.22, the stationary velocities
mc0 and mb0 cannot be equal, otherwise the two flocks Fa and Fb0 could not
take so long to meet at time ta1 . Indeed, the time elapsed would be at least
ta1 − ta, (since ta > tb0), which would greatly exceed the limit of ta2n

O(1)

allowed.

• [ ‖uc0‖∞ = 1 & uc0 ≥ 0 & ‖ζc0‖2 ≤ e−τ
2n−O(1)+nO(1)

]: The bounds follow
from (54) and uc0 = 1na0

.
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Let cl be the node ak. By applying Lemma 3.32 at cl, we find that mbk−1
= m̃cl−1

.
Applying the same lemma now at node cl−1 shows that

vcl−1
(tcl−1

) = (1ncl−1
⊗ Id)m̃cl−1

+ (ucl−1
⊗ Id)µcl−1

+ ζcl−1
,

where 
‖µcl−1

‖2 ≥ e−τn
O(1)

‖ucl−1
‖∞ = 1 & ucl−1

≥ 0 ;
‖ζcl−1

‖2 ≤ e−τ
2n−O(1)+nO(1)

.

The lemma also allows us to express the stationary velocity at cl−1:

mcl−1
= (πTcl−1

⊗ Id)vcl−1
(tcl−1

)

= (πTcl−1
⊗ Id)((1ncl−1

⊗ Id)m̃cl−1
+ (ucl−1

⊗ Id)µcl−1
+ ζcl−1

)

= mbk−1
+ (πTcl−1

ucl−1
⊗ Id)µcl−1

+ (πTcl−1
⊗ Id)ζcl−1

.

By the triangle inequality, it follows that

‖mcl−1
−mbk−1

‖2 ≥ ‖(πTcl−1
ucl−1

⊗ Id)µcl−1
‖2 − ‖(πTcl−1

⊗ Id)ζcl−1
‖2

≥ πTcl−1
ucl−1

‖µcl−1
‖2 − ‖(πTcl−1

⊗ Id)‖F ‖ζcl−1
‖2

≥ min
i
{(πcl−1

)i}e−τn
O(1) −

√
d e−τ

2n−O(1)+nO(1) ≥ e−τnO(1)
.

By (45),
‖mcl−1

−mbk−1
‖2 ≤

log tak
tak

nO(n3);

therefore, since tak
> 2tf > nn

4
,

tak
≤ ‖mcl−1

−mbk−1
‖−2

2 ≤ eτnO(1) ≤ eτ1.5
,

which contradicts our assumption that τ = 1
2 t

1/3
a1 < (log tak

)1/3. 2

Proof of Lemma 3.31. Using the shorthand ua = P tc−taa ua and ζa = (P tc−taa ⊗
Id)ζa, we express the velocity of the flock Fa at time tc. From

va(tc) = (P tc−taa ⊗ Id)va(ta),

we find that, by (51),

va(tc) = (P tc−taa ⊗ Id)(1na ⊗ Id)m̃a + (P tc−taa ⊗ Id)(ua ⊗ Id)µa + ζa

= (1na ⊗ Id)m̃a + (ua ⊗ Id)µa + ζa.
(56)

Because Pa is an averaging operator, ‖P tc−taa ua‖∞ ≤ ‖ua‖∞ = 1. The vector ua
is nonnegative, so

‖P tc−taa ua‖∞ ≥ 1
na
‖P tc−taa ua‖1 = 1

na
1Tna

P tc−taa ua ≥ 1
na
πTa P

tc−ta
a ua

≥ 1
na
πTa ua ≥ 1

na
min
i
{(πa)i}‖ua‖∞ ≥ n−O(1).
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Similarly, by convexity,

‖(P tc−taa ⊗ Id)ζa‖2 ≤
√
dna ‖(P tc−taa ⊗ Id)ζa‖∞

≤
√
dna ‖ζa‖∞ ≤

√
dna ‖ζa‖2 ;

therefore, {
n−O(1) ≤ ‖ua‖∞ ≤ 1 & ua ≥ 0;
‖ζa‖2 ≤ n‖ζa‖2 .

(57)

Case I. Node b is well defined and tb < log log τ : Since, by (52), tc > ta ≥ τ3 ≥
8tf , with tf = nf0n3

,

−(tc − tb)n−O(1) + Θ(n3) ≤ −τ2;

so, by applying (43) to the flock Fb, we find that

‖vb(tc)− (1nb
⊗ Id)mb‖2 ≤ e−(tc−tb)n−O(1)+O(n3);

hence
vb(tc) = (1nb

⊗ Id)mb + e−τ
2
zc ,

where ‖zc‖2 ≤ 1. It follows from (56) that

vc(tc) =
(
va(tc)
vb(tc)

)
=
(

(1na ⊗ Id)m̃a

(1nb
⊗ Id)mb

)
+
(

(ua ⊗ Id)µa
0

)
+
(

ζa

e−τ
2
zc

)
=
(

(1na ⊗ Id)m̃a

(1nb
⊗ Id)mb

)
+
{(

ua

0

)
⊗ Id

}
µa +

(
ζa

e−τ
2
zc

)
.

(58)

By (51), the stationary velocity of Fa is equal to

ma = (πTa ⊗ Id)va(ta) = (πTa ⊗ Id)((1na ⊗ Id)m̃a + (ua ⊗ Id)µa + ζa)

= m̃a + (πTa ua)µa + (πTa ⊗ Id)ζa.
(59)

By the triangle inequality, it follows that

‖ma − m̃a‖2 ≥ πTa ua‖µa‖2 − ‖(πTa ⊗ Id)‖F ‖ζa‖2
≥ min

i
{(πa)i}e−τn

O(1) −
√
d e−τ

2n−O(1)+nO(1) ≥ e−τnO(1)
;

which shows that
ma 6= m̃a . (60)

Note also that, by (59),

‖m̃a −mb‖2 ≤ ‖m̃a −ma‖2 + ‖ma −mb‖2
≤ πTa ua‖µa‖2 + ‖πTa ⊗ Id‖F ‖ζa‖2 + ‖ma −mb‖2 .
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We bound each term on the right-hand side: by (52) and Cauchy-Schwarz,

πTa ua‖µa‖2 ≤ 1
τ ‖πa‖2‖ua‖2 ≤

1
τ

√
na ‖ua‖∞ ≤ 1

τ

√
n .

By (45) and tc > τ3 ≥ 8tf ,
‖ma −mb‖2 ≤ 1

τ .

Also, ‖πTa ⊗ Id‖F = O(1) and, by (52), ‖ζa‖2 ≤ e−τ
2n−O(1)+nO(1)

; therefore

‖m̃a −mb‖2 <
√

1
τ .

By (44), our assumption that tb < log log τ implies that

`(mb) = O(n(log n) log log τ) < (log log τ)2.

Since, by (52), `(m̃a) = O(log log τ), the squared distance ‖m̃a−mb‖22 is a rational
over O(log log τ)2 bits: being less than 1/τ implies that it is actually zero; hence
m̃a = mb, as claimed in the lemma. We verify from (57) that

µc
def= µa‖ua‖∞ and uc

def=
(
ua

0

)
‖ua‖−1

∞

satisfy the conditions of the lemma. By (58),

vc(tc) = (1nc ⊗ Id)m̃a + (uc ⊗ Id)µc + ζc ,

where

ζc =
(

ζa

e−τ
2
zc

)
.

By (57) and ‖zc‖2 ≤ 1, the lemma’s condition on ζc is trivially satisfied.

Case II. Node b is not defined: We set ζc = ζa; µc = µa‖ua‖∞; and uc =
ua‖ua‖−1

∞ . This matches the identity (56) with the one claimed in the lemma. 2

Proof of Lemma 3.29. Suppose that Bob does not always follow the single-
iterated log rule. We show how to force him to do so without decreasing the
score differential. If Bob uses the rule tB ← log log tB, then Alice follows up with
tA ← (log log tA)α. Let us break this round into two parts:

1. tB ← log tB and tA ← log tA;

2. tB ← log tB and tA ← (log tA)α.

We proceed similarly for higher log-iterations and apply the modification system-
atically. This transformation increases the scores of the players but it does not
change their difference. Finally, we apply one last transformation to the new
game, which is to convert all of Alice’s moves into tA ← (log tA)1/4. This can only
increase the score differential. 2
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Proof of Lemma 3.30. Consider the two recurrence relations:

a0(x) = b0(x) = x,

and, for h > 0, {
ah(x) = 2ah−1(x)

bh(x) = 2bh−1(x) + 2.

Recall that ch is defined by c0 = t40 and, for h > 0, ch = 24ch−1 . We verify by
induction that, for any h > 0,

ch = 22bh−1(4 log t0+2)

.

To prove the inequality we seek,

min{h | ch ≥ t } ≥ log∗ t− log∗ t0 −O(1),

where t > t0, we may assume that t > 2t0 , otherwise the result is trivial. The
assumption implies that the minimum h is positive; therefore it suffices to prove
that, for all h ≥ 0,

bh(4 log t0 + 2) ≤ ah(4 log t0 + 4). (61)

We see by induction that, for all h ≥ 0, x ≥ 2, and ε > 0,

ah(x) + ε ≤ ah(x+ ε2−h). (62)

The case h = 0 is obvious, so consider h > 0. Note that, for any y ≥ 2,

2y + ε ≤ 2y+ε/2,

which follows from
ln(1 + ε2−y) ≤ ε2−y ≤ ln 2

2 ε.

Since ah−1(x) ≥ 2, this shows that

ah(x) + ε = 2ah−1(x) + ε ≤ 2ah−1(x)+ε/2 ≤ 2ah−1(x+ε2−h) = ah(x+ ε2−h),

which proves (62). Next, we show by induction that, for all h ≥ 0 and x ≥ 2,

bh(x) ≤ ah(x+ 2− 21−h). (63)

The case h = 0 again being obvious, assume that h > 0. By (62),

bh(x) = 2bh−1(x) + 2 ≤ 2ah−1(x+2−22−h) + 2

≤ ah(x+ 2− 22−h) + 2 ≤ ah(x+ 2− 21−h),

which establishes (63); and hence (61). 2
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4 The Lower Bound

We specify initial positions and velocities for n birds, using only O(log n)-bits
per bird, and prove that their flock network converges only after a number of
steps equal to a tower-of-twos of height log n. Our proof is entirely constructive.
The hysteresis assumption of the model is not used and, in fact, the lower bound
holds whether the model includes hysteresis or not. Our construction is in two
dimensions, d = 2, but it works for any d > 0. The n birds all start from the
X-axis (think of them on a wire), and fly in the (X,Y )-plane, merging in twos,
fourths, eights, etc, until they form a single connected flock. This process forms
a fusion tree T of height log n. (We assume throughout this section that n is a
large odd power of two.) Every flock formed in the process is a single path. The
transition matrix is that of a lazy symmetric random walk with, at each node, a
probability 1

3 of staying put.

2/3

2/3

1/31/3

1/3 1/3

α

2−1/α

Figure 20: Birds join in flocks of size 2, 4, 8, etc, up in the fusion tree, each time flying
in a direction closer to the Y -axis. The angle decreases exponentially at each level, so
the time between merges grows accordingly. The big arrow indicates the Markov chain
corresponding to a 4-bird flock. At each state, the probability of staying put is 1

3 , with
the remaining 2

3 being distributed uniformly among the outgoing edges.

Initially, the velocity of each bird has its Y -coordinate equal to 1. Since aver-
aging these velocities will only produce 1, the birds move up away from the X-axis
forever at constant speed 1. We can then factor out the Y coordinates and focus
our entire investigation on the birds’ projections on the X-axis. In fact, we might
as well view the birds as points moving along the X-axis and joining into edges
when their distance is 1 or less. In other words, we let x(t) denote the vector
(x1(t), . . . , xn(t)) and let v(t) = x(t) − x(t − 1). The coordinates of the velocity
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vector v(t) will quickly decrease, but we should not be mistaken into thinking
that the birds slow down accordingly. Because of the Y motion, all the birds will
always fly at speeds very near 1. Let c be a large enough odd integer: one will
easily check that c = 11 works, but no effort was made to find the smallest possible
value. We leave c as a symbol to make it easier to follow the derivations.

Initial Conditions


x(0) =

(
0, 2

3 , 2,
8
3 , . . . , 2l, 2l + 2

3 , . . . , n− 2, n− 4
3

)T
;

v(1) =
(
n−c, 0,−n−c, 0, n−c, 0, . . . , n−c, 0,−n−c, 0︸ ︷︷ ︸

n

)T
.

Each nonleaf node a of the fusion tree T has associated with it a flock of 2j

birds whose network is a single path: the index j > 0 is also the height of the
node. The flock Fa at node a is formed at a time tj that depends only on the
height in T ; by convention, t1 = 0. Given a node a at height j > 0, we denote
by va the 2j-dimensional velocity vector of the flock Fa at time tj and by ma its
stationary velocity. For j > 2, if l and r denote the left and right children of
a, respectively, then vl = vr. In other words, two sibling flocks start out with
the same initial velocity. At time tj , because of noise called flipping, the velocity
vectors of these flocks will have evolved into L vl and −L vr, respectively, where
L is a linear transformation specific to that sibling pair. This implies that

va =
(
L vl
−L vr

)
.

The stationary velocity of the flock Fa satisfies

ma = 1
2j−1

(

2j︷ ︸︸ ︷
1
2 , 1, . . . , 1,

1
2 )va . (64)

The initial conditions provide the velocity vectors of the 2-bird flocks at height 1
one step after t = 0. It follows that, if a is a node at height j = 1, the stationary
velocity ma is equal to 1

2(−1)k+1n−c, where k is the rank of v among the nodes at
height 1 from left to right. For consistency, we must set va = (−1)kn−c(1,−2)T .
This choice is dictated by the initial conditions set above, so that, for any j ≥ 1,
the velocity of the flock at v at time t (tj ≤ t < tj+1) is equal to P t−tjj va, where

Pj =
1
3



1 2 0 0 . . . 0
1 1 1 0 . . . 0
0 1 1 1 . . . 0
...

. . . . . .
...

0 . . . 0 1 1 1
0 . . . 0 0 2 1


︸ ︷︷ ︸

2j

. (65)
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At height 2 and above, some flocks undergo a velocity flip at chosen times: this
means that the sign of their current velocity is reversed and it becomes −P t−tjj va

at time t. By abuse of notation, we say that the node flips: it is instantaneous
and does not count as an averaging transition. When does this happen and why?
Fix an integer f = 3. Again, we leave this constant as a symbol for clarity.

Flipping Rule: It applies at time t = tj + nf to any flock of a left
child of even height j > 1 and to any flock of a right child of odd height
j > 2.

a1
a2

a3

a4

a5

Figure 21: Flipping alternates between left and right. Leaves were added to indicate
that nodes at height 1 correspond to 2-bird flocks.

Flips are convenient to make flocks collide. We show later that they conform to
the noisy flocking model. At height 2 and higher, any two sibling nodes l and r
are assigned the same velocity vector vl = vr. Their corresponding flocks evolve
in parallel for nf steps, like two identical copies. Then, one of them “flips” (which
one, left or right, depends on the height in the tree), meaning that the two velocity
vectors become opposite of each other. The flip type alternates between left and
right as we go up the tree. Although flipping has only a trivial effect on velocities,
which decays over time, we must be careful that it does not break flocks apart.
We could rely on hysteresis to prevent this from happening, but as we said earlier
we seek a lower bound that holds whether hysteresis is present or not. That is
why we introduce the lag nf . The averaging operations act like glue and the glue
needs to dry up before changing direction.

Up to sign, va depends only on the height j of node a, so we focus our attention
on the left spine of the tree, denoted a1, . . . , alogn in ascending order. The exact
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behavior of every flock in the system can be found in replica either at a node aj
or at a sibling of such a node. That is why, when checking the structural integrity
of the flocks, it is not quite enough to concentrate on the left spine: we must
also check the right children hanging off of it. For any 1 ≤ j < log n, we define
θj = tj+1 − tj as shorthand for the lifetime of the flock Faj . Our task is two-fold.
First, we must show that |maj | decreases very fast: we prove that (roughly)

|maj | < e
−Ω(|m−1

aj−1
|)
,

which implies that θj is exponentially larger than θj−1; hence the logarithmic
tower-of-twos lower bound. Second, we must prove the integrity of the scheme:
that each flock remains a single path over its lifetime; that two flocks meet when
and where they should; that flipping fits within the model; etc.

4.1 The Early Phases

The proofs are technical but one can develop some intuition for the process they
mean to explain by working out the calculations for maj (j = 1, 2, 3) explicitly.
At time t = t1 = 0, the network consists of the edges (1, 2), (3, 4), . . . , (n − 1, n).
We already saw that the 2-bird flock (B1,B2) has initial and stationary velocities

va1 = n−c
(
−1

2

)
and ma1 = 1

2n
−c. (66)

Flying at Height 1. Because the velocity at time t captures the motion ending
at t, the velocity of the flock (B1,B2) at time 1 is P1v

a1 . By (15), for t > 0,

x(t) = x(0) +
t−1∑
s=0

P sv(1),

which gives us(
x1(t)
x2(t)

)
=
(
x1(0)
x2(0)

)
+

t−1∑
s=0

P s1 (P1v
a1) = 2

3

(
0
1

)
+

t−1∑
s=0

P s1

(
n−c

0

)
.

Diagonalizing P1 shows that, for any integer s > 0,

P s1 = 1
2

(
1
1

)(
1 1

)
+ 1

2(−3)−s
(

1
−1

)(
1 −1

)
.

It follows that, for 0 = t1 < t ≤ t2,{
x1(t) = t

2n
−c + 1

2n
−c∑t−1

s=0(−3)−s = 1
2n
−c (t+ 3

4 + 1
4(−3)1−t);

x2(t) = 2
3 + t

2n
−c − 1

2n
−c∑t−1

s=0(−3)−s = 2
3 + 1

2n
−c (t− 3

4 −
1
4(−3)1−t).

(67)
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Note that B1 always stays to the left of B2 and their distance is

x2(t)− x1(t) = 2
3 −

3
4n
−c (1− (−1

3)t). (68)

Left to their own devices, the two birds would slide to the right at speed ma1 , plus
or minus an exponentially vanishing term; their distance would oscillate around 2

3−
3
4n
−c and converge exponentially fast, with the oscillation created by the negative

eigenvalue. This is what happens until the flock at a1 begins to interact with its
“sibling” flock to the right, (B3,B4). The latter’s velocity vector is (−n−c, 0)T at
time t = 1 and, for t1 < t ≤ t2,{

x3(t) = 2− 1
2n
−c (t+ 3

4 + 1
4(−3)1−t);

x4(t) = 8
3 −

1
2n
−c (t− 3

4 −
1
4(−3)1−t).

(69)

The stationary velocity of (B3,B4) is −ma1 = −1
2n
−c, but the flock is not the

mirror image of (B1,B2), a situation that would bring the flocking to an end. In
particular, note that the diameter of the flock is

x4(t)− x3(t) = 2
3 + 3

4n
−c (1− (−1

3)t), (70)

which always exceeds that of (B1,B2) for all t > 0. The diameters of both flocks
oscillate around 2

3 but in phase opposition: indeed, their sum remains constant.
Both 2-bird flocks drift toward each other at distance12 x3(t)− x2(t) = 4

3 − tn
−c.

This implies that t2 = t1 + θ1 = d1
3n

c e. Because n is an odd power of two and c
is odd, nc = 2 (mod 6); hence, d1

3n
ce = 1

3(nc + 1) and

t2 = θ1 = 1
3(nc + 1) = 1 (mod 2) (71)

We conclude that
x3(t2)− x2(t2) = 1− 1

3n
−c. (72)

The definition of flip nodes suggests a cyclic process with period 2 that is inherent
to the flocking process. At time t2, the flock at a2 is formed with the initial
velocity

va2 =
(

P t2−t11 va1

−P t2−t11 va1

)
=


P θ1−1

1

(
n−c

0

)

−P θ1−1
1

(
n−c

0

)
 = 1

2n
−c


1 + (−3)1−θ1

1− (−3)1−θ1

−1− (−3)1−θ1

−1 + (−3)1−θ1

 . (73)

By (64), the stationary velocity for the 4-bird flock is 1
3(1

2 , 1, 1,
1
2)va2 ; hence, by (66,

71),

0 > ma2 = 1
3(1

2 , 1, 1,
1
2)va2 = 1

2n
−c(−3)−θ1

= −1
2n
−c(1

3)(nc+1)/3 ≥ −e−Ω(m−1
a1

). (74)

This inequality gives an inkling of the kind of exponential decay we envision as we
go up the fusion tree. Note that ma2 < 0, which means that the flock is drifting
in the wrong direction: that is why a2 is a flip node.

12The linearity in t is due to an accidental cancellation that will not occur for bigger flocks.
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B1 B2 B3 B4

θ1

t1

t2a2

a1

Figure 22: The 4-bird flock is formed at time t2 and acquires a negative
stationary velocity ma2 .

Flying at Height 2. Again, by (15), for t2 < t ≤ t2 + nf < t3,x1(t)
...

x4(t)

 =

x1(t2)
...

x4(t2)

+
t−t2−1∑
s=0

P s+1
2 va2 , with P2 = 1

3


1 2 0 0
1 1 1 0
0 1 1 1
0 0 2 1

 .

By straightforward diagonalization, we find that, for any integer s > 0,

P s2 = 1
6


1
1
1
1

 (1, 2, 2, 1) + 1
6

(2
3

)s
2
1
−1
−2

 (1, 1,−1,−1)

+ 1
6(−3)−s


1
−1

1
−1

 (1,−2, 2,−1); (75)
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therefore,

x1(t)
...

x4(t)

 =

x1(t2)
...

x4(t2)

+ ma2(t− t2)


1
1
1
1

+ 1
8n
−c


11
5
−5
−11



+ n−c
(2

3

)t−t2+1


−2
−1

1
2

+ 1
24n
−c(−3)t2−t


−1

1
−1

1

 . (76)

It follows from (68, 70) that, for t2 < t ≤ t2+nf , both x2(t)−x1(t) and x4(t)−x3(t)
are 2

3 ±O(n−c); therefore, the two end edges of the 4-bird flock are safe, which we
define as being of length less than 1 (so as to belong to the flocking network) but
greater than 1

2 (so as to avoid edges joining nonconsecutive birds). The middle
one, (2, 3), is more problematic. Its length is

x3(t)− x2(t) = x3(t2)− x2(t2)− 1
12n
−c (15− 16(2

3)t−t2 + (−3)t2−t).

We can verify that
15− 16(2

3)t−t2 + (−3)t2−t ≥ 0,

for all t > t2, which, by (72), shows that the distance between the two middle
birds B2,B3 always lies comfortably between 1− (1

3 +O(1))n−c and 1− 1
3n
−c. The

upper bound is both lucky and intuitive: lucky because the edge starts with length
very near 1 and it could easily be perturbed and break up; intuitive because the
two flocks have inertia when they bump into each other and one expects the edge
(2, 3) to act like a spring being compressed, thereby shrinking during the initial
steps.

Flipping Velocity at Height 2. Since a2 is a flip node, the velocity vector
reverses sign after a lag of nf steps. Instead of redoing all the calculations, we can
apply a simple symmetry principle: by linearity, the positions of the flock with
and without the flip average out to what it was at time t2 + nf (Figure 23). In
other words, for t2 + nf < t ≤ t3,x1(t2 + nf )

...
x4(t2 + nf )

 =
1
2


x1(t)

...
x4(t)


flip

+

x1(t)
...

x4(t)


no-flip

 .
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t2a2

a1

t3

θ2

flip

Figure 23: The 4-bird flock at a2 “flips” at time t2 + nf .

By (76), the position formula for the flock can be readily updated:

x1(t)
...

x4(t)

 =

x1(t2)
...

x4(t2)

+ ma2(2nf + t2 − t)


1
1
1
1

+ 1
8n
−c


11
5
−5
−11



+ n−c
(2

3

)nf +1(
2−

(2
3

)t−t2−nf )
−2
−1

1
2



+ 1
24n
−c(−3)−n

f
(

2− (−3)t2+nf−t
)
−1

1
−1

1

 . (77)

This proves that the lengths of the two end edges differ by what they were at t2
by only O(n−c). Indeed, by (68, 70), this implies that, for any t ≤ t3,{

x2(t)− x1(t) = 2
3 ±O(n−c);

x4(t)− x3(t) = 2
3 ±O(n−c).

(78)
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The middle edge has length

x3(t)− x2(t) = x3(t2)− x2(t2)− 5
4n
−c

+ 2n−c
(2

3

)nf +1(
2−

(2
3

)t−t2−nf )
− 1

12n
−c(−3)−n

f
(

2− (−3)t2+nf−t
)
,

which, in view of (72), shows that, for t2 + nf < t ≤ t3,

1−O(n−c) ≤ x3(t)− x2(t) ≤ 1− 3
2n
−c. (79)

This proves that the middle edge is safe and the integrity of the entire 4-bird flock
is preserved. Was it necessary to delay the flip by nf? The particular choice of
lag, nf , will be justified later by examining the bigger flocks, but we can see right
away that delaying the flip is mandatory. Indeed, if we replace nf by 0 in the
expression above, then, for t = t2 + 2, we get

x3(t)− x2(t) = x3(t2)− x2(t2) + 2
3n
−c = 1 + 1

3n
−c,

which causes the flock to break apart. The flock (B5, . . . ,B8) follows the same
trajectory as the 4-bird flock above, shifted along the X-axis by 4 but with no
velocity flip. So, by (67, 76), we find that, for t2 + nf < t ≤ t3,{

x5(t) = x5(t2) + ma2(t− t2) + 11
8 n
−c − 2n−c(2

3)t−t2+1 − 1
24n
−c(−3)t2−t;

x5(t2) = x1(t2) + 4 = 1
2n
−c (t2 + 3

4 + 1
4(−3)1−t2) + 4.

At the same time, by (77),

x4(t) = x4(t2) + ma2(2nf + t2 − t)− 11
8 n
−c

+ 2n−c
(2

3

)nf +1(
2−

(2
3

)t−t2−nf )
+ 1

24n
−c(−3)−n

f
(

2− (−3)t2+nf−t
)
,

where, by (69),
x4(t2) = 8

3 −
1
2n
−c (t2 − 3

4 −
1
4(−3)1−t2).

By (71), this shows that, for t2 + nf < t ≤ t3,

x5(t)− x4(t) = 4
3 + t2n

−c + 2ma2(t− t2 − nf ) + 11
4 n
−c

− 4n−c
(2

3

)nf +1
− 1

12n
−c(−3)−n

f

= 5
3 + (37

12 ± o(1))n−c + 2ma2(t− t2 − nf ).

Recall from (74) that ma2 is negative. This allows the distance x5(t) − x4(t) to
fall below 1. This happens at t3 = t2 + θ2, where θ2 = nf + Θ(|m−1

a2
|). Note that

|ma2 | is sufficiently small for the newly formed edge (4, 5) to be safe at time t3.
We can see that from (74), which also shows that

θ2 ≥ Ω(|m−1
a2
|) ≥ eΩ(m−1

a1
). (80)
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We conclude this opening analysis with an estimation of the stationary velocity
ma3 . The flipping rule causes the velocity of the flock (B1, . . . ,B4) to be reversed
at time t2 +nf . (It’s a flip of type “left,” so named because it involves a left child.)
Following the flip, the velocity of the 8-bird flock at a3 is, at its creation,

va3 =
(
−P θ22 va2

P θ22 va2

)
.

By (73, 75),

P θ22 va2 = 1
12n
−c

−2


1
1
1
1

 (−3)1−θ1 + 4
(2

3

)θ2 
2
1
−1
−2

− 2(−3)−θ2


1
−1

1
−1


 .

By (64, 80), therefore,

ma3 = 1
7(1

2 , 1, 1, 1, 1, 1, 1,
1
2)
(
−P θ22 va2

P θ22 va2

)
= 1

7(1
2 , 0, 0,−

1
2)P θ22 va2

= 1
42n
−c
(

4
(2

3

)θ2
− (−3)−θ2

)
≤ e−e

Ω(m−1
a1

)

.

Since ma3 > 0, the next flip must be of type “right,” which happens to agree
with the flipping rule. Observe from (66, 74) how, as j increases from 1 to 3,
the stationary velocity maj decays from polynomial to exponential to doubly ex-
ponential. To generalize this to further heights is not difficult. What’s tricky is
to show that, despite all the symmetries in the system, the stationary velocities
never vanish. For example, if we formed new flocks by attaching to a smaller one
its mirror image, this would bring the drifting motion, and hence the flocking, to
an end. We summarize our findings below (66, 71, 74, 80):

|ma1 | = 1
2n
−c & θ1 = 1

3(nc + 1);
|ma2 | ≤ e−Ω(m−1

a1
) & θ2 ≥ Ω(|m−1

a2
|) ≥ enc−1

;

|ma3 | ≤ e−e
nc−1

.

(81)

4.2 Velocity Analysis

Our first task is to diagonalize the transition matrix Pj given in (65). The Lapla-
cian acting on a path is akin to its acting on a folded cycle. Since the Fourier
transform over a finite cyclic group diagonalizes the one-dimensional Laplacian,
we can interpret the spectral shift as a linear operator acting on the Fourier coef-
ficients. We explain why below.
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The Folded Cycle. The Fourier transform over the additive group Zm provides
the eigenvectors y1, . . . , ym of the linear map M defined by the circulant matrix

1
3



1 1 0 0 . . . 1
1 1 1 0 . . . 0
0 1 1 1 . . . 0
...

. . . . . .
...

0 . . . 0 1 1 1
1 . . . 0 0 1 1


︸ ︷︷ ︸

m

;

namely,
yk =

(
1, e2πi(k−1)/m, . . . , e2πi(k−1)(m−1)/m

)
.

The associated eigenvalue λk is equal to

1
3

(
1 + 2 cos

2π(k − 1)
m

)
.

We shall see shortly why using the notation λk, reserved for the eigenvalue of Pj ,
is legitimate. To see the relation with Pj , set m = 2n − 2 and n = 2j , and note
that the eigenvector coordinates (yk)j and (yk)m+2−j are conjugates. This implies
that < yk is a real eigenvector ofM that lies in the n-dimensional linear subspace

F =
m⋂
j=2

{
xj − xm+2−j = 0

}
.

Furthermore, it is immediate that Pj is equivalent to the restriction ofM to F ; in
other words, folding the cycle in the middle by identifying opposite sides creates
the desired averaging weights (in particular, 2/3 at the end nodes) and transform
the Fourier vectors into right eigenvectors for Pj (hence the valid choice of the
notation λk). It follows that, for 1 < k ≤ 2j ,

uk =
(

1, cos
π(k − 1)
n− 1

, . . . , cos
π(k − 1)(n− 2)

n− 1
, (−1)k−1

)T
is the unique right eigenvector (up to scaling) of Pj for λk. We note that, unlike
for the m-cycle, the transition for the n-path has only simple eigenvalues.

Consider the evolution of a flock at node aj for j ≥ 1. Let

π =
1

2j − 1
(

2j︷ ︸︸ ︷
1
2 , 1, . . . , 1,

1
2 )T and diagCj = 1

3(
2j︷ ︸︸ ︷

2, 1, . . . , 1, 2 ). (82)
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Figure 24: The folded m-cycle. Identifying opposite nodes allows us to use
the harmonic analysis of the cyclic group to the path-shaped flock.

For s ≥ 1, we diagonalize the matrix P sj = 1πT +Qsj , with,13 by (9),

Qsj =
2j∑
k=2

λskC
1/2
j vkv

T
k C
−1/2
j , (83)

where the right eigenvector C1/2
j vk is proportional to uk with the normalization

condition, ‖vk‖2 = 1. By elementary trigonometry, it follows that, for any 1 <
k ≤ 2j , λk = 1

3 + 2
3 cos π(k−1)

2j−1
,

vk = δk

(
1√
2
, cos π(k−1)

2j−1
, . . . , cos π(k−1)(2j−2)

2j−1
, (−1)k−1

√
2

)T
,

where δk =
√

2 (2j − 1)−1/2 for 1 < k < 2j and δ2j = (2j − 1)−1/2. Recall that
θj = tj+1 − tj is the lifetime of the flock Faj . By the triangle inequality and the
submultiplicativity of the Frobenius norm, for any z,

‖Qsjz‖2 ≤ |λ2|s
∑
k>1

‖C1/2
j vkv

T
k C
−1/2
j z‖2 ≤ |λ2|s

∑
k>1

‖C1/2
j ‖F ‖C

−1/2
j ‖F ‖z‖2

≤ 2j+1|13 + 2
3 cos π

2j−1
|s‖z‖2.

A Taylor series approximation shows that, for j, s ≥ 1 and any z,

‖Qsjz‖2 ≤ ej+1−Ω(s4−j)‖z‖2. (84)

13We avoid decorating π and 1 with subscripts when their dimensionality is obvious from the
context. We use vk instead of the notation uk from §3.2. One should be careful not to confuse
these eigenvectors with the velocities.
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Figure 25: The spectrum of two colliding flocks: to produce a tower-of-twos, the first
Fourier coefficients must cancel each other and be replaced by a linear combination of
the higher ones. This spectral shift must ensure that the new first Fourier coefficient is
nonzero. This will automatically produce an exponentially decaying energy spectrum.

Spectral Shift as Energy Transfer. After s steps following its creation, the
flock Fj moves with velocity

vaj (s) = P sj v
aj = maj1 +

2j∑
k=2

αk(s)C
1/2
j vk,

where αk(s) = λskv
T
k C
−1/2
j vaj . For k > 1, the Fourier coefficients αk(s) decay

exponentially fast with s while the first one, the stationary velocity, remains con-
stant. What happens when another flock Gj “collides” with Fj? A tower-of-twos
growth requires two events: one is that, within the algebraic expressions defining
the new Fourier coefficients, the stationary velocities should cancel out; the other
is that the new first Fourier coefficients should not be zero. For example, consider
a flock Gj that is mirror image to Fj and heads straight toward it. The two sta-
tionary velocities would cancel out, but the new one would also be zero. Restoring
the dimension Y would produce the spectrum on the left in Figure 26 and, con-
sequently, a vertical flying direction: this would dash any hope of achieving a
tower-of-twos.

The trick is to ensure that the energy contained in the higher Fourier coef-
ficients averages out in a way that produces a new stationary velocity that is
nonzero: in two dimensions, this will create a direction close to vertical but not
exactly so (right spectrum in the figure). The spectral shift can be viewed as a
transfer of energy from the k-th Fourier coefficients (for all k > 1) to the first
one. The issue is not how to produce exponentially fast decay but how to transfer
strictly positive energy. Too much symmetry wipes out all the energy in the first
Fourier coefficient, while too little symmetry produces a new stationary velocity
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that is a nonzero average of the previous ones. The first case prevents future col-
lisions; the second one produces a new flying direction that deviates from vertical
by only a polynomially small angle.

Figure 26: Too much symmetry makes the first Fourier coefficient vanish (left box) and
produces a vertical flying direction. Too little symmetry produces an excessive stationary
velocity and a polynomially small nonzero angle with the Y direction. The right amount
of symmetry produces an energy transfer from the decaying higher Fourier coefficients to
the first one, thus creating an exponentially small angle (right box).

The Spectral Shift in Action. Since we are only concerned with velocities
in this section, and not with positions, we may assume without loss of generality
that all flipping is of the right type: in other words, we stipulate that the flock
of any right child of height at least 2 should get its velocity reversed after the
prescribed lag time. To restore the true flipping rule will then only be a matter of
changing signs appropriately. With this simplifying assumption, the aggregating
formula of (73) becomes, for j > 1,

vaj =

(
P
θj−1

j−1 vaj−1

−P θj−1

j−1 vaj−1

)
=

(
maj−11 +Q

θj−1

j−1 v
aj−1

−maj−11−Q
θj−1

j−1 v
aj−1

)
. (85)

The averaging operator Pj cannot increase the maximum absolute value of the
velocity coordinates; therefore, by (66),

‖vaj‖2 ≤ 2j/2‖vaj‖∞ ≤ 2j/2‖va1‖∞ = 2j/2(2n−c).

In other words, for any j ≥ 1,

‖vaj‖2 ≤ 2j/2+1n−c. (86)
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Lemma 4.1 For any j > 1, the stationary velocity of the flock at node aj satisfies

|maj | ≤ e−Ω(θj−14−j).

Proof. The stationary distribution for a 2j−1-bird flock, being a left eigenvector,
is normal to the right eigenvectors; hence to Qθj−1

j−1 v
aj−1 . By (64, 85),

maj =
1

2j − 1
(

2j︷ ︸︸ ︷
1
2 , 1, . . . , 1,

1
2 )vaj =

1
2j − 1

(

2j︷ ︸︸ ︷
1
2 , 1, . . . , 1,

1
2 )

(
Q
θj−1

j−1 v
aj−1

−Qθj−1

j−1 v
aj−1

)

=
1

2j − 1
(

2j−1︷ ︸︸ ︷
1
2 , 1, . . . , 1,

1
2 ,

2j−1︷ ︸︸ ︷
1
2 , 1, . . . , 1,

1
2 , )

(
Q
θj−1

j−1 v
aj−1

−Qθj−1

j−1 v
aj−1

)

+
1

2j − 1
(

2j−1︷ ︸︸ ︷
0, . . . , 0, 1

2 ,

2j−1︷ ︸︸ ︷
1
2 , 0, . . . , 0 )

(
Q
θj−1

j−1 v
aj−1

−Qθj−1

j−1 v
aj−1

)
=

1
2j+1 − 2

(
(Qθj−1

j−1 v
aj−1)2j−1 − (Qθj−1

j−1 v
aj−1)1

)
.

By (86), therefore, ‖vaj−1‖2 ≤ 2(j+1)/2n−c and, by (84),

|maj | ≤
1

2j − 1

∥∥∥Qθj−1

j−1 v
aj−1

∥∥∥
∞
≤ 1

2j − 1

∥∥∥Qθj−1

j−1 v
aj−1

∥∥∥
2
≤ n2−ce−Ω(θj−14−j).

2

From the spectral decomposition

P sj v
aj = maj1 +

∑
k>1

λskC
1/2
j vkv

T
k C
−1/2
j vaj ,

we see that the stationary velocity maj is the first Fourier coefficient, ie, the
spectral coordinate associated with the dominant eigenvalue 1. The cancellations
of the two copies of maj−1 in the computation of that coefficient has the effect of
making maj a linear combination of powers of higher eigenvalues. That part of the
spectrum being exponentially decaying, the corresponding spectral shift implies a
similar exponential decay in the new first Fourier coefficient. This is the key to
the tower-of-twos growth. Indeed, as we show next, the next inter-flock collision
cannot occur before a number of steps inversely proportional to that first Fourier
coefficient.

Lemma 4.2 For any j ≥ 1, θj = nf + Θ( |m−1
aj
|).

Proof. By (81), we can assume that j > 1. For tj < t ≤ tj+1, the velocity of the
flock Faj is of the form

±P t−tjj vaj = ±(maj1 +Q
t−tj
j vaj ),
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where the sign changes after a flip. By (84, 86),

‖Qt−tjj vaj‖2 ≤ ej+1−Ω((t−tj)4−j)‖vaj‖2 ≤ n3−ce−Ω((t−tj)n−2).

Summing over all t, our choice of c gives us the conservative upper bound,∑
t>tj

‖Qt−tjj vaj‖2 ≤
1
n
.

No bird belongs to more than log n different flocks, so its entire motion is specified
by the stationary velocities of its flocks plus or minus an additive “vibration” error
of o(1) on the bird’s total displacement.

Until one of them flips, the flock Faj and the one at its sibling node a′j are
identical copies that have moved in lockstep. The distance between their leftmost
birds at time tj + nf is what it was at time 0, ie, 2j . We postpone the integrity
analysis for later and simply assume that the flocks are, indeed, single-paths. This
implies that the diameter of Faj is at most 2j − 1. By (78), its leftmost edge is of
length 2

3 ± o(1) between time 0 and t3. Since the first two birds always share the
same flock, the vibration bound above indicates that they always remain within
distance 2

3 + o(1) of each other. The same bound also shows that, at time tj +nf ,
both flocks have diameter at most 2j − 4

3 + o(1). By our previous observation,
they must be at distance at least 4

3 − o(1). After flipping at time tj + nf , the two
flocks head toward each other14 at a relative speed of 2|maj |, plus or minus an
error speed that contributes a displacement of o(1). This implies that the time
between flipping and merging is |(6± o(1))maj |−1. 2

For j > 1, we find from Lemmas 4.1 and 4.2 that

θj ≥ Ω(eΩ(θj−14−j)).

Since, by (71), θ1 > n4, it follows immediately by induction that, for any j ≥ 1,

θj > n4 θj−1, (87)

where, for convenience, we define θ0 = 1. This allows us to rewrite our previous
lower bound in the slightly simpler fashion,

θj ≥ eΩ(θj−14−j), (88)

for any j > 1. Note that the tower-of-twos lower bound on the flocking time
follows immediately from (88). Indeed, let θ̂j =

√
θj . By (81), θ̂1 > 2 and, for

j > 1, θ̂j ≥ 2θ̂j−1 ; therefore, when j reaches log n− 1,

θj ≥ θ̂j > 2 ↑↑ log
n

2
,

14We must assume that the left flock flies to the right, so as to put it on a collision course
with the other one, after flipping. Our argument is symmetric, however, and would work just the
same if directions and flip types were reversed.
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3.1>

1≤

Figure 27: Two flocks merge after a period inversely proportional to their stationary
velocities. For convenience, we temporarily assume that all flips are of right-type and
that flocks fly to the right after they are created: these conditions will not always hold.

which establishes the main lower bound of this paper. 2

For future use, we state a weak bound on stationary velocities. By Lemmas 4.1
and 4.2, for j > 1,

|maj | ≤ e−Ω(θj−14−j) ≤ e−Ω(|m−1
aj−1

|4−j)
.

By (86), |maj | = |πT vaj | ≤ ‖vaj‖∞ ≤ ‖vaj‖2 < n1−c. It then follows from (66)
that

|maj | <

{
n−c; if j = 1;
n−c |maj−1 | if j > 1.

(89)

It remains for us to prove that stationary velocities never vanish and that the
flocks keep their structural integrity during their lifetimes. Note that the former
would not be true if pairs of colliding flocks were mirror images of each other. The
proof must demonstrate that the symmetries needed for the spectral shift do not
cause more cancellations than needed. But, first, let us see why the flips conform
to the noisy model. Both the number of perturbations and their timing fall well
within the admissible bounds. The only nontrivial condition to check is that the
change in velocity at flip time t = tj + nf (j > 1) is log t

t eO(n3). The `2 norm of
the change is

δ = 2‖P t−tjj vaj‖2 ≤ 2
√
n ‖vaj‖2.

We prove below (117) that

‖vaj‖2 ≤ 2
√
n |maj−1 |.

Since f = 3, by (87),

t = nf + θ1 + · · ·+ θj−1 ≤ 2(θj−1 − nf ) ;
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therefore, by Lemma 4.2,

δ ≤ 4n|maj−1 | =
O(n)

θj−1 − nf
= O

(n
t

)
≤ log t

t
eO(n3),

which establishes the conformity to the noisy model.

To conclude the kinematic analysis, we must prove that no stationary velocity
ma ever vanishes. This is not entirely obvious in view of all the symmetries in the
system: this would happen, for example, if one flock were the mirror image of its
sibling.

Nonvanishing Velocities. We need to take a closer look at the dynamics of the
system to show that flocks never grind to a halt. In doing so, we will uncover an
iterated process of period 4 that allows us to give a full description of the velocity
vector at any time. Again, we assume that all flipping is of type “right,” which
affects only the flocks at right children of height at least 2.

Theorem 4.3 For any j ≥ 1, the stationary velocity maj never vanishes. Its
direction is such that sibling flocks head toward each other to form bigger flocks.

Proof. For j ≥ 1, define the 2j-by-2j−1 matrix

Fj = P
θj

j

((
1
−1

)
⊗ I2j−1

)
.

We form Fj by subtracting the right half of P θj

j from its left half:

(Fj)k,l = (P θj

j )k,l − (P θj

j )k,l+2j−1 .

For example, if j = 3 and θj = 1,

Fj =
1
3



1 2 0 0
1 1 1 0
0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

0 −1 −1 −1
0 0 −2 −1


.

By (85), for j > 1,

vaj =

(
P
θj−1

j−1 vaj−1

−P θj−1

j−1 vaj−1

)
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and, at the end of its existence, the flock at aj has velocity (with right flips only):

P
θj

j vaj = P
θj

j

(
P
θj−1

j−1 vaj−1

−P θj−1

j−1 vaj−1

)
= FjP

θj−1

j−1 vaj−1 =
( 2∏
i=j

Fi

)
P θ11 va1 . (90)

Note that indices run down, as the products are not commutative. By (64), for
j > 1,

maj =
1

2j − 1
(

2j︷ ︸︸ ︷
1
2 , 1, . . . , 1,

1
2 )

(
P
θj−1

j−1 vaj−1

−P θj−1

j−1 vaj−1

)

=
1

2(1− 2j)
(

2j︷ ︸︸ ︷
1, 0, . . . , 0, 1 )

(
P
θj−1

j−1 vaj−1

−P θj−1

j−1 vaj−1

)

=
1

2(1− 2j)
(

2j︷ ︸︸ ︷
1, 0, . . . , 0, 1 )


(∏2

i=j−1 Fi

)
P θ11 va1

−
(∏2

i=j−1 Fi

)
P θ11 va1


=

1
2(1− 2j)

zTj−1,1

( 2∏
i=j−1

Fi

)
P θ11 va1 ,

(91)

where
∏
i = 1 if j = 2 and

zj,k = (

2j︷ ︸︸ ︷
1, 0, . . . , 0, (−1)k )T .

We now look more closely at the structure of Fj , going back to the spectral de-
composition of P θj

j . By (83), for j ≥ 1,{
P
θj

j = 12jπT +Q
θj

j ,

Q
θj

j =
∑2j

k=2 µj,kuj,k(uj,k −
1
2zj,k−1)T ,

(92)

where, for notational convenience, we subscript 1 to indicate its dimension; for
any j ≥ 1 and 1 < k ≤ 2j ,µj,k = εj,k

2j−1

(
1
3 + 2

3 cos π(k−1)
2j−1

)θj

, with εj,k = 2 if k < 2j and εj,2j = 1;

uj,k =
(

1, cos π(k−1)
2j−1

, . . . , cos π(k−1)(2j−2)
2j−1

, (−1)k−1
)T
∈ R2j

.
(93)

Our algebraic approach requires bounds on eigenvalue gaps and on the Frobenius
norm of Qθj

j . Note that |µj,k| < 1 for all j ≥ 1 and k ≥ 2. We need much tighter
bounds. Recall that n is assumed large enough and define µ0,2 = 1 for notational
convenience.
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Lemma 4.4 For any j ≥ 1, both |µj,2/µnj−1,2| and ‖Qθj

j ‖F are less than e−n
1.5

; for
j > 1 and k > 2, so is the ratio |µj,k/µj,2|.

Proof. We leave the bound on ‖Qθj

j ‖F for last. If j = 1, then µj,2 = (−3)−θ1 and,
by (87), |µj,2| < e−n

4
. Since µ0,2 = 1, this proves the first upper bound for j = 1.

Suppose now that j > 1. For 2 ≤ k ≤ 2j , |1 + 2 cos π(k−1)
2j−1

| ≤ |1 + 2 cos π
2j−1
|. In

view of the fact that j ≤ log n and, by (87), θj > n4, for all k ≥ 2,

|µj,k| ≤ |µj,2| ≤ O(2−j)e−Ω(θj4−j) < e−n
1.7
. (94)

By (87),

|µj,2| ≤ e−Ω(θj4−j) ≤ e−Ω(n4θj−14−j) ≤ e−Ω(n2)e−Ω(n2θj−1) < e−n
1.5 |µj−1,2|n.

The last inequality follows from the fact that 21−j3−θj−1 ≤ |µj−1,2| < 1. To bound
the ratio |µj,k/µj,2| for j > 1 and k > 2, we begin with the case j = 2 and verify
directly that e−n

3
is a valid upper bound. Indeed,

µ2,k =


(2

3)θ2+1 if k = 2;
0 if k = 3;
(−1)θ2(1

3)θ2+1 if k = 4.

Assume now that j, k > 2. Then −1 ≤ 1 + 2 cos π(k−1)
2j−1

≤ 1 + 2 cos 2π
2j−1

. Since

1 + 2 cos 2π
2j−1

> 1, |1 + 2 cos π(k−1)
2j−1

| ≤ |1 + 2 cos 2π
2j−1
|; therefore,

∣∣∣µj,k
µj,2

∣∣∣ ≤ (1 + 2 cos 2π
2j−1

1 + 2 cos π
2j−1

)θj

= (2 cos π
2j−1

− 1)θj = e−Ω(θj4−j) < e−n
1.5
.

For all j ≥ 1, by (94) and the submultiplicativity of the Frobenius norm,

‖Qθj

j ‖F ≤
2j∑
k=2

|µj,k| × ‖uj,k‖2 (‖uj,k‖2 + 1
2‖zj,k−1‖2)

≤ 2O(j)|µj,2| ≤ 2O(j)e−n
1.7
< e−n

1.5
.

2

For j > 1, we express Fj , the “folded” half of P θj

j , by subtracting the lower
half of uj,k − 1

2zj,k−1 from its upper half, forming

wj−1,k = (ξ1, . . . , ξ2j−1)T − 1
2zj−1,k, (95)

where
ξl = cos π(k−1)(l−1)

2j−1
− cos π(k−1)(2j−1+l−1)

2j−1
.
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It follows from (82, 92) that, for j > 1,

Fj = 1
2(1−2j)

12jzTj−1,1 +
2j∑
k=2

µj,kuj,kw
T
j−1,k. (96)

To tackle the formidable product
∏
i Fi in (90), we begin with an approximation∏

iGi, where
Gj = 1

2(1−2j)
12jzTj−1,1 + µj,2uj,2w

T
j−1,2. (97)

Setting k = 2, we find that

uj,2 =
(

1, cos π
2j−1

, . . . , cos π(2j−2)
2j−1

, −1
)T
.

For 0 ≤ l < 2j−1,
cos πl

2j−1
+ cos π(2j−l−1)

2j−1
= 0.

This extends to the case j = 1, so that, for any j ≥ 1,{
uj,2 = (ū1, . . . , ū2j−1 ,−ū2j−1 , . . . ,−ū1)T ;
ūl = cos π(l−1)

2j−1
.

(98)

For k = 2, we simplify ξl into

ξl = cos π(l−1)
2j−1

+ sin π(l− 1
2

)

2j−1
,

for 1 ≤ l ≤ 2j−1, which shows that ξl = ξ2j−1+1−l; therefore, for j > 1,
wj−1,2 = (w̄1, . . . , w̄2j−2 , w̄2j−2 , . . . , w̄1)T ;
w̄1 = 1

2 + sin π/2
2j−1

;

w̄l = cos π(l−1)
2j−1

+ sin π(l− 1
2

)

2j−1
(1 < l ≤ 2j−2).

(99)

By (97), for j > 2,

2∏
i=j−1

Gi =
2∏

i=j−1

{
1

2(1−2i)
12izTi−1,1 + µi,2ui,2w

T
i−1,2

}
. (100)

Expanding this product is greatly simplified by observing that, by (98, 99), for
any j ≥ 1, 

zTj,112j = wTj,2uj,2 = 0;
zTj,1uj,2 = 2;

wTj,212j
def= γj , where 2j−1 − 1 < γj < 2j+1 − 1.

(101)
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To prove the bounds on γj , we rely on (99),

γj = −1 + 2
2j−1∑
l=1

(
cos π(l−1)

2j+1−1
+ sin π(l− 1

2
)

2j+1−1

)
,

and the fact that π(l−1)
2j+1−1

≤ π
3 and π(l−1/2)

2j+1−1
< π

2 , from which the two inequalities
in (101) follow readily. By (100), for j > 2,

zTj−1,1

( 2∏
i=j−1

Gi

)
P θ11 va1

= zTj−1,1

( 2∏
i=j−1

{
1

2(1−2i)
12izTi−1,1 + µi,2ui,2w

T
i−1,2

})
P θ11 va1 . (102)

If we drop all sub/superscripts and expand the scalar expression above, we find
a sum of 2j−2 words zaj−1 · · · a2P

θ1
1 va1 , where each ai is of the form µuw or

1z (suitably scaled). By (101), however, the only nonzero word is of the form
A = z(µuw)(1z)(µuw)(1z) · · ·P θ11 va1 . This necessitates distinguishing between
even and odd values of j.

μuw

1z

1−j

2−j

3−j 2

Figure 28: If j is odd, the word A is of the form
z(µuw)(1z)(µuw)(1z) · · · (µuw)P θ11 va1 .

Case I. (odd j > 2): It follows from (101) that

zTj−1,1

( 2∏
i=j−1

Gi

)

= zTj−1,1µj−1,2uj−1,2w
T
j−2,2

3∏
odd i=j−2

{
1

2(1−2i)
12izTi−1,1µi−1,2ui−1,2w

T
i−2,2

}

= 2µj−1,2w
T
j−2,2

3∏
odd i=j−2

{
1

1−2i 12iµi−1,2w
T
i−2,2

}
= αodd

j wT1,2 ,
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where

αodd
j = 2(−1)(j+1)/2µ2,2

3∏
odd i=j−2

γiµi+1,2

2i − 1
. (103)

One must verify separately that this also holds for the case j = 3, where
∏
i = 1.

Recall that, by (66, 99), w1,2 = (1, 1)T and ‖va1‖2 =
√

5n−c. By Lemma 4.4 and
the submultiplicativity of the Frobenius norm,

|wT1,2Q
θ1
1 va1 | ≤ ‖w1,2‖2‖Qθ11 ‖F ‖v

a1‖2 < e−n
1.5
.

By (92), it follows that

wT1,2P
θ1
1 va1 = wT1,2(12π

T +Qθ11 )va1 = va1
1 + va1

2 ±O(e−n
1.5

) (104)

and

A = zTj−1,1

( 2∏
i=j−1

Gi

)
P θ11 va1 = αodd

j wT1,2P
θ1
1 va1

= αodd
j (va1

1 + va1
2 )±O(αodd

j e−n
1.5

).

(105)

μuw

1z

1−j

2−j

3−j

2

Figure 29: If j is even, the word A is of the form z(µuw)(1z)(µuw) · · · (1z)P θ11 va1 .

Case II. (even j > 2):

zTj−1,1

( 2∏
i=j−1

Gi

)
= zTj−1,1

3∏
odd i=j−1

{
µi,2ui,2w

T
i−1,2 ( 1

2(1−2i−1)
)12i−1zTi−2,1

}

= zTj−1,1

3∏
odd i=j−1

{
( 1

2(1−2i−1)
)µi,2ui,2γi−1z

T
i−2,1

}
= βjz

T
1,1,
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where

βj = (−1)j/2+1
3∏

odd i=j−1

γi−1µi,2
2i−1 − 1

.

It follows that

A = zTj−1,1

( 2∏
i=j−1

Gi

)
P θ11 va1 = βjz

T
1,1P

θ1
1 va1 .

By (92),

zT1,1P
θ1
1 va1 = zT1,1(12π

T +Qθ11 )va1 = zT1,1Q
θ1
1 va1 = µ1,2(va1

1 − v
a1
2 ); (106)

therefore,
A = αeven

j (va1
1 − v

a1
2 ), (107)

where

αeven
j = (−1)j/2+1µ1,2

3∏
odd i=j−1

γi−1µi,2
2i−1 − 1

. (108)

This concludes the case analysis. Next, we still assume that j > 2 but we
remove all restriction on parity. Recall that Gi is only an approximation of Fi
and, instead of (102), we must contend with

zTj−1,1

( 2∏
i=j−1

Fi

)
P θ11 va1

= zTj−1,1

( 2∏
i=j−1

{
1

2(1−2i)
12izTi−1,1 +

2i∑
k=2

µi,kui,kw
T
i−1,k

})
P θ11 va1 . (109)

If, again, we look at the expansion of the product as a sum of words

B = zaj−1 · · · a2P
θ1
1 va1 ,

then we see that each B-word is the form

z(µuw){1z, µuw}{1z, µuw}{1z, µuw} · · ·P θ11 va1 ,

where µ, u,w are now indexed by k. Recall that previously the only word was of
the form A = z(µuw)(1z)(µuw)(1z) · · ·P θ11 va1 . There is no need to go over the
entire analysis again. By showing that |B| is always much smaller than |A|, we
prove

Lemma 4.5 For any 2 < j ≤ log n,

zTj−1,1

( 2∏
i=j−1

Fi

)
P θ11 va1 =

{
(1 + εn)(va1

1 + va1
2 )αodd

j if j is odd;
(1 + ε′n)(va1

1 − v
a1
2 )αeven

j else,

where εn, ε′n are reals of absolute value O(e−n).
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Proof. Note that, by (101), γi > 2i−1− 1 for any i ≥ 1. Also, by (66), va1
1 + va1

2 =
n−c and va1

2 − va1
1 = 3n−c. It follows from (103, 105, 107, 108) that, for any

2 < j ≤ log n,

|A| =
∣∣∣zTj−1,1

( 2∏
i=j−1

Gi

)
P θ11 va1

∣∣∣
≥
( 1
n

)c+1
{
|µ2,2 µ4,2 · · ·µj−1,2| if j is odd;
|µ1,2 µ3,2 · · ·µj−1,2| else.

(110)

We take absolute values on the right-hand side for notational consistency: all the
factors, defined in (93), are strictly positive, except for µ1,2 = (−3)−θ1 which,
by (71), is equal to −3−θ1 < 0, ie, for i > 1,

µ1,2 < 0 < µi,2 . (111)

Let’s extend our notation by defining, for i > 1,
µi,1 = 1

2(1− 2i)−1 ;
ui,1 = 12i ;
wi−1,1 = zi−1,1 .

Then, any B-word is specified by an index vector (kj−1, . . . , k2):

Bkj−1,...,k2 = wTj−1,1

( 2∏
i=j−1

µi,ki
ui,ki

wTi−1,ki

)
P θ11 va1 .

Observe that the A-word we considered earlier is a particular B-word, ie,

A = B2,1,2,1,. . .︸ ︷︷ ︸
j−2

.

Since we wish to show that all the other B-words are considerably smaller, we
may ignore the settings of ki that make a B-word vanish. All the conditions on
the index vector are summarized here:

1 ≤ ki ≤ 2i ;
kj−1 6= 1 ;
kiki−1 6= 1 (2 < i < j) .

(112)

By (93, 95), for all i > 1 and k ≥ 1, ‖ui,k‖2 ≤ 2i/2 and for i, k ≥ 1, ‖wi,k‖2 ≤ 2i/2+2;
so, by Cauchy-Schwarz, for i > 2 and k, l ≥ 1,

|wTi−1,kui−1,l| ≤ 2i+1.
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Since 2 < j ≤ log n,

∣∣∣wTj−1,1uj−1,kj−1

2∏
i=j−2

wTi,ki+1
ui,ki

∣∣∣ ≤ 2
1
2

(j+1)(j+2) < n2 logn;

therefore,

|Bkj−1,...,k2 | ≤ n2 logn
( 2∏
i=j−1

µi,ki

)
|wT1,k2

P θ11 va1 |. (113)

We prove that all B-words are much smaller than A in absolute value.

Lemma 4.6. All B-words distinct from A satisfy:

|Bkj−1,...,k2 | < e−n
1.2 |A|.

Proof. Since P1 is stochastic, by (66),

|wT1,k2
P θ11 va1 | = O(‖va1‖∞) = O(n−c) < 1,

and the upper bound (113) becomes

|Bkj−1,...,k2 | ≤ n2 logn
2∏

i=j−1

µi,ki
. (114)

To maximize the right-hand side of (114), we may replace any instance of
ki > 2 by ki = 2 (Lemma 4.4). This does not contradict conditions (112) since no
index is set to 1. Note the importance for this step of having removed all vectorial
presence from (114). We assume that the new B-word is not A, so its index vector
is not of the form (2, 1, 2, 1, . . .); therefore, if we end up with this very pattern, and
hence with A, obviously at least one index replacement must have taken place.
By Lemma 4.4, any such replacement causes an increase by a factor of at least
en

1.5
and Lemma 4.6 follows. So, we may assume now that ki ∈ {1, 2} and

(kj−1, kj−2, . . . , k2) 6= (2, 1, 2, 1, . . .).

Scan the string (kj−1, . . . , k2) against (2, 1, 2, 1, . . .) from left to right and let ka
be the first character that differs. By (112), kj−1 = 2, so 2 ≤ a ≤ j − 2; hence
j > 3. Since we cannot have consecutive ones, ka = 2 and j − a is even. By (110)
and Lemma 4.4,

|Bkj−1,...,k2 |
|A|

≤ (nc+1n2 logn)
|µj−1,2 µj−2,1 µj−3,2 · · ·µa+1,2 µa,2 µa−1,ka−1 · · ·µ2,k2 |

|µj−1,2 µj−3,2 · · ·µa+1,2 µa−1,2 µa−3,2 · · · |

≤ n3 logn |µj−2,1 µj−4,1 · · ·µa+2,1 µa,2 µa−1,ka−1 · · ·µ2,k2 |
|µa−1,2 µa−3,2 · · · |

.
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1−j 2−j 4−j 2

i2

=i

Figure 30: The top horizontal line represents ki = 1. The white dots below
the line correspond to ki = 2. The B-word in white is brought into canonical
form (black jagged line) by setting all the indices ki > 2 to 2. This cannot
cause the magnitude of B to drop. We may also assume that the end result
is not the A-word, as this would cause an exponential growth in line with the
lemma.

The first numerator mirrors the index vector of the B-word accurately. For the
denominator, however, we use the lower bound of (110). The reason we can afford
such a loose estimate is the presence of the factor µa,2, which plays the central role
in the calculation by drowning out all the other differences. Here are the details.
All µ’s are less than 1 and, by Lemma 4.4, |µa−1,2| ≤ |µa−l,2|; therefore,

|Bkj−1,...,k2 |
|A|

≤ n3 logn |µa,2|
|µlogn
a−1,2|

< n3 logn |µa,2|
|µna−1,2|

< n3 logne−n
1.5
.

which proves Lemma 4.6. 2

There are fewer than nlogn B-words; so, by Lemma 4.6, their total contribution
amounts to at most a fraction nlogne−n

1.2
of |A|. In other words, by (109), for

j > 2,

zTj−1,1

( 2∏
i=j−1

Fi

)
P θ11 va1 = (1±O(e−n))zTj−1,1

( 2∏
i=j−1

Gi

)
P θ11 va1 ,

and the proof of Lemma 4.5 follows from (66, 105, 107). 2

Recall from (91) that, for j > 1,

maj =
1

2(1− 2j)
zTj−1,1

( 2∏
i=j−1

Fi

)
P θ11 va1 .
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1−j

1+a

2=i a

1−a

Figure 31: We trace the index vectors of the A and B-words from left to
right until they diverge (i = a). In this case, j is odd and the index vector of
the B-word is (2, 1, 2, 1, 2, 2, 1, 2, 2).

We know from (101, 103, 108, 111) that neither αeven
j nor αodd

j is null. By
Lemma 4.5, it then follows that the stationary velocity maj never vanishes for
j > 2. By (66, 74), this is also the case for j = 1, 2. To be nonnull is not enough,
however: sibling flocks must also head toward each other. This is what the flipping
rule ensures. We next show how.

Drifting Direction. By (66, 74), ma2 < 0 < ma1 . By Lemma 4.5, for j > 2,

maj =
1

2(1− 2j)

{
(1 + εn)(va1

1 + va1
2 )αodd

j if j is odd;
(1 + ε′n)(va1

1 − v
a1
2 )αeven

j else.
(115)

We observed in (111) that µj,2 is positive for all j ≥ 1, with the exception of
µ1,2 < 0. By (103), the sign of αodd

j is that of (−1)(j+1)/2. On the other hand,
by (108), the sign of αeven

j is that of (−1)j/2. By (66), this proves that, for j > 0,
the sign of maj is positive if and only if j = 0, 1 (mod 4). Remember that this
is what happens when all the flips are confined to the right children of height
j ≥ 2, what we called right-type flips. The actual rule is more complex. It applies
to flocks at left children of nodes of odd height at least 3 and to flocks at right
children of nodes of even height at least 4. We verify that, after the appropriate
flip, if any, every maj is positive, ie, all the flocks along the left spine of the fusion
tree T drift to the right, as they should. But, before we show this, let’s convince
ourselves that right-type flips alone would not do: indeed, note that ma2 < 0, so a
right-type flip for the right child of a3 would send the two flocks flying away from
each other (Figure 32).

Here is a quick proof of the soundness of the true flipping rule. Suppose
we follow the right-type rule. How do we then modify the velocities to end up
with the same sign assignment produced by the true flipping rule? The answer is
simple: reverse the sign of the velocities of the flocks at both children of nodes of
odd height at least 3. For j ≥ 2, the velocity of the flock at aj will be effectively
reversed a number of times equal to b(j−1)/2c. The velocity is effectively changed
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Figure 32: A right-type flip would make the two 4-bird flocks drift away
from each other.

only when that number is odd, ie, when j = 0, 3 (mod 4). Recall that maj > 0
if j = 0, 1 (mod 4) and j > 0. That implies that maj is now positive exactly
when j = 1, 3 (mod 4), ie, j is odd. When j is even, however, the node aj , being
a left child of an odd-height node, undergoes a flip, which therefore reverses its
stationary velocity and makes it positive. So, in all cases, maj is either positive or
made positive after the lag time for a flip: the corresponding flock is then headed
on a collision course with its sibling. Note that, as we observed in the footnote of
the proof of Lemma 4.2, our previous analysis leading to the tower-of-twos growth
still holds despite the restoration of the true flipping rule. This concludes the
proof of Theorem 4.3. 2

It remains for us to establish the structural integrity of the flocks throughout
their lifetime. But, before we do so, it is useful to revisit the spectral shift and its
parity structure.

The Hidden Periodicity of the Spectral Shift. The formula for the station-
ary velocity in (115) reveals a built-in periodicity that illustrates a fundamental
aspect of the spectral shift. Looking at (110), one may wonder why the second
largest eigenvalues all appear with the same index parity: odd when j is even
and vice versa. Think of the velocity of a flock as being well approximated by
σ1 + γu, where σ is the speed of its drift and γu is its vibration vector pointing
in the direction of the second right eigenvector scaled by a Fourier coefficient γ
decaying exponentially fast with time. Take the time to be right before merging
with the flock’s sibling. Then the velocity of the new flock is of the form(

σ1 + γu
−σ1− γu

)
.

We approximate the transition matrix P
θj

j as 1πT + µj,2R, where R is a fixed
matrix of rank 1. After θj steps, the velocity becomes roughly (ignoring time-
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independent factors):

(1πT + µj,2R)
(

σ1 + γu
−σ1− γu

)
≈ γ1 + σµj,2w,

where w is a unit vector. We ignore the lower-order term µj,2γ. It thus appears
that the pair (σ, γ) becomes (γ, σµj,2) for the bigger flock. Note the alternation
between (σ, γ) and (γ, σ). In particular, the switch of γ from the right to the
left position in the pair captures the spectral shift underlying the flocking process,
while the contrary motion of σ indicates a re-injection of the first Fourier coefficient
into the spectral mix. In general, we have the relation (σj+1, γj+1) = (γj , σjµj,2);
hence,

(σj+2, γj+2) = (σjµj,2, γjµj+1,2).

This shows that σj+2 = (µj−2,2 µj,2)σj−2, which explains the parity-based grouping
of (103, 108). Of course, the hard part is to show that none of these terms vanish.
Note, in particular, that the vector

1πT
(

γu
−γu

)
comes frighteningly close to vanishing. A little bit of symmetry in the wrong
place is enough to derail the spectral shift. A uniform stationary distribution, for
example, would destroy the entire scheme; so would a vector u with the same first
and last coordinates.

4.3 Integrity Analysis

We saw in Section 4.1 that the flocks of size 2 and 4 remain single paths during their
lifetimes. The following result establishes the integrity of all the flocks. Though
not stated explicitly, the result also asserts that the birds B1, . . . ,Bn always appear
in that order from left to right.

Theorem 4.7 Any two adjacent birds within the same flock lie at a distance be-
tween 0.58 and 1. This holds over the entire lifetime of the flock, whether it flips
or not.

Proof. As is sometimes the case, it is simpler to prove a more complicated bound,
from which the theorem follows. For notational convenience, put ma0 = 1

4n
−5

and define h(i) as the height of the nearest common ancestor of the two leaves
associated with Bi and Bi+1; eg, h(1) = 1 and h(2) = 2. We prove by induction
on j that, for any 1 ≤ j < log n, tj ≤ t ≤ tj+1, and 1 ≤ i < 2j ,

1− 5
3(n5 + jn4)|mah(i)−1

| ≤ distt(Bi,Bi+1)

≤

{
1 if i = 2j−1 and t = tj ;
1− 1

4(1− j
n)|mah(i)−1

| else.
(116)
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Recall that a0, a1, etc, constitute the left spine of the fusion tree T . By (89), the
upper and lower bounds above fall between 0.58 and 1, so satisfying them implies
the integrity of the flocks along the spine: indeed, the upper bound ensures the
existence of the desired edges, while the lower bound greater than 1

2 rules out edges
between nonconsecutive birds. To extend this to all the flocks, and hence prove the
theorem, we establish (116) for nondeterministic flipping, ie, assuming that any
node may or may not flip regardless of what the true flipping rule dictates. The
issue here is that the left spine does not represent all flocks: reversing velocities
changes the positions of birds irreversibly, so technically we should prove (116)
not just along the left spine but along any path of T . We can do this all at once
by considering both cases, flip and no-flip, at each node aj .

We proceed by induction on j. Before we get on with the proof, we should
explain why the upper bound of (116) distinguishes between two cases. In general,
once two consecutive birds are joined in a flock, they stay forever at a distance
strictly less than 1. There is only one exception to this rule: at the time t when
they join, the only assurance we can give is that their distance does not exceed
1; it could actually be equal to 1, hence the difficulty of a nontrivial upper bound
when t = tj and i = 2j−1. The case j = 1 is special because two-bird flocks never
flip but are provided with two different kinds of initial velocities; therefore, we
must check both (B1,B2) and (B3,B4). We verify (116) directly from (68, 70).
Indeed, for 0 ≤ t ≤ t2,

2
3 − n

−c ≤ x2(t)− x1(t) ≤ x4(t)− x3(t) ≤ 2
3 + n−c.

Assume now that j ≥ 2. By applying successively (84, 86), Lemma 4.2, and (89),
we find that

‖Qθj−1

j−1 v
aj−1‖2 ≤ ej−Ω(θj−141−j)‖vaj−1‖2 ≤ e−Ω(n−2/|maj−1 |)

≤ e−2n−Ω(n−2/|maj−1 |) < |maj−1 |e−2n.

By (85),

vaj = ±

(
P
θj−1

j−1 vaj−1

−P θj−1

j−1 vaj−1

)
= |maj−1 |

(
1
−1

)
⊗ 12j−1 ±

(
Q
θj−1

j−1 v
aj−1

−Qθj−1

j−1 v
aj−1

)
.

The ± leaves open the possibility of a flip of either type, right or left, before the
2j−1-bird flocks join at time tj . As we saw earlier, the choice of type ensures that
the flock with the lower-indexed birds drifts to the right while its sibling, with the
higher-indexed birds, flies to the left; hence the certainty that, after flipping, the
“fixed” part of the velocity vector vaj is of the form |maj−1 |(1,−1)T ⊗ 12j−1 . (In
fact, to achieve just this is the sole purpose of flipping.) It follows that

vaj = |maj−1 |
(

1
−1

)
⊗ 12j−1 + ζ, with ‖ζ‖2 < |maj−1 |e−n . (117)
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For 1 ≤ i < 2j , define

χi = (
i︷ ︸︸ ︷

0, . . . , 0,−1, 1, 0, . . . , 0︸ ︷︷ ︸
2j

)T .

By (83), for s ≥ 1,

χTi P
s
j v

aj = majχ
T
i 12j + χTi Q

s
j v

aj = χTi Q
s
j v

aj ;

hence, for tj < t ≤ tj+1,

distt(Bi,Bi+1) = disttj (Bi,Bi+1) +
t−tj∑
s=1

(−1)f(s)χTi Q
s
j v

aj , (118)

where f(s) = 1 if there is a flip and s > nf , and f(s) = 0 otherwise. Note that
there is no risk in using distt(Bi,Bi+1), instead of the signed version, xi+1(t) −
xi(t), that birds might cross unnoticed: indeed, the bound in (86) applies to all
the velocities, so that distances cannot change by more than O(n1−c) in one step.
This implies that a change of sign for xi+1(t)−xi(t) would be preceded by the drop
of distt(Bi,Bi+1) below 1

2 and a violation of (116). By Cauchy-Schwarz and (84,
117),

|χTi Qsj ζ| ≤
√

2 ‖Qsj ζ‖2 ≤
√

2 ej+1−Ω(s4−j)‖ζ‖2 ≤ n2e−n−Ω(s/n2)|maj−1 |;

and, since n is assumed large enough, for s ≥ 1,

|χTi Qsjζ| < e−
1
2
n−sn−3 |maj−1 |. (119)

Likewise,

|χTi Qsj vaj | ≤
√

2 ‖Qsj vaj‖2 ≤ n1.45e−Ω(s/n2)‖vaj‖2
≤ n1.45e−Ω(s/n2)(|maj−1 |

√
n+ ‖ζ‖2).

For s ≥ 1 and 1 ≤ i < 2j , by (117),

|χTi Qsj vaj | ≤ n2|maj−1 |e−Ω(s/n2). (120)

Recall that j ≥ 2. To prove (116), we distinguish between two cases: whether the
birds Bi,Bi+1 are joined at node aj or earlier.

Case I. (i = 2j−1): The edge (i, i+ 1) is created at node aj and h(i) = j, where
2 ≤ j < log n (Figure 33). We begin with the case t = tj . By construction, the
upper bound in (116) is equal to 1. To establish the lower bound, we observe that
at time tj − 1 the two middle birds were more than one unit of distance apart.
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Bi
aj

Figure 33: The birds Bi and Bi+1 are joined together at time tj .

By the expression of the velocity given in (117), which expresses the displacement
prior to tj , neither bird moved by more than (1 + e−n)|maj−1 | in that one step;
therefore,

disttj (Bi,Bi+1) > 1− 3|maj−1 |, (121)

which exceeds the lower bound of (116), ie, 1− 5
3(n5 +jn4)|mah(i)−1

|. Assume now
that tj < t ≤ tj+1. Observe that

12j (

2j︷ ︸︸ ︷
1
2 , 1, . . . , 1,

1
2 )
{( 1
−1

)
⊗ 12j−1

}
= 0.

The i-th row of Pj is the same as the (2j + 1 − i)-th row read backwards. This
type of symmetry is closed under multiplication, so it is also true of P sj . By (83),
for any s ≥ 0, it then follows that

Qsj

{( 1
−1

)
⊗ 12j−1

}
= P sj

{( 1
−1

)
⊗ 12j−1

}
=
(
b
(s)
1 , . . . , b

(s)

2j−1 ,−b
(s)

2j−1 , . . . ,−b
(s)
1

)T
.

The following recurrence relation holds: b(0)
i = 1 if 1 ≤ i ≤ 2j−1, and b

(0)
i = −1

else. For s ≥ 0, we get the identities below for l ≤ 2j−1, plus an antisymmetric
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set for l > 2j−1:

b
(s+1)
l =

1
3



b
(s)
1 + 2b(s)2 if l = 1;
b
(s)
l−1 + b

(s)
l + b

(s)
l+1 if 1 < l < 2j−1;

b
(s)

2j−1−1
if l = 2j−1;

−b(s)
2j−1−1

if l = 2j−1 + 1;

−b(s)
2j+2−l − b

(s)

2j+1−l − b
(s)

2j−l if 2j−1 + 1 < l < 2j ;

−b(s)1 − 2b(s)2 if l = 2j .

We find by induction that

b
(s)
1 ≥ · · · ≥ b

(s)

2j−1 ≥ 3−s;

therefore,

χT2j−1Q
s
j

{( 1
−1

)
⊗ 12j−1

}
= −2b(s)

2j−1 < −3−s . (122)

Since the two middle birds in the flock Faj get attached in the flocking network
at time tj , disttj (Bi,Bi+1) ≤ 1. Assume that Faj does not undergo a flip. Then,
by (117, 118, 119), for tj < t ≤ tj+1,

distt(Bi,Bi+1) ≤ 1 +
t−tj∑
s=1

χTi Q
s
j v

aj

≤ 1 + |maj−1 |
t−tj∑
s=1

χT2j−1Q
s
j

{( 1
−1

)
⊗ 12j−1

}
+
t−tj∑
s=1

χT2j−1Q
s
j ζ

≤ 1− 1
3 |maj−1 |+

∑
s≥1

|χT2j−1Q
s
j ζ|

≤ 1− 1
3 |maj−1 |+ |maj−1 |

∑
s≥1

e−
1
2
n−sn−3

< 1− 1
3(1− o(1))|maj−1 | = 1− 1

3(1− o(1))|mah(i)−1
|,

which proves the upper bound in (116) for i = 2j−1. The negative geometric series
we obtain from (122) reflects the “momentum” (minus the vibrations) of the two
flocks colliding and penetrating into each other’s zone of influence before being
stabilized.

Suppose now that the flock Faj undergoes a flip at time tj +nf . The previous
analysis holds for tj < t ≤ tj + nf ; so assume that tj + nf < t ≤ tj+1. By (120)
and h(i) = j,

t−tj−nf∑
s=1

|χTi Qs+n
f

j vaj | ≤
t−tj−nf∑
s=1

n2|mah(i)−1
|e−Ω(sn−2+nf−2) = o(|mah(i)−1

|).
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By (118), therefore,

distt(Bi,Bi+1) = disttj (Bi,Bi+1) +
nf∑
s=1

χTi Q
s
j v

aj −
t−tj∑

s=nf +1

χTi Q
s
j v

aj

≤ disttj+nf (Bi,Bi+1) +
t−tj−nf∑
s=1

|χTi Qs+n
f

j vaj |

< 1− 1
3(1− o(1))|mah(i)−1

|+ o(|mah(i)−1
|) < 1− 1

4 |mah(i)−1
|.

This establishes the upper bound in (116) for i = 2j−1, whether there is a flip or
not. We prove the lower bound as follows. By (118, 120, 121), for tj < t ≤ tj+1,

distt(Bi,Bi+1) ≥ 1− 3|maj−1 | −
t−tj∑
s=1

|χTi Qsj vaj |

≥ 1− 3|maj−1 | − n2|maj−1 |
∑
s≥1

e−Ω(s/n2)

≥ 1− n5|maj−1 | = 1− n5|mah(i)−1
|.

Note that this derivation still holds if the flock “flips,” ie, reverses the sign of
Qsj v

aj . This establishes (116) for i = 2j−1.

h(i)

Bi
aj

Figure 34: The birds Bi and Bi+1 are joined earlier than tj .

Case II. (i < 2j−1): This implies that h(i) < j (Figure 34). Recall that j ≥ 2.
We omit the case i > 2j−1, which is treated similarly. The case t = tj follows
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by induction15 for j′ = j − 1 and t = tj′+1. Note that t 6= tj−1, so the inductive
use of (116) does not provide 1 as an upper bound; furthermore it provides even
stronger bounds, as j′ < j. We assume now that tj < t ≤ tj+1. By (118, 120),

|distt(Bi,Bi+1)− disttj (Bi,Bi+1)| ≤
∑
s≥1

|χTi Qsj vaj |

≤ n2|maj−1 |
∑
s≥1

e−Ω(s/n2) ≤ O(n4|maj−1 |).

We apply (116) inductively once more for j′ = j − 1 and t = tj′+1:

1− 5
3(n5 + (j − 1)n4)|mah(i)−1

| ≤ disttj (Bi,Bi+1) ≤ 1− 1
4(1− 1

n(j − 1))|mah(i)−1
|;

hence, for tj < t ≤ tj+1,

1− 5
3(n5 + (j − 1)n4)|mah(i)−1

| −O(n4|maj−1 |) ≤ distt(Bi,Bi+1) ≤
1− 1

4(1− 1
n(j − 1))|mah(i)−1

|+O(n4|maj−1 |).

Because j > h(i), by (89), |maj−1 | < n−c|mah(i)−1
|, for h(i) > 1. In the case

h(i) = 1,
|maj−1 | ≤ |ma1 | < n−c ≤ 4n−6|ma0 | = n−11,

for c ≥ 11. This shows that, in all cases, |maj−1 | < 4n−6|mah(i)−1
|; hence (116).

Since sums involving velocities are immediately taken with absolute values, the
same derivation can be repeated verbatim in the case of a flip. 2

5 Concluding Remarks

We have established the first general convergence bound for a standard neighbor-
based flocking model. We believe that it can be generalized to many of the metric
and topological variants of the Vicsek model. We have shown that the spectral
shift underpinning the slow convergence is resistant to noise decaying with time.
Without temporal decay, injecting a fixed amount of entropy into the system at
each step is likely to produce widely different behaviors. Whether the techniques
introduced in this work, in particular the geometric approach, can shed light on
phase transitions reported experimentally in [3,29] is a fascinating open question.
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15If the reader is wondering why our induction invariant is defined over the interval [tj , tj+1]
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