1. (PH collapsing when efficient means expected polynomial time.)

Show $NP \subseteq ZPP \implies PH = ZPP$.

(Hint: don’t be surprised if your proof fits on one line.)

2. (Optimal Karp–Lipton for NEXP.)

(a) (This part is worth 1 point, as the proof is about one sentence long.) Read the proof of the IKW Theorem, Lemma 20.20 in the textbook, which uses the “easy witness method” to show that $NEXP \subseteq P/poly \implies NEXP = EXP$. Now show that in fact $NEXP \subseteq P/poly \implies NEXP = MA$.

(b) In lecture we focused on showing that strong hardness assumptions imply deterministic poly-time algorithms for BPP; but, we mentioned that if one works the parameters, one gets that weak hardness assumptions imply deterministic subexponential-time algorithms for BPP. Specifically, one can show that if there is a language $L \in EXP$ that requires superpolynomial circuit size for almost all input lengths n, then for all $\varepsilon > 0$ there is a pseudorandom generator G with seed length $\ell(n) \leq n^\varepsilon$. Under this assumption, conclude that $MA \subseteq \text{i.o.-NTIME}(2^n)$.

(c) The above says that if EXP requires superpolynomial circuit size for almost all input lengths, then MA is nondeterministically simulable in $O(2^n)$ time for almost all n. You may now take it for granted that the “infinitely often” version is also true (the proof is essentially the same); namely, that $EXP \nsubseteq P/poly \implies MA \subseteq \text{i.o.-NTIME}(2^n)$. Here i.o.-C denotes the class of all languages A such that there exists $B \in \mathcal{C}$ with $A \cap \{0,1\}^n = B \cap \{0,1\}^n$ for infinitely many n.

You may also take for granted (cf. Homework 2, #1(d)) the following Time Hierarchy Theorem result: for all $c \in \mathbb{N}$ it holds that $EXP \nsubseteq \text{i.o.-TIME}(2^{n^c})$. (Remark: we do not know the nondeterministic version of this result.)

Now prove the following: $NEXP = MA \implies NEXP \subseteq P/poly$.

3. (One-way functions and complexity classes.) A “worst-case one-way function” is a function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ with the following properties: (i) f is one-to-one (injective); (ii) f does not stretch or shrink by more than a polynomial amount, i.e., there exists $k > 0$ such that $|x|^{1/k} \leq |f(x)| \leq |x|^k$ for all x; (iii) f is computable in polynomial time; (iv) the inverse function $f^{-1} : \{0,1\}^* \rightarrow (\{0,1\}^* \cup \{\bot\})$ is not computable in polynomial time, where $f^{-1}(y)$ is defined to be x if $f(x) = y$, or else \bot if $y \not\in \text{range}(f)$.
The complexity class \(\text{UP} \) (not its real name) is defined to be the set of all languages \(L \) for which there exists a polynomial-time nondeterministic Turing Machine \(M \) with the following properties: (i) if \(x \in L \) then \(M(x) \) accepts on exactly one “nondeterministic branch”; (ii) if \(x \notin L \) then \(M(x) \) accepts on exactly zero “nondeterministic branches”. As a remark, it is immediate that \(\text{UP} \subseteq \text{NP} \), and it’s also easy to see that \(\text{P} \subseteq \text{UP} \).

(a) Prove that if \(\text{UP} \neq \text{P} \) then there is a worst-case one-way function.
(b) Conversely, prove that if \(\text{UP} = \text{P} \) then worst-case one-way functions do not exist.

4. \((\text{O1.})\) Remember that complexity class “\(\text{S}_2 \text{P} \)” from Homework 5, Problem 1? Here we describe a variant of it called “\(\text{O}_2 \text{P} \)”. The class \(\text{O}_2 \text{P} \) is just like \(\text{S}_2 \text{P} \) except Yolanda and Zeyuan are too lazy to even look at the input \(x \); they only look at its length, \(n \). More precisely, we say that \(L \in \text{O}_2 \text{P} \) if there is a polynomial \(p(n) \) and a polynomial-time algorithm \(V \) such that for all \(n \), there exist strings \(y^*, z^* \in \{0,1\}^{p(n)} \) such that for all \(x \in \{0,1\}^n \),

\[
\begin{align*}
 x \in L &\implies \forall z \in \{0,1\}^{p(n)} \ V(x, y^*, z) = 1, \\
 x \notin L &\implies \forall y \in \{0,1\}^{p(n)} \ V(x, y, z^*) = 0.
\end{align*}
\]

Prove that \(\text{BPP} \subseteq \text{O}_2 \text{P} \).

5. \((\text{O2: Revenge of Karp–Lipton.})\)

(a) Show that \(\text{NP} \subseteq \text{P}/\text{poly} \implies \text{PH} = \text{O}_2 \text{P} \).
(b) Show that \(\text{PH} = \text{O}_2 \text{P} \implies \text{NP} \subseteq \text{P}/\text{poly} \).