1. (Just mod 6 things.)
 (a) Let \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) and let \(p \) be a prime. As you showed in HW8.3(b), there is a multilinear polynomial \(F(x_1, \ldots, x_n) \) over \(\mathbb{F}_p \) such that \(F(x) = f(x) \) for all \(x \in \{0, 1\}^n \). Show that such a multilinear representation is unique. (Hint: if \(F_1(x) = F_2(x) \), key in on the least-degree nonzero monomial in \(F_1(x) - F_2(x) \).) Deduce that any multilinear polynomial over \(\mathbb{F}_p \) computing the AND function must have degree \(n \).

 (b) Show that AND functions cannot be computed by constant-depth circuits (of arbitrary size) consisting only of input gates, the constant 1 gate, and mod \(p \) gates, where \(p \) is a fixed prime. Recall that a mod \(m \) gate outputs 0 or 1 depending on whether the number of input 1’s is zero or nonzero modulo \(m \). (Hint: show that such a circuit computes a polynomial of constant degree.)

 (c) Show that AND functions can be computed by depth-2 circuits (albeit of exponential size) consisting only of input gates, the constant 1 gate, and mod \(6 \) gates. (Hint: first show how to get mod \(3 \) and mod \(2 \) gates; then show that if you take the mod \(2 \) of every subset of the inputs, then mod \(3 \)-together the \(2^n \) results, you basically get the OR function.)

Remark: It is open to show that AND is not computable by depth-3, poly-size circuits consisting only of mod \(6 \) gates. It is also open to show this about SAT.

2. (Circuit lower bounds for Permanent.) Prove that the Permanent function (of integer matrices) is not computable by (uniform) ACC circuits, even with \(2^{n^{\omega(1)}} \) size. You may take for granted the following facts: (i) the Time Hierarchy Theorem holds relative to any oracle; (ii) many reductions in classic complexity theorems (e.g., the Cook–Levin Theorem, Valiant’s \#P-completeness of Permanent for integer matrices, . . .) can be carried out in (uniform) \(\text{AC}^0 \).

Remark: In fact, it has been shown that Permanent is not even in the larger circuit class of (uniform) \(\text{TC}^{0} \): namely, \(O(1) \)-depth poly-size circuits of Majority gates.

3. (Fighting perebor for ACC-SAT.) In this problem, your algorithms may be in the random-access Turing Machine model.
 (a) Show that there is a \(2^m \cdot \text{poly}(m) \) time algorithm for deciding whether a given \(m \)-input, “size-\(2^{\sqrt{m}} \) SYM+ circuit” is satisfiable. Recall that such a circuit is of the form \(h(p(x_1, \ldots, x_m)) \), where \(p \) is a multilinear polynomial given by the sum of at most \(2^{\sqrt{m}} \) monomials (each of degree at most \(\sqrt{m} \)) and \(h \) is an explicitly given function \(\{0, 1, 2, \ldots, 2^{\sqrt{m}}\} \rightarrow \{0, 1\} \). (Hint: you may appeal to a problem from Homework 7.)

 (b) Fix a depth \(d \in \mathbb{N}^+ \) and a modulus \(r \). Show that for a sufficiently small constant \(\delta > 0 \), there is a \(2^m \cdot \text{poly}(m) \) time algorithm for deciding whether a given \(m \)-input, depth-\((d + 1) \), size-\(2^{O(m^\delta)} \) \(\text{AC}^0[r] \) circuit is satisfiable. (Hint: you may appeal to theorems from class.)

 (c) Show that there is a \(2^{n-\Omega(n^\delta)} \) time algorithm for deciding whether a given \(n \)-input, depth-\(d \), size-\(2^{n^\delta} \) \(\text{AC}^0[r] \) circuit is satisfiable. (Hint: given \(C \), consider \(C' \) which is an OR over all possible settings to the first \(n^\delta \) variables of \(C \).)