Homework 10 Due: 10:00am, Tuesday November 21

In this homework, you may wish to consult Lecture 4. Also, you may take for granted the following result, which you basically proved in Homework 9.1:

Theorem. Let $f: \{0,1\}^n \to \{0,1\}$, let $\varepsilon \in [\frac{1}{n},1]$, and let ρ be an ε -random restriction. (Recall this means each coordinate is independently set to ' \star ' (unfixed) with probability ε , and is otherwise set to 0 or 1 with probability $\frac{1-\varepsilon}{2}$ each.) Then

$$\mathbf{E}[L(f|_{\rho})] \le 2\varepsilon^{1.5}L(f) + 1,$$

where, recall, L(g) is the minimum size of a Boolean formula computing g.

(In fact, Johan Håstad and Avishay Tal have shown that $\mathbf{E}[L(f|_{\rho})] \leq O(\varepsilon^2)L(f) + O(1)$.)

- 1. (More on shrinking formulas.) Let b > 1, $m = 2^b$, n = bm. Given some Boolean function $\psi : \{0,1\}^b \to \{0,1\}$, define the function $f_{\psi} : \{0,1\}^n \to \{0,1\}$ as follows: Think of $x \in \{0,1\}^n$ as being divided into b "blocks" of m bits each. Then $f_{\psi}(x) = \psi(z_1,\ldots,z_b)$, where z_i is the parity (XOR) of the ith block of bits in x.
 - (a) Let $\varepsilon = \frac{b \ln(3b)}{n}$ and let ρ be an ε -random restriction on n = bm variables. Show that with probability at least 2/3, the restriction ρ gives at least one \star to each of the b blocks.
 - (b) Show that there exists a restriction σ of the n coordinates such that both of the following hold: (i) $L(f_{\psi}|_{\sigma}) \leq 6(\frac{b \ln(3b)}{n})^{1.5}L(f_{\psi}) + 3$; (ii) σ gives at least one \star to each of the b blocks.
 - (c) Show that $L(f_{\psi}) \geq \widetilde{\Omega}(n^{1.5})(L(\psi) O(1))$. Deduce that there exists ψ such that $L(f_{\psi}) \geq \widetilde{\Omega}(n^{2.5})$.

2. (Andreev's function.)

(a) Does the function L_{ψ} produced in the previous problem count as "explicit"?¹ Anyway, let us define an explicit function $\alpha:\{0,1\}^{n+m}\to\{0,1\}$, as follows: $\alpha(x,y)=f_y(x)$, where $x\in\{0,1\}^n,\ y\in\{0,1\}^m$ is interpreted as the truth-table of a function $\{0,1\}^b\to\{0,1\}$, and f_y refers to the " f_{ψ} " notation from the previous question. Show that $L(\alpha)\geq\widetilde{\Omega}(n^{2.5})$.

Remark. Using the Håstad–Tal result, one can deduce that in fact $L(\alpha) \geq n^3/\widetilde{O}(\log^3(n))$.

- (b) Show that $L(\alpha) \leq O(n^3/\log^2 n)$. (Bonus: show that $L(\alpha) \leq O(n^3/\log^3 n)$.)
- 3. (Detecting triangles.) Prove that any monotone circuit that detects whether a v-vertex graph (given by its $v \times v$ adjacency matrix) contains a triangle must have size at least v^3 /polylog(v). (Hint: complete bipartite graphs contain no triangles.)

¹This is a rhetorical question; you are not required to provide an answer.