Homework 8

Due: 10:00am, Tuesday November 7

- 1. (Interactive proofs vs. instance checkers.) Suppose languages L and \overline{L} have polynomial-round interactive proofs in which Merlin's strategy is implementable in P^L . Show that L has an instance checker. You may use a slightly weaker definition of "instance checker" wherein, if the provided oracle C actually computes L exactly, the checker only has to output the correct answer about $x \in L$ with high probability (rather than with probability 1).
- 2. (**Derandomization implies circuit lower bounds.**) Suppose you wanted to prove BPP = P. Well, you'd better be able to at least prove $\mathsf{coRP} = \mathsf{P}$. And hence you'd better be able to at least prove that the PIT problem (Polynomial Identity Testing, which we know is in coRP) is in P. And hence you'd better be able to at least prove that it's in NP. And hence you'd better be able to at least prove that it's in $\mathsf{NSUBEXP} := \bigcap_{\varepsilon>0} \mathsf{NTIME}(2^{n^{\varepsilon}})$. In this problem, you'll show this implies that you'd better be able to prove superpolynomial circuit lower bounds. In this problem, let $\mathsf{AlgP}^0/\mathsf{poly}$ denote the class of all polynomial-degree families computable by polynomial-size algebraic circuits using $+, -, \times \mathsf{over} \ \mathbb{Z}$, where the only constants allowed are 0 and 1 (equivalently, where the constants must be of $\mathsf{poly}(n)$ bit-length).
 - (a) Show that if PERMANENT $\in \mathsf{AlgP}^0/\mathsf{poly}$ and PIT $\in \mathsf{NSUBEXP}$, then $\Sigma_2\mathsf{P} \subseteq \mathsf{NSUBEXP}$. (You can definitely use Valiant's Theorem on $\#\mathsf{P}$ -completeness of PERMANENT_{0,1}. You can also use Toda's 1st and 2nd Theorems if you like, though you don't need them.)
 - (b) Show that if, furthermore, $\mathsf{NEXP} \subseteq \mathsf{P/poly}$, then $\Sigma_2 \mathsf{P} \subseteq \mathsf{NE} \subseteq \mathsf{SIZE}(n^c)$ for some constant c. (Here $\mathsf{NE} = \mathsf{NTIME}(2^{O(n)})$.)
 - (c) Deduce that

$$\mathrm{PIT} \in \mathsf{NSUBEXP} \quad \Longrightarrow \quad \Big(\mathrm{PERMANENT} \not\in \mathsf{AlgP}^0/\mathrm{poly} \quad \lor \quad \mathsf{NEXP} \not\subseteq \mathsf{P/poly}\Big).$$

- 3. (Worst-case hardness to slight hardness-on-average for EXP.) Suppose that $L \in \mathsf{EXP}$ but L requires superpolynomial-size circuits; more precisely, for all c and all sufficiently large n it holds that there is no Boolean circuit of size n^c computing $L_n : \{0,1\}^n \to \{0,1\}$, the indicator function for presence in $L \cap \{0,1\}^n$.
 - (a) Show that there is a language $L' \in \mathsf{E} := \mathsf{TIME}(2^{O(n)})$ with the same property.
 - (b) Let p stand for the first prime larger than n+1 (this can certainly be deterministically computed in poly(n) time, as we'll have p < 2n) and write \mathbb{Z}_p for the field of integers modulo p. Show that there is a multilinear polynomial $f_n : \mathbb{Z}_p^n \to \mathbb{Z}_p$, agreeing with L'_n on all inputs in $\{0,1\}^n$, such that the family of functions (f_n) can be computed in $2^{O(n)}$ time.
 - (c) Show that for every polynomial-size circuit family (C_n) (where C_n has $n(\log n + 1)$ inputs and $\log n + 1$ outputs¹)

$$\Pr_{\boldsymbol{x} \sim \mathbb{Z}_p^n} [C_n(\boldsymbol{x}) = f_n(\boldsymbol{x})] < 1 - \frac{1}{3n}.$$

¹Here $\log n + 1$ is enough to encode an element of \mathbb{Z}_p ; I'm too lazy to put ceilings/floors in the right spots here, and you may be equally lazy about this point.

(Hint: recall where this $1 - \frac{1}{3n}$ came up elsewhere in class; also recall BPP $\in P/\text{poly.}$)

(d) Define a decision problem (language) H as follows: on input $x \in \mathbb{Z}_p^n$ and integer $0 \le j \le \log n$, output the jth bit of $f_n(x)$. Show that $H \in \mathsf{E}$, and that for every polynomial-size circuit family (D_n) it holds that

$$\Pr_{\substack{\boldsymbol{x} \sim \mathbb{Z}_p^n \\ \boldsymbol{j} \sim \{0, \dots, \log n\}}} \left[D_{n'}(\boldsymbol{x}, \boldsymbol{j}) = H(\boldsymbol{x}, \boldsymbol{j}) \right] < 1 - \frac{1}{O(n \log n)}$$

(where $n' = n(\log n + 1) + \log \log n$).

Remark: Thus from a language in EXP that is hard for polynomial-size circuits in the worst case, we may construct a language in E that is slightly hard-on-average for polynomial-size circuits, where "slightly" involves error at least $\frac{1}{O(n')}$ on inputs of length n'.

(Incredibly minor notes: Strictly speaking, we have not quite shown hardness-on-average with respect to the purely uniform distribution on inputs, because of the issue of how exactly to encode the pair $\langle x,j\rangle$ by a single string. Also, strictly speaking, H might be trivial for some input lengths (those not of the appropriate form $n(\log n+1) + \log\log n$), and we'd rather have it hard for circuits at almost all input lengths. Both issues are easy and boring to fix.)