HOMEWORK 2 Due: 10:00am, Tuesday September 19

1. (Almost-Everywhere Time Hierarchy Theorems.)

(a) The standard (Deterministic) Time Hierarchy Theorem we considered in class shows that if T(n) is time-constructible and $t(n) \log t(n) = o(T(n))$ then there is a language $L \in \mathsf{TIME}(T(n))$ such that $L \not\in \mathsf{TIME}(t(n))$. If we unpack the definition of $L \not\in \mathsf{TIME}(t(n))$, it means this:

for any TM M with running time
$$O(t(n))$$
, $\exists x \ M(x) \neq L(x)$, (1)

Here we're abusing notation a little by writing L(x) for the answer to the question $x \in L$. Actually, if you inspect the proof of the theorem, it showed something stronger:

for any TM M with running time
$$O(t(n))$$
, $\exists^{\infty} x \ M(x) \neq L(x)$, (2)

where the symbol \exists^{∞} means "there exists infinitely many" (or synonymously, "infinitely often").¹ Show that even if you didn't remember the proof of the THT, you could deduce (2) in a purely "black-box" fashion from (1). (You may assume that $t(n) \geq n$.)

(b) Similarly show that you can deduce the following in a purely "black-box" fashion:

for any M deciding L, and any C,
$$\exists^{\infty} x \ M(x) \text{ takes} > Ct(|x|) \text{ time steps.}$$
 (3)

(c) Arguably even (2) is pretty weak. Here is an upgraded statement that one might desire:

for any TM M with running time
$$O(t(n))$$
, $\forall^{\infty} x \ M(x) \neq L(x)$, (4)

where the symbol " \forall^{∞} means "for all but finitely many x" (or synonymously, "almost everywhere"). Show that (4) is provably too much to hope for.

(d) Here is an upgrade of (3):

for any
$$M$$
 deciding L , and any C , $\forall^{\infty} x \ M(x)$ takes $> Ct(|x|)$ time steps. (5)

This can be achieved, but the proof is much harder (it took 13 years after the original THT). Short of that, you are asked to prove a weaker statement in this problem.

Say that a language A is in the class i.o.-P if there is a polynomial-time Turing Machine M that computes A correctly for infinitely many input lengths (i.e., $A \cap \{0,1\}^n = L(M) \cap \{0,1\}^n$ for infinitely many n). Prove that there is a language $L \in \mathsf{EXP}$ that is not in i.o.-P.

2. (Superiority.) Do Exercise 3.4 in Arora–Barak.²

¹In fact, the proof kind of needed to show this, to take care of the fact that you need to diagonalize against all O(t(n)) running times.

Of course, you may assume $n^{1.1}$ is time-constructible.

- 3. (Awesome circuit lower bounds from depth-3 circuit lower bounds.) Suppose $f:\{0,1\}^n \to \{0,1\}$ can be computed by a circuit of logarithmic depth $c_1 \log n$ and linear size c_2n . The goal of this problem is to show that f can also be computed by a depth-3 circuit of subexponential size, namely $2^{O(n/\log\log n)}$. In fact, you should be able to make the depth-3 circuit an OR of CNFs, where each CNF has at most $2^{O(n^{\cdot 01})}$ clauses, and where the circuit has the additional property that on all inputs, at most one of the CNFs outputs True. By the way, this result shows that to get a superlinear circuit lower bound for log-depth circuits (which would be awesome), "all" you have to do is get an essentially-fully-exponential circuit lower bound for depth-3 circuits. Later in the class we will show that depth-3 circuits require size $2^{\Omega(\sqrt{n})}$ to compute the Parity function $f(x) = \sum_i x_i \mod 2$. Close, but no cigar.
 - (a) In the log-depth, linear-size circuit for f, show that it is possible to "cut" $O(n/\log\log n)$ wires, leaving a collection of subcircuits each of which depends on at most $O(n^{.01})$ inputs. (Hint: an earlier homework problem.)
 - (b) Complete the proof i.e., the construction of the depth-3 circuit for f. (Hint: consider "enumerating" all possible values for the cut wires.)

³As per usual conventions, in the log-depth linear-size circuit, we assume the allowed gates are NOT and fan-in-2 AND/OR, whereas in the depth-3 circuit we assume the allowed gates are NOT and unbounded-fan-in AND/OR. Also, NOT gates are not counted toward depth in constant-depth circuits.