Starting in this class, we will give another proof that Parity is not in $\mathbf{AC^0}$. In fact, we will be able to show the essentially tight result, that depth-k (unbounded fan-in) circuits for Parity require size $2^{\Omega(n^{1/(k-1)})}$. (This is tight up to the $\Omega(\cdot)$.)

Given that we already saw a proof of this with the slightly weaker $1/4k$ in the exponent, why bother? There are a few reasons. The first is that this result gives us something strong for every k, even $k = 3$. The second one is basically “because we can”. It’s so rare to get a strong lower bound at all in complexity theory that it’s worth really exploring the ones you get. The third reason is that the proof will give us a much greater understanding of $\mathbf{AC^0}$ circuits than Razborov-Smolensky does. And this is great, because constant-depth AND-OR circuits with unbounded fan-in are about the strongest class which we can “understand”, or really “get a handle on”. I will remind you that as far as we know, every language in \mathbf{NEXP} — indeed, every language in $\mathbf{EXP^{NP}}$ — can be solved by linear-size constant-depth AND-OR circuits with Mod-6 gates.

1 The Switching Lemma

This new proof that Parity is not in $\mathbf{AC^0}$ was given by Håstad in 1986. It is based on a theorem called Håstad’s Switching Lemma. It is a pretty hard theorem, so it’s ironic that it’s known merely as a “lemma”. To state it, we need to first recall some basic definitions.

1.1 Basic definitions

Definition 1.1. A DNF is an OR (disjunction) of terms, where each term is an AND (conjunction) of literals. E.g.,

$$f = x_1x_3\overline{x}_6 \lor x_2\overline{x}_7 \lor x_5x_6x_8x_{11} \lor \cdots$$

(Here the \wedge signs in each term are omitted.) A DNF is a syntactic object, but we also think of it as computing a function $f : \{0,1\}^n \to \{0,1\}$ in the obvious way. The size of f is the number of terms, and the width of f is the maximum number of literals in a term.

Definition 1.2. Similarly, a CNF is an AND (conjunction) of clauses, each of which is an OR (disjunction) of literals. Its size and width are defined in the same way.

Definition 1.3. A decision tree (DT) is an object that looks like this: \[\text{[draw picture]}\]. It is again a syntactic object, but we identify it with a Boolean function in the obvious way. Its depth is the maximum path length (in terms of number of variables along the path; i.e., the constant DT has depth 0). Its size is the number of leaves. Given a Boolean function f, we write $\text{DT}_{\text{depth}}(f)$ for the least depth of a DT that computes f.

Here is a trivial fact:
Fact 1.4. If $\text{DT}_{\text{depth}}(f) \leq d$ then f has a DNF of width d and also a CNF of width f.

Proof. Given the depth-d DT for f, to get the DNF take the OR of all paths which lead to a 1-leaf. To get the CNF, note that there is clearly a depth-d DT for $\neg f$, so there is a width-d DNF for $\neg f$. But by de Morgan, we can make the negation of a width-d DNF into a width-d CNF. \hfill \Box

Definition 1.5. Assume we are concerned with functions f over n Boolean variables x_1, \ldots, x_n. A restriction or partial assignment α means fixing some of the variables to 0 or 1, and leaving the remaining variables free. We also say that the free variables are set to “star”, \star. We write $\text{stars}(\alpha)$ for the set of coordinates which α leaves free. We also write $f|_\alpha$ for the restricted function $\{0,1\}^{\text{stars}(\alpha)} \rightarrow \{0,1\}$.

Definition 1.6. We write R_s for the set of all restrictions α with exactly s stars. (We suppress from the notation the dependence on n.)

1.2 Statement of the Switching Lemma

The Switching Lemma is concerned with how applying a random restriction simplifies a DNF f.

Definition 1.7. A random restriction with s stars is just a uniformly random restriction α from R_s. Equivalently, the star set S is chosen uniformly at random from the $\binom{n}{s}$ possibilities, and then the unstarred coordinates $[n] \setminus S$ are fixed uniformly at random from the 2^{n-s} possibilities.

The Switching Lemma says the following. Suppose you have a DNF f with small width, w. Further, suppose you hit it with (i.e., apply to it) a random restriction α with extremely few stars; i.e., you fix almost all the coordinates randomly. Then $f|_\alpha$ likely has tiny DT-depth. Precisely:

Theorem 1.8. (Håstad’s Switching “Lemma”) Let f be a DNF of width at most w over n variables. Let α be a random restriction with $s = \sigma n$ stars, where $\sigma \leq 1/5$. Then for each $d \geq 0$ (and $\leq s$),

$$\Pr[\text{DT}_{\text{depth}}(f|_\alpha) > d] \leq (10\sigma w)^d.$$

Some comments:

1. The same theorem is of course true for CNFs.

2. Sometimes you will see different constants in there rather than 10; sometimes 7, sometimes 5. Håstad even managed to prove 4.16 or something. The point is, never mind; it only matters that it’s a constant.

3. Note that there is no dependence on the size of f.

4. Think of σ as the fraction of coordinates that gets stars.

5. Further, think of $\sigma = 1/(1000w)$ (and perhaps think of $w = \log n$). In this case, the expected number of \star’s per term of the DNF is at most 1/100, much less than 1! So out of 1000 terms in the DNF, perhaps just one or so will pick up even a single \star. And further, note that even this term with a \star will very likely be fixed to 0. So the restriction is really hitting the DNF extremely hard.

6. On the other hand, note that there will still be $n/(1000w)$ variables which get stars, and if $w = \log n$ this is $\Omega(n/\log n)$ variables which remain free.
1.3 Why does this help prove Parity not in \(\text{AC}^0 \)?

It’s fairly easy to get the size lower-bound for depth-\(k \) circuits computing Parity out of the Switching Lemma. We will do the precise calculations later, but here is the very rough idea. Given an \(\text{AC}^0 \) circuit, we know that a random restriction is very likely to severely simplify each DNF at the bottom two layers [[draw picture]], at least assuming it has small width. Specifically, it’s quite likely that each small-width DNF will simplify to a small-depth decision tree. But we know a small-depth decision tree can be computed by a small-width CNF. So we have “switched” all the small-width DNFs at the bottom two layers into small-width CNFs. This lets us merge two layers of AND gates, and we’ve shrunk the depth by 1. We then repeat, overall making \(k \) random restrictions.

This leads to two things: first, we can compute the final restriction subfunction by a small-depth decision tree. But also, since each random restriction leaves a decent fraction of variables unset, there is still a decent fraction of variables unset after \(k \) restrictions. But any restriction of Parity is either Parity or its negation! And Parity on \(m \) variables (or its negation) requires a maximal-depth decision tree, depth \(m \) (this is easy to check). This leads to a contradiction. Again, we’ll do the details later.

2 Proof of the Switching Lemma

There are many many letters in the proof; please refer frequently to the following table:

\[
\begin{align*}
\text{f} &= T_1 \lor T_2 \lor T_3 \lor \cdots: \text{a DNF} \\
n &\text{: total number of variables f is on} \\
w &\text{: the width of f (max size of a term)} \\
\sigma &\text{: fraction of stars in the random restriction} \\
s = \sigma n &\text{: number of stars in the random restriction} \\
\mathcal{R}_s &\text{: set of all restrictions; has cardinality } \left(\begin{array}{c} n \\ s \end{array}\right)2^{n-s} \\
d &\text{: goal DT-depth for the restriction of f} \\
\mathcal{B} &\text{: the set of bad restrictions } \beta \text{ (making DT}_{\text{depth}} (f|_{\beta}) > d) \\
\beta &\text{: a fixed bad restriction} \\
\pi &\text{: a restriction on } d \text{ variables such that } f_{\beta \pi} \text{ is still not constant} \\
&\text{(gotten from the canonical DT for } f_{|\beta})
\end{align*}
\]

As mentioned, the proof of the Switching Lemma is somewhat hard. We give a combinatorial proof due to Razborov which most people consider simpler than Håstad’s probabilistic proof. This proof uses a very unusual strategy which I haven’t seen in many (any?) other proofs.

2.1 Proof strategy.

Let \(\mathcal{B} \) be the set of all bad restrictions, where a restriction \(\beta \) is bad if \(\text{DT}_{\text{depth}} (f|_{\beta}) > d \). Our goal is to show

\[
\frac{|\mathcal{B}|}{|\mathcal{R}_s|} \leq (10\sigma w)^d.
\]

We do this in a bit of a strange way. We define an “encoding” \(\text{Enc}(\beta) \) of each bad restriction \(\beta \). This encoding will consist of a restriction \(\beta' \) which is the same as \(\beta \) with a few more variables fixed — i.e., a few fewer stars — plus a little auxiliary info:

\[
\text{Enc}(\beta) = \text{some } \beta' \in \mathcal{R}_{s-d} + \text{a little bit of auxiliary info}.
\]
We will then show that there is a “decoding” procedure Dec which takes $\text{Enc}(\beta)$ and returns β. In other words, the encoding maps each bad restriction $\beta \in B$ to something unique; we can recover β from the encoding. Thus we have an injective mapping

$$B \hookrightarrow R_{s-d} \times \text{(a small auxiliary set)}.$$

Forgetting about the auxiliary set, this shows that B is small; it’s at most $|R_{s-d}|$. And how big is $|R_{s-d}|$? Or more pertinently, given (1), how big is it compared to R_s? Intuitively, R_{s-d} is much smaller because the real killer, information-theoretically, in specifying a restriction is saying where the ⋆’s go. And in R_{s-d}, you have to say this for fewer ⋆’s.

We’re being rough for now, so let’s say that

$$|R_s| = \binom{n}{s} 2^{n-s} \approx \frac{n^s}{s!} 2^{n-s}.$$

And,

$$|R_{s-d}| = \binom{n}{s-d} 2^{n-(s-d)} \approx \frac{n^{s-d}}{(s-d)!} 2^{n-(s-d)}.$$

So

$$\frac{|R_{s-d}|}{|R_s|} \approx \frac{s! 2^d}{(s-d)! n^d} \approx \left(\frac{2^s}{n}\right)^d = (2\sigma)^d.$$

Great! This is even better than (1). What’s going to happen is that

“little bit of auxiliary info” = about $d \lg w$ bits

(where $\lg = \log_2$). Hence the small auxiliary set will be of size

$$\approx 2^{d \lg w} = u^d.$$

This will make the final upper bound on the size of the encoding set $(2\sigma)^d \cdot w^d = (2\sigma w)^d$.

Well, we’ve been a bit sloppy/casual, and in the end we collect a few extra factors of 2^d; hence the final bound of $(10\sigma w)^d$ in (1).

2.2 A good start

Going straight for that encoding is a bit ambitious, so we will start a bit slow. Let β be a bad restriction, so $\text{DT}_{\text{depth}}(f|\beta) > d$. Let’s think about the function $f|\beta$ a bit. We can imagine getting $f|\beta$ by applying β to each term T_1, T_2, T_3, \ldots of f. It will be quite important in the proof that we consider these terms as ordered.

What happens when a term T is restricted by β? Since β is a restriction with few stars, probably most literals in T get fixed, and maybe a small number stay free (i.e., get ⋆’s). An important thing to remember, though, is that β is bad, hence $f|\beta$ is not constantly 1 (else it would have a depth 0 decision tree!). Hence β does not fix any terms T_i to 1; otherwise, it would make the whole DNF f constantly 1. On the other hand, β will probably “kill” many terms — i.e., fix them to 0. This is because it just has to fix one literal the “wrong” way to kill the whole term. In the unlikely event that β does not kill T, it leaves it a nontrivial term $T|\beta$ over the starred literals (of which
there are presumably few).

When we talk now about applying β to f, we know that it kills most terms, fixes no terms to 1, and leaves a few terms alive, but on fewer variables. Let’s focus now on the first term (in the ordering T_1, T_2, \ldots) which β does not kill. We’ll write T_i for that term, and we’ll write $U_1 = (T_i)|_\beta$ for the restricted version of that term, which is a conjunction on starred variables. Say for example U_1 has 3 literals, and let’s assume for now that $d \geq 3$.

Claim 2.1. Since $\text{DT}_{\text{depth}}(f|_\beta) > d \geq 3$, there is some way to fix x_3, x_4, x_9 such that $f|_\beta$ is still undecided.

Let π_1 be, say, the lexicographically least assignment to x_3, x_4, x_9 such that $f|_\beta$ is still undecided. Given a partial assignment π_1 like this, we will write π_1 for the restriction formed from β by additionally assigning according to π_1. Note that

$$\beta \pi_1 \in \mathcal{R}_{s-3},$$

because π_1 fixes 3 more variables.

You may notice that we’ve got an object that we were looking for into play; namely, a restriction with even fewer stars than β. For example, suppose we could somehow have

$$\text{Enc}(\beta) = \beta \pi_1.$$

That would be a good start because we know $|\mathcal{R}_{s-3}|/|\mathcal{R}_s| \approx \Theta(1/n^3)$. So we would have encoded β by something from a set $1/n^3$ smaller than the ambient restriction set \mathcal{R}_s.

Only trouble is, it’s not clear at all how to recover/decode β from $\beta \pi_1$. Note that we’re not allowed to treat $\beta \pi_1$ syntactically as being (β, π_1); for our counting purposes, we just know it’s some restriction in \mathcal{R}_{s-3} and we don’t know which is the “β” part and which is the π_1 part.

A first idea to get out of this is to use the auxiliary information; we might tack some bits onto the encoding which say which of the variable-fixings in $\beta \pi_1$ comes from π_1. This would indeed let us recover β. But unfortunately, we’d need something like $3 \log n$ bits to specify these three variables, leading to an extra encoding-size factor of n^3, which defeats the purpose of mapping into \mathcal{R}_{s-3}.

The main trick: Here is the trick. Let γ_1 denote the assignment to the living variables in U_1 which makes U_1 true (i.e., 1). In our example, this is $x_3 = 1, x_4 = 1, \overline{x}_9$. Now instead of encoding β by $\beta \pi_1$, we’ll consider

$$\text{Enc}(\beta) = \gamma_1 \beta \pi_1.$$

This is similarly in \mathcal{R}_{s-3}. But the beauty of this idea is the following: the restriction $\beta \gamma_1$ “tells” us which term U_1 is! More precisely:

Claim 2.2. If we consider $f|_{\beta \gamma_1}$, then T_i is the first (in the ordering) term which $\beta \gamma_1$ sets to 1.

This takes a tiny bit of thought: the point is that certainly we still have that $T_1, T_2, \ldots, T_{i_1-1}$ are all still fixed to 0 by $\beta \gamma_1$, since they are fixed to 0 by β. And then T_{i_1} is indeed fixed to 1, because γ_1 fixes $U_1 = (T_{i_1})|_\beta$ to 1.

Because of this, we can almost decode β from $\beta \gamma_1$. With $\beta \gamma_1$ we can identify T_{i_1}. Now, we still need to pull out γ_1 from $\beta \gamma_1$, but the point is:
Claim 2.3. We can specify the variables γ_1 is fixing in $\beta\gamma_1$ using only $3 \log w$ bits of auxiliary information, rather than $3 \log n$.

This is because we only need to specify which variables in the width-w term T_1 are the ones γ_1 fixes.

All in all, we’ve shown that we can encode β in a decodable way with an object from
$$R_{s-3} \times \{0,1\}^{3 \log w}.$$
And from our previous calculations, we have
$$\frac{|R_{s-3} \times \{0,1\}^{3 \log w}|}{R_s} \approx (2\sigma w)^3.$$
This is a pretty good start, except we only have a power of 3, whereas we wanted a power of d. To complete the proof we need to somehow “iterate” the above argument.

One more small trick that will actually be crucial:

Claim 2.4. By adding an additional 3 bits of auxiliary information, we can also “specify” π_1.

This is because π_1 fixes the same variables as γ_1 (i.e., x_3, x_4, and x_9), just in different ways. So we can use 3 extra bits of auxiliary information to specify how π_1 fixes these variables.

2.3 The full argument

We got a power of 3 in the above example because we supposed that in the first unkillable term of $f|\beta$, there were 3 unset variables. Then we took a fairly great loss by just using that $d > 3$, which implied there was some way to fix these variables to keep $f|\beta$ undetermined. We now improve this argument.

Recall we have a width-w DNF f with an ordered set of terms T_1, T_2, T_3, \ldots, along with some bad restriction β. This means that $\text{DT}_{\text{depth}}(f|\beta) > d$. We will define a canonical decision tree for $f|\beta$, denoted $C(f|\beta)$, and therefore we will be able to say that in particular the depth of $C(f|\beta)$ is greater than d. This definition is a bit finicky; one needs to pay attention to it carefully.

Definition 2.5. The canonical decision tree $C(f|\beta)$ is defined as follows: Take the first term T_1 in order which is not killed by β. Say it reduces to the term U_1, on d_1 variables. Make a complete depth-d_1 decision tree over the variables in U_1 (querying them in order of their indices). Note that there will be exactly one path, call it γ_1, which forces $(T_1)|\beta$ to 1; we put a 1-leaf here. [Draw picture.] For all the other paths ρ, recursively tack on the canonical decision tree $C(f|\beta\rho)$. (If $f|\beta\rho$ is constant, of course just put that constant as a leaf.)

Note the slight intricacy here: We first fix in β, which kills a bunch of terms, and leaves some alive. We take the first living term and query all its variables. But now, having made each further assignment ρ of d_1 variables, we may have that $\beta\rho$ kills many more terms which β didn’t. Each subtree of the canonical decision tree here moves onto the first surviving term in $f|\beta\rho$.

Certainly $C(f|\beta)$ is a decision tree for $f|\beta$. So by assumption that β is bad, it has depth exceeding d. Therefore we may define:
Definition 2.6. Let \(\pi \) be the lexicographically leftmost path of depth exceeding \(d \) in \(C(f|_B) \). Then trim it if necessary so it fixes exactly \(d \) variables. So we have \(\beta \pi \in R_{s-d} \) and is such that \(f|_{\beta \pi} \) is still undetermined; i.e., not a constant function.

As in the previous section, though, we won’t use \(\beta \pi \) in the encoding of \(\beta \). Rather, we will use assignments that lead to 1-leaves in \(C(f|_B) \).

Definition 2.7. Let \(T_1 \) be the first term not killed by \(\beta \), and let \(U_1 \) be its restriction under \(\beta \). Let \(d_1 \) be the number of variables in \(U_1 \). Let \(\gamma_1 \) be the setting to the variables in \(U_1 \) which makes it 1. On the other hand, let \(\pi_1 \) be the part of \(\pi \) which sets these variables. [[Draw Beame’s picture.]]

Assuming \(\pi_1 \) is not all of \(\pi \), continue the process. Note that in this case, \(\beta \pi_1 \) must kill \(U_1 \). Let \(T_2 \) be the first term not killed by \(\beta \pi_1 \), and let \(U_2 \) be its restriction under \(\beta \pi_1 \). Let \(d_2 \) be the number of variables in \(U_2 \). Let \(\gamma_2 \) be the setting to the variables in \(U_2 \) which makes it 1. On the other hand, let \(\pi_2 \) be the part of \(\pi \) which sets these variables. Keep going, until eventually \(\pi_\ell \) finishes all of \(\pi \). At this point, truncate \(\gamma_\ell \) to set just the variables that \(\pi_\ell \) sets.

Our encoding will now be:

\[
\text{Enc}(\beta) = \beta \gamma_1 \gamma_2 \cdots \gamma_\ell + \text{some auxiliary info.}
\]

Note that the restriction \(B = \beta \gamma_1 \gamma_2 \cdots \gamma_\ell \) here is in \(R_{s-d} \), which is what we’d like. Let’s see what auxiliary info we’ll need to decode this \(B \) back to \(\beta \).

First, as before we have that in \(f|_B \), the first term set to 1 is indeed \(T_1 \). Thus we can add \(d_1 \lg w \) bits of auxiliary information, specifying which variables in \(T_1 \) are the ones which \(\gamma_1 \) fixes. (Actually, since the Decoder doesn’t actually "know" \(d_1 \), we can have \(w+1 \) symbols, the \((w+1)st\) of which is a sentinel; so we actually need to use \(d_1 \lfloor \lg(w+1) \rfloor \leq d_1 \lg w + d_1 \) bits.) We also add an additional \(d_1 \) auxiliary bits to specify how \(\pi_1 \) sets these variables. Hence we’ve shown:

Claim 2.8. By adding at most \(d_1 \lg w + 2d_1 \) auxiliary info bits, the Decoder can determine \(T_1 \), \(\gamma_1 \), and \(\pi_1 \).

We can proceed with decoding. Since the Decoder knows \(\gamma_1 \) and \(\pi_1 \), it can consider the restriction \(B_2 := \beta \pi_1 \gamma_2 \cdots \gamma_\ell \). By construction, \(\beta \pi_1 \) kills all terms in \(f \) up to \(T_2 \), so the same is true of \(B_2 \). Also, \(\gamma_2 \) sets \(U_2 = (T_2)|_{\beta \pi_1} \) to 1, so the same is true of \(B_2 \). Hence:

Claim 2.9. \(T_2 \) is the first term in \(f \) fixed to 1 by \(B_2 \).

Hence the Decoder can determine \(T_2 \). So again:

Claim 2.10. By adding at most \(d_2 \lg w + 2d_2 \) auxiliary info bits, the Decoder can also determine \(T_2 \), \(\gamma_2 \), and \(\pi_2 \).

The Decoder can continue along, finding \(\gamma_3 \), \(\pi_3 \), etc. This proceeds until the Decoder has \(B_\ell := \beta \pi_1 \pi_2 \cdots \gamma_\ell \). The only difference now is that \(f|_{B_\ell} \) might have a “first term which is still undetermined”, rather than a “first term which is 1”. In any case, it can still use \(d_\ell \lg w + 2 \lg w \) auxiliary info bits to determine \(\gamma_\ell \). At this point the Decoder has completely determined the \(\gamma_1 \cdots \gamma_\ell \) part of the encoded restriction \(\text{Enc}(\beta) \) (it knows it’s done, since it knows this part fixes exactly \(d \) variables).

We conclude:

Claim 2.11. By using at most

\[
(d_1 \lg w + 2d_1) + (d_2 \lg w + 2d_2) + \cdots + (d_\ell \lg w + 2d_\ell) = d \lg w + 2d
\]

bits of auxiliary information, there is a Decoder which uniquely recovers \(\beta \) from \(B = \beta \gamma_1 \gamma_2 \cdots \gamma_\ell \).
2.4 Calculations

We’re now done except for calculations. We’ve shown that there is an injective mapping from the set \mathcal{B} of bad restrictions into

$$R_{s-d} \times \{0, 1\}^{d \log w + 2d}.$$

This set has cardinality

$$\binom{n}{s-d} 2^{n-(s-d)} \cdot (4w)^d.$$

Since the cardinality of all s-star restrictions is $\binom{n}{s} 2^{n-s}$, we conclude the probability of getting a bad restriction is at most

$$\frac{\binom{n}{s-d} 2^{n-(s-d)} \cdot (4w)^d}{\binom{n}{s} 2^{n-s}} \leq \frac{s(s-1)(s-2)\ldots(s-d+1)}{(n-s+d)(n-s+d-1)\ldots(n-s+1)} (8w)^d \leq \left(\frac{s}{n-s+d}\right)^d (8w)^d \leq (10\sigma w)^d,$$

where we used $\sigma \leq 1/5$ in the last step.

3 Lower bounds for Parity circuits

We now give the precise calculations showing that Parity requires depth-k circuits of exponential size:

Theorem 3.1. (Håstad.) Assume $n \geq 2^{O(k)}$, where $k \geq 2$. Then computing Parity of n bits by a depth-k unbounded fan-in AND-OR circuit requires size $S \geq 2^{\Omega(n^{1/(k-1)})}$. In particular, for the circuit to be of polynomial-size it is necessary that $k \geq \Omega(\log n/\log \log n)$.

Remark 3.2. The implied constant can be made pretty good; I think Håstad can achieve .0718.

Proof. Suppose C is any depth-k circuit of size S which computes Parity. It is an exercise to show that C can be converted into a leveled depth-k circuit, where the levels alternate AND and OR gates, the inputs wires are the $2n$ literals, and each gate has fan-out 1 (i.e., it’s a tree) — and the size increases to at most $(2kS)^2 \leq O(S^k)$. Since this only changes the constant in the $\Omega(\cdot)$ in the statement, we can assume the circuit is of this form. [[Draw picture.]]

Let’s first prove the theorem assuming:

every gate at the bottom level has fan-in at most $w := 20 \log S$.

(2)

At the end we’ll see how to remove this assumption easily.

Assume without loss of generality that the bottom layer of C is AND gates, so the bottom two layers consist of DNFs of width at most w. Suppose we apply a random restriction α_1 to the circuit, with \star-fraction $\sigma = 1/(20w)$, and target DT-depth $d = w$. The Switching Lemma tells us that the probability a particular DNF fails, under restriction, to be representable by a depth-w decision tree is at most

$$(10\sigma w)^w = (1/2)^w = (1/2)^{\log S \ll 1/S}.$$

\footnote{Actually, this is a slightly tricky exercise. It’s easier if you only have to get size $O(S^k)$, which is almost the same for our purposes if you think of k as a “constant”.

}
So by a union bound over all at most S such DNFs, there is a positive probability (indeed, a high probability) that every DNF gets simplified to something representable by a depth-w DT. But we know such functions are also representable by a width-w CNF. If we now “plug in” these CNFs to the circuit, we can collapse layers 2 and 3 and get a new circuit, of depth $k - 1$, which has bottom fan-in at most w.

We can fix such a good restriction, and repeat. We apply restrictions α_2, α_3, \ldots, each with \star-fraction $\sigma = 1/(20w)$, and yielding depths $k - 2$, $k - 3$, etc. We do this $k - 2$ times, at which point we get down to a circuit of depth 2. At this point, the number of variables that are still \star is

$$m := n \cdot \sigma^{k-2} = \frac{n}{(400 \log S)^{k-2}}.$$

But as we mentioned before, every restriction of the Parity function is either Parity (or its negation). And as we saw last class, Parity on m variables requires DNF size 2^{m-1} and also CNF size 2^{m-1}. Hence we better have:

$$S \geq 2^{m-1} \Rightarrow \log S \geq \Omega(m) \Rightarrow O(\log S)^{k-1} \geq n \Rightarrow \log S \geq \Omega(n^{1/(k-1)}),$$

which is what the theorem claims.

It remains to show how to remove the assumption (2). To do this, we simply initially hit the circuit with a random restriction α_0 with \star-probability $1/100$. It’s easy to check that if this indeed reduces the bottom fan-in of C to at most w with positive probability, then we can run the rest of the argument and only lose a little more on the constant in the $\Omega(\cdot)$.

But this is straightforward. Suppose we have a bottom gate (and AND, say) with fan-in exceeding $w = 20 \log S$. A Chernoff-type bound shows that except with probability exponentially small in w — and hence, $\ll 1/S$ — the gate gets at least, say, $(3/4)w$ non-\star’s. And each such non-\star has a 1/2 chance of immediately killing this gate. Hence again, except with probability exponentially small in w — hence $\ll 1/S$ — the gate gets killed. We can now union bound over all bottom-level gates to conclude that there is a high probability this initial restriction α_0 kills all gates with width exceeding w.

\qed