15-855: Intensive Intro to Complexity Theory
Spring 2009

Approximate Counting/Sampling and the BCGKT Theorem

1 Approximate Counting

We begin this lecture by finishing the proof other Approximate Counting Theorem. Let’s recall the
statement and all the pieces we need for the proof.

Theorem 1.1. There is a polynomial-time randomized algorithm using an oracle for SAT with
the following behavior: Given a Boolean formula ¢, with high probability the algorithm outputs a

number m such that
m/4 < #p < 4dm.
The factor 4 can also be improved to 1+ 1/poly(n).
When #¢ is small we observed that things are easier:
Lemma 1.2. For any constant ¢ € N, we can decide in PNP whether or not #¢ = c.
We also reduced to the problem of deciding yes/no whether #¢ is near/far 2%:

Definition 1.3. Say that a number K is “near m” if K € [m/2,2m] and that it’s “far from m” if
K & [m/4,4m].

By solving the really small cases in PN? and doing binary search otherwise, we reduced the
Approximate Counting Theorem to the following:

Problem: Given are ¢ and k > 10. Distinguish in BPPNP whether #¢ is near 2F or is far from 2¥.

As in the Valiant-Vazirani Theorem the only tool we need in the proof is easy-to-compute
pairwise-independent hash families. Here is an equivalent definition to the one from last time:

Definition 1.4. Let ‘H be a class of functions X — Y. We say that H is a pairwise-independent
hash family if:

o Pricy[f(x) =yl =1/|Y]| forallz e X,y €Y.

e The events h(x) =y and h(z') =y’ are independent for all x # x’ and y,y'.

We also observed that if 7 is the set of all functions A : {0,1}" — {0, 1}* of the form
h(z)=(r1-z,...,rx-z) DD,

where 71, ..., € {0,1}", b € {0,1}*, then it’s easy to choose a random h and express “h(z) = y”
with an O(kn)-size circuit.

1.1 The solution: pairwise-independent hashing plus Chebyshev’s Inequality

To solve the “Problem” above, we use the same basic trick as in the Valiant-Vazirani Theorem.
But instead of hashing into a space of size right around 2%, let’s hash into a space that’s about 500
times smaller. Specifically, take the hash function’s range to be

Y :={0,1}*77,

so that |Y| = 2¥/512. For a given = € {0,1}", let A, denote the event that h(x) = 0 and let I,
denote the 0-1 indicator random variable for A,. Define also the random variable

C:ZI =#{z e S:h(z) =0}

zeSs

Since h(z) is uniformly distributed on Y, we have Pr[A,] = 1/|Y| = 512/2%. Hence by linearity of
expectation,

— B =512. 15
pi=E[C] =512 .

Key Observation 1: If |S|is “near 2¥”, then u is “near 512” — i.e., in the range [256,1024]. On
the other hand, if |S| is “far from 2, then p “far from 512”7 — i.e., outside the range [128,2048].

Key Observation 2: Chebyshev’s Inequality says that
Pr[|C — p| > 2stddev[C]] < 1/2? = 1/4.

In other words, there’s at least a 3/4 chance that C' is within 2 standard deviations of its mean .

Key Observation 3: The fact that h is chosen from a “pairwise-independent hash family” implies
that the the indicator random variables I, are pairwise independent: for x # x’ we have

E[lIy] = Pr[h(z) = 0 A h(z') = 0|Pr[i(z) = 0[Pr[h(z’) = 0] = E[L]E[L].

Exercise 1.5. Let C =) oI, be a sum of pairwise-independent indicator random wvariables.
Then Var[C] < E[C].

Hint: Expand out E[(}, ¢1)?].

Combining Observations 2, 3, and the exercise, we have that
Prip—2/p <C <p+2/ul >3/4.
I leave it to you to run the numbers and check that we may conclude:
|S| near 28 = 256 < <1024 = Pr[200 < C < 1100] > 3/4;

|S| far from 28 = < 1280r p>2048 = Pr[200 < C < 1100] < 1/4.

Finally, by Lemma (1.2), we can use the NP oracle to deterministically decide if

#(p(z) A h(z) =0) € [200,1100] <« C € [200,1100].

Actually, Lemma (1.2) was only about counting satisfying assignments to formulas, but we can also
use to it count satisfying assignments to circuits, by first running the parsimonious reduction from

#CIRCUIT-SAT to #SAT.

Hence we can distinguish whether |S| is near 2% or far from 2* with probability at least 3/4.
As usual, this can efficiently be boosted up to 1 — g—n' by repeating poly(n) times and taking the
majority answer.

2 Counting and sampling

Let C be a circuit and let S(C) = {z : C(x) = 1}, the satisfying assignments for C. We have just
seen that we can approximate |S(C')| to within any 1 + 1/poly(n) factor with high probability in
BPPNP.

Related question: Could we also randomly sample a string b from S(C'), approximately uni-
formly?

The answer, due to Jerrum, Vazirani, and Vazirani, is “yes” and the proof is quite easy. Let’s
first drop the “approximately” business and see a reduction from ezactly counting |S(C')| (assumed
nonzero) to to ezactly uniformly sampling from S(C'). The trick is just “downward self-reducibility”
again. Let

So = {z' € {0,1}"71:(0,2") € S(C)} = S(Cp, o),
Sy = {2’ € {0,1}"71:(0,2") € S(C)} = S(Cp, 1),
where C,, . denotes (n — 1)-input circuit gotten by fixing the first input bit of C to bit b. Now
pick
b — 0 with probability |Sy|/|S(C)],
"7 11 with probability [S1]/]S(C)].

Great — now b; is set with the correct probability. Now we would like to pick b2 to be the next
bit of b with the correct conditional probability. Define

Spy 0 = {2’ € {0, 1}”72 : (b1,0,2") € S(C)} = S(Cry—by z90)

Sb1,l = {x/ € {07 1}n—2 : (blv 17'%'/) € S(C)} = S(Cxu—bl,xw—l)'

Then pick
b — 0 with probability |Sp, o|/|Sb, |,
711 with probability |Sy, 11/, -

FEtc., picking all the remaining bits bs, ..., b,. Clearly the string b ultimately chosen is satisfying
for C, and
_ ‘Sb1‘) ‘Sb17b2’ ‘Sbl7~~.,bn’ o ’Sb17~--abn| . 1

P = s e bl ISEO] SO v

as desired.

Now for the approximately business: If each estimate of an |S| is off by a multiplicative factor
of at most 1 + ¢, then we see immediately from (1) that the probability of picking a particular b
will be off by a multiplicative factor of at most (1 + €)?*. Since we can make e and arbitrarily

small polynomial in n, we can get the sampling error similarly small. (Also, the probability our
estimation procedure fails, 2_”10, is negligible.) Hence:

Theorem 2.1. For any constant c, there is a poly-time randomized procedure with access to a SAT
oracle which, given a satisfiable circuit C, outputs a nearly uniformly random string x € S(C):
each such string is output with probability within a factor 1+ 1/n¢ of 1/1S(C)|.

Remark: There is also a straightforward reduction from approximate sampling to approximate
counting.

2.1 Exact counting and sampling?

Here is an oddity. The Approximate Sampling Theorem, Theorem 2.1, has been improved by
Bellare, Goldreich, and Petrank: They give a ZPPN? which samples ezactly from the uniform dis-
tribution on S(C). On the other hand, it is known that if you could ezactly count S(C) in BPPNP
then the Polynomial Time Hierarchy collapses (which we don’t believe)! This follows immediately
from Toda’s Theorem, which we will prove later.

So although Approximate Counting and Approximate Sampling are easily interreducible, Exact
Sampling is almost surely easier than Exact Counting. You might think about why the reduction
from Approximate Counting to Approximate Sampling fails in the Exact Case.

3 Learning Polynomial Circuits

Let’s finish with one more cool example of what we could do with an oracle for SAT: we could learn
any unknown function with a poly-size circuit! This is the BCGKT Theorem, proved by Bshouty,
Cleve, Gavalda, Kannan, and Tamon.

Theorem 3.1. Polynomial-size circuits are learnable in ZPPNP.

More precisely, consider the following scenario. “Nature” holds on to f : {0,1}" — {0, 1},
promised to be computable by some circuit of size at most n*. An algorithm trying to “learn” f
can give a poly-size “hypothesis” circuit H : {0,1}" — {0, 1} to Nature and ask, “Does H correctly
compute f?” Nature either answers “yes” in which case the learner is done, or answers “no” and
provides a counterezample: a string x € {0,1}" such that f(x) # H(x). (Since the learner can
evaluate H(z), it learns that f(x) = H(z); this is the only way it learns values of f.) The BCGKT
Theorem is:

Theorem 3.2. There is an n°®) -time zero-error randomized algorithm with access to a SAT oracle

which outputs a circuit H computing f.

Before we get into the proof, a quick comment on the zero-error aspect: It’s easy to see that
in this learning scenario we can always achieve zero-error because the algorithm can “check its
answer”. More precisely, if an algorithm can come up with a correct H with probability 3/4, it can
first ask Nature if H is correct. If not, it simply runs itself again.

3.1 The outline

We will now give the outline of the BCGKT algorithm, which is a version of the “Halving Algo-
rithm” from Learning Theory. At all times the algorithm maintains two sets, called CE and ITR.

The set CE (“CounterExamples”) consists of all counterexamples the algorithm has been given
so far by Nature. This set starts out empty and is maintained ezplicitly by the algorithm. Note
that the algorithm can also remember the value f(z) for each x € CE.

The set ITR (“InTheRunning”) consists of all circuits C' of size at most n* which correctly com-
pute f on all x € CE; these are the circuits that are still “in the running” as possible computers
of f. Obviously ITR will be huge (it starts out as the set of all circuits of size at most n¥), so it
is maintained implicitly. Note that as the algorithm adds to CE the set ITR shrinks; it is always
nonempty though, since the circuit computing f is always in ITR.

Given a current state for ITR, we will also be interested in the function Maj(ITR) : {0,1}" —
{0,1}, defined by
Maj(ITR)(x) = Majority cerrrC(2).

Here now is the outline of the BCGKT Algorithm, with a bogus first step:
1. Let H be a circuit of size O(n**1) which exactly computes Maj(ITR). (777)

2. Ask Nature if H computes f. If yes, we're done.

3. If no, add Nature’s counterexample z into CE and go back to Step 1.

3.2 The proof, modulo (?77)

Obviously, Step 1 makes no sense — but other than that, we claim this is a correct, efficient (and
deterministic, oracle-free) algorithm. To see this, suppose that after running for some time we
produce H = Maj(ITR) and Nature informs us that H Z f. So we get a counterexample x with

H(z) = Maj(ITR) () # f(x).

This means that at least 1/2 of all circuits in ITR compute f wrongly on z. By definition, all such
circuits are then dropped “out of the running”. In other words, whenever we get a counterexample
the set ITR shrinks by a factor of 1/2.

To start with, ITR consisted of all circuits of size at most n*. Even by a very rough count, there
are at most 200*) circuits of size at most s. So the set ITR can shrink by a factor of 1/2 at most
O(log 20("%)) = O(n?*) many times. Since the algorithm does n®*) work in each step (writing
down/computing H), the algorithm runs deterministically and oracle-free for time at most nO k)
before it finds some H computing f.

3.3 How to do (?777)

Obviously, though, we need to implement (777) or something like it. As-is we can’t, since there’s
no reason to believe there is a smallish circuit computing Maj(ITR). The idea is that the proof
didn’t really need the fact that H computes Maj(ITR) per se. What it really needed is this:

H(x) # f(x) = ITR shrinks by a constant factor when z is added to CE. (2)

Claim 3.3. Suppose H is any circuit such that H(y) = Maj(ITR)(y) for all y where there a
“supermajority”; i.e., at least 2/3 of the circuits C' in ITR have the same value C(y). Then (2)
still holds.

Proof. Suppose z is a string with H(z) # f(z). Then

supermajority of C' € ITR have C(z) = f(x)
= supermajority of C' € ITR have C(z) # H(x) — contradiction.

Hence at least 1/3 of all C' € ITR must compute f(z) wrongly, and hence |[ITR| shrinks by a factor
of 2/3 when z is added to CE. O

So it suffices to get a circuit H which agrees with the “supermajorities” of ITR.

Claim 3.4. Suppose we draw circuits Cy, . .., Cp, uniformly at random (with replacement) from ITR
and let H be a circuit computing Maj(Cy(x),...,Cn(x)). If m = O(n) then with high probability,
H agree with all supermagjorities. Further, we can make H a size O(mn*) = O(n**1) circuit.

Proof. The claim about H’s size is clear (Majority has linear-sized circuits), so it suffices to prove
the claim about supermajorities. This is also easy. Let x be any string where the circuits in ITR
have a supermajority. The expected fraction of circuits C; agreeing with this supermajority on x
is at least 2/3, by definition. If m > n, the empirical fraction will be very close to the expected
fraction. In particular, it’s easily shown that the probability that fewer than 1/2 of the circuits
agree with the supermajority on = (and hence H(z) disagrees) is < 27". We can now take a
union-bound over all 2" strings. O

Hence the line (777) can actually be executed with high probability, well enough so that (2)
holds, so long as we can sample circuits uniformly from ITR. In fact, it’s easy to see that the
argument still works if we only sample approrimately uniformly — the probability of drawing a
circuit from the supermajority might go down from 2/3 to, say, .66, but that doesn’t affect the
argument in any essential way.

But given the set CE (and the associated values f(z) for each x € CE), the algorithm can
write down a poly-size circuit D, whose inputs are circuits of C' of size at most n*, and which is
defined by D(C) = 1 iff C € ITR. This is easy, since checking C' € ITR just involves checking if
C(x) = f(x) for each of the (polynomially many) z € CE. Hence we can sample circuits in ITR
approximately uniformly by applying the Approximate Sampling Theorem to D! This completes
the proof.

