
15-855: Intensive Intro to Complexity Theory
Spring 2009

Lecture 16: Nisan’s PRG for small space

For the next few lectures we will study derandomization. In algorithms classes one often sees
clever randomized algorithms that perform better than deterministic ones, or which are easier to
analyze.

Question: Does randomized computation allow for significant efficiency gains over deterministic
computation?

In physical reality we don’t have access to independent uniformly random bits, so in practice
we use some “pseudorandom bits” (whatever that means). Does this really work, given that we
do the analysis based on true random bits? There are notorious examples of papers whose Monte
Carlo simulation results were completely wrong because the authors used poor random number
generators.

Question: What kinds of randomized algorithms don’t change much if true random bits are sub-
stituted with some kind of “pseudorandom bits”?

These are the questions we wish to study. Although we cannot unconditionally prove too much
about the necessity or lack of same for true randomness, perhaps surprisingly, the evidence points
toward the conclusion that randomness can always be eliminated, with only a small loss of efficiency.

1 Pseudorandom generators

One can certainly try to derandomize algorithms on a case-by-case basis, but wouldn’t it be nice if
there was a fixed method which worked simultaneously for a wide variety of algorithms? Pseudo-
random generators can provide such a method:

Definition 1.1. A “pseudorandom generator” (PRG) is a (deterministic) map G : {0, 1}` →
{0, 1}n, where n ≥ `. Here ` is the “seed length” and n − ` ≥ 0 is the “stretch”. We typically
think that n� ` and that G is efficiently computable in some model. If f : {0, 1}n → {0, 1} is any
“statistical test”, we say that G “ε-fools” f is

|Pr[f(Un) = 1]−Pr[f(G(U`)) = 1]| ≤ ε,

where Um denotes a uniformly random string in {0, 1}m. Here the string U` is called the “seed”. If
C is a class of tests, we say that G “ε-fools C” or is an “ε-PRG against C” if G ε-fools f for every
f ∈ C.

In short, G being a PRG against C means that if you use G to stretch a short truly random
seed to a long random string, then that long string “looks uniformly random” to any statistical
test in C.

1

1.1 PRGs for log space

Think about the question of designing a statistical test for deciding if a string of n bits is uniformly
random. Probably the first few that you would think of are all computable in L (log space). For
example, checking that the number of 0’s is in the range, say, [n/2−

√
n log n, n/2 +

√
n log n] is in

log space. Or, checking that the longest run of consecutive 1’s has length around lg n is in log space.

Today we will see the following theorem of Nisan:

Theorem 1.2. (Nisan ’90.) Let C = SPACE(S). (Think of S = S(n) = O(log n).) There is a
2−S-generator G against C which has seed length ` = O(S log n) and which is computable in O(`)
space and poly(`) time.

So we have PRGs for L which have seed length only O(log2 n).

Corollary 1.3. Any language in BPL can be decided in space O(log2 n) and time nO(logn).

Proof. Let A ∈ BPL and suppose M is a randomized log-space TM that decides A using poly(n)
random bits (and poly(n) time). On input x ∈ {0, 1}n, think of Mx as a deterministic log-space
algorithm whose input is a random string u ∈ {0, 1}poly(n). We know that Pr[Mx(u) = 1] is either
≥ 2/3 or ≤ 1/3, and we are trying to decide which is the case. Construct Nisan’s generator G and
run Mx(G(r)) for all possible seeds r ∈ {0, 1}O(log2 n); either at least 2/3 − 2−O(log2) or at most
1/3 + 2−O(log2) will accept, and this decides x ∈ A.

Note that this is in some sense worse than Savitch’s Theorem:

Theorem 1.4. (Savitch.) RL ⊆ NL ⊆ DTISP(nO(logn), log2 n).

However, Nisan’s generator has the advantage of working in a black-box fashion: whereas the
derandomization supplied by Savitch involves looking “at the code” of the RL algorithm, Nisan just
says, “hey, just use these pseudorandom bits”. Indeed, Nisan subsequently showed that one can
improve the above corollary:

Theorem 1.5. (Nisan ’92.) In fact, BPL ⊆ DTISP(poly(n), log2 n); i.e., BPL ⊆ SC (“Steve’s
Class”, poly-time, polylog-space).

This second theorem of Nisan is not much harder than his first theorem; we’ll get to it if we
have time.

2 Nisan’s Generator

2.1 Reduction to automata

Instead of trying to fool log-space machines, it’s a bit nicer to try to fool poly-size finite automata.

Definition 2.1. For the purposes of this lecture, an (m, k)-automaton Q is a finite state machine
with: a) states 1, . . . ,m; b) exactly 2k transitions per state, associated with the strings {0, 1}k. We
identify Q and its transition function, writing Q(i;x) = j to mean Q goes from state i to state j
when fed x ∈ {0, 1}k.

We’ll do something stronger than fooling BPSPACE(S) machines which uses n random bits.
Instead we’ll fool machines that:

2

• for k = O(S),

• take n blocks of k random bits,

• use space S between the blocks,

• and may do any computation within the blocks.

Given any such machine, and an input x, we can build an (m, k)-automaton Q, where the states
are the

m = 2O(S)

configurations, and the transitions are governed by the blocks of k random bits. There is a start
state and, WOLOG, a unique, absorbing accept state. We can and will assume that n is a power
of 2 as well. Our goal then is to build a generator G : {0, 1}` → {0, 1}n, with

` = O(S log n) = O(logm log n)

such that
Pr

u∈({0,1}k)n
[Qn(start;u) = acc]

1/m
≈ Pr

r∼{0,1}`
[Qn(start;G(r)) = acc].

2.2 Closeness of stochastic matrices

Given any (m, k)-automaton Q, let M(Q) denote its “transition matrix”,

M [i, j] = Pr
x∼{0,1}k

[Q(i;x) = j].

We will use the following matrix norm (technically called ‖ · ‖∞):

Definition 2.2. Given an m×m matrix M ,

‖M‖ = max
i∈[m]

n∑
j=1

|Mij |;

i.e., the largest row sum (when entries are absolute-valued).

Exercise 2.3.

• ‖A+B‖ ≤ ‖A‖+ ‖B‖.

• ‖AB‖ ≤ ‖A‖‖B‖.

2.3 Mixing lemma

Definition 2.4. Let A,B ⊆ {0, 1}k and let h : {0, 1}k → {0, 1}k. Define α = |A|/2k, β = |B|/2k.
We say that h is “ε-independent for (A,B)” if∣∣∣ Pr

x∼{0,1}k
[x ∈ A ∧ h(x) ∈ B]− αβ

∣∣∣ < ε.

Lemma 2.5. (“Pairwise independence mixing lemma.”) If h : {0, 1}k → {0, 1}k is chosen randomly
from a pairwise independent hash family Hk, then

Pr
h

[h not ε-independent for (A,B)] ≤ αβ/ε2

2k
≤ (1/ε2)

2k
.

3

Exercise: use Chebyshev, of course.

Proof. For each x ∈ A, let Ix be the 0-1 indicator r.v. for the event h(x) ∈ B (vis-a-vis the choice
of h). It is easy to check that the r.v.’s {Ix}x∈A are pairwise independent, since Hk is. Define

C =
∑
x∈A

Ik = #{x ∈ A : h(x) ∈ B}.

Notice that once h is chosen, C tells us if h is ε-independent for (A,B):

h is ε-independent for (A,B) ⇔ |C/2k − αβ| ≤ ε ⇔ |C ′ − αβ| < ε,

where we defined C ′ = C/2k. By linearity of expectation,

E
h

[C ′] = (1/2k)
∑
x∈A

Pr
h

[h(x) ∈ B] = (1/2k)
∑
x∈A

β = αβ,

where we used Prh[h(x) ∈ B] = β for every x, by the pairwise independence of Hk. So the
expectation is correct. Our goal is now to use Chebyshev’s Inequality.

Since C is a sum of 0-1 pairwise-independent random variables, an exercise from Lecture 5 tells
us that

Var
h

[C] ≤ E
h

[C] ⇒ Var
h

[C ′] = Var
h

[C]/22k ≤ E
h

[C]/22k = E
h

[C ′]/2k.

Hence by Chebyshev,

Pr[|C ′ − αβ| ≥ ε]] ≤ Var[C ′]
ε2

≤ Eh[C ′]/2k

ε2
=
αβ/ε2

2k
,

as needed.

2.4 Derandomized squaring

Fix an (m, k)-automaton and suppose M = M(Q) is its transition matrix. Let “Q2” denote the
(m, 2k)-automaton defined by

Q2(i;x1, x2) = Q(Q(i;x1);x2).

Note that M(Q2) = M2; i.e., the entries of M2 are given by

M2[i, j] = Pr
x1,x2

[Q2(i;x1, x2) = j].

If we were asked to estimate one of these entries, the simplest solution would involve using 2k
random bits. The basic idea in Nisan’s generator is that we might be able to do it using only k
random bits — if we have the assistance of a good hash function h : {0, 1}k → {0, 1}k. The idea
is, perhaps Q2 would not notice if instead of giving it independent random x1 and x2, we gave it a
random x1 and then h(x1).

Definition 2.6. Given an (m, k)-automaton Q and a function h : {0, 1}k → {0, 1}k, define Qh to
be the “derandomized squared” (m, k) automaton given by

Qh(i;x) = Q2(i;x, h(x)).

Do Q2 and Qh act similarly? We show that if h is chosen at random from a pairwise-independent
hash family Hk of functions {0, 1}k → {0, 1}k, then this is so:

4

Lemma 2.7. Let M = M(Q), so M2 = M(Q2), and let Mh = M(Qh). Then

Pr
h∼Hk

[‖M2 −Mh‖ ≥ ε] ≤
m7/ε2

2k
.

Proof. Fix h, and any entry (i, j). Then∣∣∣M2[i, j]−Mh[i, j]
∣∣∣ =

∣∣∣ Pr
x1,x2

[Q(i;x1, x2) = j]−Pr
x

[Q(i;x, h(x))]
∣∣∣

=
∣∣∣ m∑
p=1

Pr
x1,x2

[Q(i;x1) = p ∧Q(p;x2) = j]−
m∑
p=1

Pr
x

[Q(i;x) = p ∧Q(p;h(x)) = j]
∣∣∣

≤
m∑
p=1

∣∣∣ Pr
x1,x2

[Q(i;x1) = p ∧Q(p;x2) = j]−Pr
x

[Q(i;x) = p ∧Q(p;h(x)) = j]
∣∣∣

=
m∑
p=1

∣∣∣Pr
x

[Q(i;x) = p] Pr
x

[Q(p;x) = j]−Pr
x

[Q(i;x) = p ∧Q(p;h(x)) = j]
∣∣∣.

The pth term in the summation here depends on how “independent” h is for (Aip, Bpj) where

Aip = {x ∈ {0, 1}k : Q(i;x) = p}, Bpj = {x ∈ {0, 1}k : Q(p;x) = j}.

In particular, suppose h is (ε/m2)-independent for (Aip, Bpj) for every i, p, j ∈ [m]. Then we would
get ∣∣∣M2[i, j]−Mh[i, j]

∣∣∣ ≤ m · (ε/m2) = ε/m

for all i, j, and hence ‖M2 −Mh‖ ≤ m · (ε/m) = ε, as required.
By a union bound and the “Pairwise independent mixing lemma”, we have that h is (ε/m2)-

independent for all (Aip, Bpj) except with probability at most m3 · (m4/ε2)/2k, as needed.

Of course, the next idea is to “derandomized square” again. (You might also ask, where are
we going with this? We’ll come back to it.) We will not try to get greedy; we will choose two
independent hash functions, h1 and h2. Define the (m, k)-automaton Qh1h2 = (Qh1)h2 ; i.e.,

Qh1h2(i;x) = Q2
h1

(i;x, h2(x)) = Q4(i;x, h1(x), h2(x), h1h2(x)).

Naturally, we ask: if Mh1h2 = M(Qh1h2), is it likely to be close to M4? We have:

‖M4 −Mh1h2‖ = ‖M4 −M2
h1

+M2
h1
−Mh1h2‖ ≤ ‖M4 −M2

h1
‖+ ‖M2

h1
−Mh1h2‖. (1)

The second term on the RHS of (1) is

‖M(Qh1)2 −M(Qh1h2)‖ = ‖M(Q2
h1

)−M((Qh1)h2)‖

so it’s exactly what’s analyzed in Lemma 2.7, just applied to a different (m, k)-automaton: Qh1

rather than Q. Hence for every choice of h1,

Pr
h2

[‖M2
h1
−Mh1h2‖ ≥ ε] ≤

m7/ε2

2k
.

As for the first term on the RHS of (1), since A2−B2 = (A−B)A+B(A−B) for any matrices,
we have

‖M4 −M2
h1
‖ = ‖(M2 −Mh1)M2 +Mh1(M2 −Mh1)‖ ≤ ‖M2 −Mh1‖(‖M2‖+ ‖Mh1‖).

5

The first factor on the RHS is again at least ε with probability at most m7/ε2

2k over the choice of
h1, by Lemma 2.7. The second factor is always exactly 1 + 1 = 2, because M2 and Mh1 are both
transition matrices and hence have all row-sums equal to 1. Hence we can likely bound all of (1)
by 3ε:

Lemma 2.8.

Pr
h1,h2∼Hk

[‖M4 −Mh1h2‖ ≥ 3ε] ≤ 2
m7/ε2

2k
.

You probably mostly see where this is going. Let’s do one more step. Choose h3 ∼ Hk
independently as well, and define the (m, k)-automaton Qh1h2h3 = (Qh1h2)h3 ; i.e.,

Qh1h2h3(i;x) = Q2
h1h2

(i;x, h3(x)) = Q8(i;x, h1(x), h2(x), h1h2(x), h3(x), h1h3(x), h2h3(x), h1h2h3(x)).

We have

‖M8−Mh1h2h3‖ = ‖M8−M2
h1h2

+M2
h1h2
−Mh1h2h3‖ ≤ ‖M8−M2

h1h2
‖+‖M2

h1h2
−Mh1h2h3‖.

The second quantity is, again, at most ε with high probability. The first quantity is

‖M8 −M2
h1h2
‖ ≤ ‖M4 −Mh1h2‖(‖M4‖+ ‖Mh1h2‖) ≤ 3ε · 2 = 6ε.

Hence for the overall bound we get

Lemma 2.9.

Pr
h1,h2,h3∼Hk

[‖M8 −Mh1h2h3‖ ≥ 7ε] ≤ 3
m7/ε2

2k
.

In general, we get

Theorem 2.10.

Pr
h1,...hlg n∼Hk

[‖Mn −Mh1···hlg n
‖ ≥ (n− 1)ε] ≤ (lg n)

m7/ε2

2k
.

Finally, select ε = 1/(2mn) and k = C lgm for some large constant C. Then (n− 1)ε ≤ 1/(2m)
and

(lg n)
m7/ε2

2k
≤ O(m9n2 log n)

mC
≤ m12

mC
≤ 1

2m

by choosing C large enough; here we used m = 2O(S) ≥ n.

Corollary 2.11. With k = O(logm) it holds that

Pr
h1,...hlg n∼Hk

[‖Mn −Mh1···hlg n
‖ ≥ 1/(2m)] ≤ 1/(2m).

3 The generator itself

We can now state Nisan’s generator itself. Recall that we know a simple pairwise independent hash
family Hk (the “r ·x+b” one) in which a hash function is describable with 2k bits and is computable
in O(k) time and space. It also has the nice property that picking the 2k bits uniformly at random
is equivalent to picking a function h ∼ Hk uniformly.

6

Nisan’s generator G : {0, 1}` → {0, 1}n against SPACE(S): We set k = O(logm) = O(S). The
seed will consist of a starter string x ∈ {0, 1}k, along with lg n blocks of O(k) bits, each describing
a hash function hi. The total seed length is ` = O(S log n), as promised. The generator G’s output
is defined as

(x, h1(x), h2(x), h1h2(x), h3(x), h1h3(x), h2h3(x), h1h2h3(x))

in the case lg n = 3, and in general, Gt(x) = (Gt−1(x), ht(Gt−1(x))). Note that G is easily computed
in O(`) time and space. Finally, for any two states i, j in the associated (m, k)-automaton — in
particular, i = “start” and j = “accept” — we have:

Pr
u∼{0,1}n

[Qn(i;u) = j] = Mn[i, j],

Pr
v∼{0,1}`

[Qn(i;G(v)) = j] = E
h1,...,hlg n

[
Pr

x∼{0,1}k
[Qh1···hlg n

(i;x) = j

]
= E

h1,...,hlg n

[
Mh1···hlg n

[i, j]
]
.

From Corollary 2.11 we know that

|Mn[i, j]−Mh1···hlg n
[i, j]| ≤ ‖Mn −Mh1···hlg n

‖ ≤ 1/(2m)

except with probability at most 1/(2m), in which case the difference is at least bounded by 1.
Hence we get∣∣∣ Pr

u∼{0,1}n
[Qn(i;u) = j]− Pr

v∼{0,1}`
[Qn(i;G(v)) = j]

∣∣∣ ≤ 1/m = 2−O(S) ≤ 2−S ,

completing the proof of Nisan’s Theorem 1.2.

7

