1 Two Important Learning Algorithms

We recall the following definition and two important learning algorithms discussed in previous lecture.

Definition 1.1 Given a collection \mathcal{S} of subsets of $[n]$, we say $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ has ϵ-concentration on \mathcal{S}, if

$$
\sum_{S \notin \mathcal{S}} \hat{f}(S)^{2} \leq \epsilon .
$$

Theorem 1.2 Let \mathcal{C} be a class of n-bit functions, such that $\forall f \in \mathcal{C}$, f is ϵ-concentrated on $\mathcal{S}=$ $\{S \subseteq[n]||S| \leq d\}$, then the function class \mathcal{C} is learnable under the uniform distribution to an accuracy of $O(\epsilon)$, with a probability of at least $1-\delta$, in time poly $(|\mathcal{S}|, 1 / \epsilon) \operatorname{poly}(n) \log (1 / \delta)$ using random examples only.

This algorithm is called Low Degree algorithm and was proposed by Linial, Mansour and Nisan in [3]. Refer theorem 5.4 in lecture notes 8.

Theorem 1.3 Let \mathcal{C} be a class of n-bit functions, such that $\forall f \in \mathcal{C}$, f is ϵ-concentrated on some collection \mathcal{S}. Then the function class \mathcal{C} is learnable using membership queries (Goldreich-Levin Algorithm) in $\operatorname{poly}(|\mathcal{S}|, 1 / \epsilon) \operatorname{poly}(n) \log (1 / \delta)$ time.

This algorithm is called Kushilevitz-Mansour algorithm [2]. Refer corollary 5.5 in lecture notes 8.

2 Learning Decision Trees

A decision tree is a binary tree in which the internal nodes are labeled with variables and the leafs are labeled with either -1 or +1 . And the left and right edges corresponding to any internal node is labeled -1 and +1 respectively. We can think of the decision tree as defining a boolean function in the natural obvious way. For example, the decision tree in the figure 1 defines a boolean function whose DNF formula is $x_{1} x_{2} x_{3}+x_{1} \overline{x_{2}} x_{4}+\overline{x_{1}} x_{2}$.

Note that, given any boolean function we can come up with a corresponding decision tree.
Let P be a path in the decision tree. An example of a path in the figure 1 is $P=\left(x_{1}=\right.$ $\left.-1, x_{2}=+1, x_{4}=-1\right)$.

Figure 1:

Let $\mathbf{1}_{P}:\{-1,1\}^{n} \rightarrow\{0,1\}$ be an indicator function for path P. For example,

$$
\mathbf{1}_{P}= \begin{cases}1 & \text { if } x_{1}=-1, x_{2}=+1, x_{4}=-1 \\ 0 & \text { else }\end{cases}
$$

Observation 2.1 A boolean function f can be expressed in terms of path functions $\mathbf{1}_{P}$'s, corresponding to various paths in the decision tree of the function f as follows

$$
f(x)=\sum_{\text {Paths } P} \mathbf{1}_{P}(x) f(P)
$$

where $f(P)$ is the label on the leaf when the function f takes the path P in its decision tree.
Observation 2.2 Let V be the set of variables occurring in a path function $\mathbf{1}_{P}$ and d be the cardinality of the set V. Then the Fourier expansion of $\mathbf{1}_{P}$ looks like

$$
\sum_{S \subseteq V} \pm 2^{-d} X_{S}
$$

It is easy to see the proof of the above observation by noting that the Fourier expansion for the path function $\mathbf{1}_{P}$, when $P=\left(x_{1}=-1, x_{2}=+1, x_{4}=-1\right)$, is $\mathbf{1}_{P}=x_{1} \overline{x_{2}} x_{4}=\left(\frac{1}{2}-\frac{1}{2} x_{1}\right)\left(\frac{1}{2}+\right.$ $\left.\frac{1}{2} x_{2}\right)\left(\frac{1}{2}-\frac{1}{2} x_{4}\right)$.

Proposition 2.3 If $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is computable by a depth-d decision tree then

1. Fourier expansion of f has degree at most d i.e., $\sum_{|S|>d} \hat{f}(S)^{2}=0$.
2. All Fourier coefficients are integer multiples of 2^{-d}.
3. The number of nonzero Fourier coefficients is at most 4^{d}.

Proof:(1) follows from observation 2.1. We can observe that all the Fourier coefficients look like $k 2^{-d^{\prime}}$ for some $d^{\prime} \leq d$, which can be written as $k 2^{d+d^{\prime}} 2^{-d}$. This proves (2). A depth- d decision tree has at most 2^{d} leaves and hence we have at most $2^{d} \cdot 2^{d}=4^{d}$ Fourier coefficients, which proves (3).

Corollary 2.4 Depth-d decision trees are exactly learnable with random examples in time poly $\left(4^{d}\right) \operatorname{poly}(n) \log (1 / \delta)$.

Proof:Use Kushilevitz-Mansour algorithm, with $\epsilon=\frac{2^{-d}}{4}$ and round each Fourier coefficient estimate to the nearest multiple of 2^{-d}.

Remark 2.5 $\log (n)$-depth decision trees are exactly learnable in polynomial time. This algorithm can be derandomized.

Observation 2.6 Size-s decision trees are ϵ-close to a depth $\log (s / \epsilon)$ decision trees.
Proof:Let T be decision tree of size s corresponding to boolean function f. Consider the decision T^{\prime} obtained from T by chopping all paths whose depth is greater than $\log \left(\frac{s}{\epsilon}\right)$ to $\log \left(\frac{s}{\epsilon}\right)$. The decision tree T^{\prime} gives an incorrect value for $f(X)$ only when X takes a path of length greater than $\log \left(\frac{s}{\epsilon}\right)$ in T. When we pick X at random, this happens with probability $2^{-\log \left(\frac{s}{\epsilon}\right)}=\frac{\epsilon}{s}$. Therefore by union bound, we get that $\operatorname{Pr}_{\mathbf{x} \in\{-1,1\}^{n}}\left[T(\mathbf{x}) \neq T^{\prime}(\mathbf{x})\right] \leq \epsilon$.

Corollary 2.7 Size-s decision trees are $O(\epsilon)$-concentrated on a collection of size size $4^{\log (s / \epsilon)}=$ $(s / \epsilon)^{2}$.

Definition 2.8 Given a function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$, the spectral norm or L_{1}-Fourier norm of f is

$$
\|\hat{f}\|_{1}=\sum_{S \subseteq[n]}|\hat{f}(S)|
$$

Observation 2.9 If a function f is an AND of literals, then $\|\hat{f}\|_{1}=1$. Refer observation 2.2 for the proof idea.

The following observation follows from the fact $\forall a, b \in \mathbb{R},|a+b| \leq|a|+|b|$ and $|a b|=|a||b|$.

Observation 2.10

1. $\|\widehat{f+g}\|_{1} \leq\|\hat{f}\|_{1}+\|\hat{g}\|_{1}$
2. $\|\widehat{c f}\|_{1}=|c|\|\hat{f}\|_{1}$

Proposition 2.11 If f has a decision tree of size $s,\|\hat{f}\|_{1} \leq s$.
Proof:

$$
\begin{aligned}
\|\hat{f}\|_{1} & \leq \sum_{\text {Paths } P} \widehat{\mathbf{1}_{P} f(P)} \\
& \leq \sum_{\text {Paths } P} \hat{\mathbf{1}_{P}} \\
& \leq s
\end{aligned}
$$

Proposition 2.12 Given any function f with $\|f\|_{2}{ }^{2} \leq 1$ and $\epsilon>0, \mathcal{S}=\{S \subseteq[n] \| \hat{f}(S) \mid \geq$ $\left.\frac{\epsilon}{\|\hat{f}\|_{1}}\right\}$, then f is ϵ-concentrated on \mathcal{S}. Note that $|\mathcal{S}| \leq\left(\frac{\|\hat{f}\|_{1}}{\epsilon}\right)^{2}$.

Proof:

$$
\begin{aligned}
\sum_{S \notin \mathcal{S}} \hat{f}(S)^{2} & \leq \max _{S \notin \mathcal{S}}|\hat{f}(S)|\left[\sum_{S \notin \mathcal{S}}|\hat{f}(S)|\right] \\
& \leq \max _{S \notin \mathcal{S}}|\hat{f}(S)|\left[\sum_{S \notin \mathcal{S}}|\hat{f}(S)|+\sum_{S \in \mathcal{S}}|\hat{f}(S)|\right] \\
& \leq \frac{\epsilon}{\|\hat{f}\|_{1}} \cdot\|\hat{f}\|_{1} \\
& \leq \epsilon
\end{aligned}
$$

Corollary 2.13 Any class of functions $\mathcal{C}=\left\{f \mid\|f\|_{2}{ }^{2} \leq 1\right.$ and $\left.\|\hat{f}\|_{1} \leq s\right\}$ is learnable with random examples in time poly $\left(s, \frac{1}{\epsilon}\right)$.

Let us now consider functions which are computable by decision trees where nodes branch on arbitrary parities of variables. Figure 2 contains an example of a function computable by decision tree on the parity of the various subsets of variables. Another example is parity function which is computable by a depth-1 parity decision tree.

Proposition 2.14 If a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is expressible as a size-s decision tree on parities, then $\|\hat{f}\|_{1} \leq s$.

Figure 2:

Proof:Let $\mathbf{1}_{P}$ be an $\{0,1\}$-indicator function for a path P in the decision tree. Let the path $P=$ $\left(X_{S_{1}}=b_{1}, \cdots, X_{S_{d}}=b_{d}\right)$, i.e., we get the path P by taking the edges labeled $b_{1}, \cdots, b_{d} \in\{-1,1\}$ starting from the root node. We have

$$
\mathbf{1}_{P}=\left(\frac{1}{2}+\frac{1}{2} b_{1} X_{S_{1}}\right) \cdots\left(\frac{1}{2}+\frac{1}{2} b_{d} X_{S_{d}}\right)
$$

It can be seen that $\left\|\widehat{\mathbf{1}_{P}}\right\|_{1}=1$. Since $f(x)=\sum_{\text {Paths } P} \mathbf{1}_{P}(x) f(P)$, we have $\|\hat{f}\|_{1} \leq s$.

Definition 2.15 An AND of parities is called a coset.
Remark 2.16 If a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is expressible as $\sum_{i=1}^{s} \pm \mathbf{1}_{P_{i}}$, where P_{i} 's are cosets then $\|\hat{f}\|_{1} \leq s$.

Remark 2.17 Proposition 2.14 implies that we can learn all parity functions in poly $\left(\frac{1}{\epsilon}\right)$ time. Observe that we cannot see this result straightforward from the usual decision trees on parity functions.

Theorem 2.18 [1] If a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\|\hat{f}\|_{1} \leq s$, then

$$
f=\sum_{i=1}^{2^{2^{O(}\left(s^{4}\right)}} \pm \mathbf{1}_{P_{i}}
$$

where P_{i} 's are cosets.

3 Learning DNFs

Proposition 3.1 If f has a size-s DNF formula, it is ϵ-close to a width- $\log \left(\frac{s}{\epsilon}\right)$ DNF.

Proof:Let the function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ has a size- s DNF. Drop all the terms whose width is larger than $\log \left(\frac{s}{\epsilon}\right)$ from the DNF of f and let the new DNF represents the function f^{\prime}. If we look at a particular term in the DNF of f whose width is greater than $\log \left(\frac{s}{\epsilon}\right)$, then the probability that a randomly chosen $x \in\{-1,1\}$ sets it to -1 (or 1 if we look at f as boolean function from $\{0,1\}^{n}$ to $\{0,1\}$) is at most $2^{-\log \left(\frac{s}{\epsilon}\right)}=\frac{\epsilon}{s}$. Since there are at most s terms in the DNF, we have that $\operatorname{Pr}_{\mathbf{x}}\left[f(\mathbf{x}) \neq f^{\prime}(\mathbf{x})\right] \leq \epsilon$ by union bound.

Proposition 3.2 If a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ has a width w DNF, then $\mathbb{I}(f) \leq 2 w$.
Proof:Left as an exercise.

Corollary 3.3 If a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ has a width w DNF, then f is ϵ-concentrated on a $\mathcal{S}=\left\{S| | S \left\lvert\, \leq \frac{2 w}{\epsilon}\right.\right\}$. Thus the function f can be learnable in $n^{O\left(\frac{w}{\epsilon}\right)}$.

In the rest of the class, we shall prove the following theorem making use of Hastad's switching lemma.

Theorem 3.4 DNF's of width w are ϵ-concentrated on degree up to $O\left(w \log \left(\frac{1}{\epsilon}\right)\right)$.
Remark 3.5 Observe that we are replacing the $\frac{1}{\epsilon}$-factor with $\log \left(\frac{1}{\epsilon}\right)$-factor on the maximum degree of the Fourier coefficients.

Definition 3.6 A random restriction with $*$-probability ρ on $[n]$ is a random pair (\mathbf{I}, \mathbf{X}) where \mathbf{I} is a random subset of $[n]$ chosen by including each coordinate with probability ρ independently and \mathbf{X} is a random string from $\{-1,1\}^{|\overline{\mathbf{I}}|}$.

Given a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, we shall write $f_{\mathbf{X} \rightarrow \overline{\mathbf{I}}}:\{-1,1\}^{|\mathbf{I}|} \rightarrow \mathbb{R}$ for a restriction of f. If the function f is computable by a width w DNF, then after a random restriction with *-probability $\rho=\frac{1}{10 w}$, with very high probability, $f_{\mathbf{X} \rightarrow \overline{\mathbf{I}}}:\{-1,1\}^{|\mathbf{I}|} \rightarrow \mathbb{R}$ has a $O(1)$-depth decision tree. The reason for this is intuitively that in each term of the DNF, $\frac{1}{10}$ variables survive the random restriction on an average. Thus resulting in a a constant depth decision tree. This intuition is formalized in the following lemma due to Hastad.

Theorem 3.7 (Hastad's Switching Lemma) Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a width w computable DNF. When we apply a random restriction on the function f with $*$-probability ρ, then

$$
\underset{(\mathbf{I}, \mathbf{X})}{\mathbf{P r}}\left[D T-\operatorname{depth}\left(f_{\mathbf{X} \rightarrow \overline{\mathbf{I}}}\right)>d\right] \leq(5 \rho w)^{d}
$$

Theorem 3.8 Let f be computable by a width-w DNF. Then $\forall d \geq 5$,

$$
\sum_{|U| \geq 20 d w} \hat{f}(u)^{2} \leq 2^{-d+1}
$$

Proof:Let (\mathbf{I}, \mathbf{X}) be a random restriction with $\rho=\frac{1}{10 w}$. We know from Hastad's switching lemma $f_{\mathbf{X} \rightarrow \overline{\mathbf{I}}}$ has a depth greater than d with a probability less than 2^{-d}. Hence the following sum is nonzero (and less than 1) with a probability less than 2^{-d}.

$$
\sum_{S \subseteq I,|S|>d} \hat{f}_{\mathbf{X} \rightarrow \overline{\mathbf{I}}}(S)^{2}
$$

Therefore, we have

$$
\begin{aligned}
2^{-d} & \geq \underset{(\mathbf{X}, \mathbf{I})}{\mathbf{E}}\left[\sum_{\substack{S \subseteq I \\
|S|>d}} \hat{f}_{\mathbf{X} \rightarrow \overline{\mathbf{I}}}(S)^{2}\right] \\
& =\underset{\mathbf{I}}{\mathbf{E}}\left[\underset { \mathbf { X } \in \{ - 1 , 1 \} \} ^ { | \overline { \mathbf { I } } | } } { \mathbf { E } } \left[\sum_{\mid S \subseteq \mathbf{I}}^{|S|>d}\right.\right. \\
& \left.\left.\hat{f}_{\mathbf{X} \rightarrow \overline{\mathbf{I}}}(S)^{2}\right]\right] \\
& =\underset{\mathbf{I}}{\mathbf{E}}\left[\sum_{S \subseteq \mathbf{I}}^{|S|>d} \underset{\mathbf{X} \in\{-1,1\}^{\overline{\mathbf{I}} \mid}}{\mathbf{E}}\left[F_{S \subseteq \mathbf{I}}(\mathbf{X})^{2}\right]\right]\left(\text { Recall } F_{S \subseteq I}(x)=\hat{f}_{x}(S)\right) \\
& =\underset{\mathbf{I}}{\mathbf{E}}\left[\sum_{\substack{ \\
|S|>d}} \sum_{T \subseteq \overline{\mathbf{I}}} \widehat{F}_{S \subseteq \mathbf{I}}(T)^{2}\right] \\
& =\underset{\mathbf{I}}{\mathbf{E}}\left[\sum_{\mid S \subseteq \mathbf{I}} \sum_{T \subseteq \overline{\mathbf{I}}} \hat{f}(S \cup T)^{2}\right] \\
& =\sum_{U} \hat{f}(U)^{2} \mathbf{P}_{\mathbf{I}} \mathbf{P r}[|U \cap \mathbf{I}|>d]
\end{aligned}
$$

Suppose $|U| \geq 20 d w$, then $|U \cap \mathbf{I}|$ is binomially distributed with mean $20 d w \rho=2 d$. Using Chernoff bound, we get that $\operatorname{Pr}_{\mathbf{I}}[|U \cap \mathbf{I}|>d] \leq \frac{1}{2}$, when $d \geq 5$. Therefore we have the

$$
\begin{aligned}
\sum_{U} \hat{f}(U)^{2} \mathbf{P r}_{\mathbf{I}}[|U \cap \mathbf{I}|>d] & \leq 2^{-d} \\
\sum_{\substack{U \\
|U| \geq 20 d w}} \hat{f}(U)^{2} \frac{1}{2} & \leq 2^{-d} \\
\sum_{\substack{U \\
|U| \geq 20 d w}} \hat{f}(U)^{2} & \leq 2^{-d+1}
\end{aligned}
$$

Remark 3.9 By putting $d w=w \log \left(\frac{1}{\epsilon}\right)$, we get the theorem 3.4
Further References Yishay Mansour's survey paper[4] also contains some of the ideas in this lecture notes.

References

[1] B. Green and T. Sanders. A quantitative version of the idempotent theorem in harmonic analysis. ArXiv Mathematics e-prints, Nov. 2006.
[2] E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum. In STOC '91: Proceedings of the twenty-third annual ACM symposium on Theory of computing, pages 455-464, New York, NY, USA, 1991. ACM Press.
[3] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform, and learnability. J. ACM, 40(3):607-620, 1993.
[4] Y. Mansour. Learning boolean functions via the fourier transform. In V. Roychowdhury, K.Y. Siu, and A. Orlitsky, editors, Theoretical Advances in Neural Computation and Learning. Kluwer, 1994.

