Analysis of Boolean Functions

(CMU 18-859S, Spring 2007)

Lecture 9: Learning Decision Trees and DNFs

Feb. 18, 2007

Lecturer: Ryan O'Donnell

Scribe: Suresh Purini

1 Two Important Learning Algorithms

We recall the following definition and two important learning algorithms discussed in previous lecture.

Definition 1.1 Given a collection S of subsets of [n], we say $f : \{-1, 1\}^n \to \mathbb{R}$ has ϵ -concentration on S, if

$$\sum_{S \notin \mathcal{S}} \hat{f}(S)^2 \le \epsilon.$$

Theorem 1.2 Let C be a class of n-bit functions, such that $\forall f \in C$, f is ϵ -concentrated on $S = \{S \subseteq [n] | |S| \leq d\}$, then the function class C is learnable under the uniform distribution to an accuracy of $O(\epsilon)$, with a probability of at least $1 - \delta$, in time $poly(|S|, 1/\epsilon)poly(n) \log(1/\delta)$ using random examples only.

This algorithm is called Low Degree algorithm and was proposed by Linial, Mansour and Nisan in [3]. Refer theorem 5.4 in lecture notes 8.

Theorem 1.3 Let C be a class of *n*-bit functions, such that $\forall f \in C$, f is ϵ -concentrated on some collection S. Then the function class C is learnable using membership queries (Goldreich-Levin Algorithm) in $poly(|S|, 1/\epsilon)poly(n) \log (1/\delta)$ time.

This algorithm is called Kushilevitz-Mansour algorithm [2]. Refer corollary 5.5 in lecture notes 8.

2 Learning Decision Trees

A decision tree is a binary tree in which the internal nodes are labeled with variables and the leafs are labeled with either -1 or +1. And the left and right edges corresponding to any internal node is labeled -1 and +1 respectively. We can think of the decision tree as defining a boolean function in the natural obvious way. For example, the decision tree in the figure 1 defines a boolean function whose DNF formula is $x_1x_2x_3 + x_1\bar{x}_2x_4 + \bar{x}_1x_2$.

Note that, given any boolean function we can come up with a corresponding decision tree.

Let P be a path in the decision tree. An example of a path in the figure 1 is $P = (x_1 = -1, x_2 = +1, x_4 = -1)$.

Figure 1:

Let $\mathbf{1}_P : \{-1, 1\}^n \to \{0, 1\}$ be an indicator function for path P. For example,

 $\mathbf{1}_{P} = \begin{cases} 1 & \text{if } x_{1} = -1, x_{2} = +1, x_{4} = -1 \\ 0 & \text{else} \end{cases}$

Observation 2.1 A boolean function f can be expressed in terms of path functions $\mathbf{1}_P$'s, corresponding to various paths in the decision tree of the function f as follows

$$f(x) = \sum_{Paths P} \mathbf{1}_P(x) f(P)$$

where f(P) is the label on the leaf when the function f takes the path P in its decision tree.

Observation 2.2 Let V be the set of variables occurring in a path function $\mathbf{1}_P$ and d be the cardinality of the set V. Then the Fourier expansion of $\mathbf{1}_P$ looks like

$$\sum_{S \subseteq V} \pm 2^{-d} X_S.$$

It is easy to see the proof of the above observation by noting that the Fourier expansion for the path function $\mathbf{1}_P$, when $P = (x_1 = -1, x_2 = +1, x_4 = -1)$, is $\mathbf{1}_P = x_1 \overline{x}_2 x_4 = (\frac{1}{2} - \frac{1}{2}x_1)(\frac{1}{2} + \frac{1}{2}x_2)(\frac{1}{2} - \frac{1}{2}x_4)$.

Proposition 2.3 If $f : \{-1, 1\}^n \to \{-1, 1\}$ is computable by a depth-d decision tree then

- 1. Fourier expansion of f has degree at most d i.e., $\sum_{|S|>d} \hat{f}(S)^2 = 0$.
- 2. All Fourier coefficients are integer multiples of 2^{-d} .
- 3. The number of nonzero Fourier coefficients is at most 4^d .

Proof:(1) follows from observation 2.1. We can observe that all the Fourier coefficients look like $k2^{-d'}$ for some $d' \leq d$, which can be written as $k2^{d+d'}2^{-d}$. This proves (2). A depth-*d* decision tree has at most 2^d leaves and hence we have at most $2^d \cdot 2^d = 4^d$ Fourier coefficients, which proves (3).

Corollary 2.4 Depth-d decision trees are exactly learnable with random examples in time $poly(4^d)poly(n) \log (1/\delta)$.

Proof: Use Kushilevitz-Mansour algorithm, with $\epsilon = \frac{2^{-d}}{4}$ and round each Fourier coefficient estimate to the nearest multiple of 2^{-d} .

Remark 2.5 $\log(n)$ -depth decision trees are exactly learnable in polynomial time. This algorithm can be derandomized.

Observation 2.6 Size-s decision trees are ϵ -close to a depth $\log(s/\epsilon)$ decision trees.

Proof:Let *T* be decision tree of size *s* corresponding to boolean function *f*. Consider the decision *T'* obtained from *T* by chopping all paths whose depth is greater than $\log\left(\frac{s}{\epsilon}\right)$ to $\log\left(\frac{s}{\epsilon}\right)$. The decision tree *T'* gives an incorrect value for f(X) only when *X* takes a path of length greater than $\log\left(\frac{s}{\epsilon}\right)$ in *T*. When we pick *X* at random, this happens with probability $2^{-\log\left(\frac{s}{\epsilon}\right)} = \frac{\epsilon}{s}$. Therefore by union bound, we get that $\Pr_{\mathbf{x}\in\{-1,1\}^n}[T(\mathbf{x})\neq T'(\mathbf{x})] \leq \epsilon$.

Corollary 2.7 Size-s decision trees are $O(\epsilon)$ -concentrated on a collection of size size $4^{\log(s/\epsilon)} = (s/\epsilon)^2$.

Definition 2.8 Given a function $f : \{-1, 1\}^n \to \mathbb{R}$, the spectral norm of L_1 -Fourier norm of f is

$$||\hat{f}||_1 = \sum_{S \subseteq [n]} |\hat{f}(S)|$$

Observation 2.9 If a function f is an AND of literals, then $||\hat{f}||_1 = 1$. Refer observation 2.2 for the proof idea.

The following observation follows from the fact $\forall a, b \in \mathbb{R}, |a+b| \le |a|+|b|$ and |ab| = |a||b|.

Observation 2.10

- 1. $||\widehat{f+g}||_1 \le ||\widehat{f}||_1 + ||\widehat{g}||_1$
- 2. $||\widehat{cf}||_1 = |c|||\widehat{f}||_1$

Proposition 2.11 If f has a decision tree of size s, $||\hat{f}||_1 \leq s$.

Proof:

$$||\hat{f}||_{1} \leq \sum_{Paths P} \widehat{\mathbf{1}_{P}f(P)}$$
$$\leq \sum_{Paths P} \widehat{\mathbf{1}_{P}}$$
$$\leq s$$

Proposition 2.12 Given any function f with $||f||_2^2 \leq 1$ and $\epsilon > 0$, $S = \{S \subseteq [n] ||\hat{f}(S)| \geq \frac{\epsilon}{||\hat{f}||_1}\}$, then f is ϵ -concentrated on S. Note that $|S| \leq \left(\frac{||\hat{f}||_1}{\epsilon}\right)^2$.

Proof:

$$\begin{split} \sum_{S \notin \mathcal{S}} \hat{f}(S)^2 &\leq \max_{S \notin \mathcal{S}} |\hat{f}(S)| \left[\sum_{S \notin \mathcal{S}} |\hat{f}(S)| \right] \\ &\leq \max_{S \notin \mathcal{S}} |\hat{f}(S)| \left[\sum_{S \notin \mathcal{S}} |\hat{f}(S)| + \sum_{S \in \mathcal{S}} |\hat{f}(S)| \right] \\ &\leq \frac{\epsilon}{||\hat{f}||_1} \cdot ||\hat{f}||_1 \\ &\leq \epsilon \end{split}$$

Corollary 2.13 Any class of functions $C = \{f | ||f||_2^2 \le 1 \text{ and } ||\hat{f}||_1 \le s\}$ is learnable with random examples in time $poly(s, \frac{1}{\epsilon})$.

Let us now consider functions which are computable by decision trees where nodes branch on arbitrary parities of variables. Figure 2 contains an example of a function computable by decision tree on the parity of the various subsets of variables. Another example is parity function which is computable by a depth-1 parity decision tree.

Proposition 2.14 If a function $f : \{-1, 1\}^n \to \{-1, 1\}$ is expressible as a size-s decision tree on parities, then $||\hat{f}||_1 \leq s$.

Figure 2:

Proof:Let $\mathbf{1}_P$ be an $\{0, 1\}$ -indicator function for a path P in the decision tree. Let the path $P = (X_{S_1} = b_1, \dots, X_{S_d} = b_d)$, i.e., we get the path P by taking the edges labeled $b_1, \dots, b_d \in \{-1, 1\}$ starting from the root node. We have

$$\mathbf{1}_P = (\frac{1}{2} + \frac{1}{2}b_1 X_{S_1}) \cdots (\frac{1}{2} + \frac{1}{2}b_d X_{S_d})$$

It can be seen that $||\widehat{\mathbf{1}_P}||_1 = 1$. Since $f(x) = \sum_{Paths P} \mathbf{1}_P(x) f(P)$, we have $||\widehat{f}||_1 \leq s$. \Box

Definition 2.15 An AND of parities is called a coset.

Remark 2.16 If a function $f : \{-1, 1\}^n \to \{-1, 1\}$ is expressible as $\sum_{i=1}^s \pm \mathbf{1}_{P_i}$, where P_i 's are cosets then $||\hat{f}||_1 \leq s$.

Remark 2.17 Proposition 2.14 implies that we can learn all parity functions in $poly(\frac{1}{\epsilon})$ time. Observe that we cannot see this result straightforward from the usual decision trees on parity functions.

Theorem 2.18 [1] If a function $f : \{-1, 1\}^n \to \{-1, 1\}$ with $||\hat{f}||_1 \leq s$, then

$$f = \sum_{i=1}^{2^{2^{O(s^4)}}} \pm \mathbf{1}_{P_i}$$

where P_i 's are cosets.

3 Learning DNFs

Proposition 3.1 If f has a size-s DNF formula, it is ϵ -close to a width- $\log(\frac{s}{\epsilon})$ DNF.

Proof:Let the function $f : \{-1, 1\}^n \to \{-1, 1\}$ has a size-*s* DNF. Drop all the terms whose width is larger than $\log(\frac{s}{\epsilon})$ from the DNF of f and let the new DNF represents the function f'. If we look at a particular term in the DNF of f whose width is greater than $\log(\frac{s}{\epsilon})$, then the probability that a randomly chosen $x \in \{-1, 1\}$ sets it to -1 (or 1 if we look at f as boolean function from $\{0, 1\}^n$ to $\{0, 1\}$) is at most $2^{-\log(\frac{s}{\epsilon})} = \frac{\epsilon}{s}$. Since there are at most s terms in the DNF, we have that $\mathbf{Pr}_{\mathbf{x}} [f(\mathbf{x}) \neq f'(\mathbf{x})] \leq \epsilon$ by union bound. \Box

Proposition 3.2 If a function $f : \{-1, 1\}^n \to \{-1, 1\}$ has a width w DNF, then $\mathbb{I}(f) \leq 2w$.

Proof:Left as an exercise.

Corollary 3.3 If a function $f : \{-1, 1\}^n \to \{-1, 1\}$ has a width w DNF, then f is ϵ -concentrated on a $S = \{S \mid |S| \leq \frac{2w}{\epsilon}\}$. Thus the function f can be learnable in $n^{O(\frac{w}{\epsilon})}$.

In the rest of the class, we shall prove the following theorem making use of Hastad's switching lemma.

Theorem 3.4 DNF's of width w are ϵ -concentrated on degree up to $O(w \log(\frac{1}{\epsilon}))$.

Remark 3.5 Observe that we are replacing the $\frac{1}{\epsilon}$ -factor with $\log(\frac{1}{\epsilon})$ -factor on the maximum degree of the Fourier coefficients.

Definition 3.6 A random restriction with *-probability ρ on [n] is a random pair (\mathbf{I}, \mathbf{X}) where \mathbf{I} is a random subset of [n] chosen by including each coordinate with probability ρ independently and \mathbf{X} is a random string from $\{-1, 1\}^{|\overline{\mathbf{I}}|}$.

Given a function $f : \{-1,1\}^n \to \{-1,1\}$, we shall write $f_{\mathbf{X}\to\bar{\mathbf{I}}} : \{-1,1\}^{|\mathbf{I}|} \to \mathbb{R}$ for a restriction of f. If the function f is computable by a width w DNF, then after a random restriction with *-probability $\rho = \frac{1}{10w}$, with very high probability, $f_{\mathbf{X}\to\bar{\mathbf{I}}} : \{-1,1\}^{|\mathbf{I}|} \to \mathbb{R}$ has a O(1)-depth decision tree. The reason for this is intuitively that in each term of the DNF, $\frac{1}{10}$ variables survive the random restriction on an average. Thus resulting in a a constant depth decision tree. This intuition is formalized in the following lemma due to Hastad.

Theorem 3.7 (*Hastad's Switching Lemma*) Let $f : \{-1,1\}^n \to \{-1,1\}$ be a width w computable DNF. When we apply a random restriction on the function f with *-probability ρ , then

$$\Pr_{(\mathbf{I},\mathbf{X})}[\textit{DT-depth}(f_{\mathbf{X}\to\bar{\mathbf{I}}})>d] \leq (5\rho w)^d$$

Theorem 3.8 Let f be computable by a width-w DNF. Then $\forall d \geq 5$,

$$\sum_{|U| \ge 20 dw} \hat{f}(u)^2 \le 2^{-d+1}.$$

Proof:Let (\mathbf{I}, \mathbf{X}) be a random restriction with $\rho = \frac{1}{10w}$. We know from Hastad's switching lemma $f_{\mathbf{X} \to \bar{\mathbf{I}}}$ has a depth greater than d with a probability less than 2^{-d} . Hence the following sum is nonzero (and less than 1) with a probability less than 2^{-d} .

$$\sum_{S \subseteq I, |S| > d} \hat{f}_{\mathbf{X} \to \overline{\mathbf{I}}}(S)^2$$

Therefore, we have

$$2^{-d} \geq \mathbf{E}_{(\mathbf{X},\mathbf{I})} \left[\sum_{\substack{S \subseteq I \\ |S| > d}} \hat{f}_{\mathbf{X} \to \overline{\mathbf{I}}}(S)^2 \right]$$

$$= \mathbf{E}_{\mathbf{I}} \left[\mathbf{E}_{\mathbf{X} \in \{-1,1\}^{|\overline{\mathbf{I}}|}} \left[\sum_{\substack{S \subseteq \mathbf{I} \\ |S| > d}} \hat{f}_{\mathbf{X} \to \overline{\mathbf{I}}}(S)^2 \right] \right]$$

$$= \mathbf{E}_{\mathbf{I}} \left[\sum_{\substack{S \subseteq \mathbf{I} \\ |S| > d}} \mathbf{E}_{S \subseteq \mathbf{I}, \mathbf{X} \in \{-1,1\}^{|\overline{\mathbf{I}}|}} \left[F_{S \subseteq \mathbf{I}}(\mathbf{X})^2 \right] \right] (\operatorname{Recall} F_{S \subseteq I}(x) = \hat{f}_x(S))$$

$$= \mathbf{E}_{\mathbf{I}} \left[\sum_{\substack{S \subseteq \mathbf{I} \\ |S| > d}} \sum_{T \subseteq \overline{\mathbf{I}}} \widehat{F}_{S \subseteq \mathbf{I}}(T)^2 \right]$$

$$= \mathbf{E}_{\mathbf{I}} \left[\sum_{\substack{S \subseteq \mathbf{I} \\ |S| > d}} \sum_{T \subseteq \overline{\mathbf{I}}} \widehat{f}(S \cup T)^2 \right]$$

$$= \sum_{U} \widehat{f}(U)^2 \mathbf{Pr}_{\mathbf{I}} [|U \cap \mathbf{I}| > d]$$

Suppose $|U| \ge 20dw$, then $|U \cap \mathbf{I}|$ is binomially distributed with mean $20dw\rho = 2d$. Using Chernoff bound, we get that $\mathbf{Pr}_{\mathbf{I}}[|U \cap \mathbf{I}| > d] \le \frac{1}{2}$, when $d \ge 5$. Therefore we have the

$$\begin{split} \sum_{U} \hat{f}(U)^{2} \Pr_{\mathbf{I}} \left[|U \cap \mathbf{I}| > d \right] &\leq 2^{-d} \\ \sum_{\substack{U \\ |U| \ge 20dw}} \hat{f}(U)^{2} \frac{1}{2} &\leq 2^{-d} \\ \sum_{\substack{U \\ |U| \ge 20dw}} \hat{f}(U)^{2} &\leq 2^{-d+1} \\ |U| \ge 20dw \end{split}$$

Remark 3.9 By putting $dw = w \log(\frac{1}{\epsilon})$, we get the theorem 3.4

Further References Yishay Mansour's survey paper[4] also contains some of the ideas in this lecture notes.

References

- [1] B. Green and T. Sanders. A quantitative version of the idempotent theorem in harmonic analysis. *ArXiv Mathematics e-prints*, Nov. 2006.
- [2] E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum. In STOC '91: Proceedings of the twenty-third annual ACM symposium on Theory of computing, pages 455–464, New York, NY, USA, 1991. ACM Press.
- [3] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform, and learnability. J. ACM, 40(3):607–620, 1993.
- [4] Y. Mansour. Learning boolean functions via the fourier transform. In V. Roychowdhury, K.-Y. Siu, and A. Orlitsky, editors, *Theoretical Advances in Neural Computation and Learning*. Kluwer, 1994.