
Analysis of Boolean Functions (CMU 18-859S, Spring 2007)

Lecture 8: Learning under the uniform distribution
Feb. 8, 2005

Lecturer: Ryan O’Donnell Scribe: Moritz Hardt

1 The Learning Model

A learning problem is identified with a(concept) classC of functionsf : {−1, 1}n → {−1, 1}.
A learning algorithmA is a (usually randomized) algorithm with2 inputs

ε > 0 accuracy parameter

δ > 0 confidence parameter

and access to some target functionf :

Either: Random Examples Or: (Membership) Queries
A can ask for an example and gets a pair(x, f(x)) A can ask forf ’s value
wherex is drawn from the uniform distribution. on any stringx it wants.

Finally, A outputs ahypothesish : {−1, 1}n → {−1, 1} in the form of a circuit.

• We say,A learnsC if for all ε, δ and for allf ∈ C whenA is run, the outputh satisfies that
it is ε-close tof with probability at least1− δ.

• A is efficient if it runs in timepoly(n, 1/ε, 1/δ).

Remark 1.1 The PAC (“Probably Approximately Correct”) Learning model is due to Valiant:A
theory of the learnable. C.ACM 1984.

We will only consider the case of PAC-learning under the uniform distribution. This manifests
itself in two places:

• accuracy of the hypothesis:Prx unif. on{−1,1}n [h(x) 6= f(x)]

• distribution of random examples:(x, f(x)) wherex is drawn uniformly at random.

General PAC-learning insists that one algorithm works simultaneously for all distributions.
In fact, the machine learning community interested in real-world applications finds the uniform
setting questionable: “They’ll punch you in the nose if you try to tell them about algorithms in this
framework.” –Ryan. But, in a more general framework, no one can really prove anything.

We think of uniform distribution learning as a part of complexity theory and cryptography
rather than as part of real-world Machine Learning.

Remark 1.2 The random examples model is the traditional access model. The membership queries
model can be appropriate though, e.g., in attacking crypto systems.

1

2 Run time

The trivial run time isO(n2n). Even with just random examples, you will see the output of the
target function on every input with high probability so that you can learn withε = 0.

What we want instead is a run time polynomial inn and1/ε. We don’t care much aboutn2 vs.
n3 or n4.

As it turns out, the parameterδ is never interesting. Inevitably, any algorithm runsT (n, 1/ε)
many steps. Some steps interact with the examples (usually estimating something aboutf) and
can “fail”, but the failure probability can be decreased toδ′ at the cost ofO(log 1/δ′) repetitions.
So, setδ′ = δ/T (n, 1/ε). Then, except with probabilityδ, no steps fail (union bound). The total
running time overhead is multiplicativelog(T (n, 1/ε)) + log(1/δ). Also, algorithms can test their
own hypotheses. So, any running time dependence onδ (like 221/δ

) can be reduced tolog(1/δ).
We will henceforth ignoreδ!

Although we wantpoly(n, 1/ε) run time, a lot of the classes we’re interested in are “pretty
hard”. So, sometimes we will settle for:

• Poly-time assumingε is “constant”, e.g.,nO(1/ε).

• Quasipolynomial time:(n/ε)log(n/ε).

This is, for instance, relevant for cryptography where even quasipolynomial time adversaries
should not be successful.

3 Interesting Classes

Mainly, we fix arepresentationformat (for boolean functionsf : {−1, 1}n → {−1, 1}) and then
set the concept classC to be the class of functions withpoly(n) size in that format. Let us briefly
recall the definition of two particularly interesting representations.

Definition 3.1 A DNF formula is a disjunctionφ = T1 ∨ T2 ∨ . . . Ts where thetermsT are a
conjunction ofliterals, e.g.,x1 ∧ x̄3 ∧ x2.

• Thesizeof a DNF is the number of terms.

• Thewidth is the maximum number of literals in any term.

Definition 3.2 Decision treesare rooted trees where every inner vertex is labeled with a variable
namexi and has two outgoing edges labeled with−1 or 1. Every leaf is labeled with an output
value−1 or 1. An assignment to the variables defines a path in the decision tree from the root to
an output value in the obvious way. We assume no variable appears twice on any path.

• Thedepthof a decision tree is the maximum number of variables on any path in the tree.

• Its sizeis the number of leaves in the tree.

2

Fact 3.3 • If f has a decision tree of depthd, then it is of size at most2d.

• Decision trees of sizes ares-juntas.

• If f has a decision tree of sizes, then it also has a DNF of sizes, i.e., “DNF-size(f) ≤
DT-size(f)”.

• An r-junta has a depth-r decision tree and a width-r, size2r DNF.

We get the following interesting learning problems:

• Learning functions withpoly(n) size decision trees.

• Learning functions withpoly(n) size DNF formulas.

Remark 3.4 Especially natural are universal representation formats: All functions can be rep-
resented withsomesize. Then, we often talk about learningall functionsin timepoly(n, 1/ε, s),
wheres is the size of the smallest such representation for the function. That is, the more com-
plicated the function, the more time you are allowed. In fact, we don’t even need to knows; try
s = 1, 2, 4, 8, . . . and “check”.

4 Best known algorithms

Class Random Examples Membership Queries
poly-size depth-d circuits nO(logd−1(n/ε)) (1) same
poly-size DNF nO(log(n/ε)) (2) poly(n/ε) (3)
poly-size DTs nO(log(n/ε)) poly(n/ε) (4)
log(n)-juntas n.704 log(n)+O(1) (5) poly(n)

1. [LMN’93]: We will prove this modulo H̊astad’s “Switching Lemma”.

[Kharitonov’93]: Assuming factoring “takes exponential time”, this can’t be done, even with
queries, in time better thannlogΩ(d) n.

2. This follows from the above. [Verbeurgt’90]

3. Celebrated result of Jeff Jackson. We will prove an earlier result of Mansour:nO(log log n)

(assumingε constant).

4. We will prove this before the Mansour result. A nice application of Goldreich-Levin and
Fourier analysis.

5. People would kill to do DTs in polynomial time from random examples, but even doing
log(n)-juntas in polynomial time is conjectured to be hard. Avrim Blum will give you$1000
if you can do it. [BFKL] built a cryptosystem assuming it. The marginal.704 improves
trivial results from crypto.

3

5 Learning via spectral concentration

As we will see, we can get learning algorithms for several classes of boolean functions by analyzing
theconcentrationof the fourier spectrum of those functions.

Definition 5.1 Given a collectionS of subsets of[n], we sayf hasε-concentration onS, if∑
S 6∈S

f̂(S)2 ≤ ε.

Proposition 5.2 In this case,g : {−1, 1}n → R defined byg =
∑

S∈S f̂(S)χS satisfies

‖f − g‖2
2 ≤ ε.

Proof:
‖f − g‖2

2 = E
x
[((f − g)(x))2] =

∑
S⊆[n]

f̂ − g(S)2 =
∑
S 6∈S

f̂(S)2 ≤ ε

2

Proposition 5.3 Let f : {−1, 1}n → {−1, 1} andg : {−1, 1}n → {−1, 1} satisfy‖f − g‖2
2 ≤ ε.

Then, forh : {−1, 1}n → {−1, 1} defined byh(x) = sgn(g(x)), f andh are ε-close.

Proof: Suppose that for more than anε fraction of thex’s, we haveh(x) 6= f(x). For suchx,
(f(x)− g(x))2 ≥ 1. But then,

E
x
[((f − g)(x))2] > ε.

2

Theorem 5.4 Suppose an algorithmA can “somehow” find a collectionS on whichf is ε/2-
concentrated. Then, in further timepoly(|S|, 1/ε, n) log(1/δ), using only random examples,A
can output a hypothesish such that with probability at least1 − δ the functionsh and f are
ε-close.

Proof: The algorithm proceeds as follows:

1. For eachS ∈ S, it estimatesf̂(S) to within±
√

ε/(4
√
|S|) in timepoly(|S|, 1/ε, n).

Call the estimatẽ̂f(S).

2. The algorithm constructs̃g(x) =
∑

S∈S
˜̂f(S)xS and outputsh = sgn(g̃).

4

For the purpose of analysis, letg =
∑

S∈S f̂(S)χS. We know‖f − g‖2
2 ≤ ε/2. And,

‖g − g̃‖ =
∑

S

ĝ − g̃(S)2

=
∑
S∈S

(ĝ(S)− ˆ̃g(S))2

=
∑
S∈S

(
f̂(S)− ˜̂f(S)

)2

≤ |S| ε

16|S|
=

ε

16
.

By the triangle inequality,

‖f − g̃‖ ≤ ‖f − g‖2 + ‖g − g̃‖2 ≤
√

ε/2 +
√

ε/16 ≤
√

ε.

Therefore,‖f − g̃‖2
2 ≤ ε, that is,h is ε-close tof . 2

Corollary 5.5 1. If you can prove for allf ∈ C, f is ε/2-concentrated onS = {S ⊆ [n] :
|S| ≤ d(ε/2)}, thenC can be learned in timepoly(|S|, 1/ε) ≤ nO(d) · poly(1/eps) using
random examples only.

2. If you can prove for allf ∈ C, f is ε/4-concentrated on some collection of cardinality at
mostM , thenC can be learned in timepoly(M, 1/ε) using membership queries.

Proof: (2) LetT be the collection of sizeM of setsS with the largest̂f 2. Then,f is ε-concentrated
onT . Using the Goldreich-Levin algorithm, find a collectionL containing allS such thatf̂(S)2 ≥
ε/4M in timepoly(M, 1/ε).

We are done, if can provef is ε/2-concentrated onL.∑
S 6∈L

f̂(S)2 =
∑

S 6∈L,S∈T

f̂(S)2 +
∑

S 6∈L,S6∈T

f̂(S)2 ≤ M · ε

4M
+

ε

4
=

ε

2

2

Exercise: If ‖f − g‖2
2 ≤ ε andg is ε-concentrated onS, thenf is O(ε)-concentrated onS.

Proposition 5.6 Supposef : {−1, 1}n → {−1, 1} with I(f) ≤ d. Then,∑
|S|>d/ε

f̂(S)2 ≤ ε.

Proof: Remember,I(f) =
∑

S |S|f̂(S)2. So, if
∑

|S|>d/ε f̂(S)2 > ε, thenI(f) > d. 2

5

Corollary 5.7 The classC = {f : I(f) ≤ d} is learnable in timenO(d/ε) using random examples
only.

Proposition 5.8 If f has a decision tree of depth at mostd, thenI(f) ≤ d.

Proof: For any givenx, at mostd coordinates are influential.2

Corollary 5.9 Decision trees of depthlog(n) are learnable in timenO(log(n)/ε) using random ex-
amples only.

Homework: If f has a DNF of widthd, thenI(f) ≤ 2d.

Corollary 5.10 DNFs of withlog(n) are learnable in timenO(log n/ε) for random examples.

Proposition 5.11 If f has a decision tree of sizes, thenf is ε-close to someg with DT-depth at
mostlog(s/ε).

Proof: Given the DT forf , truncate paths longer thanlog(s/ε). The truncated tree computes some
functiong. But, for any path of lengthlog(s/ε) the probability that a randomx follows this path is
bounded by2− log(s/ε) = ε/s. Therefore, by union bound,

Prx[f(x) 6= g(x)] ≤ s · ε

s
= ε.

2

Corollary 5.12 Decision trees of sizes are learnable from random examples in time

nO(log(s/ε)/ε) ≈ nO(log n).

6

