Analysis of Boolean Functions (CMU 18-859S, Spring 2007

Lecture 8. Learning under the uniform distribution
Feb. 8, 2005
Lecturer: Ryan O’Donnell Scribe: Moritz Hardt

1 The Learning Model

A learning problem is identified with @oncept) clas€§ of functionsf : {—1,1}" — {—1,1}.
A learning algorithmA is a (usually randomized) algorithm withinputs

e > () accuracy parameter

0 > 0 confidence parameter
and access to some target functitin

Either: Random Examples \ Or: (Membership) Queries
A can ask for an example and gets a gair f(x)) | A can ask forf’s value
wherex is drawn from the uniform distribution. | on any stringe it wants.

Finally, A outputs ehypothesis : {—1,1}" — {—1, 1} in the form of a circuit.

e We say,A learns(if for all ¢, and for all f € C when A is run, the output satisfies that
it is e-close tof with probability at least — §.

e Ais efficient if it runs in timepoly(n, 1/¢,1/06).

Remark 1.1 The PAC (“Probably Approximately Correct”) Learning model is due to Valiat:
theory of the learnableC.ACM 1984.

We will only consider the case of PAC-learning under the uniform distribution. This manifests
itself in two places:

e accuracy of the hypothesi®r, unit. on{—1,13~ (2 () # f(x)]
e distribution of random exampleéx, f(x)) wherex is drawn uniformly at random.

General PAC-learning insists that one algorithm works simultaneously for all distributions.
In fact, the machine learning community interested in real-world applications finds the uniform
setting questionable: “They’ll punch you in the nose if you try to tell them about algorithms in this
framework.” —Ryan. But, in a more general framework, no one can really prove anything.

We think of uniform distribution learning as a part of complexity theory and cryptography
rather than as part of real-world Machine Learning.

Remark 1.2 The random examples model is the traditional access model. The membership queries
model can be appropriate though, e.g., in attacking crypto systems.

1

2 Runtime

The trivial run time isO(n2™). Even with just random examples, you will see the output of the
target function on every input with high probability so that you can learn with0.

What we want instead is a run time polynomiakimnd1/e. We don’'t care much abouf vs.
n?® orn?,

As it turns out, the parametéris never interesting Inevitably, any algorithm run®'(n, 1 /e)
many steps. Some steps interact with the examples (usually estimating something)adodit
can “fail”, but the failure probability can be decreased'at the cost ofD(log 1/4’) repetitions.
So, sett’ = 0/T'(n,1/e). Then, except with probability, no steps fail (union bound). The total
running time overhead is multiplicativeg(7'(n, 1/¢)) + log(1/4). Also, algorithms can test their
own hypotheses. So, any running time dependencé (tike 22"°) can be reduced tog(1/6).

We will henceforth ignore!

Although we wantpoly(n, 1/¢) run time, a lot of the classes we're interested in are “pretty

hard”. So, sometimes we will settle for:

e Poly-time assuming is “constant”, e.g.pn?(/9),
e Quasipolynomial time(n,/e)'e(/<),

This is, for instance, relevant for cryptography where even quasipolynomial time adversaries
should not be successful.

3 Interesting Classes

Mainly, we fix arepresentatiorformat (for boolean functiong : {—1,1}" — {—1,1}) and then
set the concept clagsto be the class of functions witboly(n) size in that format. Let us briefly
recall the definition of two particularly interesting representations.

Definition 3.1 A DNF formulais a disjunctiong = 17 VvV 15 V ... T, where thetermsT are a
conjunction ofliterals e.g.,z; A 73 A x5.

e Thesizeof a DNF is the number of terms.

e Thewidth is the maximum number of literals in any term.

Definition 3.2 Decision treesre rooted trees where every inner vertex is labeled with a variable
namezx; and has two outgoing edges labeled with or 1. Every leaf is labeled with an output
value—1 or 1. An assignment to the variables defines a path in the decision tree from the root to
an output value in the obvious way. We assume no variable appears twice on any path.

e Thedepthof a decision tree is the maximum number of variables on any path in the tree.

e lts sizeis the number of leaves in the tree.

Fact3.3 e If f has a decision tree of depth then it is of size at mo&t.
e Decision trees of sizeare s-juntas.

e If f has a decision tree of sizg then it also has a DNF of size i.e., “DNF-size f) <
DT-sizé f)".

e Anr-junta has a depth-decision tree and a width; size2” DNF.
We get the following interesting learning problems:

e Learning functions withpoly(n) size decision trees.

e Learning functions withpoly(n) size DNF formulas.

Remark 3.4 Especially natural are universal representation formats: All functions can be rep-
resented wittsomesize. Then, we often talk about learniall functionsin time poly(n, 1 /e, s),
wheres is the size of the smallest such representation for the function. That is, the more com-
plicated the function, the more time you are allowed. In fact, we don’'t even need toskiigw
s=1,2,4,8,... and “check”.

4 Best known algorithms

Class Random Examples| Membership Queries
poly-size deptht circuits | n00e” (/) (1) | same

poly-size DNF nOlog(n/€)) (2) | poly(n/e) 3)
poly-size DTs nOlog(n/€)) poly(n/e) 4)
log(n)-juntas n70410g(m)+00) (5) | poly(n)

=

[LMN’93]: We will prove this modulo Hastad’s “Switching Lemma”.

[Kharitonov'93]: Assuming factoring “takes exponential time”, this can’'t be done, even with
queries, in time better thag°s™ ' .,

2. This follows from the above. [Verbeurgt'90]

3. Celebrated result of Jeff Jackson. We will prove an earlier result of Mansdifes e ™)
(assuming: constant).

4. We will prove this before the Mansour result. A nice application of Goldreich-Levin and
Fourier analysis.

5. People would kill to do DTs in polynomial time from random examples, but even doing
log(n)-juntas in polynomial time is conjectured to be hard. Avrim Blum will give y¥i000
if you can do it. [BFKL] built a cryptosystem assuming it. The margirf@d improves
trivial results from crypto.

5 Learning via spectral concentration

As we will see, we can get learning algorithms for several classes of boolean functions by analyzing
the concentratiorof the fourier spectrum of those functions.

Definition 5.1 Given a collectiorS of subsets ofiz], we sayf hase-concentration o, if

d fs)y<e

s¢s

Proposition 5.2 In this casey : {—1,1}" — R defined by = > f(S)xs satisfies

If =gl <e
Proof: - A
If = gll5 = E[((f - 9)(x))"] = d F=9(8? =) f(8)?<e
SCln] S¢S
O

Proposition 5.3 Let f : {—1,1}" — {—1,1} andg : {—1,1}" — {—1,1} satisfy|| f — ¢||3 < e.
Then, forh : {—1,1}" — {—1,1} defined by:(z) = sgn(g(x)), f andh are e-close.

Proof: Suppose that for more than arfraction of thez’s, we haveh(z) # f(x). For suchz,
(f(z) — g(x))? > 1. But then,
E[((f - 9)(x))?] >

O

Theorem 5.4 Suppose an algorithml can “somehow” find a collectiorS on which f is ¢/2-
concentrated. Then, in further timely(|S|,1/¢,n)log(1/d), using only random examples,
can output a hypothesis such that with probability at least — ¢ the functionsh and f are
e-close.

Proof: The algorithm proceeds as follows:

1. For eact € S, it estimatesf(S) to within +./¢/(4./]S]) in time poly(|S|, 1/¢, n).
Call the estimatg/(.9).

2. The algorithm constructgz) = Y .5 f(S)zs and outputs = sgn(g).

For the purpose of analysis, let= > F(S)xs. We know| f — g||2 < ¢/2. And,

lg—3ll =" g—3(5)?
S

SeSs
-\ 2
_ (f<S>—f<S>)
SeS
€ €
= ’S|16|8| ~ 16

By the triangle inequality,
If =gl < If —gll2+1lg =gl < Ve/2+ /€e/16 < Ve

Therefore||f — 7|3 < ¢, thatis,h is e-close tof. O

Corollary 5.5 1. If you can prove for allf € C, f is ¢/2-concentrated o = {S C [n] :
S| < d(e/2)}, thenC can be learned in tim@oly(|S|,1/e) < n°@ . poly(1/eps) using
random examples only.

2. If you can prove for allf € C, f is ¢/4-concentrated on some collection of cardinality at
mostM, thenC can be learned in timgoly(), 1/¢) using membership queries.

Proof: (2) LetT be the collection of siz&/ of setsS with the largest2. Then,f is e-concentrated
on7. Using the Goldreich-Levin algorithm, find a collectigrcontaining allS such thapE(S)2 >
e/4M intimepoly(M, 1/e).

We are done, if can provgis e/2-concentrated oif.

Fran2 Fr0)2 F(Q)2 < L & L E_¢€
D OU(CETD DN (G S (5 P TR
ser SeL.SeT SEL.SET
O

Exercise: If |f — g||3 < e andg is e-concentrated o8, thenf is O(¢)-concentrated o.

Proposition 5.6 Supposef : {—1,1}" — {—1,1} withI(f) < d. Then,

> sy <e

|S|>d/e

Proof: Remember](f) = > |S|f(S)?. So, if2\5\>d/€f(5>2 > ¢, thenl(f) > d. O

Corollary 5.7 The clasg’ = {f : I(f) < d} is learnable in timex°(?/9) using random examples
only.

Proposition 5.8 If f has a decision tree of depth at madsthenl(f) < d.

Proof: For any givenz, at mostd coordinates are influentiall

Corollary 5.9 Decision trees of deptlog(n) are learnable in time:©(°¢(")/<) ysing random ex-
amples only.

Homework: If f has a DNF of widthi, thenI(f) < 2d.

Corollary 5.10 DNFs of withlog(n) are learnable in time:©(°¢"/<) for random examples.

Proposition 5.11 If f has a decision tree of sizg then f is e-close to someg with DT-depth at
mostlog(s/e).

Proof: Given the DT forf, truncate paths longer thawg(s/¢). The truncated tree computes some
functiong. But, for any path of lengtlog(s/e) the probability that a randomfollows this path is
bounded by~ '°¢(/9) = ¢/s. Therefore, by union bound,

Pry[f(x) # g(x)] < s

[V e
I
™

Corollary 5.12 Decision trees of sizeare learnable from random examples in time

nO(log(s/e)/e) ~ nO(log n))

