Analysis of Boolean Functions (CMU 18-859S, Spring 2007

Lecture 7. The Goldreich-Levin Algorithm
Feb. 6, 2007

Lecturer: Ryan O’Donnell Scribe: Karl Wimme

-

In this lecture we make the jump from testing properties of functions to learning functions.
The first algorithm that we will see is an algorithm of Goldreich and Levin, which was originally
developed for a cryptographic application and later applied to learning. This algorithm works by
finding a function’s large Fourier coefficients.

1 Testing vs. Learning

We first set some goals for learning. First, how do we measure complexity? In testing, we were
concerned with how many queries were required. In contrast, learning is an algorithmic problem,
so we will be concerned with the running time of the learning algorithm. Second, what is our task?
In testing, we had a class of functiof§ and givenf, our task was to determine whether or not

f € C. Inlearning, we are promised thate C, and we are required to identify the functionGh

that f is.

2 Learning Parities
Our first task will be learning parities.

Proposition 2.1 If f: {—1,1}" — {—1,1} is (O-close to) a parity function, then we can identify
f in polynomial time using queries.

Proof: We simply queryf on all stringse; for 1 < i < n, where the string; is 1 everywhere,

except—1in entryi. If f(e;) = —1, thenz; is relevant in the parity functioffi. O

Remark 2.2 The above algorithm does not run in linear time, because it takes linear time to write
down each query.

So we can learn functions that are parities. With a little more work, we can use local decoding
to learn functions close to some parity. Before we do this, we recall the Hoeffding bound:

Theorem 2.3 (Hoeffding bound) I1X is a random variable with values ir-1, 1], then the empir-
ical average ofX after O(log 3 /¢?) samples is withinte of E[X] with probability 1 — 4.

Proposition 2.4 Supposef : {—1,1}" — {—1,1} is e-close toys for someS, wheree < 1 — ¢
for ¢ > 0. Then we can identify with probability1 — ¢ usingO(n log % queries.

1

Proof: Use local decoding on adl;. The probability that the correct answer is returned for gne
is at least; + 2c. For each string, repeat the local decoding si¢g(%/c?) times, and take the
majority answer. By the Hoeffding bound, we get the wrong answey fer) with probability at
most%. By the union bound, we get the wrong answer f¢#;) for any: with probability at most
0, so we succeed with probability— § as claimedd

Remark 2.5 Notice that the above algorithm cannot be deterministic. For any deterministic ver-
sion of local decoding, an adversary could choose a funcfievhere the above algorithm would
not work.

To learn functionse-far from every parity function foe > }l we need to introduce the
Goldreich-Levin algorithm.

3 The Goldreich-Levin Theorem

Since we are talking about functions that are f@lose to any parity function, we will talk about
correlation rather than closeness. We will say thags correlation with x s if |f(S)| > .

Notice that in the case whetids small, there are potentially masysuch thatf has correlation
~ with ys. The following easy bound follows from Parseval’s identity:

Proposition 3.1 | f(S)| > v for at most; setsS.

We will commonly think ofy as a constant. We can think of the task of outputtingsalch
that|f(S5)| > ~ as list decoding.
We know state the Goldreich-Levin theorem.

Theorem 3.2 (Goldreich-Levin) Given query access fo {—1,1}" — [-1,1], giveny, § > 0,
there is a poly, - log 5)-time algorithm outputs alist = {5, ..., S, } such that (1) iff (S) > =,

thenS € L,and (2) ifS € L, thenf(S) > 7 holds with probabilityl — 6.

The reason that this algorithm is useful is that a function is nearly determined by its large
Fourier coefficients. As well, this theorem can be generalized to the case whefterthes into
R. The running time of the algorithm is then dependent on the normal parameters as well as
max,(f(x)) — ming (f(z)).

To prove this algorithm, we will introduce a powerful tool that we will use very often in the
remainder of this course. This tool says that we can “efficiently estimate” any Fourier coefficient
we wish.

Lemma 3.3 For any S C [n], it is possible to estimatg(.S) to within +7 with probability 1 — 6
usingO(log(/n*) queries, with an extra running time factor polynomiakin

Proof: By definition, f(S) = Eg[f(z)xs(z)]. We can sample fronfi(x)y (), and this random
variable is in the rangé-1, 1]. The result follows directly from an application of the Hoeffding
bound.O

Corollary 3.4 To prove the Goldreich-Levin theorem, it suffices to prove that (1) holds. To do this,
we can estimatg () to within +7 foreveryS € L, then delete frond. all sets whose estimate has
magnitude less tham/2. The running time is proportional to the length of the list, and requires
manipulating the confidence paramedter

4 The Goldreich-Levin Algorithm

Now we describe the algorithm promised by the Goldreich-Levin theorem. The idea is to think of
f(S)% € [0,1] as the “weight” of the sef, and the weight of a collection of sets is simply the sum
of weights of each set. By Parseval, the sum of the weights on the whole Boolean cube is 1.

Our goal is to find all set§ with weight at leasty®>. To accomplish this, we will partitio™
into chunks. We will repartition any chunk with weight, and discard any chunk with weight less
than~?2, as such a chunk can not contain a set we are looking for. Assuming we can do this, we
only need to keeg% chunks at any time, as the weight of the Boolean cube is 1.

Definition 4.1 Let f : {—1,1}* — R. Let! C [n], andI = [n] \ I. For anyS C I, define
Fscr : {—=1,1}11 — R by Fsc; = f,_.1(S), wheref,_.; is the restricted version of resulting
from fixing the coordinates into .

Proposition 4.2 Fsc;(T) = f(SUT) for anyT C I.

Proof: By definition,

Fsci(T) = ElFsc/(@)z1] = Blfyi(S)er] = BElf, (w)wsler] = B [f(w, @)wser] = f(SUT)

wheref(w, r) denotesf with z — I andw — I. O

Corollary 4.3 E,[Fsc;(x Z Foc (T =) _f(SuT)?= > fU)>

TCI TCI UC[n]:UNI=S

We will use the above corollary to construct our partitions to estimate weights on collections
on sets. Fod = {1,2,...,k} andS C I, itis convenient to writd/ such that/ NI = S as an
“indicator string.” For example, with = 4, a possible indicator string {d,0, 1, 1, %, %, ..., *).

Definition 4.4 The indicator stringS = (aq,...,ax,*,...,%)is{U C [n] : Vi = 1,... ki €

Definition 4.5 The weight of an indicator string is » ~ f(U/). We will denote this quantity by

vesS
W(S).

We will make use of the previous corollary to get our second important tool: we can efficiently
estimatelV (S). We do this by efficiently estimatinB,[Fsc;(x)?].

Proposition 4.6 E,[Fsc;(x)?] can be efficiently estimated.

Proof: R
E[Fsci(2)?] = Blfoui(S)] = BI(E[fo(w)ws])?]

T

Now instead of taking a square of a expectation, we pick two independent copiesnaf write a
product of expectations to yield:

E{(E[waI_(w)wSDﬂ =]E[w]i;)u’ [f:caf_(w)waa:HI_(wl)wfg] = ® Ew’[f<w7 CB)’UJSf('LU/, m)wg]
Where the first equality used the independence ahdw’. Since the random variable inside the
expectation can be sampled from and has the rangel], we can use the Hoeffding bound to
estimate this expectationl Equipped with this tool, we can state the Goldreich-Levin algorithm:

Algorithm 4.1: GOLDREICHLEVIN(f)
L— (%,%,...,%)

fork=1ton
foreachS € L,S = (a1, ..., ar_1,%,...,%)
IetSak = (al,...,ak,l,ak,*,...,*) forak:0,1

estimatelV’ (S,,,) to within ++2 /4 with probability at least — §

removesS from L

adds,, to L if the estimate ofV/(S,,) is at Ieastg fora, =0,1
return (L)

We will now analyze the algorithm. As a first assumption, we will assume that all estimations
are accurate. We will later see how to remove this assumption.

Invariant 4.7 After 1 iteration of the algorithmiy/(S) > % forall S € L.

Proof: All estimates are assumed to be correct, and fosall L, S was placed in. because its
estimated weight was at Iea§2{, and the estimate is correct to within an addiﬁgte a

Invariant 4.8 At any time,|L| > % This follows from our previous observation combined with
Parseval’s identity.

Since|L| > % the algorithm performs at most 2 estimations per sét at any iteration, and
there aren iterations, the algorithm performs a total of at m%&;Estimations.

Invariant 4.9 For any S such thatf(S) < ~2, there existsS € L such thatS e S. This follows
from the correctness of our estimations.

From the above invariants, we can conclude that our algorithm is correct.

To remove our assumption, givén> 0, we will defined’ = ﬁ and perform each estimation

with confidencel — §’. By the union bound, if the algorithm perfornds estimations, they are all
correct with probability at leadt — ¢, so the algorithm is correct with probability at least 6.
The total running time is dominated by the estimations. There are at%@hmimations, and
each take®)(log(5/*) samples to estimate, so the overall running time is poly(log(3).
Notice that, since we are estimating the weight of each set before it is addedwe get
property (2) from the Goldreich-Levin theorem for free from this algorithm.

5 Applications to cryptography

We will discuss some of the original applications of the Goldreich-Levin theorem to cryptography.
We will require a few definitions.

Definition 5.1 f : {0,1}" — {0,1} is ay(n)-one way permutation if (1f is a permutation,
(2) f is deterministic poly-time computable, and (3) for any probabilistic poly-time algorithm
Pra:,A’s randomness[A(f(w)) - w] < ")/(77/)

Remark 5.2 In most applications, it is desired to have a family of one way permutations, one
defined for each input length.

In the definition, we can replace “permutation” with other terms, such as the more general
“function” or the more specific “trapdoor permutation,” where a trapdoor permutation is a permu-
tation where there exists a short piece of information that allows for easy inversjon of

Example 5.3 (RSA cryptosystem) Pick to be the product of two large randomly chosen primes
p,q. Pick a randome from Z3,, the group of integers relatively prime f6 under mod® multipli-
cation. Thenr — «° is a trapdoor permutation oL y,.

Remark 5.4 Although elements &t} are not strings, we can massage them to be strings without
too much difficulty.

Remark 5.5 The factorization ofV is a trapdoor for the above example.

Definition 5.6 A poly-time computable functioB : {0,1}" — {0, 1} is a~(n)-hardcore pred-
icate for f if for all probabilistic polynomial time algorithms!, Pra /s randomness[A(f(x)) =
B(x)] < 5 +7(n).

Remark 5.7 A one way permutation combined with a hardcore predicate for it can be used to
construct a pseudorandom generator with streich> n + 1 by stretchinge to (f(z), B(x)). This
idea can be repeated to obtain arbitrary stretch.

We can now state the Goldreich-Levin theorem in this context.

Theorem 5.8 Let f be a~y(n)-one way permutation (or function, or trapdoor permutation, etc.)
for y(n) > m Then (1)g : {0,1}** — {0,1}*" defined byy(z,r) = (f(z),r) is also a
v(n)-one way permutation, and (Z(x,r) = x - r(mod 2) is a3vy(n)-hardcore predicate foy.

Proof: The proof of (1) is easy. Any advantage in invertipglirectly implies an advantage in
inverting f.

We will prove (2) by contraposition. We will do this under the assumption thistdetermin-
istic. poly-time algorithm with an advantage for computiBg We can used to get an algorithm
with an advantage for inverting. By assumptionPr,.[A(f(x)) = @ - 7] > % + 37v(n). By
averaging, for at least 2y fraction of thez’s, Pr,.[A(f(z)) = - r] > § + v(n), SOA(f(z),")
(is a function ofr that) is2v-correlated with the parity function associated withWe can invoke
the Goldreich-Levin algorithm od(f(z),-). We get a list of possible parities, one of whichris
Because the size of our list is small when the algorithm succeeds, we can detetogiapplying
f to everything in the list. So with high probability, this algorithm finds preimageg(of for at
least ay fraction of thez’s, so f is not ay(n)-one way permutation.

If we want to rid ourselves of the assmuption this deterministic, let4d be the function of
r equal toE 4/ randomness[A(f (),)], where the expectation is ovel's randomness. Now is a
function whose range is-1, 1], so we can try to apply Goldreich-Levin to it. However, in applying
Goldreich-Levin, we need to have accessltolMe can circumvent this difficulty by sampling from
A, and our proof stays the same modulo taking expectation over the randomness of

