
Analysis of Boolean Functions (CMU 18-859S, Spring 2007)

Lecture 7: The Goldreich-Levin Algorithm
Feb. 6, 2007

Lecturer: Ryan O’Donnell Scribe: Karl Wimmer

In this lecture we make the jump from testing properties of functions to learning functions.
The first algorithm that we will see is an algorithm of Goldreich and Levin, which was originally
developed for a cryptographic application and later applied to learning. This algorithm works by
finding a function’s large Fourier coefficients.

1 Testing vs. Learning

We first set some goals for learning. First, how do we measure complexity? In testing, we were
concerned with how many queries were required. In contrast, learning is an algorithmic problem,
so we will be concerned with the running time of the learning algorithm. Second, what is our task?
In testing, we had a class of functionsC, and givenf , our task was to determine whether or not
f ∈ C. In learning, we are promised thatf ∈ C, and we are required to identify the function inC
thatf is.

2 Learning Parities

Our first task will be learning parities.

Proposition 2.1 If f : {−1, 1}n → {−1, 1} is (0-close to) a parity function, then we can identify
f in polynomial time usingn queries.

Proof: We simply queryf on all stringsei for 1 ≤ i ≤ n, where the stringei is 1 everywhere,
except−1 in entryi. If f(ei) = −1, thenxi is relevant in the parity functionf . 2

Remark 2.2 The above algorithm does not run in linear time, because it takes linear time to write
down each query.

So we can learn functions that are parities. With a little more work, we can use local decoding
to learn functions close to some parity. Before we do this, we recall the Hoeffding bound:

Theorem 2.3 (Hoeffding bound) IfX is a random variable with values in[−1, 1], then the empir-
ical average ofX afterO(log 1

δ
/ε2) samples is within±ε of E[X] with probability1− δ.

Proposition 2.4 Supposef : {−1, 1}n → {−1, 1} is ε-close toχS for someS, whereε < 1
4
− c

for c > 0. Then we can identifyf with probability1− δ usingO(n log n
δ

queries.

1

Proof: Use local decoding on allei. The probability that the correct answer is returned for oneei

is at least1
2

+ 2c. For each string, repeat the local decoding stepO(log(n
δ
/c2) times, and take the

majority answer. By the Hoeffding bound, we get the wrong answer forf(ei) with probability at
most δ

n
. By the union bound, we get the wrong answer forf(ei) for anyi with probability at most

δ, so we succeed with probability1− δ as claimed.2

Remark 2.5 Notice that the above algorithm cannot be deterministic. For any deterministic ver-
sion of local decoding, an adversary could choose a functionf where the above algorithm would
not work.

To learn functionsε-far from every parity function forε ≥ 1
4
, we need to introduce the

Goldreich-Levin algorithm.

3 The Goldreich-Levin Theorem

Since we are talking about functions that are not1
4
-close to any parity function, we will talk about

correlation rather than closeness. We will say thatf has correlationγ with χS if |f̂(S)| ≥ γ.
Notice that in the case whereγ is small, there are potentially manyS such thatf has correlation

γ with χS. The following easy bound follows from Parseval’s identity:

Proposition 3.1 |f̂(S)| ≥ γ for at most 1
γ2 setsS.

We will commonly think ofγ as a constant. We can think of the task of outputting allS such
that|f̂(S)| ≥ γ as list decoding.

We know state the Goldreich-Levin theorem.

Theorem 3.2 (Goldreich-Levin) Given query access tof : {−1, 1}n → [−1, 1], givenγ, δ > 0,
there is a poly(n,1

γ
log 1

δ
)-time algorithm outputs a listL = {S1, . . . , Sm} such that (1) iff̂(S) ≥ γ,

thenS ∈ L, and (2) ifS ∈ L, thenf̂(S) ≥ γ
2

holds with probability1− δ.

The reason that this algorithm is useful is that a function is nearly determined by its large
Fourier coefficients. As well, this theorem can be generalized to the case where thef maps into
R. The running time of the algorithm is then dependent on the normal parameters as well as
maxx(f(x))−minx(f(x)).

To prove this algorithm, we will introduce a powerful tool that we will use very often in the
remainder of this course. This tool says that we can “efficiently estimate” any Fourier coefficient
we wish.

Lemma 3.3 For anyS ⊆ [n], it is possible to estimatêf(S) to within±η with probability1 − δ
usingO(log(1

δ
/η2) queries, with an extra running time factor polynomial inn.

2

Proof: By definition,f̂(S) = Ex[f(x)χS(x)]. We can sample fromf(x)χS(x), and this random
variable is in the range[−1, 1]. The result follows directly from an application of the Hoeffding
bound.2

Corollary 3.4 To prove the Goldreich-Levin theorem, it suffices to prove that (1) holds. To do this,
we can estimatêf(S) to within±γ

4
for everyS ∈ L, then delete fromL all sets whose estimate has

magnitude less thanγ/2. The running time is proportional to the length of the list, and requires
manipulating the confidence parameterδ.

4 The Goldreich-Levin Algorithm

Now we describe the algorithm promised by the Goldreich-Levin theorem. The idea is to think of
f̂(S)2 ∈ [0, 1] as the “weight” of the setS, and the weight of a collection of sets is simply the sum
of weights of each set. By Parseval, the sum of the weights on the whole Boolean cube is 1.

Our goal is to find all setsS with weight at leastγ2. To accomplish this, we will partition2[n]

into chunks. We will repartition any chunk with weightγ2, and discard any chunk with weight less
thanγ2, as such a chunk can not contain a set we are looking for. Assuming we can do this, we
only need to keep1

γ2 chunks at any time, as the weight of the Boolean cube is 1.

Definition 4.1 Let f : {−1, 1}n → R. Let I ⊆ [n], and Ī = [n] \ I. For anyS ⊆ I, define
FS⊆I : {−1, 1}|Ī| → R by FS⊆I = f̂x→Ī(S), wherefx→Ī is the restricted version off resulting
from fixing the coordinates in̄I to x.

Proposition 4.2 F̂S⊆I(T) = f̂(S ∪ T) for anyT ⊆ Ī.

Proof: By definition,

F̂S⊆I(T) = E
x
[FS⊆I(x)xT] = E

x
[f̂x→Ī(S)xT] = E

x
[E
w

[fx→Ī(w)wS]xT] = E
x,w

[f(w, x)wSxT] = f̂(S∪T)

wheref(w, x) denotesf with x→ Ī andw → I. 2

Corollary 4.3 Ex[FS⊆I(x)2] =
∑
T⊆Ī

F̂S⊆I(T)2 =
∑
T⊆Ī

f̂(S ∪ T)2 =
∑

U⊆[n]:U∩I=S

f̂(U)2.

We will use the above corollary to construct our partitions to estimate weights on collections
on sets. ForI = {1, 2, . . . , k} andS ⊆ I, it is convenient to writeU such thatU ∩ I = S as an
“indicator string.” For example, withk = 4, a possible indicator string is(1, 0, 1, 1, ∗, ∗, . . . , ∗).

Definition 4.4 The indicator stringS = (a1, . . . , ak, ∗, . . . , ∗) is {U ⊆ [n] : ∀i = 1, . . . , k, i ∈
U iff ai = 1}.

3

Definition 4.5 The weight of an indicator stringS is
∑
U∈S

f̂(U)2. We will denote this quantity by

W (S).

We will make use of the previous corollary to get our second important tool: we can efficiently
estimateW (S). We do this by efficiently estimatingEx[FS⊆I(x)2].

Proposition 4.6 Ex[FS⊆I(x)2] can be efficiently estimated.

Proof:
E
x
[FS⊆I(x)2] = E

x
[f̂x→Ī(S)2] = E

x
[(E

w
[fx→Ī(w)wS])2].

Now instead of taking a square of a expectation, we pick two independent copies ofw and write a
product of expectations to yield:

E
x
[(E

w
[fx→Ī(w)wS])2] = E

x
[E
w,w′

[fx→Ī(w)wSfx→Ī(w
′)w′

S] = E
x,w,w′

[f(w, x)wSf(w′, x)w′
S].

Where the first equality used the independence ofw andw′. Since the random variable inside the
expectation can be sampled from and has the range[−1, 1], we can use the Hoeffding bound to
estimate this expectation.2 Equipped with this tool, we can state the Goldreich-Levin algorithm:

Algorithm 4.1: GOLDREICHLEVIN(f)

L← (∗, ∗, . . . , ∗)
for k = 1 to n

for eachS ∈ L,S = (a1, . . . , ak−1, ∗, . . . , ∗)
let Sak

= (a1, . . . , ak−1, ak, ∗, . . . , ∗) for ak = 0, 1
estimateW (Sak

) to within±γ2/4 with probability at least1− δ
removeS from L

addSak
to L if the estimate ofW (Sak

) is at leastγ
2

2
for ak = 0, 1

return (L)

We will now analyze the algorithm. As a first assumption, we will assume that all estimations
are accurate. We will later see how to remove this assumption.

Invariant 4.7 After 1 iteration of the algorithm,W (S) ≥ γ2

4
for all S ∈ L.

Proof: All estimates are assumed to be correct, and for allS ∈ L, S was placed inL because its
estimated weight was at leastγ2

2
, and the estimate is correct to within an additiveγ2

4
. 2

Invariant 4.8 At any time,|L| ≥ 4
γ2 . This follows from our previous observation combined with

Parseval’s identity.

4

Since|L| ≥ 4
γ2 , the algorithm performs at most 2 estimations per set inL at any iteration, and

there aren iterations, the algorithm performs a total of at most8n
γ2 estimations.

Invariant 4.9 For anyS such thatf̂(S) ≤ γ2, there existsS ∈ L such thatS ∈ S. This follows
from the correctness of our estimations.

From the above invariants, we can conclude that our algorithm is correct.
To remove our assumption, givenδ > 0, we will defineδ′ = δ

8n/γ2 , and perform each estimation

with confidence1− δ′. By the union bound, if the algorithm performs8n
γ2 estimations, they are all

correct with probability at least1− δ, so the algorithm is correct with probability at least1− δ.
The total running time is dominated by the estimations. There are at most8n

γ2 estimations, and
each takesO(log(1

δ
/γ2) samples to estimate, so the overall running time is poly(n,1

γ
) log(1

δ
).

Notice that, since we are estimating the weight of each set before it is added toL, we get
property (2) from the Goldreich-Levin theorem for free from this algorithm.

5 Applications to cryptography

We will discuss some of the original applications of the Goldreich-Levin theorem to cryptography.
We will require a few definitions.

Definition 5.1 f : {0, 1}n → {0, 1} is a γ(n)-one way permutation if (1)f is a permutation,
(2) f is deterministic poly-time computable, and (3) for any probabilistic poly-time algorithmA,
Prx,A′s randomness[A(f(x)) = x] < γ(n).

Remark 5.2 In most applications, it is desired to have a family of one way permutations, one
defined for each input length.

In the definition, we can replace “permutation” with other terms, such as the more general
“function” or the more specific “trapdoor permutation,” where a trapdoor permutation is a permu-
tation where there exists a short piece of information that allows for easy inversion off .

Example 5.3 (RSA cryptosystem) PickN to be the product of two large randomly chosen primes
p,q. Pick a randome from Z∗

N , the group of integers relatively prime toN under mod-N multipli-
cation. Thenx→ xe is a trapdoor permutation ofZ∗

N .

Remark 5.4 Although elements ofZ∗
N are not strings, we can massage them to be strings without

too much difficulty.

Remark 5.5 The factorization ofN is a trapdoor for the above example.

Definition 5.6 A poly-time computable functionB : {0, 1}n → {0, 1} is a γ(n)-hardcore pred-
icate for f if for all probabilistic polynomial time algorithmsA, Prx,A′s randomness[A(f(x)) =
B(x)] < 1

2
+ γ(n).

5

Remark 5.7 A one way permutation combined with a hardcore predicate for it can be used to
construct a pseudorandom generator with stretchn→ n + 1 by stretchingx to (f(x), B(x)). This
idea can be repeated to obtain arbitrary stretch.

We can now state the Goldreich-Levin theorem in this context.

Theorem 5.8 Let f be aγ(n)-one way permutation (or function, or trapdoor permutation, etc.)
for γ(n) ≥ 1

poly(n)
. Then (1)g : {0, 1}2n → {0, 1}2n defined byg(x, r) = (f(x), r) is also a

γ(n)-one way permutation, and (2)B(x, r) = x · r(mod 2) is a3γ(n)-hardcore predicate forg.

Proof: The proof of (1) is easy. Any advantage in invertingg directly implies an advantage in
invertingf .

We will prove (2) by contraposition. We will do this under the assumption thatA is determin-
istic. poly-time algorithm with an advantage for computingB. We can useA to get an algorithm
with an advantage for invertingf . By assumption,Prx,r[A(f(x)) = x · r] ≥ 1

2
+ 3γ(n). By

averaging, for at least a2γ fraction of thex’s, Prr[A(f(x)) = x · r] ≥ 1
2

+ γ(n), soA(f(x), ·)
(is a function ofr that) is2γ-correlated with the parity function associated withx. We can invoke
the Goldreich-Levin algorithm onA(f(x), ·). We get a list of possible parities, one of which isx.
Because the size of our list is small when the algorithm succeeds, we can determinex by applying
f to everything in the list. So with high probability, this algorithm finds preimages off(x) for at
least aγ fraction of thex’s, sof is not aγ(n)-one way permutation.

If we want to rid ourselves of the assmuption thatA is deterministic, letA be the function of
r equal toEA′s randomness[A(f(x), r)], where the expectation is overA’s randomness. NowA is a
function whose range is[−1, 1], so we can try to apply Goldreich-Levin to it. However, in applying
Goldreich-Levin, we need to have access toA. We can circumvent this difficulty by sampling from
A, and our proof stays the same modulo taking expectation over the randomness ofA. 2

6

