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In this lecture we show that constraint satisfaction is a hard problem. In particular, even if
all the constraints are linear, it is NP-hard to distinguish between the case that there exists an
assignment such that almost all of the constraints are satisfied and the case that for all assignments
only about half the constraints are satisfiable.

1 Hardness of Constraint Satisfaction

Theorem 1.1 ∀η > 0 : Given a CSPC where all constraints are of the formvi1vi2vi3 = 1 or
vi1vi2vi3 = −1, it is NP-hard to distinguishval(C) ≥ 1− η andval(C) ≤ 1

2
+ η

A CSP of the above type is called3-Lin (denoting 3 Linear). The above theorem is actually
optimal in the following sense. It is easy to distinguishval(C) = 1 v/s val(C) < 1 - since the
constraints are linear equations, a solution can be found by Gaussian elimination. Moreover, we
can always achieveval(C) = 1

2
, by simply assigning−1 to all variables if the majority of the

constraints have−1 in the right hand side, otherwise assigning1 to all variables.
The proof of the theorem proceeds as follows :3-SATreduces toGap 3-SATusing the PCP

theorem.Gap 3-SATreduces toLabel coverusing a parallel repetition theorem and finallyLabel
coverreduces to3-Lin.

In this lecture, however, we use the Unique Games Conjecture to prove hardness of3-Lin.
Although this doesnt give a rigorous proof of hardness (since the UGC is a conjecture), the proof
is easier to appreciate.

2 Unique Games Conjecture

Definition 2.1 A two variable constraint over alphabet[k] : φ : [k] × [k] → {T, F} is called
unique if∃ a permutationσ on [k] such that∀i ∈ [k], φ(i, j) = T ⇔ j = σ(i).

In other words,∀i ∃ uniquej so thatφ(i, j) = T .

Conjecture 2.2 “Unique Games Conjecture” :∀λ > 0, ∃k s.t. given a CSPG with unique 2-
variable constraints over[k], its NP-hard to distinguishval(G) ≥ 1− λ andval(G) < λ

Given a CSPG with 2-variable unique constraints, we can associate a corresponding labeled
graph with it. We have nodes for each variable and we put edges for each 2-variable constraint.
The edges are labeled according to the possible pairs that satisfy that constraint, as well as the
weight of that constraint. See Figure 1.
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Figure 1: Constraint Graph for UGC, k = 5

Notation 2.3 We will useσv→w to denote the permutation which satisfies edge(v, w).

Remark 2.4 We assume the graph for the UGC is regular and the weights of the constraints are
the same.

Theorem 2.5 The conjecture is true if the uniqueness condition is dropped.

Theorem 2.6 It is easy to distinguishval(G) = 1 v/sval(G) < 1.

Proof: Assume a label forx1. Then deduce the labels of the remaining vertices in breadth-first
order (because of the uniqueness condition). If there is a conflict at some vertex, then choose
another label forx1. Iterate through all labels forx1, until all the edges can be satisfied.2

3 Hardness of CSP via Unique Games Conjecture

Theorem 3.1 Suppose∀n, ∃ a function tester T, makingO(1) queries forf : {−1, 1}n → {−1, 1}
such that

1. all n dictators pass with prob≥ C

2. if h : {−1, 1}n → [−1, 1] is (ε, δ)-quasirandom, it passes T with prob< S

Then U.G.C⇒ ∀η > 0, it is NP-hard given a CSPC of the same “type” as the test, to distinguish
val(C) ≥ C − η v/sval(C) < S + η

Remark 3.2 Such a tester always exists, e.g. theHast-Odd test.
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Proof: The idea of the proof is to take an instance of the UGC, and from its constraint graph build
a tester which works over2kn variables - for each nodev ∈ V in the graph, we have a function
fv : {−1, 1}k → {−1, 1}, wherek is the size of the alphabet in UGC. So the tester will work on
the strings which are truth tables of thesen functions. This tester is equivalent to a CSP as shown
in the previous lecture. We will show the following two properties of our reduction:

1. If ∃ labelingL : V → [k] that satisfies≥ 1 − λ fraction of the edges, then∃fv such that
tester accepts with prob≥ C −O(λ).

2. If ∀ labelingsL : V → [k], at mostηδ2ε3/64 fraction of the edges are satisfied, then∀fv, the
tester accepts with prob< S + η.

Given these two properties, we just need to set the parameters right to complete the proof.
Given anyη > 0, pick λ < ηδ2ε3/64 then UGC shows that∃ large enoughk = k(λ) such that its
NP-hard to distinguishval(G) ≥ 1− λ andval(G) < λ for G with alphabetk and hence a CSP of
the same “type” as the tester has the property stated.
Proof of 1 : Given someL : V → [k] satisfying≥ 1−λ fraction of the edges, letfv : {−1, 1}k →
{−1, 1} be theL(v)th dictator function.

Definition 3.3 Givenv ∈ V , for each neighbourw ∼ v, definegw
v : {−1, 1}k → {−1, 1} by

gw
v = fw ◦ σ′v→w, whereσ′v→w(x) = y impliesyi = xσv→w(i).

In other words,gw
v is w’s opinion on what dictatorv should have.

Given a labelingL satisfying at least1−λ fraction of the constraints, the testerT ’s actions are
the following :

1. Pickv ∈ V uniformly at random.

2. Pick q random neighboursw1, . . . , wq of v and applyT to the collection{gw1
v , . . . , g

wq
v }.

Note that since the graph is regular, this is equivalent to choosingq uniformly random edges from
the graph. Therefore, by the union bound,L satisfies all(v,wi) with prob≥ 1− qλ = 1− O(λ).
So by definition, all thegwi

v ’s are the same dictator functionχL(v). SoT gets applied consistently
to one dictator function and hence passes with probability≥ C. Hence, it passes overall with prob
≥ (1−O(λ)C = C −O(λ).
Proof of 2 : We prove the contrapositive of property 2. We show that givenfv’s such that the tester
passes with prob≥ S+η, ∃ labeling for the original graphL : V → [k] which satisfies≥ ηδ2ε3/64
fraction of the constraints.

For each vertexv ∈ V , define a set of candidate labels

L(v) = {i : Inf
(1−δ)
i (fv) ≥ ε

2
OR Inf

(1−δ)
i (hv) ≥ ε

2
}

wherehv = avg{gw
v }, w ∼ v. Using the proposition from the previous lecture,|L(v)| ≤ 4

εδ
.
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By an averaging argument, at leastη
2

fraction ofv’s are such thatPr[tester accepts|v] ≥ S + η
2
.

Call suchv’s “good”.

Since the tester passes (givenv) with prob≥ S + η
2

> S, thereforehv cannot be(ε, δ)-
quasirandom

⇒ ∃i such that Inf
(1−δ)
i (hv) ≥ ε

⇒ i ∈ L(v)

Moreover,
ε ≤ Inf

(1−δ)
i (hv)

=
∑

S3i(1− δ)|S|−1ĥv(S)2

=
∑

S3i(1− δ)|S|−1 ̂Ew∼v[gw
v ](S)2

=
∑

S3i(1− δ)|S|−1(Ew∼v[ĝ
w
v (S)])2

using the Cauchy Shwartz inequality,

≤ ∑
S3i(1− δ)|S|−1Ew∼v[ĝw

v (S)2]

∵ gw
v = fw ◦ σv→w, ∴ ĝw

v (S) = f̂w(σ−1
v→w(S))

∴
∑

S3i(1− δ)|S|−1Ew∼v[ĝw
v (S)2] = Ew∼v[

∑
S3i(1− δ)|S|−1 · f̂w(σ−1

v→w(S))2]

= Ew∼v[
∑

T3σv→w(i)(1− δ)|T |−1f̂w(T )2] (T = σ−1
v→w(S))

∴ ε ≤ Ew∼v[Inf
(1−δ)
σv→w(i)(fw)]

By another averaging argument, at leastε
2

fraction ofw ∼ v haveInf
(1−δ)
σv→w(i)(fw) ≥ ε

2
. There-

fore,σv→w(i) ∈ L(w). Call such neighbours “good”.

We have shown that at leastη
2
· ε

2
fraction of the edges are “good-good”. For any such “good-

good” edge,
∃i ∈ L(v) s.t.σv→w(i) ∈ L(w)

Also recall that|L(v)|, |L(w)| ≤ 4
εδ

. Construct the labelingL : V → [k] by choosingL(v) ran-
domly fromL(v). For each “good-good” edge(v, w), with prob 1

|L(v)| · 1
|L(w)| ≥ ( εδ

4
)2, we will

choose the correct labels.

Then,E[fraction of edges satisfyingG] ≥ ηε
4
( εδ

4
)2 = ηδ2ε3/64.
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