
Analysis of Boolean Functions (CMU 18-859S, Spring 2007)

Lecture 5: Introduction to Hardness of Approximation
Jan. 30, 2007

Lecturer: Ryan O’Donnell Scribe: Eric Blais

In this lecture, we introduce some of the tools that will enable us to prove strong statements
about hardness of approximation in the next lecture.

1 PCPP builders and hardness of approximation

During the last lecture, we introduced the concept of probabilistically checkable proofs of proxim-
ity (PCPP). To recall:

Definition 1.1 A propertyP of m-bit strings has PCPPs of lengthl(m) if there exists a non-
adaptiveO(1)-query testerT with access to a stringw ∈ {−1, 1}m and a proofπ ∈ {−1, 1}l(m)

such that:

1. If w ∈ P, then∃π such thatPr[T (w, π) accepts] = 1, and

2. If w is ε-far fromP, then∀π Pr[T (w, π) accepts] ≤ 1− Ω(ε).

After introducing PCPPs, we saw that every propertyP of m-bit strings has PCPPs of length
22m

. While this may not look so bad given that there are22m
possible properties, we will see in this

section how we can generate shorter PCPPs when we restrict our attention to properties that are
decided by polynomial-size circuits. Furthermore, unlike the existential proof that was presented
in the last lecture, our proof of the strengthened result provides an explicit construction for the
desired PCPPs. This proof will rely onPCPP builders.

Definition 1.2 A poly(m)-size circuitC over m bits has alength-l(m) PCPP builderif there is
a poly(l(m))-time algorithm that givenC outputs a testerTC for a length-l(m) PCPP for the
propertyC. Here we are identifying a circuitC with the property of being a string satisfyingC.

Before examining some results on PCPP builders, we also introduce the notion of weighted
constraint satisfaction problems.

Definition 1.3 A weighted constraint satisfaction problem(CSP) over variablesv1, . . . , vN is a ta-
ble containing predicatesφ1, φ2, . . . that act on those variables and nonnegative weightsp1, p2, . . .
associated with each predicate, such that

∑
i pi = 1.

The following table shows an example of a possible CSP:

1

weight constraints
p1 φ1(v1, v6, v10)
p2 φ2(v7, v10, v20)
p3 φ3(v4, v19)
...

...

An important algorithmic problem related to CSPs is the following: given an instance of a CSP,
find the assignment of values to the variablesv1, . . . , vN that maximizes the sum of the weights
whose corresponding predicates are satisfied.

We can also construct a CSP to correspond to any nonadaptive testerTC . In this case, we let the
variables represent the possible characters in the string(s) to be tested. The constraints in the CSP
are the possible predicates that the tester may check on its input, with each weight representing the
probability that the tester runs the associated predicate.

Theorem 1.4 There is a PCPP builder of length . . .
(a) 22m

(see Theorem 2.3 in Lecture 4; the proof is constructive)
(b) 2poly(m) (based on BLR tests)
(c) poly(m) (The PCP Theorem+)
(d) m · polylog(m) (Dinur, Ben-Sasson & Sudan; requires size(C) = m · polylog(m))

The major result (c) is obtained using the results from (a) (or (b)). The basic idea is that the
construction for (c) is recursive, and the base case of the recursion involves building PCPPs for
properties of constant-length strings. Thus we can use (a) or (b), since we don’t mind blowing up
one constant to another. The proof of (a) constitutes perhaps a quarter to a third of Dinur’s proof
of the PCP theorem.

Fact 1.5 The following is on the homework: If there exists a length-l(m) PCPP builder, then there
exists a length-poly(l(m)) PCPP builder where all tests are OR3 predicates (with negations); i.e.,
look likexi1 ∨ xi2 ∨ xi3 or xi1 ∨ xi2 ∨ xi3 or xi1 ∨ xi2 ∨ xi3 etc.

The PCP Theorem has important implications for hardness of approximation results. To present
these results precisely, we first define the notion ofvalueof a CSP.

Definition 1.6 Given a CSPC, we defineval(C) to be the maximum total weight that can be
satisfied by any assignment.

The notion of value can be used to rephrase standard hardness results.

Observation 1.7 “3-SAT is NP-hard” is equivalent to “GivenC where all constraints are OR3, it
is NP-hard to distinguishval(C) = 1 andval(C) < 1.”

Furthermore, the notion of value of CSPs also extends naturally to hardness of approximation
results.

2

Proposition 1.8 The PCP Theorem+ implies: “GivenC where all the constraints are OR3, it is
NP-hard to distinguishval(C) = 1 and val(C) < 1 − ε for some explicitε > 0.” In particular,
there is no PTAS for Max-3SAT.

Proof: The PCP Theorem+ implies that there is apoly(m)-time reduction which, given a circuit
C of polynomial size outputs a testerTC over variablesw1, . . . , wm andπ1, . . . , πpoly(m), whereTC

uses OR3 predicates such that:

1. If w satisfiesC then there existsπ such thatPr[TC(w, π) accepts] = 1, and

2. For everyw ε-far from satisfyingC, ∀π Pr[TC(w, π) accepts] ≤ 1− Ω(ε).

In particular, ifC is satisfiable, the theorem implies that∃w, π such thatPr[TC(w, π) accepts] =
1. On the other hand, ifC is not satisfiable then in fact∀w, w is 1-far from satisfyingC; hence
∀w, ∀π, Pr[TC(w, π) accepts] ≤ 1− Ω(1).

This shows that

• C is satisfiable⇒ val(TC) = 1

• C is not satisfiable⇒ val(TC) ≤ 1− Ω(1).

But Circuit-Satisfiability is NP-hard, so this completes the proof of Proposition 1.8.2

2 Testing averages

Proposition 1.8 shows that it is NP-hard to distinguish between 3CNFs that are satisfiable and
3CNFs that are at most(1− ε)-satisfiable for someε, but thisε may be very small. We now would
like to get stronger results that improve those bounds. To reach that goal, we will to give stronger
testing algorithms.

Definition 2.1 (Testing averages)Given a function testerT for functions{−1, 1}n → {−1, 1},
“applying T to a collection{f1, . . . , fd}” means: runT , but whenever it queriesx, it first picks
i ∈ [d] at random and usesfi(x).

Definition 2.2 Theaverageof {f1, . . . , fd} is the functionh : {−1, 1}n → [−1, 1], whereh(x) =
Ei[fi(x)].

Using the linearity of the Fourier transform, it’s easy to verify thatĥ(S) = Ei[f̂i(S)].

Proposition 2.3 Given a Fourier-coefficient formula forPr[T (f) accepts], the same formula holds
for Pr[T ({f1, . . . , fd}) accepts] when you useh’s coefficients instead.

For example, consider the Håstadδ test:

3

Example 2.4 Pr[Håstadδ(f) accepts] = 1
2

+ 1
2

∑
S(1− 2δ)|S|f̂(S)3

⇒ Pr[Håstadδ({f1, . . . , fd}) accepts] = 1
2

+ 1
2

∑
S

(1− 2δ)|S|ĥ(S)3.

The proof of Proposition 2.3 uses a derivation very similar to the one we used to prove Håstad’s
test:
Proof: (Sketch.)

E
x,y,z,j,k,l

[1
2

+ 1
2
fj(x)fk(y)fl(z)] = E

x,y,z
[E
j,k,l

[· · ·]]

= E
x,y,z

[1
2

+ 1
2

E
j,k,l

[fj(x)fk(y)fl(z)]]

= E
x,y,z

[1
2

+ 1
2
E
j
[fj(x)]E

k
[fk(y)]E

l
[fl(z)]]

= E
x,y,z

[1
2

+ 1
2
h(x)h(y)h(z)],

where we used linearity of expectation and the independence ofj, k, l. The rest of the proof
follows the proof of H̊astad’s test identically.2

Proposition 2.3 actually holds for all tests because the acceptance predicate, being a function on
{−1, 1}q, can be expressed as a multilinear formula (the Fourier expansion!) and this multilinearity
is all that we used in the proof sketch above.

Definition 2.5 Given f : {−1, 1}n → {−1, 1}, definef † by f †(x) = −f(−x), and f odd :
{−1, 1}n → [−1, 1] byf odd = (f + f †)/2.

Fact 2.6 As we saw in Question 5 of the first homework, the Fourier expansion off odd is

f odd =
∑

S:|S| odd

f̂(S)χS.

Allowing for a bad pun, we define the Håst-Oddδ test on boolean functionsf :

Definition 2.7 The H̊ast-Oddδ test is defined to be to be

Håst-Oddδ(f) := Håstadδ({f, f †}).

Remark 2.8 Note that the H̊ast-Oddδ can be applied tof using only an oracle forf ; this oracle
can be used to “simulate” queries tof †.

Applying Proposition 2.3, we get a formula for evaluating the probability that the Håst-Oddδ
test accepts a given function.

Corollary 2.9 Pr[Håst-Oddδ(f) accepts] = 1
2

+ 1
2

∑
|S| odd(1− 2δ)|S|f̂(S)3.

One interesting property of the Håst-Oddδ test is that it provides a third way to fix the dictator
test introduced in Lecture 2, since this test accepts constant functions only with probability1/2.

As an aside: the H̊ast-Oddδ test is called “folding” the H̊astadδ test in the literature, but we will
not use that terminology in these lectures.

4

3 Influence of variables

In the first lecture, we alluded to the influence of coordinates on functions. Let us now define the
term formally.

Definition 3.1 For f : {−1, 1}n → R, i ∈ [n], theinfluence ofi onf is

Infi(f) =
∑
S⊆[n]
s.t. i∈S

f̂(S)2.

Notation 3.2 From now on we will abbreviate that summation as “
∑

S3i”.

In Lecture 1 we gave an alternative definition for influences in reference to boolean-valued
functionsf : {−1, 1}n → {−1, 1}, namely:Infi(f) = Pr[f(x) 6= f(x(i))]. As we show in the
next proposition, the definition is equivalent in this special case:

Proposition 3.3 For any boolean-valuedf : {−1, 1}n → {−1, 1},

Infi(f) = Pr
x

[f(x) 6= f(x(i))].

Proof: Briefly,

Pr[f(x) 6= f(x(i))] = E[1
2
− 1

2
f(x)f(x(i))]

= 1
2
− 1

2
E[f(x)f(x(i))]

= 1
2
− 1

2

∑
S,T

f̂(S)f̂(T)E[xS(x(i))T]

= 1
2
− 1

2

∑
S,T

f̂(S)f̂(T)E[xS4T · (−1)1i∈T]

Now (−1)1i∈T can be pulled out of the sum, andE[xS4T] = 1 if S = T , 0 otherwise. Hence:

Pr[f(x) 6= f(x(i))] = 1
2
− 1

2

∑
S

f̂(S)2 · (−1)1i∈S

By Parseval’s Theorem, we can replace the first1
2

above with1
2

∑
S f̂(S)2; hence:

Pr[f(x) 6= f(x(i))] = 1
2

(∑
S

f̂(S)2 −
∑

S

f̂(S)2 · (−1)1i∈S

)
=

∑
S3i

f̂(S)2.

2

For some functions, such as the parity function, all variables have high influence. However,
when this is the case we might prefer to say that none of the variables are influential. Toward this
goal, we define the concept ofattenuated influence:

5

Definition 3.4 Theρ-attenuated influenceof i onf , for 0 ≤ ρ ≤ 1, is

Inf
(ρ)
i (f) =

∑
S3i

ρ|S|−1f̂(S)2.

One reason for the slightly strange−1 in the exponent ofρ is that we want it to still be the case
that theith coordinate hasρ-attenuated influence1 on theith dictator function, for anyρ. (See
Fact 3.5(c) below.) We will also see a somewhat natural combinatorial definition for attenuated
influence on the homework that agrees with the above Fourier definition. Also note that we will
usually apply this definition with values ofρ close to1, in which case we will writeρ = 1− δ.

Fact 3.5 The following fundamental facts about the attenuated influence of variables can be checked
easily:

(a) Infi(f) = Inf
(1)
i (f).

(b) In general,Inf
(ρ)
i (f) is an increasing function withρ.

(c) Inf
(ρ)
i (χi) = 1.

(d) Inf
(ρ)
i (χ[n]) = ρn−1.

One important property of the definition of attenuated influence is that any function has only
a constant number of coordinates with large attenuated influence, as we show in the following
proposition.

Proposition 3.6 Let f : {−1, 1}n → [−1, 1] and let Iε,δ = {i : Inf
(1−δ)
i (f) ≥ ε}. Then∑n

i=1 Inf
(1−δ)
i (f) ≤ 1

δ
, and hence|Iε,δ| ≤ 1

εδ
.

Proof: For the proof of this proposition, we require the following claim.

Claim 3.7 For any values of|S| ∈ [0, n] and0 < δ < 1,

|S|(1− δ)|S|−1 ≤ 1

δ
.

Let us begin by proving the proposition, assuming that Claim 3.7 holds.

n∑
i=1

Inf
(ρ)
i (f) =

n∑
i=1

∑
S3i

(1− δ)|S|−1f̂(S)2

=
∑
S3i

|S|(1− δ)|S|−1f̂(S)2 (eachS is counted|S| times)

≤
∑

S

(
1

δ
) · f̂(S)2 (by Claim 3.7)

=
1

δ
· E[f(x)2] ≤ 1

δ
.

6

To complete the proof, we now need to prove Claim 3.7. A nice proof of this claim was
provided in class by Daniel Golovin: Since(1− δ) < 1, then(1− δ)|S|−1 ≤ (1− δ)i−1 for every
i ≤ |S|. So

|S|(1− δ)|S|−1 ≤
|S|−1∑
i=0

(1− δ)i ≤
∞∑
i=0

(1− δ)i =
1

δ
.

This completes the proof of the claim and of the proposition.2

4 Quasirandomness

With the notion of influence of variables, we are now ready to formally define another term that
was presented in the first lecture: quasirandomness.

Definition 4.1 Givenf : {−1, 1}n → [−1, 1], we say thatf is (ε, δ)-quasirandomif for all i ∈ [n],

Inf
(1−δ)
i (f) < ε.

In other words,f is (ε, δ)-quasirandom if|Iε,δ| = ∅.

One reason we call such functions “quasirandom” is that any such function is close to being
uncorrelated with any function on a small number of bits; this is reminiscent of the related notion
for graphs. See Homework #2 for details.

Example 4.2 Many functions we have seen so far satisfy the definition of quasirandomness.

Function Quasirandom?
Dictator no
Majority yes
Parity yes
Random yes
Constant yes

Observation 4.3 The definition of quasirandomness becomes stricter asε → 0 andδ → 0.

The reason we introduce the definition of quasirandom functions is to make strong claims about
the H̊ast-Oddδ test: specifically, that it rejects quasirandom functions with high probability.

Theorem 4.4 If h : {−1, 1}n → [−1, 1] is (ε2, δ)-quasirandom,

Pr[Håst-Oddδ(h) accepts] ≤ 1
2

+ 1
2
ε.

We will see the proof of this theorem in the next lecture1. During that lecture, we will also
show how the results we have derived above can be used to establish even stronger results about
hardness of approximation.

1In fact, time constraints prevented us from covering the proof of this theorem in the lectures. See the “Håst-Odd
as a Dictatorship vs. Quasirandom test” post of Jan. 31 on the course blog for a link to the proof.

7

