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1 A Local Test for Dictatorship

The Marquis de Condorcet was a French mathematician and early political scientist. In addition to
publishing influential works on integral calculus, in 1785 he publishe&ssay on the Application

of Analysis to the Probability of Majority Decisions which he outlined a method of aggregating
voter preferences into a ranking of candidates.

Definition 1.1 Condorcet Method For Ranking 3 Candidatesn an election withn voters and 3
candidatesA, B, andC, each voter submits 3 bits representing his preferences:

LA>B

2)B>C

3)C > A.

These preferences are aggregated iftetrings sy, s2,s3 € {—1,1}". A boolean function
f:{-1,1}" — {—1,1} is applied to all 3 strings, and the aggregate preference is represented by

the trlple (f(31)7 f(sQ)v f(53>)

Problem: “The Condorcet Paradox.” If is the majority function, we can have an irrational out-
come, in which all 3 aggregate bits dréor —1), representing a cyclic preferende< B < C' < A
(orA>B>C>A).

Definition 1.2 A triple (a,b,¢) € {—1,1} is rational if it corresponds to a non-cyclic ordering.
Equivalently, it is rational if not all three bits are equal. We define the funciai :{—1,1}® —
{—1, 1} to be true if and only if its three input bits are not all equal.

Theorem 1.3 Arrow’s Impossibility Theorem: The only monotone function that never give
irrational outcomes are dictators. (Allowing non-monotone functions only adds anti-dictators.)

Note: Arrow’s Theorem is actually more general than this, but in particular itimplies the above
result. This result suggests3aquery test for dictators: Arrow’s Theorem tells us that dictators are
the only functions that will always pass a test for rationality.

Remark 1.4 While Condorcet, who was also a proponent of black and women'’s rights, was jailed
and poisoned after the French revolution, Ken Arrow was awarded a Nobel prize in economics.

Definition 1.5 “NAE Test”



e Chooser,y,z € {—1,1}" by choosing the triple$z;, y;, z;) uniformly from the set of 6
assignments such that all three bits are not equal, and independently asross

e AcceptifNAE(f(z), f(v), f(2)), and otherwise reject.

Lemma 1.6

s
PrNAR() passes— -3 3 (3] )

SC[n]
Sanity check: Is this lemma what we want?
e Dictators pass with probability/4 — 3/4((—1/3)* - 1?) =3/4 + 1/4 = 1.
e Constant functions pass with probability4 — 3/4((—1/3)° - 1?) = 3/4 — 3/4 = 0.
e Parities on 2 bits pass with probability4 — 3/4((—1/3)%-1?) = 3/4 — 1/12 = 2/3.

So it looks like this lemma may indeed help us get a local test for dictatorship.

Proof: The following is easily seen to be(al indicator for the NAE predicate:

3 1 1 1
1NAE(a1,a2,a3) = Z_l — Q102 — —A1a3 — —Q203.

4 4 4

Remark 1.7 When analyzing a general predicate, the indicator expression to use is nothing more
than the Fourier expansion of the predicafe;1,1}¢ — {0, 1}.
Hence:

1 1

PrINAE passes= | — {E[/(@)/(y)] — {EL/@)/()] - {EL/w)/ (=)

We note thatx, y) has the same distribution &8, z) and(y, z); in particular,

Pr[(—1,-1)] = Pr[(1,1)] = 1/6, Pr[(—1,1)] = Pr[(1,—1)] = 2/6. (1)
Therefore, we have: s 3
Pr[NAE passes= 1 ZE[f(fB)f(y)]

It therefore remains to show thB{ f (x) f (y)] = ZSC[H](—l/?))‘S‘f(S)?.
Expandingf in terms of its Fourier coefficients:

E[f(x)f(y)] = E[(S%) | f(S)as) - (TCZ[ | f(T)yr)] = F(S)J(T) E [xsyr]



We now write

n
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The last equality holds by the mutual independence ofrtliendom variable paire;, ;).
Writing things out using a product acrossa#ind using indicators is a useful trick in general.
Now note that:

;33 CI3S’yT =

Ifi ¢ S,igT,thenE, y[mlzesylﬂ] = E[1]=1

IfieS,igT, thenEmy[:c iesyl ZET] =E[x;] =0

If i ¢ S,i € T, thenEqy [z, <y, "] = E[y;] =
[

If i € S,ieT,thenE, [z Sy "] = Elx;y,] = 2/6 4/6 = —1/3, using (1).
Therefore we have that § # T, E, ,[zsyr] = 0, and otherwiseE,. ,[zsyr] = (—1/3)°l. Thus
we have shown that:

Elf Zf E[zsyr] = g (_%)m £(S)?

which completes the proofl

The following definition will simplify our notation:

Definition 1.8 Givenf : {—1,1}" — R we say thaveight at level is:

= Wi(f) = Zf(s)2

|S|=k
We note that for alk, 1V, > 0, and for a functiory : {—1,1}" — {—1,1},>",_  Wi(f) =

Corollary 1.9

3 3
w4ty - —W2 + i, )

Pr[NAE(f) accepts| = 171 1 %

Hence iff passes with probability: 1 — ¢, thenWW; > 1 — ge.

Proof: Suppose to the contrary thEf, < 1 — ge. Sinced ,_, W) = 1, itis easy to see that the
most (2) could possibly then be is what one would get if the remaining weight occurred at level
(since these two levels contribute the largest positive weight towards the acceptance probability).
But this would only achieve

3 1 9 19 9 1
Pr[NAE(f)accepts]<1+Z<1—§e>+% 7€ = 1—§€+§6—1—€



a contradictionD

One may now ask: Given th#thas almost all its “Fourier weight” at levél— i.e.,Z‘SI:1 f(S)2 >
1 — O(e) — must f be close to a dictatorship or anti-dictatorship, as Arrow’s Theorem suggests?
It's not immediately clear. In fact, later in this course we will show that tlaeshold. This is a
theorem of Friedgut, Kalai, and Naor:

Theorem 1.101If f : {—1,1}" — {—1,1} hasW,(f) > 1 — ¢, thenf is O(¢)-close to either a
dictator or an anti-dictator.

We don’t really need this theorem, though, to get a local test for dictatorship. We already have
all the tools we need:

Theorem 1.11 Dictators are locally testable with 6 queries.

Proof: We run both the BLR linearity test and the NAE test firand accept if and only if both
tests accept.

First note that iff is a dictator then it passes both tests with probability particular, it passes
BLR because dictators are parities). Now suppose that the overall test passes with probability at
leastl — e. Then the BLR test passes with probability at lelast e, and so there exists a unique
setS* such thatf(S*) > 1 — 2e. (ThatS* is unique follows from Parseva}, f(S)? = 1, and
because we can assuméo be sufficiently small.) We also have that the NAE test passes with

probability at leastl — ¢, and so we havg_ g _, f(S)2>1- %¢. Therefore, it must be that

|S*| = 1, because otherwis8, ¢ f(S)? > 1 — ¢ + (1 — 2¢)® > 1 (using thate is sufficiently
small). Hence{f, xs-) > 1 — 2¢ and sof is e-close to to a dictator, completing the proof.

Remark 1.12 A note on our assumption thats sufficiently small: We implicitly used here that
e < 1/8to show that iff is e-far from being a dictator then the probability of acceptance is at most
1 —e. Now if f is e-far for somee > 1/8 then we can'’t conclude that the acceptance probability
is at mostl — ¢; but, wecanconclude it's at most — 1/8 (since f being> 1/8-far implies it

is 1/8-far). Hence for all0 < ¢ < 1, we may say that any that is e-far from being a dictator
passes with probability at most— ¢/8, and this statement is enough to satisfy the definition of
local testability.

In fact, we can do slightly better using a general trick: If we have a test that consists of multiple
sub-test$73, 75, ..., Ty), we don't need to do each test in series. We can instead randomly conduct
one testl; for i € [k] drawn uniformly at random. This allows us to use only the maximum number
of queries necessary for any of the sub-tests, rather than their sum.

Theorem 1.13 Dictatorship is locally testable with onfyyqueries.

Proof: We flip a coin and with probability /2 perform the BLR test, and otherwise perform the
NAE test. If this passes with probability 1 — ¢/2, then both sub-tests must pass with probability
> 1 — ¢, and we proceed as before. We lose only a constant t€ thein the overalll — Q(e)
rejection probabilityd



Corollary 1.14 For every subseP C {1,...,n}, the property{xy; : i € P} is locally testable.

Proof:
(1) Perform the BLR+NAE test, rejecting if it rejects. If it passes with probability at [east,
then we know thaf is O(¢)-close to some dictator.
(2) Construct the string € {—1,1}", wherex; = —1iff i € P. Then locally decod¢ onz.
(3) Accept if and only if the local decoding yieldsl.

It is easy to verify that this accepts dictatorsirwith probability 1 and rejects functionsfar
from being dictators irP with probability at leasf2(e). O

Note that we can do this in three queries by using our sub-test trick.

2 Probabilistically Checkable Proofs of Proximity

We will now get to see the great usefulness of locally testing dictators — specifically locally testing
subsets of Dictators. We will show thagveryproperty is locally testable witB queries” — if we
are allowed to see a proof.

Definition 2.1 Astring testefl" is a randomized algorithm with black-box query access to a string
w € {—1,1}™. It can query any coordinaté € [m| and getw;. A string tester for a property

P C {—1,1}™ distinguishes whether € P or w is e-far from P (i.e., A(w,v) > em for all

v € P).

String testing is more general than function testing, since you can think of a function as the
string that represents its truth tablentf= 2" for somen then the reverse is also true, as you can
identify anm-bit string with a boolean function om bits.

Suppose that you are given a long proof that a stsih@s propertyP, but: (a) you don't trust
the prover, and (b) the prover will only let you see a few bits of the proof. (However, you can
convince the prover to write the proof in your favorite format.) We make the following definition,
made independently by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan and by Dinur and
Reingold:

Definition 2.2 A propertyP of m-bit strings hasprobabilistically checkable proofs of proximity
(PCPPs) of lengtli(m) if there is some string testdf makingO(1) nonadaptive queries te €
{—1,1}™ and a purported “proof ofv € P 7 € {—1,1}'™ such that:

(1) If w € P thendr,, such thatPr|[T'(w, 7, ) accepts] = 1.

(2) If wis e-far from P thenvr € {—1, 1}, Pr[T(w, ) accepts] < 1 — Q(e).

Theorem 2.3 Every propertyP of m-bit strings has PCPPs of lengfii”, where the tester makes
only 3 queries.



Remark 2.4 Although proofs of siz2*" may seem bad, keep in mind that there e properties
of m-bit strings.

Remark 2.5 PCPPs are also calledssignment testes assisted tests

Proof: Givenw € P, we will generate the “correct proof of € P”, «,, as follows:

1. We will identify strings in{—1, 1}™ with the set{1,2,...,n}, wheren := 2™ (via lexico-
graphical order, say).

2. In particular, say that gets identified witht € [n].
3. Further, say that the proper®/gets identified with the subsét C [n].

4. We letr, be the truth table ok, : {—1,1}" — {—1,1}, the dictator on the variable
associated withw.

We will further identify all purported proofs (which are strings of lengtf) with functions
f:{-1,1}" — {—1,1} (recall thatn = 2™).

Our tester now has to check three things:

(a) The prooff should be a dictator function.

(b) This dictator function is on a coordinate that isAn

(c) This coordinate actually corresponds to given strimgs {—1, 1}™.

To do this, we can perform the following test:

1. Runthe BLR+NAE test oif. If this passes with probability 1 — ¢, thenf is O(¢)-close to
some dictator function ;.

2. Run local decoding offi using the string; such that;, = —1 < ¢ € P to verify thatu € P.

3. Choose € [m] uniformly at random and createc {—1,1}":

r=(-1,-1,1,1,—1,...,1).

~
-1 in thewth coordinate iffu;=—1

Here we are viewing in two ways:v € [n], andv € {—1,1}™. Use local decoding to find
f(x) = xqu}(z) = v,;. Then additionally query;, and accept ifiv; = u;.

It is straightforward to check that this tester works as desired. In addition, we can maka it use
gueries — sub-tedtrequires3 queries (using the trick), sub-testequires2 queries, and sub-test
requires3 queries; we can then use the trick again to make the number of quenigs, 2, 3) = 3.

O



