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1 A Local Test for Dictatorship

The Marquis de Condorcet was a French mathematician and early political scientist. In addition to
publishing influential works on integral calculus, in 1785 he published hisEssay on the Application
of Analysis to the Probability of Majority Decisions, in which he outlined a method of aggregating
voter preferences into a ranking of candidates.

Definition 1.1 Condorcet Method For Ranking 3 Candidates:In an election withn voters and 3
candidatesA, B, andC, each voter submits 3 bits representing his preferences:

(1) A > B
(2) B > C
(3) C > A.
These preferences are aggregated into3 strings s1, s2, s3 ∈ {−1, 1}n. A boolean function

f : {−1, 1}n → {−1, 1} is applied to all 3 strings, and the aggregate preference is represented by
the triple (f(s1), f(s2), f(s3)).

Problem: “The Condorcet Paradox.” Iff is the majority function, we can have an irrational out-
come, in which all 3 aggregate bits are1 (or−1), representing a cyclic preferenceA < B < C < A
(or A > B > C > A).

Definition 1.2 A triple (a, b, c) ∈ {−1, 1} is rational if it corresponds to a non-cyclic ordering.
Equivalently, it is rational if not all three bits are equal. We define the functionNAE :{−1, 1}3 →
{−1, 1} to be true if and only if its three input bits are not all equal.

Theorem 1.3 Arrow’s Impossibility Theorem: The only monotone functionsf that never give
irrational outcomes are dictators. (Allowing non-monotone functions only adds anti-dictators.)

Note: Arrow’s Theorem is actually more general than this, but in particular it implies the above
result. This result suggests a3-query test for dictators: Arrow’s Theorem tells us that dictators are
the only functions that will always pass a test for rationality.

Remark 1.4 While Condorcet, who was also a proponent of black and women’s rights, was jailed
and poisoned after the French revolution, Ken Arrow was awarded a Nobel prize in economics.

Definition 1.5 “NAE Test”
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• Choosex, y, z ∈ {−1, 1}n by choosing the triples(xi, yi, zi) uniformly from the set of 6
assignments such that all three bits are not equal, and independently acrossi’s.

• Accept ifNAE(f(x), f(y), f(z)), and otherwise reject.

Lemma 1.6

Pr
x,y,z

[NAE(f) passes] =
3

4
− 3

4

∑
S⊆[n]

(
−1

3

)|S|

f̂(S)2.

Sanity check: Is this lemma what we want?

• Dictators pass with probability3/4− 3/4((−1/3)1 · 12) = 3/4 + 1/4 = 1.

• Constant functions pass with probability3/4− 3/4((−1/3)0 · 12) = 3/4− 3/4 = 0.

• Parities on 2 bits pass with probability3/4− 3/4((−1/3)2 · 12) = 3/4− 1/12 = 2/3.

So it looks like this lemma may indeed help us get a local test for dictatorship.

Proof: The following is easily seen to be a0-1 indicator for the NAE predicate:

1NAE(a1,a2,a3) =
3

4
− 1

4
a1a2 −

1

4
a1a3 −

1

4
a2a3.

Remark 1.7 When analyzing a general predicate, the indicator expression to use is nothing more
than the Fourier expansion of the predicate,{−1, 1}q → {0, 1}.

Hence:

Pr[NAE passes] =
3

4
− 1

4
E[f(x)f(y)]− 1

4
E[f(x)f(z)]− 1

4
E[f(y)f(z)].

We note that(x, y) has the same distribution as(x, z) and(y, z); in particular,

Pr[(−1,−1)] = Pr[(1, 1)] = 1/6, Pr[(−1, 1)] = Pr[(1,−1)] = 2/6. (1)

Therefore, we have:

Pr[NAE passes] =
3

4
− 3

4
E[f(x)f(y)]

It therefore remains to show thatE[f(x)f(y)] =
∑

S⊆[n](−1/3)|S|f̂(S)2.
Expandingf in terms of its Fourier coefficients:

E[f(x)f(y)] = E[(
∑

S⊆[n]

f̂(S)xS) · (
∑

T⊆[n]

f̂(T )yT )] =
∑

S,T⊆[n]

f̂(S)f̂(T ) E
x,y

[xSyT ]
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We now write

E
x,y

[xSyT ] = E
x,y

[∏
i∈S

xi ·
∏
i∈T

yi

]
= E

x,y

[
n∏

i=1

x
1i∈S

i y
1i∈T

i

]
=

n∏
i=1

E
x,y

[x
1i∈S

i y
1i∈T

i ]

The last equality holds by the mutual independence of then random variable pairs(xi, yi).
Writing things out using a product across alli and using indicators is a useful trick in general.
Now note that:

If i 6∈ S, i 6∈ T , thenEx,y[x1i∈S

i y
1i∈T

i ] = E[1] = 1.
If i ∈ S, i 6∈ T , thenEx,y[x

1i∈S

i y
1i∈T

i ] = E[xi] = 0.
If i 6∈ S, i ∈ T , thenEx,y[x

1i∈S

i y
1i∈T

i ] = E[yi] = 0.
If i ∈ S, i ∈ T , thenEx,y[x1i∈S

i y
1i∈T

i ] = E[xiyi] = 2/6− 4/6 = −1/3, using (1).
Therefore we have that ifS 6= T , Ex,y[xSyT ] = 0, and otherwise,Ex,y[xSyT ] = (−1/3)|S|. Thus
we have shown that:

E
x,y

[f(x)f(y)] =
∑
S,T

f̂(S)f̂(T ) E
x,y

[xSyT ] =
∑

S

(
−1

3

)|S|

f̂(S)2

which completes the proof.2

The following definition will simplify our notation:

Definition 1.8 Givenf : {−1, 1}n → R we say theweight at levelk is:

Wk = Wk(f) =
∑
|S|=k

f̂(S)2.

We note that for allk, Wk ≥ 0, and for a functionf : {−1, 1}n → {−1, 1},
∑n

k=0 Wk(f) = 1.

Corollary 1.9

Pr[NAE(f) accepts] =
3

4
− 3

4
W0 +

1

4
W1 −

1

12
W2 +

1

36
W3 − . . . . (2)

Hence iff passes with probability≥ 1− ε, thenW1 ≥ 1− 9
2
ε.

Proof: Suppose to the contrary thatW1 < 1 − 9
2
ε. Since

∑n
k=0 Wk = 1, it is easy to see that the

most (2) could possibly then be is what one would get if the remaining weight occurred at level3
(since these two levels contribute the largest positive weight towards the acceptance probability).
But this would only achieve

Pr[NAE(f) accepts] <
3

4
+

1

4

(
1− 9

2
ε

)
+

1

36
· 9

2
ε = 1− 9

8
ε +

1

8
ε = 1− ε,
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a contradiction.2

One may now ask: Given thatf has almost all its “Fourier weight” at level1 — i.e.,
∑

|S|=1 f̂(S)2 ≥
1 − O(ε) — mustf be close to a dictatorship or anti-dictatorship, as Arrow’s Theorem suggests?
It’s not immediately clear. In fact, later in this course we will show that thisdoeshold. This is a
theorem of Friedgut, Kalai, and Naor:

Theorem 1.10 If f : {−1, 1}n → {−1, 1} hasW1(f) ≥ 1 − ε, thenf is O(ε)-close to either a
dictator or an anti-dictator.

We don’t really need this theorem, though, to get a local test for dictatorship. We already have
all the tools we need:

Theorem 1.11 Dictators are locally testable with 6 queries.

Proof: We run both the BLR linearity test and the NAE test onf , and accept if and only if both
tests accept.

First note that iff is a dictator then it passes both tests with probability1 (in particular, it passes
BLR because dictators are parities). Now suppose that the overall test passes with probability at
least1 − ε. Then the BLR test passes with probability at least1 − ε, and so there exists a unique
setS∗ such thatf̂(S∗) ≥ 1 − 2ε. (ThatS∗ is unique follows from Parseval,

∑
f̂(S)2 = 1, and

because we can assumeε to be sufficiently small.) We also have that the NAE test passes with
probability at least1 − ε, and so we have

∑
|S|=1 f̂(S)2 ≥ 1 − 9

2
ε. Therefore, it must be that

|S∗| = 1, because otherwise,
∑

S f̂(S)2 ≥ 1 − 9
2
ε + (1 − 2ε)2 > 1 (using thatε is sufficiently

small). Hence,〈f, χS∗〉 ≥ 1− 2ε and sof is ε-close to to a dictator, completing the proof.2

Remark 1.12 A note on our assumption thatε is sufficiently small: We implicitly used here that
ε < 1/8 to show that iff is ε-far from being a dictator then the probability of acceptance is at most
1 − ε. Now iff is ε-far for someε ≥ 1/8 then we can’t conclude that the acceptance probability
is at most1 − ε; but, wecanconclude it’s at most1 − 1/8 (sincef being> 1/8-far implies it
is 1/8-far). Hence for all0 ≤ ε ≤ 1, we may say that anyf that is ε-far from being a dictator
passes with probability at most1 − ε/8, and this statement is enough to satisfy the definition of
local testability.

In fact, we can do slightly better using a general trick: If we have a test that consists of multiple
sub-tests(T1, T2, . . . , Tk), we don’t need to do each test in series. We can instead randomly conduct
one testTi for i ∈ [k] drawn uniformly at random. This allows us to use only the maximum number
of queries necessary for any of the sub-tests, rather than their sum.

Theorem 1.13 Dictatorship is locally testable with only3 queries.

Proof: We flip a coin and with probability1/2 perform the BLR test, and otherwise perform the
NAE test. If this passes with probability≥ 1− ε/2, then both sub-tests must pass with probability
≥ 1 − ε, and we proceed as before. We lose only a constant to theΩ(·) in the overall1 − Ω(ε)
rejection probability.2
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Corollary 1.14 For every subsetP ⊆ {1, . . . , n}, the property{χ{i} : i ∈ P} is locally testable.

Proof:
(1) Perform the BLR+NAE test, rejecting if it rejects. If it passes with probability at least1− ε,

then we know thatf is O(ε)-close to some dictator.
(2) Construct the stringx ∈ {−1, 1}n, wherexi = −1 iff i ∈ P . Then locally decodef onx.
(3) Accept if and only if the local decoding yields−1.

It is easy to verify that this accepts dictators inP with probability1 and rejects functionsε-far
from being dictators inP with probability at leastΩ(ε). 2

Note that we can do this in three queries by using our sub-test trick.

2 Probabilistically Checkable Proofs of Proximity

We will now get to see the great usefulness of locally testing dictators — specifically locally testing
subsets of Dictators. We will show that “everyproperty is locally testable with3 queries” — if we
are allowed to see a proof.

Definition 2.1 A string testerT is a randomized algorithm with black-box query access to a string
w ∈ {−1, 1}m. It can query any coordinatei ∈ [m] and getwi. A string tester for a property
P ⊆ {−1, 1}m distinguishes whetherw ∈ P or w is ε-far from P (i.e., ∆(w, v) ≥ εm for all
v ∈ P ).

String testing is more general than function testing, since you can think of a function as the
string that represents its truth table. Ifm = 2n for somen then the reverse is also true, as you can
identify anm-bit string with a boolean function onn bits.

Suppose that you are given a long proof that a strings has propertyP , but: (a) you don’t trust
the prover, and (b) the prover will only let you see a few bits of the proof. (However, you can
convince the prover to write the proof in your favorite format.) We make the following definition,
made independently by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan and by Dinur and
Reingold:

Definition 2.2 A propertyP of m-bit strings hasprobabilistically checkable proofs of proximity
(PCPPs) of lengthl(m) if there is some string testerT makingO(1) nonadaptive queries tow ∈
{−1, 1}m and a purported “proof ofw ∈ P,” π ∈ {−1, 1}l(m) such that:

(1) If w ∈ P then∃πw such thatPr[T (w, πw) accepts] = 1.
(2) If w is ε-far fromP then∀π ∈ {−1, 1}l(m), Pr[T (w, π) accepts] < 1− Ω(ε).

Theorem 2.3 Every propertyP of m-bit strings has PCPPs of length22m
, where the tester makes

only3 queries.
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Remark 2.4 Although proofs of size22m
may seem bad, keep in mind that there are22m

properties
of m-bit strings.

Remark 2.5 PCPPs are also calledassignment testersor assisted tests.

Proof: Givenw ∈ P, we will generate the “correct proof ofw ∈ P”, πw as follows:

1. We will identify strings in{−1, 1}m with the set{1, 2, . . . , n}, wheren := 2m (via lexico-
graphical order, say).

2. In particular, say thatw gets identified witht ∈ [n].

3. Further, say that the propertyP gets identified with the subsetP ⊆ [n].

4. We letπw be the truth table ofχ{t} : {−1, 1}n → {−1, 1}, the dictator on the variable
associated withw.

We will further identify all purported proofs (which are strings of length22m
) with functions

f : {−1, 1}n → {−1, 1} (recall thatn = 2m).

Our tester now has to check three things:
(a) The prooff should be a dictator function.
(b) This dictator function is on a coordinate that is inP .
(c) This coordinate actually corresponds to given stringsw ∈ {−1, 1}m.

To do this, we can perform the following test:

1. Run the BLR+NAE test onf . If this passes with probability≥ 1− ε, thenf is O(ε)-close to
some dictator functionχ{u}.

2. Run local decoding onf using the stringy such thatyi = −1 ⇔ i ∈ P to verify thatu ∈ P .

3. Choosei ∈ [m] uniformly at random and createx ∈ {−1, 1}n:

x = (−1,−1, 1, 1,−1, . . . , 1).︸ ︷︷ ︸
-1 in thevth coordinate iffvi=−1

Here we are viewingv in two ways:v ∈ [n], andv ∈ {−1, 1}m. Use local decoding to find
f(x) = χ{u}(x) = ui. Then additionally querywi, and accept iffwi = ui.

It is straightforward to check that this tester works as desired. In addition, we can make it use3
queries — sub-test1 requires3 queries (using the trick), sub-test2 requires2 queries, and sub-test3
requires3 queries; we can then use the trick again to make the number of queriesmax(3, 2, 3) = 3.
2
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