Analysis of Boolean Functions (CMU 18-859S, Spring 2007)

Lecture 29: Open Problems
May 3, 2007
Lecturer: Ryan O’Donnell Scribe: Ryan O’Donnell

1 Miscellaneous problems

Small total influence implies a large coefficient: Prove or disprove: For every f : {—1,1}" —
{—1,1} there exists some S such that | f(.S)| > 2-°@(/). One might also try to add the condition
that the S satisfies | S| < O(I(f)). A lower bound of 2-°U(")*) follows from Friedgut’s Theorem,
and with this one can also get that |S| < O(I(f)).

The result definitely holds for monotone functions: From the proof of Friegut/KKL one can
show that if Inf;(f) < 7 for all 4, then I(f) > Q(Var[f]log(1/7)) (this is usually credited to
Talagrand [Tal94]). Thus either f(() > (1), or there exists i such that Inf,;(f) > 2791, But
for monotone functions, Inf;(f) = f({i}).

Bounding level £ weight by level 1 weight: Let f : {—1,1}" — {—1,1}, and let II( f) denote
> iy Infi(f)?. Recall also that we write Wy (f) for 3 _, £(S)%; note that TI(f) = Wy(f)
if f is monotone. Talagrand [Tal96] showed that for any f : {—1,1}" — {—1,1}, Wia(f) <
O(II(f) log(1/II(f))). Benjamini, Kalai, and Schramm [BKS99] generalized this to show that
for each k > 2, Wi, (f) < Cy - II(f) log® *(1/TI(f)), for some constant C}. Unpublished work
of Kindler shows that in fact one can make the C}’s smaller as k increases, with a bound Cj, <
O(1/k). A conjecture is that one can get Cj, < O(1/k!); if so, this would be tight by considering
the Tribes function.

2 Decision trees

Decision trees and influences for real-valued functions [OSSS05]: Recall we proved that for
fo{=1,1}" — {=1,1}, Var[f] < >, 8(f)Inf;(f). The question is to what extent this is
true for functions f : {—1,1}" — R; in particular, is it true that Var[f] < C' - > ", §;(f)Inf;(f)
for some universal constant C'? By an explicit example it is known that C' can’t be 1, but the best
example only gives a lower bound like C' > 1.1.

3 DNFs

Total influence of DNF: As came up on Problem 1 of Homework #3: If f is computable by a
DNF of width w, must it hold that I(f) < w? This would be sharp, by Parity, and proving a 2w



upper-bound is easy.

Fourier concentration for DNF: Let f be computable by a poly-sized DNF. Is f e-concentrated
on a set of Fourier coefficients of cardinality at most n°(¢) (i.e., polynomial for constant ¢)? This
question is not actually very interesting for learning theory, since the immediate learning conse-
quence is already superseded by Jackson’s algorithm. Also, it’s not clear whether or not Tribes
already rules out this conjecture.

4 LTFs

Noise sensitivity of intersections of halfspaces [KOS04]: Peres’s Theorem is thatif f : {—1,1}" —
{—1,1} is an LTF (halfspace), then NS.(f) < O(y/€). By the union bound, this implies that if f

is the intersection (AND) of k LTFs, then NS, (f) < O(k+/e). It is conjectured that the following
better upper bound holds: NS.(f) < O(y/log k+/€). This would be tight, by considering &k sym-
metric LTFs with bias 1 — 1/k on disjoint sets of variables.. The bound is known to hold if the &
LTFs are on disjoint sets of variables.

Most noise sensitive LTF: Let n be odd and fix 0 < ¢ < 1/2. Show that the LTF on n bits with
highest noise sensitivity at € is Majority. (Peres’s Theorem implies this is true up to a constant
factor.)

Approximate Chow Parameters: The following problem is attributed to P. Goldberg [Gol06]
(see also [Ser06]). Let f : {—1,1}" — {—1, 1} be an LTF. It is known [Cho61]] and not too hard to
show that f’s “Chow Parameters” f(0), f({1}), ..., f({n}) uniquely determine f among the class
of all boolean-valued functions. Now suppose g : {—1,1}" — {—1, 1} is another LTF satisfying

Y (f(8)—4(9) <e

IS1<1

Must g be o._o(1)-close to f?

S Learning

Learning monotone DNF: Can poly-size monotone DNF be PAC-learned under the uniform
distribution in polynomial time? (Feel free to assume that the accuracy parameter, €, is a constant.)
This is not inherently a Fourier analysis problem, but it’s such a big open problem in PAC-learning
that it’s worth mentioning; also, it’s likely that Fourier analysis would play a big role in any solu-
tion.

Learning juntas: In addition to the problems for which Avrim Blum will give you prizes, one
may ask: Can k-juntas over {1,2,3}" be learned in time n'~*())*? How about juntas under the
p-biased product distribution, p # 1/2?



6 Testing

The best 3-bit dictator vs. quasirandom test with perfect completeness: Suppose we want a
3-query test for functions f : {—1,1}" — {—1, 1} that accepts all dictators with probability 1 and
accepts all (o(1), o(1))-quasirandom functions with probability at most s + o(1). How small can s
be? Work of Khot and Saket [KS06] implies that s can be as small as 20/27. A conjecture is that
the smallest possible s is 5/8, but this is not known to be an upper or lower bound.

7 Noise sensitivity

Most noise sensitive code [Kal00]: Let f : {—1,1}" — {0, 1} have E[f] = 2=0~5" for some
constant 0 < R < 1. What is the most that NS_(f) can be? Is it achieved, roughly, by a random
function of that density? According to Kalai, this is connected to the question as to whether the
Gilbert-Varshamov bound from coding theory is optimal.

Cosmic coin flipping [MOO05]: Fix k£ > 2and 0 < ¢ < 1/2. Suppose « € {—1, 1}" is chosen at
random and y;, . . ., yy, are each formed by letting y; = N.(z), independently across i’s. We wish
to pick an odd function f : {—1,1}" — {—1,1} in an effort to maximize Pr[f(y,) = f(y2) =
.-+ = f(yx)]- (Imagine k players are independently measuring a “cosmic” source of random bits,
with each experiencing € noise. They wish to try to use their noisy strings to agree on a random
bit.) Prove (or disprove): there exists some r = r(k, ) such that Maj, is maximizing.

Plurality is Stablest? [MOO05]: Fix 0 < p < 1. Consider the class of functions f : {1,2,3}" —
{1,2,3} which are “balanced” (Pr[f = ¢|] = 1/3 for each ¢ = 1,2, 3) and have small influences
(Ex[Varg,[f]] < o(1) for all i), where we think of the input domain {1, 2, 3}" as having the uni-
form distribution. Let € {1, 2, 3}" be uniformly random and form y by holding each coordinate
of x fixed with probability p and rerandomizing it with probability 1 — p. Is it true that

S,(f) :==Pr[f(z) = f(y)] < lim S,(Plurality, ) + o(1)?

x,y n—00

8 Hypercontractivity

Improved Markov for smoothed functions [Tal89]: Michel Talagrand will give you $1000 if
you solve this problem: Fix 0 < p < 1 (think of p close to 1). Let f : {—1,1}" — [0,1] and
write 1 = E[f]. Note that E[T,f] = p as well. Clearly, Markov’s inequality implies that for
large t, Pr[(T,f)(x) > tu] < 1/t. However, since 7}, “smooths” f out, one might hope for
something better. Talagrand conjectures asks for a proof (or disproof) of the better upper bound

O(1/(tv/1og?).



9 Circuit complexity

Small total influence implies small approximating circuits for monotone functions [BKS99]:
Linial, Mansour, and Nisan [LMNO93] implies that if f : {—1,1}" — {—1, 1} has a circuit of depth
d and size s, then

I(f) < O(log™(s)).

Boppana [Bop97] improved the exponent to d — 1, which is sharp (by considering Parity). It’s
possible that the following “reverse” result holds, approximately, for monotone functions:

Let f : {—1,1}" — {—1,1} be monotone, and let ¢ > 0. Then there is a circuit ¢ which
computes f correctly on a 1 — € fraction of inputs and has size s and depth d satisfying

I(f) < O(log™(s)).

Note that it is impossible to improve the exponent here to d — 1, by a recent result [OWOQ7].

10 Threshold phenomena, random graphs, percolation

Total influence lower bounds [Kal00]: Find “general conditions” on functions f : {—1,1}" —
{—1,1} that imply I(f) > n®*). The motivation here is showing that monotone functions have
very sharp thresholds. Bourgain and Kalai [BK97] have results that can show I(f) > polylog(n)
if f has enough symmetries. The only other method I know is the inequality relating influences
and decision tree complexity from Lecture 26.

Influence versus Fourier entropy [FK96]: This is a particular case of the above problem. It
would also imply the first problem listed in the Miscellaneous section. Let f : {—1,1}" —
{-=1,1}. Show that

> f(8)*1og(1/£(S)*) < O((f)).

5C[n]
This seems very similar to the Log-Sobolev inequality proven in Homework #4, but it’s not clear
if they are actually related (in particular, this conjecture clearly needs that f is boolean-valued).

Thresholds for subgraph containment: Let H be any fixed graph on up to n vertices, and let f
be the monotone graph property (in the G(n, p) model) of containing a copy of H. For which graph
H is the threshold sharpest? If one could show I?<)(f) < O(4/v) for any subgraph containment
property f (with p. the appropriate critical probability), then one could use the results of Lecture 26
to recover the result of [Gr692]], showing R(f) > Q(v3/?) for subgraph containment properties.

Distance variance of first passage percolation: Consider the graph on Z? where each vertex
is connected to its 4 neighbors at distance 1. Choose each edge to have “length” either 1 or 2,
independently and with probability 1/2 each. Now let f denote shortest-path distance from (0, 0)
to (v,v), where v € N is thought of as large. Using the result of Talagrand [Tal94] (mentioned
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in the first problem of the Miscellaneous section), [IBO3|] have shown that Var[f] < O(v/logv).
The goal is to prove that Var|[f] = ©(v?/?), which the statistical physicists “know” to be the right
answer.

Percolation on the grid: The scenario here is similar to the previous one. Consider an (m +
1) x m subgrid. Let each of the n = 2m? — 1 edges be present or absent with probability 1/2, and
let f: {—1,1}" — {—1,1} be the indicator of a “crossing”; i.e., a path from the left side to the
right side. (A cute exercise: show E[f] = 0.) One problem is to prove the following conjecture
made by physicists: I(f) = ©(n3/%). Another is to prove the following conjecture from [BKS99]:
For every € > 0, for sufficiently large m, the following holds:

Pr  [crossing | horizontal edges| — 1 /2' > e] <e

Pr
horizontal edges | |vertical edges

if one chooses just the

11 Arithmetic Combinatorics

Triangle removal in F [Gre04b]: Suppose f : Fy — {0, 1} is e-far from being triangle-free
(meaning that there are no x,y, z such that x + y + z = 0 and f(x) = f(y) = f(z) = 1). Prove
or disprove: the no-triangles test (pick x, y at random and check that f(x), f(y), f(x + y) are not
all 1) rejects with probability at least poly(€).

Cosets in sumsets (see [Gre04a]): Let A C [F} have density at least 1/4. Green has shown that
theset A+ A:={a+0b:a,be A} must contain coset of codimension at least {2(n). On the other
hand, Ruzsa has shown that there exists an A of density at least 1/4 (specifically, the set of vectors
with at least n/2 + y/n/2 1’s) such that A + A doesn’t contain any coset of codimension at most
\/n. Narrow this gap.

Polynomial Freiman-Ruzsa Conjecture: This important open problem in arithmetic combina-
torics is attributed to Marton by Ruzsa (see, e.g., [Gre0O4a]. It has many equivalent formulations, in-
cluding the following: Let f : Fy — F3" (not just — Fy) satisfy Pry, ,[f(z)+ f(y) = f(x+y)] >
e. Then there is some affine linear function g : F — F%* such that Pr[f(x) = g(x)] > poly(e).

Singularity probability for random matrices: Let M be a random n X n matrix, where each
entry is an independent random £1 bit. Let P, denote the probability that M/ has determinant 0.
Clearly this will happen if any two rows are the same (up to sign) or any two columns are the same
(up to sign). This gives a lower bound:

P, > (1—o0(1))2n*-27"

It is conjectured that this bound is correct up to a 140(1) factor. A breakthrough result [JK95] gave
the upper bound P,, < .999", and the best current result [TVO7] gets this down to (3/4 + o(1))",
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using Fourier analysis and arithmetic combinatorics. That paper includes some discussion of how
one might try to improve the result to (1/2 + o(1))".
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