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Lecture 29: Open Problems
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Lecturer: Ryan O’Donnell Scribe: Ryan O’Donnell

1 Miscellaneous problems
Small total influence implies a large coefficient: Prove or disprove: For every f : {−1, 1}n →
{−1, 1} there exists some S such that |f̂(S)| ≥ 2−O(I(f)). One might also try to add the condition
that the S satisfies |S| ≤ O(I(f)). A lower bound of 2−O(I(f)2) follows from Friedgut’s Theorem,
and with this one can also get that |S| ≤ O(I(f)).

The result definitely holds for monotone functions: From the proof of Friegut/KKL one can
show that if Infi(f) ≤ τ for all i, then I(f) ≥ Ω(Var[f ] log(1/τ)) (this is usually credited to
Talagrand [Tal94]). Thus either f̂(∅) ≥ Ω(1), or there exists i such that Infi(f) ≥ 2−O(I(f)). But
for monotone functions, Infi(f) = f̂({i}).

Bounding level k weight by level 1 weight: Let f : {−1, 1}n → {−1, 1}, and let II(f) denote∑n
i=1 Infi(f)2. Recall also that we write Wk(f) for

∑
|S|=k f̂(S)2; note that II(f) = W1(f)

if f is monotone. Talagrand [Tal96] showed that for any f : {−1, 1}n → {−1, 1}, W2(f) ≤
O(II(f) log(1/II(f))). Benjamini, Kalai, and Schramm [BKS99] generalized this to show that
for each k ≥ 2, Wk(f) ≤ Ck · II(f) logk−1(1/II(f)), for some constant Ck. Unpublished work
of Kindler shows that in fact one can make the Ck’s smaller as k increases, with a bound Ck ≤
O(1/k). A conjecture is that one can get Ck ≤ O(1/k!); if so, this would be tight by considering
the Tribes function.

2 Decision trees
Decision trees and influences for real-valued functions [OSSS05]: Recall we proved that for
f : {−1, 1}n → {−1, 1}, Var[f ] ≤

∑n
i=1 δi(f)Infi(f). The question is to what extent this is

true for functions f : {−1, 1}n → R; in particular, is it true that Var[f ] ≤ C ·
∑n

i=1 δi(f)Infi(f)
for some universal constant C? By an explicit example it is known that C can’t be 1, but the best
example only gives a lower bound like C ≥ 1.1.

3 DNFs
Total influence of DNF: As came up on Problem 1 of Homework #3: If f is computable by a
DNF of width w, must it hold that I(f) ≤ w? This would be sharp, by Parity, and proving a 2w
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upper-bound is easy.

Fourier concentration for DNF: Let f be computable by a poly-sized DNF. Is f ε-concentrated
on a set of Fourier coefficients of cardinality at most nC(ε) (i.e., polynomial for constant ε)? This
question is not actually very interesting for learning theory, since the immediate learning conse-
quence is already superseded by Jackson’s algorithm. Also, it’s not clear whether or not Tribes
already rules out this conjecture.

4 LTFs
Noise sensitivity of intersections of halfspaces [KOS04]: Peres’s Theorem is that if f : {−1, 1}n →
{−1, 1} is an LTF (halfspace), then NSε(f) ≤ O(

√
ε). By the union bound, this implies that if f

is the intersection (AND) of k LTFs, then NSε(f) ≤ O(k
√

ε). It is conjectured that the following
better upper bound holds: NSε(f) ≤ O(

√
log k

√
ε). This would be tight, by considering k sym-

metric LTFs with bias 1 − 1/k on disjoint sets of variables.. The bound is known to hold if the k
LTFs are on disjoint sets of variables.

Most noise sensitive LTF: Let n be odd and fix 0 < ε < 1/2. Show that the LTF on n bits with
highest noise sensitivity at ε is Majority. (Peres’s Theorem implies this is true up to a constant
factor.)

Approximate Chow Parameters: The following problem is attributed to P. Goldberg [Gol06]
(see also [Ser06]). Let f : {−1, 1}n → {−1, 1} be an LTF. It is known [Cho61] and not too hard to
show that f ’s “Chow Parameters” f̂(∅), f̂({1}), . . . , f̂({n}) uniquely determine f among the class
of all boolean-valued functions. Now suppose g : {−1, 1}n → {−1, 1} is another LTF satisfying∑

|S|≤1

(f̂(S)− ĝ(S))2 ≤ ε.

Must g be oε→0(1)-close to f?

5 Learning
Learning monotone DNF: Can poly-size monotone DNF be PAC-learned under the uniform
distribution in polynomial time? (Feel free to assume that the accuracy parameter, ε, is a constant.)
This is not inherently a Fourier analysis problem, but it’s such a big open problem in PAC-learning
that it’s worth mentioning; also, it’s likely that Fourier analysis would play a big role in any solu-
tion.

Learning juntas: In addition to the problems for which Avrim Blum will give you prizes, one
may ask: Can k-juntas over {1, 2, 3}n be learned in time n(1−Ω(1))k? How about juntas under the
p-biased product distribution, p 6= 1/2?
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6 Testing
The best 3-bit dictator vs. quasirandom test with perfect completeness: Suppose we want a
3-query test for functions f : {−1, 1}n → {−1, 1} that accepts all dictators with probability 1 and
accepts all (o(1), o(1))-quasirandom functions with probability at most s + o(1). How small can s
be? Work of Khot and Saket [KS06] implies that s can be as small as 20/27. A conjecture is that
the smallest possible s is 5/8, but this is not known to be an upper or lower bound.

7 Noise sensitivity
Most noise sensitive code [Kal00]: Let f : {−1, 1}n → {0, 1} have E[f ] = 2−(1−R)n for some
constant 0 < R < 1. What is the most that NSε(f) can be? Is it achieved, roughly, by a random
function of that density? According to Kalai, this is connected to the question as to whether the
Gilbert-Varshamov bound from coding theory is optimal.

Cosmic coin flipping [MO05]: Fix k ≥ 2 and 0 < ε < 1/2. Suppose x ∈ {−1, 1}n is chosen at
random and y1, . . . ,yk are each formed by letting yi = Nε(x), independently across i’s. We wish
to pick an odd function f : {−1, 1}n → {−1, 1} in an effort to maximize Pr[f(y1) = f(y2) =
· · · = f(yk)]. (Imagine k players are independently measuring a “cosmic” source of random bits,
with each experiencing ε noise. They wish to try to use their noisy strings to agree on a random
bit.) Prove (or disprove): there exists some r = r(k, ε) such that Majr is maximizing.

Plurality is Stablest? [MOO05]: Fix 0 < ρ < 1. Consider the class of functions f : {1, 2, 3}n →
{1, 2, 3} which are “balanced” (Pr[f = c] = 1/3 for each c = 1, 2, 3) and have small influences
(Ex[Varxi

[f ]] < o(1) for all i), where we think of the input domain {1, 2, 3}n as having the uni-
form distribution. Let x ∈ {1, 2, 3}n be uniformly random and form y by holding each coordinate
of x fixed with probability ρ and rerandomizing it with probability 1− ρ. Is it true that

Sρ(f) := Pr
x,y

[f(x) = f(y)] ≤ lim
n→∞

Sρ(Pluralityn) + o(1)?

8 Hypercontractivity
Improved Markov for smoothed functions [Tal89]: Michel Talagrand will give you $1000 if
you solve this problem: Fix 0 < ρ < 1 (think of ρ close to 1). Let f : {−1, 1}n → [0, 1] and
write µ = E[f ]. Note that E[Tρf ] = µ as well. Clearly, Markov’s inequality implies that for
large t, Pr[(Tρf)(x) ≥ tµ] ≤ 1/t. However, since Tρ “smooths” f out, one might hope for
something better. Talagrand conjectures asks for a proof (or disproof) of the better upper bound
O(1/(t

√
log t).
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9 Circuit complexity
Small total influence implies small approximating circuits for monotone functions [BKS99]:
Linial, Mansour, and Nisan [LMN93] implies that if f : {−1, 1}n → {−1, 1} has a circuit of depth
d and size s, then

I(f) ≤ O(logd(s)).

Boppana [Bop97] improved the exponent to d − 1, which is sharp (by considering Parity). It’s
possible that the following “reverse” result holds, approximately, for monotone functions:

Let f : {−1, 1}n → {−1, 1} be monotone, and let ε > 0. Then there is a circuit φ which
computes f correctly on a 1− ε fraction of inputs and has size s and depth d satisfying

I(f) ≤ O(logd(s)).

Note that it is impossible to improve the exponent here to d− 1, by a recent result [OW07].

10 Threshold phenomena, random graphs, percolation
Total influence lower bounds [Kal00]: Find “general conditions” on functions f : {−1, 1}n →
{−1, 1} that imply I(f) ≥ nΩ(1). The motivation here is showing that monotone functions have
very sharp thresholds. Bourgain and Kalai [BK97] have results that can show I(f) ≥ polylog(n)
if f has enough symmetries. The only other method I know is the inequality relating influences
and decision tree complexity from Lecture 26.

Influence versus Fourier entropy [FK96]: This is a particular case of the above problem. It
would also imply the first problem listed in the Miscellaneous section. Let f : {−1, 1}n →
{−1, 1}. Show that ∑

S⊆[n]

f̂(S)2 log(1/f̂(S)2) ≤ O(I(f)).

This seems very similar to the Log-Sobolev inequality proven in Homework #4, but it’s not clear
if they are actually related (in particular, this conjecture clearly needs that f is boolean-valued).

Thresholds for subgraph containment: Let H be any fixed graph on up to n vertices, and let f
be the monotone graph property (in the G(n, p) model) of containing a copy of H . For which graph
H is the threshold sharpest? If one could show I(pc)(f) ≤ O(

√
v) for any subgraph containment

property f (with pc the appropriate critical probability), then one could use the results of Lecture 26
to recover the result of [Grö92], showing R(f) ≥ Ω(v3/2) for subgraph containment properties.

Distance variance of first passage percolation: Consider the graph on Z2 where each vertex
is connected to its 4 neighbors at distance 1. Choose each edge to have “length” either 1 or 2,
independently and with probability 1/2 each. Now let f denote shortest-path distance from (0, 0)
to (v, v), where v ∈ N is thought of as large. Using the result of Talagrand [Tal94] (mentioned
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in the first problem of the Miscellaneous section), [IB03] have shown that Var[f ] ≤ O(v/ log v).
The goal is to prove that Var[f ] = Θ(v2/3), which the statistical physicists “know” to be the right
answer.

Percolation on the grid: The scenario here is similar to the previous one. Consider an (m +
1)×m subgrid. Let each of the n = 2m2 − 1 edges be present or absent with probability 1/2, and
let f : {−1, 1}n → {−1, 1} be the indicator of a “crossing”; i.e., a path from the left side to the
right side. (A cute exercise: show E[f ] = 0.) One problem is to prove the following conjecture
made by physicists: I(f) = Θ(n3/8). Another is to prove the following conjecture from [BKS99]:
For every ε > 0, for sufficiently large m, the following holds:

Pr
horizontal edges

[∣∣∣∣ Pr
vertical edges

[crossing | horizontal edges]− 1/2

∣∣∣∣ ≥ ε

]
≤ ε.

if one chooses just the

11 Arithmetic Combinatorics
Triangle removal in Fn

2 [Gre04b]: Suppose f : Fn
2 → {0, 1} is ε-far from being triangle-free

(meaning that there are no x, y, z such that x + y + z = 0 and f(x) = f(y) = f(z) = 1). Prove
or disprove: the no-triangles test (pick x, y at random and check that f(x), f(y), f(x+y) are not
all 1) rejects with probability at least poly(ε).

Cosets in sumsets (see [Gre04a]): Let A ⊆ Fn
2 have density at least 1/4. Green has shown that

the set A + A := {a + b : a, b ∈ A} must contain coset of codimension at least Ω(n). On the other
hand, Ruzsa has shown that there exists an A of density at least 1/4 (specifically, the set of vectors
with at least n/2 +

√
n/2 1’s) such that A + A doesn’t contain any coset of codimension at most√

n. Narrow this gap.

Polynomial Freiman-Ruzsa Conjecture: This important open problem in arithmetic combina-
torics is attributed to Marton by Ruzsa (see, e.g., [Gre04a]. It has many equivalent formulations, in-
cluding the following: Let f : Fn

2 → Fm
2 (not just→ F2) satisfy Prx,y[f(x)+f(y) = f(x+y)] ≥

ε. Then there is some affine linear function g : Fn
2 → Fm

2 such that Pr[f(x) = g(x)] ≥ poly(ε).

Singularity probability for random matrices: Let M be a random n × n matrix, where each
entry is an independent random ±1 bit. Let Pn denote the probability that M has determinant 0.
Clearly this will happen if any two rows are the same (up to sign) or any two columns are the same
(up to sign). This gives a lower bound:

Pn ≥ (1− o(1))2n2 · 2−n.

It is conjectured that this bound is correct up to a 1+o(1) factor. A breakthrough result [JK95] gave
the upper bound Pn ≤ .999n, and the best current result [TV07] gets this down to (3/4 + o(1))n,
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using Fourier analysis and arithmetic combinatorics. That paper includes some discussion of how
one might try to improve the result to (1/2 + o(1))n.
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[Grö92] D. Gröger. On the randomized complexity of monotone graph properties. Acta Cyber-
netica, 10:119–127, 1992.

[IB03] O. Schramm I. Benjamini, G. Kalai. First passage percolation has sublinear distance
variance. Ann. Probab., 31(4), 2003.
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