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1 Triangle-freeness in Fn
2

In the last lecture we saw Roth’s Theorem in Fn
3 , which gives an upper bound on how many

elements a subset of Fn
3 can have while remaining 3-AP-free. Asking about 3-AP-free sets in Fn

2

doesn’t make a lot of sense, since x, x+d, x+2d = x are never all distinct. However it does make
sense to talk about “triangles”:

Definition 1.1 A triangle in Fn
2 (or in any additive group) is a triple x, y, z satisfying x+y+z = 0.

Remark 1.2 In Fn
2 , this is equivalent to satisfying z = x + y. In general, a triple (x, y, x + y) is

called a “Schur triple”.

We investigated Schur triples (equivalently, triangles) when studying the BLR test for linearity in
Lecture 2. There we considered picking x,y ∈ Fn

2 at random, letting z = x + y, and checking
whether f(x) + f(y) + f(z) = 0 (mod 2). If we were interested in triangle-freeness, we might
instead check that f(x) = f(y) = f(z) = 1; equivalently, that f(x)f(y)f(z) = 1. Recall from
Lecture 2 (and similarly in Lecture 27):

Proposition 1.3 Let f : Fn
2 → {0, 1}. If x,y are chosen randomly from Fn

2 and z = x + y, then

Pr[f(x) = f(y) = f(z) = 1] = E[f(x)f(y)f(z)] =
∑

α∈Fn
2

f̂(α)3.

Consider now the problem analogous to Roth’s for triangle-freeness — namely, how big can
a subset of Fn

2 be while remaining triangle-free? It may seem like the proof we gave for Roth’s
Theorem (which also analyzed

∑
α f̂(α)2) should work exactly equivalently here — i.e., if f is

a little bit dense and also uniform, then it contains a triangle; otherwise, it has a large Fourier
coefficient, hence it’s denser on an affine subspace of one fewer dimension, and we can iterate.
The catch is that if we find a triangle in the subspace, it doesn’t necessarily give a triangle in the
original space. Specifically, if T is an invertible affine map, and x+y+z = 0 and T is an invertible
affine map, then T−1x + T−1y + T−1z = 0 only if T is in fact linear (not just affine).

Indeed, there are extremely dense triangle-free subsets of Fn
2 :

Example 1.4 Let A = {x ∈ Fn
2 : x1 = 1}, a set of density 1/2. Then A is triangle-free, since

x, y, z ∈ A ⇒ x1 = y1 = z1 = 1 ⇒ x1 + y1 + z1 = 1 ⇒ x + y + z 6= 0.
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1.1 Testing triangle-freeness
There is a very interesting related question though, which can be motivated by property testing:
Suppose one has access to an unknown function f : Fn

2 → {0, 1} (thought of as indicating a subset
A of Fn

2 ) and one wants to test that it is triangle-free. The natural algorithm, again, would be to
choose x, y randomly and check that not all of x,y, and x + y are in A (three queries). Clearly,
if A is triangle-free this test will always pass. We would like to show that if A is ε-far from being
triangle-free then the test will have at least a slight chance of failing. If the probability is some
function δ(ε), then we can boost it up to 2/3 and get a one-sided test for triangle-freeness using
O(1/δ(ε)) queries.

As usual, to analyze the soundness. we look at the contrapositive:

Question 1.5 Suppose Pr[f(x) = f(y) = f(x + y)] = 1] < δ. Must f be close to being
triangle-free, where the closeness only depends on δ?

Since being triangle-free is an anti-monotone property, to measure closeness one only needs to
consider how many points must be deleted from A to make it truly triangle-free. In other words,
we may equivalently ask:

Question 1.6 Suppose Pr[f(x) = f(y) = f(x+y)] = 1] < δ. Can we delete some c(δ)2n points
from f and make it triangle-free?

We will show that the answer to this question is “yes”. However, the only bound known on
c(δ) is extremely bad.

Definition 1.7 The function 2 ↑↑ m is defined to be an exponential tower of 2’s of height m. Its
inverse function is denoted log∗.

The best bound known for c(δ) satisfies c(δ) < (log∗(1/δ))−Ω(1):

Theorem 1.8 Suppose Pr[f(x) = f(y) = f(x + y)] = 1] < 1/(2 ↑↑ poly(1/ε)). Then one can
delete ε2n points from f and make it triangle-free.

Corollary 1.9 There is a (2 ↑↑ poly(1/ε))-query test (with one-sided error) for a function f :
Fn

2 → {0, 1} being triangle-free.

Theorem 1.8 was first proved by Green in 2004. The analogous result for triangles in graphs
(i.e., 3-cycles) had long been known, with the proof using the famous Szemerédi’s Regularity
Lemma (SzRL) for graphs. Green’s method involves proving a SzRL for functions on Fn

2 ; we will
see this in the next section.

We end this section by remarking that it is unknown, and an interesting open problem, if a
non-tower-type bound is possible in Theorem 1.8. It may even be possible to get a polynomial
relationship. (In the graph setting, Alon has shown that there are N -vertex graphs, for N arbitrarily
large, which are ε-far from being triangle-free and yet contain only (1/ε)O(log(1/ε)) many triangles.)
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2 Szemerédi’s Regularity Lemma in Fn
2

To analyze the triangle-freeness test, we follow [Green 2004] and first prove a “Szemerédi Regu-
larity Lemma (SzRL) in Fn

2”. The usual SzRL is a structure theorem for all graphs; it says that any
graph can be decomposed into a constant number of pieces so that the edge structure between al-
most all pairs of pieces is “pseudorandom”. The SzRL for functions on Fn

2 is somewhat similar; it
says that for any function on Fn

2 , f : Fn
2 → [0, 1] say, one can decompose Fn

2 into constantly many
pieces so that on almost all pieces, f is “pseudorandom” (specifically, uniform). Further, these
pieces have a nice structure: they are all the cosets of a subspace of small codimension. Recall
from Lecture 9:

Definition 2.1 Let H be a subspace of Fn
2 . Then the sets {x + H : x ∈ Fn

2} are pairwise either
equal or disjoint. These are the cosets of H , and together they partition Fn

2 .
We say that the codimension of H is n − dim(H). A subspace of codimension k is equivalent

to the the set of all x satisfying the AND of k linearly independent constraints {αi ·x = 0}i=1...k. A
coset of this subspace is equivalent to all all x satisfying an AND of these constraints with different
RHS’s, {αi · x = ci}i=1...k.

Working with cosets is slightly annoying because for a typical H , there is no “canonical” choice
of representatives for the cosets. For example, if n = 2 and H = {(0, 0), (1, 1)}, then one of the
cosets of H is (1, 0) + H = {(1, 0), (0, 1)} = (0, 1) + H , and there is no natural way to choose
between (1, 0) and (0, 1).

There is one case where the situation is nice, though; our oft-used setting of “restrictions” to
coordinates:

Example 2.2 Let J ⊆ [n] and let H denote the span of all vectors ei, i 6∈ J . This is a subspace
of codimension |J | (with the constraints being {xj = 0 : j ∈ J}). The cosets of H are formed
by all possible restrictions of the coordinates in J , and each is naturally identified with a vector
y ∈ FJ

2
∼= {y : yj = 0 ∀j 6∈ J}.

Just using these sorts of cosets, we can prove a significant warmup for the SzRL in Fn
2 .

2.1 The “degree-1” case
Let’s introduce a weakening of the notion of being uniform:

Definition 2.3 Let f : Fn
2 → R. We say that f is (ε, 1)-uniform if |f̂(α)| ≤ 1 for all α = ei for

some i ∈ [n] (i.e., |f̂(S)| ≤ ε for all |S| = 1 in our old notation).

Note that for monotone, boolean-valued functions, this is equivalent to all influences being smaller
than ε. The notion of (ε, 1)-uniformity has had some use in property testing; e.g., in the testing of
LTFs.

The following “degree-1” variant on the SzRL in Fn
2 contains most of the main ideas of the

proof:
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Lemma 2.4 Let f : Fn
2 → R satisfy ‖f‖2 ≤ 1, and let ε > 0 be given. Then there is a decision

tree of size at most K(ε) = 2 ↑↑ (1/ε3), where each internal node is labeled by a coordinate and
where each leaf is labeled by the natural restricted subfunction of f , such that:

with prob. ≥ 1− ε, a rand. path down the tree ends at at an (ε, 1)-uniform function. (1)

Proof: Given a DT describing restricted subfunctions, we’ll say that “splitting” a leaf involves re-
placing it with an internal node (querying some coordinate), and giving this node two leaf children
representing the subfunctions on one more restricted variable.

We will start with the DT having no internal nodes and one leaf, labeled by f . Our plan is to
grow the required DT in stages. At each stage, we ask whether (1) holds. If so, we conclude. Oth-
erwise, we split all leaf-subfunctions g having a large ĝ(ei) on their coordinate of maximal Fourier
coefficient and move to the next stage. Each stage at most doubles the size (number of leaves) in
the tree. We will also show that the leaf-splitting in any stage increases a certain “progress mea-
sure” by at least ε3. The progress measure will be bounded in [0, 1] by definition, and hence the
number of stages can be at most 1/ε3. This will complete the proof of the theorem.

The progress measure we use is:

ExpImb := E
rand. path y

[f̂y(0)2].

This measures the average extent to which f is imbalanced under a random path (restriction) in the
current DT. We have

0 ≤ ExpImb ≤ ‖f‖2
2 ≤ 1.

The left inequality is obvious; the rightmost one is by assumption. The inequality ExpImb ≤ ‖f‖2
2

is a simple exercise (use induction). (Also, ExpImb ≤ 1 is obvious if f ’s range is {0, 1} or [0, 1],
the main cases of interest to us.)

Let’s now analyze the effect of a split on ExpImb. Suppose we are splitting some leaf-
subfunction g on a coordinate i with |ĝ(ei)| = η. Write µ = ĝ(0). Before splitting, g contributes µ2

to ExpImb (times the probability a random path reaches g). After splitting, we get two restricted
functions g0 and g1, with ĝ0(0) = µ+η and ĝ1(0) = µ−η. Their collective contribution to ExpImb
will be 1

2
(µ + η)2 + 1

2
(µ− η)2 = µ2 + η2 (again, times the probability a random path reaches their

parent).

Hence splitting on a subfunction g with a “degree-1” Fourier coefficient at least ε in magnitude
increases g’s weighted contribution to ExpImb by at least ε2. Now we see that if (1) does not hold,
at least an ε fraction of the leaves must have a degree-1 Fourier coefficient with magnitude at least
ε. So indeed, splitting all of these subfunctions will increase ExpImb by at least ε3. This completes
the proof. 2

It will be convenient to modify this result so that the DT is more structured; specifically so that
it is a full DT of depth at most K(ε) in which all nodes in the same level query the same variable.
In this case, it is just as though we are considering restrictions to some K(ε) coordinates.
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Corollary 2.5 In the setting of Lemma 2.4, there is a subset J ⊆ [n] of cardinality at most K(ε)
such that for at least a 1 − ε fraction of the restrictions y to J , the subfunction fy→H is (ε, 1)-
uniform.

Proof: To achieve this, we modify how we split at each stage. Suppose we have just finished all
the splits from one stage in the above proof. We now further split each leaf-subfunction on all
of the other coordinates that were used as splits in that stage. Since a split can never decrease
ExpImb, after this additional splitting we still have that ExpImb increases by at least ε3. We can
now rearrange all of the newly added subtrees so that the coordinates are split in the same order in
each.

This new process indeed generates full DTs in which the same variable is queried at each level.
It remains to check that the depth after t stages is at most 2 ↑↑ t. This is straightforward; if dt is
the depth after t stages, we have dt+1 ≤ dt + 2dt , and the bound follows because the base case has
slack (after 1 stage the depth is at most 1 ≤ 4 = 2 ↑↑ 1). 2

2.2 The general case
We would now like to extend this result to the full SzRL in Fn

2 , getting subfunctions that are η-
uniform, not just (η, 1)-uniform. The same proof structure works, except that we must handle
subfunctions g with ĝ(α) large for some α 6∈ {e1, . . . , en}. It’s possible to simply forge ahead,
having the DT’s internal nodes query arbitrary linear constraints, and having the leaves represent
restrictions of f to cosets. However defining Fourier coefficients consistently for functions on
cosets is slightly messy; hence we will use a twist:

Theorem 2.6 Let f : Fn
2 → R satisfy ‖f‖2 ≤ 1, and let ε > 0 be given. Then there is an invertible

linear transformation T on Fn
2 such that, if we define h : Fn

2 → R by h = f ◦ T , then the following
holds:

For at least a 1−ε fraction of the restrictions y to the coordinates J := {1, 2, . . . , K(ε) = 2 ↑↑
(1/ε3)}, the subfunction hy→J is ε-uniform.

Proof: We will follow the proof of Corollary 2.5. However, at each stage we will apply an in-
vertible linear transformation to the input space in such a way that the set of coordinates the tree
queries is always {1, 2, . . . , d} for some d ∈ N.

Specifically, at a given stage we are considering all restrictions to the first d coordinates of some
function f ◦ T , where T is an invertible linear transformation. For each restriction g : Fn−d

2 → R
which is not ε-uniform, we select a Fourier coefficient α 6= 0 for which |ĝ(α)| ≥ ε. Let H be the
subspace spanned by all of the α’s selected, and let β1, . . . , βd′ be a basis for this space. Note that
d′ ≤ 2d.

We now modify T applying an additional invertible linear transformation which maps βi to
ed+i for each i = 1 . . . d′; this is possible (and there will be many possible choices) since the βi’s
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are linearly independent. This brings us to a situation where for at least an ε fraction of the restric-
tions to the coordinates {1, . . . , d}, the resulting subfunction g (of the new f ◦T ) has the following
property: |ĝ(γ)| ≥ ε for some nonzero γ in the span of {ed+i, . . . , ed+d′}.

We would like to show that splitting on all of the coordinates d + 1, . . . , d + d′ will increase
ExpImb by at least ε3. As before, it suffices to show that if |ĝ(γ)| = η, then splitting g on all of
γ’s nonzero coordinates increases its contribution to ExpImb by at least η2. (We can afterwards
rearrange the queries to the ei’s, as before.)

This is an easy exercise; in fact, one that we have implicitly seen in Lecture 7 on the Goldreich-
Levin algorithm. Specifically, if y is a random restriction to the nonzero coordinates of γ, then
Ey[ĝy(0)2] =

∑
0≤γ′≤γ ĝ(γ′)2, and this is clearly at least ĝ(0)2 + ĝ(γ)2 ≥ ĝ(0)2 + η2. 2

Having proved this, we can now undo the linear transformation on the input space. Doing this
converts restrictions to K(ε) coordinates into restrictions to the cosets of a subspace of codimen-
sion K(ε). Since each coset is affinely isomorphic to a copy of F

n−K(ε)
2 , there is a sensible notion

of what it means for a function, restricted to a coset, to be ε-uniform. (Note that the notion of
uniformity is invariant under invertible affine transformations.) This proves the statement which
we consider to be the SzRL for Fn

2 :

Corollary 2.7 (SzRL in F n
2 ) Let f : Fn

2 → R satisfy ‖f‖2 ≤ 1, and let ε > 0 be given. Then there
is a subspace H of Fn

2 of codimension at most K(ε) = 2 ↑↑ (1/ε3) such that for at least a 1 − ε
fraction of the cosets of H , the function f when restricted to the coset is ε-uniform.

3 Analyzing the triangle-freeness test
To derive Theorem 1.8 we will use the Theorem 2.6 version of the SzRL. A key point here is that
applying invertible linear transformations (as opposed to affine transformations) does not affect
triangles, since if x + y + z = 0 then T−1x + T−1y + T−1z = 0. Thus to prove Theorem 1.8, we
may first apply any invertible transformation we like to f ’s input space.

So let f : Fn
2 → {0, 1} satisfy Pr[f(x) = f(y) = f(x + y) = 1] ≤ 1/(2 ↑↑ poly(1/ε)). Ap-

ply Theorem 2.6 with the “ε” parameter set to ε3/10. Now we may assume that f has the property
that for at least a 1 − ε3/10 fraction of the restrictions to coordinates J = {1, 2, . . . , K} (where
K ≤ 2 ↑↑ (10/ε9)), the restricted function is ε3/10-uniform.

Write A for the set that f indicates. For each restriction y to J for which fy→J is not ε3/10-
uniform, delete all the points from Ay→J . Further, for each restriction y for which E[fy→J ] ≤ ε/2,
delete all the points from Ay→J . The total number of points deleted from A is then at most
(ε3/10)2n + (ε/2)2n ≤ ε2n. We claim that after this deletion, the set A is triangle-free.
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Suppose otherwise; say a, b, c ∈ A satisfy a + b + c = 0. Letting f denote the indicator of
the post-deletion A, by construction we must have that faJ→J , fbJ→J , fcJ→J are all ε3/10-uniform
functions with density at least ε/2 each. The proposition below then implies that if we pick a ran-
dom u, v ∈ Fn−K

2 , there is at least an ε3/40 chance that faJ→J(u) = fbJ→J(v) = fcJ→J(w) = 1.
This immediately implies that Pr[f(x) = f(y) = f(x + y) = 1] ≥ 2−K(ε3/40) > 1/(2 ↑↑
poly(1/ε)) for a large enough poly, a contradiction.

Proposition 3.1 Let f1, f2, f3 : Fn
2 → R satisfy E[fi] ≥ ε/2 for each i, and further suppose that:

(a) f1 is (ε/10)3-uniform; and, (b) ‖f2‖2, ‖f3‖2 ≤ 1. Then if x,y are chosen independently at
random from Fn

2 , we have E[f1(x)f2(y)f3(x + y)] ≥ ε3/40.

Proof: By Fourier analysis, we know that the expectation is
∑

α

f̂1(α)f̂2(α)f̂3(α)

≥ (ε/2)3 −
∑

α 6=0

|f̂1(α)||f̂2(α)||f̂3(α)|

≥ ε3/8− (ε3/10) ·
∑

α6=0

|f̂2(α)||f̂3(α)| (by uniformity of f1)

≥ ε3/8− (ε3/10) ·
√∑

α6=0

f̂2(α)2

√∑

α6=0

f̂3(α)2 (Cauchy-Schwarz)

≥ ε3/8− ε3/10 (since E[f 2
2 ],E[f 2

3 ] ≤ 1)
= ε3/40.

2

7


