
Analysis of Boolean Functions (CMU 18-859S, Spring 2007)

Lecture 26: Influences and Decision Trees
Apr. 24, 2007

Lecturer: Ryan O’Donnell Scribe: Ryan O’Donnell

1 Main Theorem
In this lecture, we will show an inequality relating decision tree complexity and influences. We
work in the setting of the p-biased product distribution on {−1, 1}. Recall:

Fact 1.1 Let f : {−1, 1}n
(p) → {−1, 1}. Then

Var[f] = E[f 2]− E[f]2 = 4Pr[f = −1]Pr[f = 1] = 2 Pr
x,y indep.

[f(x) 6= f(y)],

which is 1 if f is “balanced” under the p-biased distribution. Also,

Infi(f) = E
x
[Var

xi

[f]] = 2 Pr
x,x(∼i)

[f(x) 6= f(x(∼i))],

where x(∼i) denotes x with the ith coordinate rerandomized (according to the p-biased distribu-
tion).

Since we’ve been considering random inputs throughout the course, let’s see what this means
for decisions trees.

Observation 1.2 (“The Decision Tree Observation”) Let T be a deterministic decision tree (hence-
forth DDT). The following method constructs a random input x distributed according to {−1, 1}n

(p):
1. Start at the root of T ; say it queries coordinate i1. Choose xi1 ∈ {−1, 1}(p), and follow the

branch according to this choice.
2. Suppose one is now at a node labeled i2. Choose xi2 ∈ {−1, 1}(p), and follow the branch

according to this choice.
3. Repeat, until one comes to a leaf. At this point, some xi1 , . . . , xit have been fixed. Now

choose values independently and randomly from {−1, 1}(p) for all unfixed coordinates.

NB: As always, we assume that DDTs never query the same coordinate more than once on any
path.

Definition 1.3 Let T be a DDT. We define:

δ
(p)
i (T) = Pr

p-biased
[T queries ith coord.],

∆(p)(T) =
n∑

i=1

δi = E
p-biased

[# of coords queried] = E
p-biased

[depth of path T follows].

1

The following is a nice exercise:

Proposition 1.4 ∆(p)(T) ≤ (log2 size(T))/H(p), where H(p) denotes the binary entropy of p
(which is 1 if p = 1/2).

Definition 1.5 The p-biased average-case DT complexity of f is

∆(p)(f) = min{∆(p)(T) : T is a DDT computing f}.
Note that

∆(p)(f) ≤ R(f) ≤ D(f),

where
D(f) = min{depth(T) : T is a DDT computing f},
R(f) = min{cost(T) : T is an RDT computing f}.

Here an RDT (randomized decision tree) T computing f is a probability distribution over DDTs
computing f (i.e., a “zero-error” randomized DT), and

cost(T) = max
x∈{−1,1}n

avg
T ’s randomness

[# coords queried].

The main theorem for this lecture is:

Theorem 1.6 Let f : {−1, 1}n
(p) → {−1, 1} and let T be a DDT computing f . Then

Var[f] ≤
n∑

i=1

δ
(p)
i (T) · Infi(f). (1)

In words: “The expected sum of influences experienced along a random path is at least the
variance.”

2 Interpretations
1. Functions with efficient decision trees have influential variables. We have

n∑
i=1

δ
(p)
i (T) · Infi(f) ≤

(
max

i
Infi(f)

)
·

n∑
i=1

δ
(p)
i (T) =

(
max

i
Infi(f)

)
·∆(p)(T).

Hence:

Corollary 2.1

∃i s.t. Infi(f) ≥ Var[f]/∆(p)(f) (≥ Var[f]/R(f) ≥ Var[f]/D(f)). (2)

E.g., if f is balanced and has a DDT of depth d, then there exists i with Infi(f) ≥ 1/d.

2

In particular, (2) is better than KKL for any function f with average-case DT complexity
o(n

log n
).

This interpretation may be of interest for learning theory. Many popular, practical machine
learning algorithms (“CART”, “C4.5”) try to build a DT hypothesis as follows: (a) Identify a “very
relevant” or “very influential” variable. (b) Put this at the root of a DDT. (c) Recurse on the two
possible restrictions. There isn’t a lot of theoretical justification for this, and indeed most PAC-
style learning algorithms for DTs don’t do this. This result at least shows that the idea is not
completely broken: If there is, say, a depth-d DDT computing the function f , then there will at
least exist some variable with influence at least Var[f]/d.

This interpretation is also of interest for the study of threshold phenomena:

Corollary 2.2 Let f : {−1, 1}n → {−1, 1} be any nonconstant transitive (weakly symmetric)
monotone function (e.g., a monotone graph property). Let pc be the critical probability for f .
Then:

I(pc)(f) ≥ n/∆(pc)(f);

hence f has a sharp threshold if its pc-biased average DT complexity is o(n).

Proof: By definition, Var[f] = 1 at the critical probability; also, since f is transitive all its
influences are the same, I(pc)(f)/n. 2

2. Functions with all influence small require complex decision trees. There is a lot of work in
complexity theory on proving lower bounds for randomized decision trees. We will talk about this
later in Section 5.

3 Proof of Theorem 1.6
Actually, the proof requires no Fourier analysis! It only requires probabilistic reasoning.

Let f : {−1, 1}n
(p) → {−1, 1}, and let T be a DDT for f .

Let x, y be independent random inputs. Think of x as being chosen via The Decision Tree
Observation, but think of y as just a bank of random p-biased bits.

Let i1, . . . , id be the coordinates T queries on x, in order. Note that here d is also a random
variable. For all j > d, define ij = ⊥.

For 0 ≤ t ≤ d, define the hybrid input zt to be the input that is mostly y, except that coordinates
it+1, . . . , id have x’s values substituted in.

We have that z0 is the string that agrees with x on the bits in the path T follows on x, but agrees
with y on the remaining bits “chosen after T completes its path on x”. We have that f(z0) = f(x),
since T computes f .

Also, we have zd = y, and hence f(zd) = f(y).

3

Thus:

Var[f] = 2Pr
x,y

[f(x) 6= f(y)] = E
x,y

[|f(x)− f(y)|]
= E[|f(z0)− f(zd)|]
≤ E

[∑
t≥1

|f(zt−1)− f(zt)|
]

(for t ≥ d, the summand is 0)

=
∑
t≥1

E[|f(zt−1)− f(zt)|
]
.

For each t, we condition on the value of it. This can be one of n + 1 values: 1, 2, . . . , n,⊥.
However,

it = ⊥ ⇒ t > d ⇒ zt−1 = zt = y ⇒ |f(zt−1)− f(zt)| = 0.

Thus we may disregard the it = ⊥ possibility and write

∑
t≥1

E[|f(zt−1)− f(zt)|
]

=
∑
t≥1

n∑
j=1

Pr[it = j]E[|f(zt−1)− f(zt)|
∣∣∣ it = j].

We now come to the only subtle point in the proof:

Claim 3.1 Fix t ≥ 1 and j ∈ [n]. Conditioned on it = j, the distribution (zt−1,zt) is the
same as the distribution (w, w(∼i)), where w is random and w(∼i) is w with the jth coordinate
rerandomized.

Proof: Certainly conditioning it = j imposes constraints on xi1 , . . . , xit−1 . But all values
xit , . . . , xid

are independent of these. And in zt−1, we have completely independent random
bits for the non-i variables, and we also have completely independent random bits for coordinates
i1, . . . it−1. Hence zt−1 is just distributed like a totally random string w. And then zt is formed
just by rerandomizing the it coordinate; i.e., the j coordinate. 2

4

We now conclude:

∑
t≥1

n∑
j=1

Pr[it = j]E[|f(zt−1)− f(zt)|
∣∣∣ it = j]

=
∑
t≥1

n∑
j=1

Pr[it = j]E[|f(w)− f(w(∼i))|]

=
∑
t≥1

n∑
j=1

Pr[it = j] · 2Pr[f(w) 6= f(w(∼i))]

=
n∑

j=1

∑
t≥1

Pr[it = j] · Infj(f)

=
n∑

j=1

Infj(f) ·
∑
t≥1

Pr[it = j]

=
n∑

j=1

Infj(f)δ
(p)
j (f) 2

4 Tightness
The inequality can often be tight. To see some cases, note first that the entire proof has equalities,
except at one point:

|f(z0)− f(zd)| ≤
∑
t≥1

|f(zt−1)− f(zt)|.

One case in which this inequality is tight is if the tree T is read-once. This means that every
coordinate in every node in T is different. In this case, consider the smallest t for which f(zt−1) 6=
f(zt). First, this means that yit 6= xit . But now since T is read-once, further changing the values
on coordinates it+1, . . . , id won’t change the value of f , because these coordinates are not queried
on the newly followed path.

Examples of read-once T ’s include the natural DDTs for AND, OR, and

SEL(x1, x2, x3) =

{
x2 if x1 = −1,
x3 if x1 = 1.

E.g., for SEL the main inequality reads 1 ≤ 1 · 1
2

+ 1
2
· 1

2
+ 1

2
· 1

2
.

Once can also check that the inequality becomes tight for recursively read-once DDTs. With-
out making a formal definition, suppose that f and g have read-once DDT. Then there is a natural
DDT for f ⊗ g, which is not (in general) read-once, but which we call recursively read-once. Then
the inequality becomes tight for f ⊗ g with that tree.

For example, the equality is tight for the function Tribes, with any one of the “natural” DDTs
computing it.

5

5 Randomized Decision Tree lower bounds
On Homework #4 (Problem #6) we saw an upper bound on the sum of degree-1 Fourier coefficients
in terms of decision tree complexity:

Theorem 5.1 Let f : {−1, 1}n → {−1, 1} be computed by a depth-d DDT. Then
∑n

i=1 f̂(i) ≤
(
√

2
π

+ o(1))
√

d.

A nice exercise is to improve this to depend on ∆(f) rather than D(f) (hint: use Cauchy-Schwarz
on EP [f(P) · (∑i∈I xI

i)]):

Theorem 5.2 Let f : {−1, 1}n → {−1, 1}. Then
∑n

i=1 f̃(i) ≤
√

∆(f).

This is easily generalized to the p-biased case:

Theorem 5.3 Let f : {−1, 1}n
(p) → {−1, 1}. Then

∑n
i=1 f̃(i) ≤

√
∆(p)(f).

In particular, if f is monotone, then we know that f̃(i) = Infi(f)/(2
√

pq). Hence:

Corollary 5.4 Let f : {−1, 1}n
(p) → {−1, 1} be a monotone function. Then I(p)(f) ≤ 2

√
pq

√
∆(p)(f).

But we can now combine this with Corollary 2.2:

n/∆(pc)(f) ≤ I(pc)(f) ≤ 2
√

pq
√

∆(pc)(f)

and we get

Theorem 5.5 Let f : {−1, 1}n → {−1, 1} be any nonconstant transitive (weakly symmetric)
monotone function. Let pc be the critical probability for f . Then:

∆(pc)(f) ≥ n2/3

(4pq)1/3
.

This is known to be essentially best possible:

Theorem 5.6 (Benjamini-Schramm-Wilson ’05) There is a 1
2
-critical monotone transitive f with

∆(f) ≤ O(n2/3 log n).

When f is a monotone graph property on v vertices, the situation is very interesting. First:

Conjecture 5.7 (Aanderaa-Karp-Rosenberg Conjecture ’73) If f is a monotone graph property
on v vertices, then D(f) =

(
v
2

)
.

Results:
≥ v2/16, by Rivest-Vuillemin-’75.
≥ v2/9, by Kleitman-Kwiatowski-’80.
≥ (

v
2

)
/2 and =

(
v
2

)
if v is a prime power, by Kahn-Saks-Sturtevant-’84 (uses topology and

group theory!)
= n in the bipartite case, by Yao-’88.

6

Conjecture 5.8 (Yao Conjecture ’77) If f is a monotone graph property on v vertices, then R(f) ≥
Ω(v2).

Results:
≥ Ω(v), by Yao-’77.
≥ Ω(v log1/12 v), by Yao-’87 using “graph packing”.
≥ Ω(v5/4), by King-’88 using more elaborate graph packing.
≥ Ω(v4/3) = Ω(n2/3), by Hajnal-’91 using more elaborate graph packing.
≥ Ω(v4/3 log1/3 v), by Chakrabarti-Khot-’01 using more elaborate graph packing.
≥ min{Ω(v/pq), Ω(v2/ log v)} by Friedgut-Wigderson-’02 using less elaborate graph packing

and more probabilistic reasoning.
≥ Ω(v4/3/(pq)1/3) by our results from today, using no graph packing!
The last three results are all incomparable.

It is very strange that all of the graph packing arguments get stuck at roughly the same point:
n2/3 — the very point that you cannot beat if you only have a transitive function and not a graph
property.

7

